

Designing a
Host A

Lab M

2
COM 320
1

 USB Embedded
pplication

anual (v1.00)

Lab Manual: COM3202 v1.00

Initial Installation/Set-Up

Purpose:

- Set-up your PC to run the labs

Equipment:

- PC running Windows XP Professional with Service Pack2 (SP2) and Internet Access
- PC should also have at least 3 available High Speed USB ports and/or a powered hub.
- Adobe PDF reader.
- Explorer 16 (DM240001) + PIC24F USB PIM (MA240014) or PIC32MX USB PIM

(MA320002) + PICTail USB Card (AC164131)
- PICDEM FS USB Board (DM163025), programmed with factory default application

“USB Device - MCHPUSB - Generic Driver - C18 - PICDEM FSUSB - MCHPUSB
Bootload.hex”

- MPLAB REAL ICE (DV244005)
- MPLAB IDE v8.40
- MPLAB C30 v3.12 (do *not* use v3.20b), C32 v 1.05
- Microchip Application Libraries v2009-08-31 (MCHPFSUSB v2.5b (included in the

class CDROM)
- 1 RS-232 –to- USB Converter Cable
- 1 Type A Type Mini-B USB Cable
- 1-FAT16/32 Formatted USB Thumb Drive
- Recommended: 1GB Kingston Data Traveler (P/N: DTI/1GB)
- Pre-loaded with contents of “\Development Tools\Thumb Drive Contents” folder
- COM3202 Class CDROM – Installed (see next section)

Hardware Setup:

1. Before attaching the PIC24FJ256GB110/PIC32MX460F512L PIM to the Explorer 16

board, insure that the processor selector switch (S2) is in the “PIM” position as seen in
the image below.

Microchip Technology Inc. COM3202 v1.00 Lab Manual
2

Lab Manual: COM3202 v1.00

2. Short the J7 jumper to the “PIC24” setting:

3. Before inserting the PIM into the Explorer 16 board, remove all attached cables from
both boards. Now, insert the PIM. Be careful when inserting the PIM to insure that no
pins are bent or damaged during the process. Also insure that the PIM is not shifted in
any direction and that all of the headers are properly aligned.

4. On the USB PICTail Plus board, short jumpers JP2 and JP3. Remove all other shorts on

the board.

Microchip Technology Inc. COM3202 v1.00 Lab Manual
3

Lab Manual: COM3202 v1.00

Courseware Installation/Restoration

First-time installation:

1. Install the class labs by copying the class CDROM contents to C:\RTC\COM3202
2. (Optional) Install the MCHPFSUSB v2.5b USB Framework by running the “Microchip

Application Libraries v2009-08-31.exe” installer in C:\RTC\COM3202. Direct the
installer to install into the default folder (C:\Microchip Solutions).

3. Copy the contents of “\Development Tools\Thumb Drive Contents” onto a FAT32-
formatted USB Thumb Drive.

4. If necessary, re-program the PICDEM FS USB board with the .hex file “USB Device -
MCHPUSB - Generic Driver - C18 - PICDEM FSUSB - MCHPUSB Bootload.hex”
found in C:\RTC\COM3202

Restoring the COM3202 project files during the training:

1. Run “Restore Labs.bat” in C:\RTC\COM3202\Development Tools
2. Copy the contents of “\Development Tools\Thumb Drive Contents” onto a FAT32-

formatted USB Thumb Drive.

Microchip Technology Inc. COM3202 v1.00 Lab Manual
4

Lab Manual: COM3202 v1.00

Class Folder Structure (C:\RTC\COM3202)

C:\RTC\COM3202
 \Microchip
 \Lab1..Lab6
 \USB Host - Mass Storage - Simple Demo
 \USB Host - Mass Storage - Thumb Drive Data Logger
 \USB Host - MCHPUSB - Generic Driver Demo
 \Presentation & Handouts
 \Users Guides & Data Sheets
 \Development Tools

Key Folders:

\Microchip

USB Stack files – copied from C:\Microchip Solutions

\Presentation & Handouts

PDF files of the slides and this Student Handout

\Users Guides & Data Sheets

Repository for helpful documents discussed earlier.

\Development Tools

Contains all projects/labs and lab restore batch file, as well as
other various tools used in the class

Microchip Technology Inc. COM3202 v1.00 Lab Manual
5

Lab Manual: COM3202 v1.00

Running the Demos

Overview:

The following MCHPFSUSB Embedded Host framework demonstration projects are included in
the COM3202 presentation:

USB Host - MCHPUSB - Generic Driver Demo (Part 1)
USB Host - Mass Storage - Simple Demo (Part 3)
USB Host - Mass Storage - Thumb Drive Data Logger (Part 3)

Instructions for running these demos are provided in the “Getting Started” HTML help pages that
are included with the demos. They are available in the following folders:

C:\RTC\COM3202\USB Host - MCHPUSB - Generic Driver Demo\USB Host -
MCHPUSB - Generic Driver Demo.html

C:\RTC\COM3202\ USB Host - Mass Storage - Simple Demo\Getting Started -
Running the Host - Mass Storage - Simple Demo.html

C:\RTC\COM3202\ USB Host - Mass Storage - Thumb Drive Data Logger\
Getting Started - Running the Host - Mass Storage - Thumb Drive Data
logger.html

Detailed Instructions: “USB Host – Mass Storage – Thumb Drive Data Logger (Part 3):

Overview:

This is a demonstration of a simple application (terminal shell) that uses the Microchip Memory
Disk Drive File System to manipulate files on a USB Thumb Drive. In Labs 4-5, you will learn
how to configure/use this file system with the embedded host framework to manipulate files on a
USB Thumb Drive.

Procedure:

1. Ensure the basic hardware is set up (see steps 1-4 in Hardware Setup) and that you have

inserted a FAT32-formatted a thumb drive into the USB PICTail Plus. You will also need to
connect a serial cable from the Explorer16 to the computer.

2. Open/Build/Run the “USB Host - Mass Storage - Thumb Drive Data Logger” workspace
in C:\RTC\COM3202\USB Host - Mass Storage - Thumb Drive Data Logger that is
appropriate for the MCU you selected:

a. PIC24: USB Host - Mass Storage - Thumb Drive Data Logger - C30.mcw
b. PIC32: USB Host - Mass Storage - Thumb Drive Data Logger - C32.mcw

3. Open a HyperTerminal window. The HyperTerminal file COM3202 Hyperterminal

Connection.ht (in C:\RTC\COM3202) contains the correct settings: 57600 baud, 8 data bits,
no parity, 1 stop bit, no flow control. This console will be used to communicate with the shell
program on the PIC.

Microchip Technology Inc. COM3202 v1.00 Lab Manual
6

Lab Manual: COM3202 v1.00

4. Connect power to the Explorer 16. If power was already connected to the board before the

serial port was connected, either cycle power, press reset, or press enter. This should give a
“>” prompt. If the prompt does not appear then verify that you programmed the firmware
correctly and that you have the correct serial port settings.

Type “HELP” in the prompt for a list of the available commands.

5. Experiment with data-logging the potentiometer setting to a file (“LOG POT Test1.txt”). One
sample per second is saved to the thumb drive.

6. Terminate the logging by pressing “Control-C”
7. Display the data by typing “TYPE TEST1.TXT”

Microchip Technology Inc. COM3202 v1.00 Lab Manual
7

Lab Manual: COM3202 v1.00

Part 2 - Designing a Custom Class, Full-Speed USB Embedded-Host
Application

Overview:

The lab exercises in this section focus on the steps needed to “connect” the application features to
the USB client driver and the client driver to the host layer, not on implementing large amounts of
new code.

The level of difficulty of each exercise starts out low and increases in the last few steps of the lab.
There are three primary levels of difficulty.

Beginner:

Beginners should have no difficulty following the initial step-by-step instructions to learn
the key concepts. This level of completion requires little or no original code
development. Attendees will need to make minor changes, “comment out” temporary
code, or “un-comment” code that has already been implemented.

Intermediate:

Most attendees should find a reasonable challenge and have the opportunity to explore
the key concepts by following step-by-step instructions on how to implement small code
segments in well documented sections of the existing application or driver.

Advanced:

Those who are already quite familiar with Microchip PIC microcontrollers, the MPLAB
IDE, and USB will find a challenge implementing missing features with minimal
direction. Resource materials are provided in this document and portions of the code
may already be implemented, but instructions are limited to high-level descriptions of the
intended feature. The attendee must determine the necessary steps to implement the
feature and implement larger sections of code from scratch.

Beginners should still be able to gain an understanding of the key concepts, but even the most
advanced students will find it difficult to finish all of the exercises in the time allotted. To re-
enforce the concepts, attendees are encouraged to purchase the lab materials and complete the
exercises once they have returned to their own lab environments.

Do not open the lab projects and jump right in making changes to the code. To obtain the
benefit of doing the lab exercises, you must follow the directions given in this manual.

Microchip Technology Inc. COM3202 v1.00 Lab Manual
8

Lab Manual: COM3202 v1.00

Lab 1 – Implement Application Using Microchip Generic Client Driver

Purpose:

The purpose of this lab is to learn how to use the Microchip-provided “Generic” client driver to
create a simple USB Host application and how to use the “USBConfig.exe” program to configure
the Microchip USB Embedded Host firmware stack.

Basic Objectives:
1. Assemble the hardware
2. Generate the USB configuration files
3. Build the application
4. Debug the application

Intermediate Objective:
5. Add missing “To Do” items

Advanced Objective:
6. Add unimplemented features

Procedure:

1. Assemble the hardware.

a. Select a PIC24 (see Figure 1) or PIC32 PIM (see Figure 2)

Figure 1: PIC24 PIM

Figure 2: PIC32 PIM

Microchip Technology Inc. COM3202 v1.00 Lab Manual
9

Lab Manual: COM3202 v1.00

Microchip Technology Inc. COM3202 v1.00 Lab Manual

b. Attach the PIM you selected and the USB PICTail™ Plus Daughter Board to the Explorer 16
board as shown in Figure 3.

Note: Be sure that pin 1 on the PIM is oriented to the upper Left corner, near the LCD
display and the debugger connector.

Figure 3: HW Assembly

c. Ensure that the following jumper settings are correct on the USB PICtail™ Plus Daughter

Board, as shown below:

Figure 4: USB PICtail Jumpers

Over-Current Detection – Shorted
Device Enable – Open
Host Enable – Shorted
OTG Enable – Open

Note: Jumper numbers may vary
depending on board revision.

d. Attach the power connector and the REAL ICE™ In-Circuit Emulator to the Explorer 16
board as shown in Figure 5.

Figure 5: Hardware and Debugger

10

 Lab Manual: COM3202 v1.00

2. Generate the USB configuration files.

a. Run the “USBConfig.exe” program (see Figure 6).

By default, the “USBConfig.exe” program is installed in “C:\Microchip Solutions\USB
Tools\USBConfig Tool”. For this class, it is provided in C:\RTC\COM3202

Figure 6: USBConfig.exe Main Dialog

b. Under the “Main” dialog tab (see Figure 6), make the following selections:

• Under “Target Device Family”, choose the correct processor for the PIM you selected.

• In the “Device Type” group, choose “USB Embedded Host”.

• In the “Ping-Pong Mode” group, choose “Ping-Pong on All Endpoints”.

c. Click the “Host” tab and make the following selections (see Figure 7):

• Under the “Transfer Types” group, de-select “Support Isochronous Transfers”, leaving
“Support Interrupt Transfers” and “Support Bulk Transfers” selected. (Leave the default
number of “NAK’s” allowed for both.)

• De-select the “Application Event Handler Provided” checkbox.

• Ensure that the “Default Initial Root Port Vbus Current” is 100 mA.

• Ensure that the “Attach Debounce Interval” is 250 ms.

• Ensure that the “Generate Transfer Events” checkbox is de-selected.

Microchip Technology Inc. 11 COM3202 v1.00 Lab Manual

 Lab Manual: COM3202 v1.00

Figure 7: USBConfig.exe Host Dialog

d. Click the “TPL” tab and fill in the TPL data for the PICDEM™ FS USB demo board (see

Figure 8):

In the “Supported Peripheral” group, fill in the PICDEM™ FS USB demo board’s TPL
information (see Figure 8):

• Description: PICDEM FS USB
• Check “Support via VID/PID” and enter:

o VID: 0x04D8
o PID: 0x000C

• Ensure that “Support via Class ID” is not checked
• Select “Generic” in the “Client Driver” pull-down box.
• Leave the default “Initial Configuration” value of ‘0’
• Leave the default “Initialization Flags” value of ‘0’

Microchip Technology Inc. 12 COM3202 v1.00 Lab Manual

 Lab Manual: COM3202 v1.00

Figure 8: USBConfig.exe TPL Dialog

e. Click “Add to TPL” and observe that the data from the “Supported Peripheral” group gets

cleared and is transferred to the TPL table below, (see Figure 9).

Figure 9: USBConfig.exe TPL Dialog Filled In

Microchip Technology Inc. 13 COM3202 v1.00 Lab Manual

 Lab Manual: COM3202 v1.00

f. Click the “Generic” tab and select “Generic Client is used in Host mode” (see Figure 10).

Figure 10: USBConfig.exe Generic Dialog

Note: “Include Serial Number Support” may be checked or not checked; it will

not be used in this lab.

g. Click the “Generate” button and save the configuration files generated to the “Lab 1” project
directory C:\ RTC\COM3202\Lab 1

h. Close the “USBConfig.exe” program.

Microchip Technology Inc. 14 COM3202 v1.00 Lab Manual

 Lab Manual: COM3202 v1.00

3. Build the application.

a. Open the Lab 1 workspace that is appropriate project for the MCU you selected.

• PIC24: C:\ RTC\COM3202\Lab1\Lab1 – C30.mcw
• PIC32: C:\ RTC\COM3202\Lab1\Lab1 – C32.mcw

b. Ensure that REAL ICE™ is not selected as the programmer by selecting “None” under the
“Select Programmer” choice in the “Programmer” top-level menu.

c. Select REAL ICE™ as the debugger by selecting “REAL ICE” under the “Select Tool”
choice in the “Debugger” top-level menu.

d. In MPLAB, select “Build All” from the “Project” menu or click the button on the project
manager toolbox.

e. Observe the error messages indicating that “USB_HOST_FW_MAJOR_VER” and
“USB_HOST_FW_MINOR_VER” are undefined.

f. Open the “main.c” file and search for the “LAB1 Step 3f” instructions in the comment block.
Follow the instructions (steps 1-4) to include the correct USB header files.

g. After attempting to rebuild the program, observe that there are several error messages
indicating that “usbClientDrvTable” and “

Add the “usb_config.h” an

usbTPL” are undefined.

h. d
ed in step 2

ders

i. ild the project. It should build successfully at this time.

4.

a. Select “Program” from the “Debugger” menu or click the

“usb_config.c” files you creat
to the project by right-clicking on the
“Header Files” and “Source Files” fol
in the project window and selecting “Add
Files” as shown at the right. Browse to
the Lab 1 project directory to locate the
files.

Re-bu

Debug the application

 button on the REAL ICE™

b. Select “Run” from the “Debugger menu or click the

tool bar.

 button on the Debug tool bar.

xp This The initial message should now be displayed on the E lorer 16’s LCD (see Figure 11).
message gives the version number of the Host firmware and has dashes (‘-‘) as space holders
for the information it reads from the device: device firmware version number, temperature in
degrees Celsius, and resistance of the potentiometer in Ohms.

Figure 11: Initial LCD Message

Microchip Technology Inc. 15 COM3202 v1.00 Lab Manual

 Lab Manual: COM3202 v1.00

c. Connect the PICDEM™ FS USB Demo Board to the full-sized Type-A Host connector on
the USB PICtail™ Plus Daughter Board using standard Type-A-to-Type-B USB cable as
shown in Figure 12.

Figure 12: USB Device Attached

d. Observe that the message on the LCD screen does not change when the device is attached.

This indicates that the application did not recognize the device being attached to the host.
Also observe that the device “panics”, flashing LEDs D1 & D2 together rapidly. This
indicates that the device was not properly enumerated by the host.

e. Follow the instructions in the “LAB1 Step 4e”comment block in “main.c” to initialize and
maintain the USB stack. Re-build, program and run the application.

Observe that, once the USB stack has been initialized and maintained that the device now
enumerates (as indicated by LEDs D1 and D2 on the PICDEM™ FS USB Demo Board
flashing alternately). However, the messages shown in the LCD on the Explorer 16 have not
changed so the application has not yet recognized that the device is attached.

f. Follow the instructions in the “LAB1 Step 4f” comment block in “main.c” to allow the
application to recognize when the device has been attached by calling the Generic driver’s
“USBHostGenericGetDeviceAddress()” API routine.

g. Next, follow the instructions in the “LAB1 Step 4g” comment block to enable the application
to send commands to the device. (Note: the “receive response” support is already
operational.)

You should now see the device’s firmware version number and temperature appear on the
LCD screen along with zeroes (“00000”) for the potentiometer resistance value (see Figure
13).

Figure 13: Attached LCD Message

You can also touch the temperature sensor, U4 on the PICDEM™ FS USB Demo Board
(near the middle of the board by the potentiometer), and (at normal room temperatures) see
the temperature change on the host.

Microchip Technology Inc. 16 COM3202 v1.00 Lab Manual

 Lab Manual: COM3202 v1.00

5. Add missing “To Do” items. (Intermediate)

a. Follow the instructions in the “LAB1 Step 5a” comment block in the “main.c” file to add the
missing feature to read the potentiometer data.

If you’ve added the missing feature correctly into the application, you should be able to turn
the potentiometer and watch the resistance reading change on the LCD.

Use the debugger to step through the code as directed in the comments. Pay attention to the
sequence execution of the state transitions and to the command-and-response method of
communicating with the device.

6. Add unimplemented features. (Advanced)

a. Follow the instructions in the “LAB1 Step 6a” comment block in the “main.c” file to add a
new feature to the application (monitor switches S3 and S6 and send commands to toggle
PICDEM FS USB LEDs D3 + D4 respectively when pressed).

Hints:

1. You might observe that there are state transitions defined by the DEMO_STATE
enumeration that are not being used.

2. The command-response protocol for the PICDEM™ FS USB Demo Board is
described in Appendix B – MCHPFSUSB “Demo” Firmware Command
Reference.

3. You must update the previous state transition value from
“DEMO_STATE_GET_TEMPERATURE” to “DEMO_STATE_SEND_SET_LED”
before this section of code will even be called.

7. Solution workspaces are provided:
• PIC24: C:\RTC\COM3202\Lab1\Solution\Lab1 – C30.mcw
• PIC32: C:\RTC\COM3202\Lab1\Solution\Lab1 – C32.mcw

Summary:

This lab demonstrates an easy way to design a simple USB Host application. It uses the Microchip
“Generic” client driver by configuring the Microchip USB Embedded Host stack using simple
“USBConfig.exe” graphical tool.

The application initializes the USB framework by calling “USBInitialize()”. It then waits, polling for the
device to attach. All the while, it must maintain the USB framework by calling “USBTasks()” in its main
loop. Once the device has attached to the host, the application switches between non-blocking “tasks” in
sequence, using the Microchip “Generic” driver to send command packets to the device and receive
response packets from the device.

During this exercise, you’ve had the opportunity to use the PIC24 or PIC32 microcontroller of your
choice along with the Explorer 16 board and the USB PICtail™ Plus Daughter Board to run a host
application for the Microchip PICDEM™ FS USB Demo Board. You had the opportunity to debug the
application and observe some of the potential issues that might arise. If time permitted, you may also
have had the opportunity to expand the application with new features.

Microchip Technology Inc. 17 COM3202 v1.00 Lab Manual

 Lab Manual: COM3202 v1.00

Lab 2 – Implement Driver (Polled)

Purpose:

The primary objective of this lab is to understand the polled implementation of the Generic client
driver and how it relates to the TPL and Client Driver tables. This lab uses its own implementation of
the Generic client driver, rather than the pre-defined driver distributed with the Microchip USB
Framework. The basic framework of the Generic client driver has been implemented for you. Your
task is to complete key sections to make the driver operational.

Basic Objectives:

1. Build the application
2. Define the Client Driver table
3. Define the TPL table
4. Implement the Generic client driver
5. Test the driver

Intermediate Objective:
6. Expand the Client Driver table

Advanced Objective:
7. Expand the API & use the new capability

Procedure:

1. Build the application

a. Ensure that the hardware is connected as described in Lab 1 step 1.

b. Open the Lab 2 MPLAB workspace that is appropriate project for the MCU you selected.

• PIC24: C:\ RTC\COM3202\Lab2\Lab2 – C30.mcw
• PIC32: C:\ RTC\COM3202\Lab2\Lab2 – C32.mcw

c. Attempt to build the application and observe the errors reported. You should see the
following message:

“Application must define support mode in usb_config.h”.

Note: This message is generated by a test placed in the “usb_common.h” header file to
protect you from attempting to build the USB framework without selecting host,
device or OTG mode of operation.

d. Open the “usb_config.h” file and search for the instructions for “LAB2 Step 1d” in the
comment block beginning at line 42. Follow the directions to define the support mode and
several other USB framework parameters.

e. Attempt to build the application and observe the errors reported. You should see several
undefined references to the “usbClientDrvTable” symbol.

Microchip Technology Inc. 18 COM3202 v1.00 Lab Manual

 Lab Manual: COM3202 v1.00

2. Define the client driver table.

a. Open the “main.c” file and follow the “LAB2 Step 2a” instructions in the comment block at
line 212 to define the client driver table.

b. Attempt to build the application again and observe the errors reported. You should see
several undefined references to the “usbTPL” symbol.

3. Define the TPL table.

a. Open the “main.c” file and follow the “LAB2 Step 3a” instructions in the comment block at
line 244 to define the TPL table.

b. Attempt to build the application again. At this time, it should build cleanly.

4. Implement the Generic client driver (4a-4d: fix the client driver initialization call back function; 4e-
4i: enable the client driver’s tasks routine to be called)

a. Program the application to the microcontroller and run it. Then connect the device and
observe that it appears to be enumerated (as indicated by the alternate flashing of LEDs D1
and D2 on the PICDEM™ FS USB Demo Board), but the host does not appear to recognize
that it has been attached.

b. Look at the “CheckForNewAttach()” routine in the “main.c” file at line 416 and observe that
this routine calls the Generic API routine “USBHostGenericGetDeviceAddress()” to look for
a non-zero device address to identify that the device has been attached.

c. Open the “usb_client_generic.c” file and look at the “USBHostGenericGetDeviceAddress()”
routine at line 307 and observe that this routine gets the address from the Generic driver’s
state variable “gc_DevData.ID.deviceAddress” (which itself is initialized during the driver’s
initialization)

d. Go to line 121 and follow the “LAB2 Step 4d” instructions in the comment block to complete
the driver’s initialization routine (“USBHostGenericInit()”), which saves the device address,
VID, PID and initializes the driver’s state flags. This will allow the application to identify
that the device has been attached.

e. Re-build and program the application to the microcontroller and run it. Observe that although
the application now recognizes that the device has been attached, it does not appear to be
exchanging any data with the device (Explorer LEDs D5+D6 = ON – the state machine is
stuck waiting for device firmware verification. See function “BlinkStatus ()” for details)

f. Place a breakpoint in the “USBHostGenericTasks()” routine on line 526 in the
“usb_client_generic.c” file. Reset/run the application.

g. Observe that the breakpoint is not hit. This means that “USBHostGenericTasks()” is not
being called.

h. Follow the “LAB2 Step 4h” instructions in the comment block starting at line 88 of
“usb_config.h” to support calling of the “USBHostGenericTasks()” routine.

i. Build the application, program it to the microcontroller, and run it. (Leave the breakpoint in
place). Observe that the “USBHostGenericTasks()” routine breakpoint stops the program.

Microchip Technology Inc. 19 COM3202 v1.00 Lab Manual

 Lab Manual: COM3202 v1.00

5. Test the driver

a. Delete all breakpoints, reset and run the program. At this point, the application should work
as expected.

b. Verify that the device firmware version number is displayed correctly (it should read “Dev
1.0”) and test the temperature sensor and potentiometer displays. Also test to see if buttons
S3 and S6 on the Explorer 16 board control LEDs D3 and D4 on the PICDEM™ FS USB
Demo Board.

6. Expand the Client Driver table. (Intermediate)

a. Follow the “LAB2 Step 6a” directions in the comment block located at line 275 of “main.c”
to expand the client driver table. Build/program the application.

Hint: Don’t forget to add a comma (‘,’) after the original entry in the table.

b. Set a breakpoint at line 118 in function USBHostGenericInit() in “usb_client_generic.c”
Observe that the “flags” value from the second entry in the Client Driver table has been
passed into the initialization routine parameter “flags”

This method can be used to make a single client driver support multiple devices (or types of
devices). Instead of just changing the Client Driver index number in the TPL table, you
would normally add a second entry in the TPL with the VID and PID of the second device (or
the class information for the second type of device). This second TPL entry would then use
the index to the second entry in the Client Driver table. The client driver would then use the
“flags” parameter to identify the second device.

Alternately (and perhaps more normally), you could include two Client Drivers in your
application (one for each type of device). Then, the second entry in the Client Driver table
would contain the names of the initialization and event handling routines of the second driver.
You would also need a second TPL entry, identifying the second device (or class of devices)
that contained the index to the second Client Driver table entry.

7. Expand the API & use the new capability. (Advanced)

The objective of this step is to add a new feature to the Generic driver and expand the API to support
this feature. Then, test and demonstrate this feature from the application.

a. Follow the “LAB2 Step 7a” instructions at line 121 in “usb_client_generic.h” (the Generic
driver’s API header) to add a new data item to the driver context data structure.

b. Follow the “LAB2 Step 7b” instructions at line 147 in “usb_client_generic.c” to retrieve the
transfer type for the data endpoints in the Generic device.

Hints:

• Appendix C: USB Descriptors shows the structure of the USB descriptors.

• The “Endpoint” descriptor contains the “bmAttributes” field that contains the transfer
type information.

• You may find useful definitions of Endpoint Transfer Types in the
“Microchip\Include\USB\usb_ch9.h” file.

Microchip Technology Inc. 20 COM3202 v1.00 Lab Manual

 Lab Manual: COM3202 v1.00

c. Follow the “LAB2 Step 7c” instructions near line 575 in “usb_client_generic.h” to add a new
API macro to allow the application access to the endpoint attributes data.

Hint: Be sure to use the “API_VALID” macro to validate the device address.

d. Follow the “LAB2 Step 7d” instructions near line 625 in “main.c” to access the transfer type
data and display either “B” for bulk, or “I” for interrupt type to character 16, row 1 of the
LCD.

8. Solution workspaces are provided:
• PIC24: C:\RTC\COM3202\Lab2\Solution\Lab2 – C30.mcw
• PIC32: C:\RTC\COM3202\Lab2\Solution\Lab2 – C32.mcw

Summary:

The host layer enumerates the device, looks up the appropriate driver in the TPL table, and uses the Client
Driver table to call the driver’s “Initialize()” routine. In this lab, you’ve gotten a chance to explore the
relationship between these two tables and how the host layer uses them to initialize the driver.

You have also had the opportunity to see how the application accesses the device, using the client driver’s
API routines, as well as how the client driver provides access to the device using the Host layer’s CDI
routines.

This lab has demonstrated that, using table-driven methods and a polling-based implementation, the host
layer can manage multiple client drivers to provide access to any type of USB device for which a client
driver has been written.

Microchip Technology Inc. 21 COM3202 v1.00 Lab Manual

 Lab Manual: COM3202 v1.00

Lab 3 – Event-Driven Driver

Purpose:

The primary objective of this lab is to understand the event-driven implementation of the Generic client
driver and how using it is different from using a polled driver. The lab includes modified versions of both
the client driver and application. Your task will be to implement the event-driven features.

Basic Objectives:
1. Build the application
2. Implement the application’s event-handling routine
3. Implement the event-driven Generic client driver

Intermediate Objective:
4. Add missing feature

Advanced Objective:
5. Add unimplemented feature

Procedure:

1. Build the application

a. Ensure that the hardware is connected as described in Lab 1 step 1.

b. Open the Lab 3 MPLAB workspace that is appropriate for the MCU you selected.

• PIC24: C:\ RTC\COM3202\Lab3\Lab3 – C30.mcw
• PIC32: C:\ RTC\COM3202\Lab3\Lab3 – C32.mcw

c. Attempt to build the application and observe the errors reported. You should see the following
message:

"Generic client driver requires transfer event (USB_ENABLE_TRANSFER_EVENT)
support."

Note: This error message is generated by a build-time test purposely placed into the Generic
client driver’s API header (“usb_client_generic.h”).

d. Open the “usb_config.h” file and follow “LAB3 Step 1d” the directions in the comment block
beginning at line 76 to enable transfer events.

e. Attempt to build the application again and observe the errors reported. You should see references
to the following undeclared identifiers:

• EVENT_GENERIC_DETACH
• EVENT_GENERIC_TX_DONE
• EVENT_GENERIC_RX_DONE

These are Generic-driver-specific events.

Note: There is one more (EVENT_GENERIC_ATTACH). However, its use is “commented
out” at this time.

Microchip Technology Inc. 22 COM3202 v1.00 Lab Manual

 Lab Manual: COM3202 v1.00

f. Open the Generic client driver’s API header (“usb_client_generic.h”) and follow the “LAB3 Step
1f” directions in the comment block beginning at line 75 to extend the USB_EVENT enumeration
with the Generic-driver-specific events.

g. Attempt to build the application again. At this time, it should build cleanly.

h. Program the application to the microcontroller and run it, then connect the device. Observe that it
appears to be enumerated (as indicated by the alternate flashing of LEDs D1 and D2), but the host
application does not appear to recognize that it has been attached (as indicated by the un-lit LEDs
D5 and D6 on the Explorer16 board – per BlinkStatus(), this indicates the state machine is
IDLE).

2. Implement the application’s event-handling routine

a. Place a breakpoint on line 1266 of main.c at the top of the switch statement in the
“usb_custom_host_demo_EventHandler()” routine.

b. Restart and run the application and observe that the breakpoint is never hit. This indicates that
the application’s event-handling routine is not being called.

c. Open “usb_config.h” and follow the “LAB3 Step 2c” directions at line 93 to identify the
application’s event-handling routine to the USB Embedded Host stack.

Note: Leave the breakpoint from step 2a in place.

d. Re-build, program, and run the application. Observe that the application’s event-handling routine
is now being called.

e. Remove the breakpoint from line 1266 of main.c, reset the application and run it again. Observe
that the application still does not appear to recognize a device connection.

3. Implement the event-driven Generic client driver

a. Open “usb_client_generic.c” and follow the “LAB3 Step 3a” directions in the comment block
starting at line 120 to enable the client driver to call the application’s event-handling routine and
pass it the “EVENT_GENERIC_ATTACH” event when the device has been attached to the host.

b. Re-build, program and run the application. Observe that the application still does not appear to
recognize a device connection.

c. Open “main.c” and follow the “LAB3 Step 3c” directions in the comment block starting at line
1274 to enable the application’s event-handling routine to respond to the
“EVENT_GENERIC_ATTACH” event. Re-build and program the application.

d. Place a breakpoint in “main.c” on line 1279, the call to the “DemoAttachEventHandler()” routine
in the application’s event-hander. Run the application.

e. When debugger hits the breakpoint, open the call stack window (select “Call Stack” from “View”
on the main MPLAB menu). You should see the following call stack:

• “usb_custom_host_demo_EventHandler()”, called from…
• “USBHostGenericInit()”, called from…
• “USBHostTasks()”, called through the “USBTasks()” macro from…
• main()

This illustrates how the application’s event-handling routine is called “up” the layers of theUSB
framework from the USB Host layer, through the client driver. It also illustrates that this is
ultimately the result of the main application calling the “USBTasks()” macro, which includes a
call to “USBHostTasks()”.

Microchip Technology Inc. 23 COM3202 v1.00 Lab Manual

 Lab Manual: COM3202 v1.00

f. Remove the breakpoint from line 1279. Step into the “DemoAttachEventHandler()” routine.
Observe that, if the PICDEM™ FS USB device is identified, the device’s USB address is
recorded (because it’s needed by the Generic driver’s API routines) and the application state is
changed to the “DEMO_STATE_GET_DEV_VERSION” state.

Note: The application does not necessarily need to check the device’s VID & PID unless it
needs to identify different devices. The Embedded Host layer has already verified the
device’s VID & PID by looking it up in the TPL table. This is just done for
demonstration purposes to illustrate that the information is provided with the attach
event.

g. Run the application. Note now that the host application recognizes the attachment as indicated by
the alternate flashing of LEDs D5 & D6 on the Explorer16 board. Note however that there
appears to be no data from the PICDEM FS USB being displayed on the LCD.

h. In “main.c” find the state transition code for the “DEMO_STATE_GET_DEV_VERSION” state
at line 907. Observe that, when this case is executed, the “ManageDemoState()” routine calls the
“SendDeviceCommand()” routine (defined at line 373), which ultimately calls the Generic client
driver “USBHostGenericWrite()” API routine.

i. Open “usb_client_generic.c” and find the implementation of the “USBHostGenericWrite()”
routine at line 245. Observe that this routine calls the “USBHostWrite()” CDI (Client Driver
Interface) routine (at line 280) implemented by the USB Embedded Host layer.

**In event-driven implementations (when “USB_ENABLE_TRANSFER_EVENT” is defined as
we did in step 1, above), calls to host-layer read or write routines will result in an
“EVENT_TRANSFER” event being sent to the client driver when the transfer has finished.

j. In “usb_client_generic.c”, follow the “LAB3 Step 3j “ directions in the comment block starting at
line 192 to call the application’s event handler when either a “Tx” or “Rx” transfer has finished.

k. Re-build, program, and run the application. The application should now correctly display the
device’s firmware version number and the temperature data.

Note The potentiometer resistance value will not be shown yet.

4. Add missing feature

a. Open “main.c” and follow the “LAB3 Step 4a “ directions in the comment block at line 922 to
send the command to the device to read the potentiometer.

b. Re-build, program, and run the application and observe that the application displays a “Bad
Command Sent” error message on the LCD.

Note: If a USB analyzer is available, you can use it to capture the bus traffic and verify that the
command sent was correct. The command values and format are given in Appendix B: PICDEM
FS USB “Demo” Firmware Command Reference.

c. Set a breakpoint in “main.c” at line 1293 where the “TxDoneEventHandler()” routine is called in
response to the application receiving a “EVENT_GENERIC_TX_DONE” event. Reset and run
the application.

d. Step into the “TxDoneEventHandler()” routine and observe that it was the “READ_VERSION”
command that just finished being transmitted. Let the application run again and identify the next
command to finish. Repeat this process to identify that the “RD_POT” command is not currently
supported by the “TxDoneEventHandler()”.

Microchip Technology Inc. 24 COM3202 v1.00 Lab Manual

 Lab Manual: COM3202 v1.00

e. Follow the “LAB3 Step 4e” directions in “main.c” in the comment block at line 1088 to enable
the application to correctly respond to the “EVENT_GENERIC_TX_DONE” event for the
“RD_POT” command.

f. Remove the breakpoint from “main.c” line 1293, re-build, program, and run the application.
Observe that the application now gives an “Unknown Resp Err” message on the LCD.

g. Follow the “LAB3 Step 4g” directions in the comment block at line 1188 in “main.c” to enable
the application to correctly respond to the “EVENT_GENERIC_RX_DONE” event and display
the POT data.

h. Re-build, program, and run the application. It should now correctly display the potentiometer
data on the LCD.

5. Add unimplemented feature (SET_LED)

a. Follow the “LAB3 Step 5a” instructions in the comment block at line 955 in “main.c” to add a
new feature to the application.

Hints:

b. Before starting, you will need to edit the RD_POT state transition on line 1195 in main.c to
correctly advance the main state variable to the new state (i.e. change the state transition to
DEMO_STATE_SET_LED, which has already been defined)

c. Function UpdateDeviceLEDs() is provided for you, however, you will need to add it to the
ManageDemoState() function as an “event-driven” state (i.e. call the function; set the state to
DEMO_STATE_RUNNING; let the events happen; use the Tx & Rx event handlers to
advance to the next state).

d. The ‘Tx’ and ‘Rx’ transfer-done event handling routines (UPDATE_LED) have already been
implemented for you.

6. Solution workspaces are provided:

• PIC24: C:\RTC\COM3202\Lab3\Solution\Lab3 – C30.mcw
• PIC32: C:\RTC\COM3202\Lab3\Solution\Lab3 – C32.mcw

Summary:
This lab demonstrated an event-driven implementation of the “Generic” client driver and the application
that uses it. During this lab, you had the opportunity to observe that the event-driven method performs
calls “up” the firmware-layer stack, from the Host layer, through the Client Driver, to the application.
This eliminates the “double polling” need for both the application and the driver to poll for status changes
on the USB.

Although this lab only demonstrated a single client driver, the event-driven method will “scale” more
efficiently since it only needs to call a client driver when its associated device is attached to the host.
This is different from the polled method, which must call each client driver through the “USBTasks()”
macro (and potentially the “USBInitialize()” macro as well) even if the device is not attached.

Finally, you are encouraged at this time to compare the solutions to all three labs. Observe that each
implementation (whether polled or event-driven) has an event-handling routine. This is because there are
events that sent to the application and/or the client driver that are not associated the completion of a
specific transfer. Observe that the application’s event-handling routine is optional (although normal
operation of a host will require it), but the client driver requires an event-handling routine to receive the
“detach” event as a minimum.

Microchip Technology Inc. 25 COM3202 v1.00 Lab Manual

 Lab Manual: COM3202 v1.00

Part 3 – Designing a Mass Storage Class, Full-Speed USB Embedded
Host Application

Overview:

You will be completing a “terminal shell” application on the PIC which will incorporate various
Microchip MDD (Memory Disk Drive) File system APIs to manipulate files on a USB Thumb drive and
display the results in a PC terminal emulator (HyperTerminal or other).

Lab 4 – Creating and Deleting Files

Purpose:

In this lab, you will add three commands to the shell program:

Name Function Syntax ARG1 ARG2
MKFILE Creates an empty file MKFILE ARG1 The name of

the file to be
created, in 8.3
format

-

REN Renames an existing
file

REN ARG1 ARG2 The old file
name, in 8.3
format

The new file
name, in 8.3
format

DEL Deletes a file DEL ARG1 The name of
the file to be
deleted, in 8.3
format

-

Procedure:

1. Insert a FAT16/32 formatted Thumb Drive into connector J4 on the USB PICTail Plus Board.

2. Open a HyperTerminal window. The HyperTerminal file COM3202 Hyperterminal
Connection.ht included with your lab folders (in C:\RTC\COM3202) contains the correct
settings: 57600 baud, 8 data bits, no parity, 1 stop bit, no flow control. This console will be used
to communicate with the shell program on the PIC.

3. Start MPLAB.

4. Open the Lab 4 MPLAB workspace that is appropriate for the MCU you selected.

• PIC24: C:\ RTC\COM3202\Lab4\Lab4 – C30.mcw
• PIC32: C:\ RTC\COM3202\Lab4\Lab4 – C32.mcw

Microchip Technology Inc. 26 COM3202 v1.00 Lab Manual

 Lab Manual: COM3202 v1.00

5. Compile, build, and program your Explorer 16 board.

6. Familiarize yourself with the console program. The HELP command will provide information

about commands and syntax. Note that the MKFILE, REN, and DEL commands won’t work
correctly until you complete the lab.

7. Open the source file Lab4.c in MPLAB.

8. Modify each function where indicated by comment blocks. You can test each function and
command separately. The functions you’ll be modifying are:

a) Lab4PartA: This function is called by the MKFILE command. It will create a file based

on the path name passed in by the user.
b) Lab4PartB: This function is called by the REN command. It will rename an existing file.
c) Lab4PartC: This function is called by the DEL command. It will delete a file based on

the path name passed in by the user.

Refer to the next section “Useful Functions (Lab4)” for a listing of MDD API functions you can use
to complete these sections.

9. Re-compile, build, and program your Explorer 16 board.

10. Verify that the DEL, MKFILE, and REN functions work correctly. You can use the DIR
function to view the contents of your thumb-drive.

Microchip Technology Inc. 27 COM3202 v1.00 Lab Manual

 Lab Manual: COM3202 v1.00

11. Solution workspaces are provided:
• PIC24: C:\RTC\COM3202\Lab4\Solution\Lab4 – C30.mcw
• PIC32: C:\RTC\COM3202\Lab4\Solution\Lab4 – C32.mcw

Useful Functions (Lab4):

FSfopen
Opens a file on the device and associates an FSFILE structure (stream) with it.

Syntax
FSFILE * FSfopen (const char * fileName, const char *mode)

Parameters
filename: A null terminated char string specifying the file name. The file name

must be fewer than 8 characters, followed by a radix (.) followed by an
extension containing three of fewer characters. The file name cannot
contain any directory or drive letter information.

mode: A null terminated string specifying the file operation.
The valid strings are:
r Read Only
w Write

If a file with the same name exists, it will be overwritten
No reads allowed

a Append
If the file exists, the current location will be set to the end of
the file.
Otherwise, the file will be created.
No reads allowed

Return Values
A pointer to an FSFILE structure to identify the file in subsequent operations
NULL if the specified file could not be opened

Precondition
FSInit is called

Example
FSFILE * fPtr;
fPtr = FSfopen(“FILE.TXT”, “w”);
if (fPtr == NULL)
{
 // Error handling
}

Microchip Technology Inc. 28 COM3202 v1.00 Lab Manual

 Lab Manual: COM3202 v1.00

Useful Functions (Lab4) Continued:

FSfclose
Closes an opened file. Saves root directory and FAT information for that file.

Syntax
int FSfclose(FSFILE *stream)

Parameters
stream: A pointer to a FSFILE structure obtained from a previous call of FSfopen

Return Values
Returns 0 on success
Returns EOF (-1) on failure

Precondition
stream is a valid FSFILE pointer.

Example
if(FSfclose(stream) != 0)
{

// Failed to close the file.
}

FSrename
The FSrename function will allow the user to rename files and directories

Syntax
int FSrename (const char *fileName, FSFILE * fo)

Parameters
fileName: The new name of the file
fo: The file to rename

Return Values
Returns 0 on success
Returns EOF (-1) on failure

Precondition
FSInit is called successfully. The file to be renamed is opened successfully.

Example
FSFILE * fptr;
fptr = FSfopen (“FILE.TXT”, “r”);
if(FSrename(“NEWNAME.TXT”, fptr) != 0)
{
 // Error Handling
}

Microchip Technology Inc. 29 COM3202 v1.00 Lab Manual

 Lab Manual: COM3202 v1.00

Useful Functions (Lab4) Continued:

FSremove
The FSremove function deletes the file identified by filename. If the file is opened
with FSfopen, it must be closed before calling FSremove.

Syntax
int FSremove (const char * filename)

Parameters
filename: A pointer to a null terminated string

Return Values
Returns 0 on success
Returns EOF (-1) on failure

Precondition
FSInit is called successfully

Example
if(FSremove(“FILE.TXT”) != 0)
{

// Error Handling
}

Microchip Technology Inc. 30 COM3202 v1.00 Lab Manual

 Lab Manual: COM3202 v1.00

Lab 5 – Reading and Writing Files

Purpose:

In this lab, you will add three commands to the shell program:

Name Function Syntax ARG1 ARG2
TYPE Displays the contents

of a file, in ASCII text.
TYPE ARG1 The file to

display
information
from

-

COPY ARG1 ARG2 The name of
the file that will
be copied

COPY Copies data from one
file into a second file,
or from the console to
a file. COPY CON ARG2 “CON”

specifies that
the input comes
from the
console.

The
destination
file. This file
will be created
or overwritten.

LOG POT ARG2 “POT”
specifies that
the input comes
from the
potentiometer

LOG Logs data from a
potentiometer or
temperature sensor to a
file. Specify the file
name as a *.CSV file
to easily view the data.
The LOG command is
already complete for
the temperature
logging function.

LOG TMP ARG2 “TMP”
specifies that
the input comes
from the
temperature
sensor.

The file the
data will be
stored in. If a
file with this
name exists, it
will be
overwritten.

Procedure:

1. Close the previous workspace by selecting File> Close Workspace… from the main menu.

2. Open the Lab 5 MPLAB workspace that is appropriate for the MCU you selected.

• PIC24: C:\ RTC\COM3202\Lab5\Lab5 – C30.mcw
• PIC32: C:\ RTC\COM3202\Lab5\Lab5 – C32.mcw

3. Open the source file Lab5.c.

Microchip Technology Inc. 31 COM3202 v1.00 Lab Manual

 Lab Manual: COM3202 v1.00

4. Modify each function where indicated by comment blocks. You can test each function and
command separately. The functions you’ll be modifying are:

a) Lab5PartA: This function is called by the TYPE command. It will read one character

from a file passed in by the user.
b) Lab5PartB: This function is called by the COPY CON function. It will write one

character at a time into a file based on input from the user from the console.
c) Lab5PartC: This function is called by the COPY function. It will read data from a file

specified by the user and copy it into another file specified by the user.
d) Lab5PartD: This function is called by the LOG POT function. It will write text and data

based on the readings from a potentiometer to a file.

Refer to the next section “Useful Functions (Lab5)” for a listing of MDD API functions you can use
to complete these sections.

5. Compile, build, and program your Explorer 16 board.

6. Verify that the COPY, LOG, and TYPE functions work correctly.

7. Solution workspaces are provided:
• PIC24: C:\RTC\COM3202\Lab5\Solution\Lab5 – C30.mcw
• PIC32: C:\RTC\COM3202\Lab5\Solution\Lab5 – C32.mcw

Useful Functions (Lab5): See Next Page

Microchip Technology Inc. 32 COM3202 v1.00 Lab Manual

 Lab Manual: COM3202 v1.00

Useful Functions (Lab5):

FSfread
Reads data from the previously opened file. FSfread reads ‘n’ data objects, each of
length ‘size’ bytes from the given file ‘stream.’ The data is copied to the buffer
pointed by ‘ptr.’ The total number of bytes transferred is n * size .

Syntax
size_t FSfread(void *ptr, size_t size, size_t n, FSFILE *stream)

Parameters
ptr: pointer to buffer to hold the data read
size: length of object in bytes
n: number of objects to read
stream: stream pointer to file opened with read (r) mode

Return Values
On success FSfread returns the number of objects (not bytes) actually read
On End-Of-File or error it returns 0

Precondition
File is opened is read mode

Example
//Read 100 objects of size 10 bytes each
NumberOfObjects = FSfread(bfr, 10, 100, pFile);
if(NumberOfObjects < 100)
{

// Function did not read all 100 objects. Either an error
 // occurred or we reached the end of the file (EOF).
}
else
{

//read all 100 objects
}

Microchip Technology Inc. 33 COM3202 v1.00 Lab Manual

 Lab Manual: COM3202 v1.00

Useful Functions (Lab5) Continued:

FSfwrite
Writes data to the previously opened file. FSfwrite writes ‘n’ data objects, each of
length ‘size’ bytes to the given file ‘stream.’ The data is copied from the buffer
pointed to by ‘ptr.’ The total number of bytes transferred is n * size.

Syntax
size_t FSfwrite(const void *ptr, size_t size, size_t n, FSFILE *stream)

Parameters
ptr: pointer to buffer holding data to write
size: length of object in bytes
n: number of objects to write
stream: stream pointer to file opened with write (w) or append (a) mode

Return Values
On success FSfwrite returns the number of objects (not bytes) actually written.
On error it returns a short count or 0

Precondition
File is opened in write (w) or append (a) mode

Example
// Write twenty five-byte objects from ptr to pFile
if(FSfwrite(ptr, 5, 20, pFile) != 20)
{

// not all items were written
}

FSfprintf
The FSfprintf function will write a formatted string to a file.

Syntax
int FSfprintf (FSFILE *fptr, const char * fmt, ...)

Parameters
fptr: Pointer to a file to write to.
fmt: The string to write (specified in ROM).
...: Format specifier arguments.

Return Values
Returns the count of characters written on success.
Returns -1 otherwise.

Precondition
The file to be written to has been opened successfully.

Microchip Technology Inc. 34 COM3202 v1.00 Lab Manual

 Lab Manual: COM3202 v1.00

Useful Functions (Lab5) Continued:

Remarks
The FSfprintf function formats output, passing the characters to the specified stream.
The format string is processed one character at a time and the characters are output
as they appear in the format string, except for format specifiers. A format specifier
is indicated in the format string by a percent sign, %; following that, a well-formed
format specifier has the following components. Except for the conversion specifier,
all format specifiers
are optional. Depending on the format specifier used, an argument may be read from
the function call, formatted as specified by the user, and inserted in the string.

1. Flag Characters:

‘-‘ : The result of the format conversion will be left justified.
‘+’ : By default, a sign is only prefixed to a signed conversion if the result

is negative. If this flag is included, a + sign will be prefixed if the
result of a signed conversion is positive.

‘0’ : This flag will prefix leading zeros to the result of a conversion
until the result fills the field width. If the - flag is
specified, the 0 flag will be ignored. If a precision is specified, the 0
flag will be ignored.

‘ ‘ : The space flag will prefix a space to the result of a signed conversion
if the result is positive. If the space
flag and the + flag are both specified, the space flag will be ignored.

‘#’ : This flag indicates the .alternate form. of a conversion. For the ‘0’
conversion, the result will be increased in precision, such that the
first digit of the result will be 0. For the ‘x’ conversion, a “0x” will
be prefixed to the result. For the ‘X’ conversion, a “0X” will be
prefixed to the result. For the ‘b’ conversion, a “0b” will be prefixed
to the result. For the ‘B’ conversion, a “0B” will be prefixed to the
result.

2. Field Width:

The field width specifier follows the flag specifiers. It determines the minimum
number of characters that result from a conversion. If the result is shorter
than the field width, the result is padded with leading spaces until it has the
same size as the field width. If the ’0’ flag specifier is used, the result will
be padded with leading zeros. If the ‘-‘ flag specifier is used, the result will
be left justified and will be followed by trailing spaces.

The field width may be specified as an asterisk character (*). In this case, a
16-bit argument will be read from the list of format specifiers to specify the
field width. If the value is negative, it is as if the ‘-‘ flag is specified,
followed by a positive field width.

3. Field Precision:

The field precision specifies the minimum number of digits present in the
converted value for integer conversions, or the maximum number of characters in
the converted value for a string conversion. It is indicated by a period (.),
followed by an integer value or by an asterisk (*).

If the field precision is not specified, the default precision of 1 will be
used. If the field precision is specified by an asterisk character, a 16-bit
argument will be read from the list of format specifiers to specify the field
precision.

Microchip Technology Inc. 35 COM3202 v1.00 Lab Manual

 Lab Manual: COM3202 v1.00

Useful Functions (Lab5) Continued:

4. Size Specification:

The size specification applies to any integer conversion specifier or pointer
conversion specifier. The integer conversion specifiers are as follows: the size
specifier will determine what type of argument is read from the format specifier
list. For the n conversion, the size specifier for each pointer type corresponds
to the specifier for that data type. So, to convert something to a long long
pointer, you would use the specifier for a long long data type with the n
conversion.

TABLE B-3: SIZE SPECIFIERS
Argument Type C18 C30
signed char, unsigned char hh hh
short int, unsigned short int h h
short long, unsigned short long H -
intmax_t, uintmax_t j (32-bit) j (64-bit)
long, unsigned long l l
long long, unsigned long long - q
size_t z z
sizerom_t Z -
ptrdiff_t t t
ptrdiffrom_t T -

5. Conversion Specifiers:

c: The int argument will be converted to an unsigned char value and the
character represented by that value will be written.

d,i: The int argument is formatted as a signed decimal.
o: The unsigned int argument will be converted to an unsigned octal.
u: The unsigned int argument will be converted to an unsigned decimal.
b,B: The unsigned int argument will be converted to an unsigned binary.
x: The unsigned int argument will be converted to an unsigned hexadecimal.

The characters, a, b, c, d, e and f, will be used to represent the
decimal numbers, 10-15.

X: The unsigned int argument will be converted to an unsigned hexadecimal.
The characters, A, B, C, D, E and F, will be used to represent the
decimal numbers, 10-15.

s: Characters from the data memory array of char argument are written until
either a terminating ‘\0’ character is seen (‘\0’ is not written) or the
number of chars written is equal to the precision.

S: Characters from the program memory array of char arguments are written
until either a terminating ‘\0’ character is seen (‘\0’ is not written)
or the number of chars written is equal to the precision. In C18, when
outputting a far rom char *, make sure to use the H size specifier (%HS).

p: The pointer to the (data or program memory) argument is converted to an
equivalent size unsigned integer type and that value is processed as if
the x conversion operator had been specified. In C18, if the H size
specifier is present, the pointer is a 24-bit pointer; otherwise, it is a
16-bit pointer.

P: The pointer to void the (data or program memory) argument is converted to
an equivalent size unsigned integer type and that value is processed as
if the X conversion operator had been specified. In C18, if the H size
specifier is present, the pointer is a 24-bit pointer; otherwise, it is a
16-bit pointer.

Microchip Technology Inc. 36 COM3202 v1.00 Lab Manual

 Lab Manual: COM3202 v1.00

Useful Functions (Lab5) Continued:

n: The number of characters written so far shall be stored in the location

referenced by the argument, which is a pointer to an integer type in data
memory. The size of the integer type is determined by the size specifier
present for the conversion, or a 16-bit integer if no specifier is
present.

%: A literal percent sign will be written.

If the conversion specifier is invalid, the behavior is undefined.

Example
unsigned long long hex = 0x123456789ABCDEF0;
FSfprintf (fileptr, .This is a hex number:%#20X%c%c., 0x12ef, 0x0D, 0x0A);
FSfprintf (fileptr, .This is a bin number:%#20b\r\n., 0x12ef);
FSfprintf (fileptr, .%#26.22qx., hex);
// Output:
// This is a hex number: 0X12EF
// This is a bin number: 0b1001011101111
// 0x000000123456789abcdef0

Microchip Technology Inc. 37 COM3202 v1.00 Lab Manual

 Lab Manual: COM3202 v1.00

Part 4 – Using the USB Thumb Drive Bootloader Application

Lab 6 – Update firmware using the Thumb Drive Bootloader

Overview:

The basic operation of the Thumb Drive Boot Loader is to allow a USB Host-enabled device to
enumerate a formatted USB Thumb Drive, access a specifically named file containing properly prepared
application firmware, and program it into executable Flash memory. See Appendix D for a detailed
description of the thumb drive boot loader architecture and core APIs.

For this lab, you will first build/run an existing application (the “USB Generic Device Demo”). Then, you
will take the necessary steps to prepare this application for use with the USB thumb drive boot loader.
Finally, you will program the boot loader into the device, and attempt to load/run the modified application
from the thumb drive.

At this writing, the boot-loaders are sourced from 2 different USB frameworks (see below).

Folder Structure:

C:\RTC\COM3202\Lab6

 .\PIC24
 \Bootloader Application
 \USB Generic Device Demo
 .\PIC32
 \Bootloader Application
 \Microchip
 \USB Generic Device Demo
 .\USB Generic Device Demo Support
 \Pdfsusb
 \Driver and inf

Microchip Technology Inc. 38 COM3202 v1.00 Lab Manual

 Lab Manual: COM3202 v1.00

Sources For The Demo Projects:

1. PIC24 “Bootloader Application” is based on MCHPFSUSB v2.5a project “USB Host –
Bootloaders”

2. PIC24 & PIC32 “USB Generic Device Demo” is based on MCHPFSUSB v2.5a project “USB
Device - MCHPUSB - Generic Driver Demo”

3. PIC32 “Bootloader Application” is based on beta release v0.04 and comes with it’s own local
copy of PIC32 USB stack files (“\Microchip”)

Boot Loader Restrictions:

FS Format: FAT 16 or FAT 32
File Format: Intel Hex record
File Name: Build-time programmable
USB Support: Boot loader has its own USB Host stack
Configuration Bits: Must be defined in the boot loader
Program Flash: Must be shared with boot loader code

Basic Operation Pseudo Code:

execute boot loader startup code
if (bootstrap condition met)
{

initialize boot loader USB host stack
find application firmware file
parse file and program it to Flash

}

Jump to application startup code

Demo Procedure:

Step 1. Develop/Run the "Application" (“USB Generic Device Demo”)

1. Configure the board jumpers for USB Peripheral Operation and connect using USB cable to PC.

Microchip Technology Inc. 39 COM3202 v1.00 Lab Manual

 Lab Manual: COM3202 v1.00

2. Open the MPLAB workspace that is appropriate for the MCU you selected.

 PIC24: C:\RTC\COM3202\Lab6\PIC24\USB Generic Device Demo\USB Generic Device
Demo.mcw

 PIC32: C:\RTC\COM3202\Lab6\PIC32\USB Generic Device Demo\USB Generic Device
Demo.mcw

3. Program/Run the application, and (if necessary) direct windows to install the custom class driver

found in “C:\RTC\COM3202\Lab6\USB Generic Device Demo Support\Driver and inf”

4. Start the PC application "Pdfsusb.exe" in " C:\RTC\COM3202\Lab6\USB Generic Device Demo

Support\Pdfsusb".

5. Click “Demo Mode” tab and select” PICDEM FS USB 0 (Demo)”. Then select “Connect”. Verify

operation.

Microchip Technology Inc. 40 COM3202 v1.00 Lab Manual

 Lab Manual: COM3202 v1.00

Step 2. Rebuild The Application for use with the Bootloader

PIC32 Boot Loader

1. If there is a linker script already attached to the project, remove it from the project by right
clicking on it and selecting “remove”.

2. Copy the bootloader application linker file “procdefs.ld” to the demo project folder. The linker

file can be found in the “C:\RTC\COM3202\Lab6\PIC32\Bootloader Application\Application
Files\Linker Files” folder.

Note: The “procdefs.ld” file is designed to work with the default settings in the PIC32 boot loader’s
“boot_config.h” file. If the application’s entry point (physical + virtual address) and/or size is modified,
“procdefs.ld” will also need to be modified appropriately.

3. Rebuild the application.

4. Copy the application’s .hex file ("USB Generic Device Demo.hex") to a FAT32 formatted thumb
drive and rename it "image.hex".

PIC24 Boot Loader

1. In MPLAB, if there is a linker script already attached to the project, remove it from the project by
right clicking on it and selecting “remove”.

2. If the “PIC24 HID Bootloader Remapping.s” file is attached to the project then also remove this

file by right clicking on it and selecting remove.

3. Copy the bootloader application linker file “p24FJ256GB110_Host_MSD_Bootloader.gld” and to
the application’s project folder. The linker file can be found in the
“C:\RTC\COM3202\Lab6\PIC24\Bootloader Application\Application Files\Linker Files” folder.

4. In MPLAB, add this file to the project by right clicking on the “Linker script” folder in the

project window, select “Add Files…”. Select the correct file.

5. In MPLAB, add the “MSD Bootloader Remapping.c” file to the project by right-clicking on the
“Source Files” folder in the project window. This file can be found in the
“C:\RTC\COM3202\Lab6\PIC24\Bootloader Application\Application Files\Interrupt
Remapping” folder.

Note: The “p24FJ256GB110_Host_MSD_Bootloader.gld” + “MSD Bootloader Remapping.c” files re-
map the application’s entry point + interrupt vectors.

6. Edit the “MSD Bootloader Remapping.c” file as required for the application. Determine which
ISRs are used in the application by inspecting the .ivt section of the application’s .map file. A
solution file is provided for this application (“MSD Bootloader Remapping_Solution.c”)

7. Rebuild the application.

Microchip Technology Inc. 41 COM3202 v1.00 Lab Manual

 Lab Manual: COM3202 v1.00

8. Copy the application’s .hex file ("USB Generic Device Demo.hex") to a FAT32 formatted thumb
drive and rename it "image.hex".

Step 3. Program the Bootloader Application into the Board & Load Application

1. Remove USB cable from the mini-B connector, and configure the USB Pictail jumper for USB

Embedded Host Operation

2. Open the boot loader workspace file that is appropriate for the MCU you selected

 PIC24: C:\RTC\COM3202\Lab6\PIC24\Bootloader Application\PIC24 Thumb Drive

Bootloader.mcw
 PIC32: C:\RTC\COM3202\Lab6\PIC32\ Bootloader Application\PIC32 Thumb Drive

Bootloader.mcw

3. Build/program the bootloader application into the board

4. Enter Boot Loader Mode

• PIC24: Press/hold MCLR and S3, then release MCLR. LED D5 will illuminate to indicate that

we are in bootloader mode.
• PIC32: Press/hold MCLR and S4, then release MCLR. LED D10 will flash to indicate that we

are in bootloader mode.

Microchip Technology Inc. 42 COM3202 v1.00 Lab Manual

 Lab Manual: COM3202 v1.00

5. Load & Boot the Application

• PIC24: Insert the thumb drive into the USB Type-A receptacle and the boot loader will load and

boot the application image. LED D5 will turn off once the application has started.
• PIC32: Insert the thumb drive into the USB Type-A receptacle and the boot loader will load and

boot the application image. If it is unable to find the file, D10 will flash rapidly to
indicate an error. Otherwise, LED D10 will stop blinking once the application has started.

Step 4. Run the Application

1. Remove the thumb drive,

2. Change USB Pictail jumper configuration back to USB Peripheral (Step 1.1 above) & insert the USB
cable into the mini-B plug.

3. Reset the board. Verify that the application enumerates/runs using the Pdfsusb.exe application.

Microchip Technology Inc. 43 COM3202 v1.00 Lab Manual

 Lab Manual: COM3202 v1.00

Appendix A – Creating New USB Projects Based on COM3202
Labs/Demos

Project References to USB Framework Stack files are relative. Requires the \Microchip subfolder to be
installed at the same level as the project folder.

Example: To create a new USB project based upon project “Lab1” in C:\RTC\COM3202:

1. Copy the sub-folder “\Lab1” to C:\MyUSBProjects
2. Copy the sub-folder “\Microchip” to C:\MyUSBProjects

The project will now build/run.

Microchip Technology Inc. 44 COM3202 v1.00 Lab Manual

 Lab Manual: COM3202 v1.00

Appendix B – PICDEM FS USB “Demo” Firmware Command Reference

The source code for the demo may be found in “C:\Microchip Solutions\USB Device - MCHPUSB -
Generic Driver Demo\Generic Driver Demo - Firmware\user.c”. See the “ServiceRequests” function.

READ_VERSION
 Command Byte: 0x00

Synopsis: Returns the firmware Version
Format: READ_VERSION, 0x02
Returns: READ_VERSION, 0x02, MAJOR, MINOR

ID_BOARD
 Command Byte: 0x31
 Synopsis: Sets a binary code on LEDs 3 & 4. ID_CODE is 0-3.

Format: ID_BOARD, ID_CODE
Returns: ID_BOARD

UPDATE_LED
 Command Byte: 0x32
 Synopsis: Provides direct access to turn LED 3 or 4, on or off.
 Format: UPDATE_LED, LED_NUM, LED_STATUS

 LED_NUM is either 3 or 4.
 LED_STATUS is either 0 or 1.

 Returns: UPDATE_LED

SET_TEMP_REAL
 Command Byte: 0x33
 Synopsis: Resets real time temperature logging and sets the temperature mode to
 Real Time.
 Format: SET_TEMP_REAL
 Returns SET_TEMP_REAL

READ_POT
 Command Byte: 0x37

Synopsis: Returns the A2D conversion from the position of the potentiometer.
 Result is 10 bits, right justified.
Format: READ_POT
Returns: READ_POT, ADRESL, ADRESH

Microchip Technology Inc. 45 COM3202 v1.00 Lab Manual

 Lab Manual: COM3202 v1.00

READ_TEMPERATURE
 Command Byte: 0x34

Synopsis: Returns a single temperature conversion. Temperature returned is a 16
 bit number representing degrees C. Bits 0 & 1 are not valid. Bit 2
 indicates temperature is valid. The remaining 13 bits represent degrees
 Celsius, in 1/16th (0.0625) degree increments. In a fixed point coding
 scheme, the Binary-point is between bits 6 and 7

High Byte Low Byte

V – Validity flag. 1 indicates temperature reading is valid.

Format: READ_TEMPERATURE
Returns: READ_TEMPERATURE, TEMPL, TEMPH

SET_TEMP_LOGGING
 Command Byte: 0x35
 Synopsis: Resets real time temperature logging and sets t
 Logging.
 Format: SET_TEMP_LOGGING
 Returns SET_TEMP_LOGGING

READ_TEMP_LOGGING
 Command Byte: 0x36

Synopsis: Returns the logged temperatures. When loggin
 will sample the temperature sensor once every
 will read the stored temperature values. a singl
 Temperature returned is a 16 bit number repres
 & 1 are not valid. Bit 2 indicates temperature i
 bits represent degrees Celsius, in 1/16th (0.0625
 The log is a circular buffer, so once 30 samples
 will start back at the beginning of the buffer.
Format: READ_TEMPERATURE
Returns: READ_TEMPERATURE, Sample count, TEM
 TEMPL1, TEMPH1…

Microchip Technology Inc. 46 COM32
V X X

he temperature mode to

g is enabled, the board
second. This command
e temperature conversion.
enting degrees C. Bits 0
s valid. The remaining 13
) degree increments.
 are logged, new readings

PL0, TEMPH0,

02 v1.00 Lab Manual

 Lab Manual: COM3202 v1.00

Appendix C – USB Descriptors

The following tables from the USB 2.0 specification (see references) show the contents of the descriptors
used by the labs. They are reproduced here for reference.

Microchip Technology Inc. 47 COM3202 v1.00 Lab Manual

 Lab Manual: COM3202 v1.00

Microchip Technology Inc. 48 COM3202 v1.00 Lab Manual

 Lab Manual: COM3202 v1.00

Microchip Technology Inc. 49 COM3202 v1.00 Lab Manual

 Lab Manual: COM3202 v1.00

Microchip Technology Inc. 50 COM3202 v1.00 Lab Manual

 Lab Manual: COM3202 v1.00

Microchip Technology Inc. 51 COM3202 v1.00 Lab Manual

 Lab Manual: COM3202 v1.00

Microchip Technology Inc. 52 COM3202 v1.00 Lab Manual

 Lab Manual: COM3202 v1.00

Microchip Technology Inc. 53 COM3202 v1.00 Lab Manual

 Lab Manual: COM3202 v1.00

Appendix D – PIC32 USB Thumb Drive Bootloader Documentation

Here, reproduced in its entirety, is the file “USB Thumb Drive Boot Loader.doc” and “read_me.txt”
documentation which is in the PIC32 Thumb Drive Bootloader (beta) v0.04 release package. This is
the only current released documentation (other than source code). The Architecture/APIs are identical
for both PIC24+PIC32

“USB Thumb Drive Boot Loader.doc”

The USB Thumb Drive Boot Loader enables updating of application firmware from a file located on a
USB thumb drive.

Overview
The basic operation of the Thumb Drive Boot Loader is to allow a USB Host-enabled device to
enumerate a formatted USB Thumb Drive, access a specifically named file containing properly prepared
application firmware, and program it into executable Flash memory.

Restrictions

FS Format: FAT 16 (FAT 32 later)
File Format: Intel Hex record
File Name: Build-time programmable
USB Support: Boot loader has its own USB Host stack
Configuration Bits: Must be defined in the boot loader
Program Flash: Must be shared with boot loader code

Basic Operation Pseudo Code

execute boot loader startup code
if (bootstrap condition met)
{

initialize boot loader USB host stack
find application firmware file
parse file and program it to Flash

}

Jump to application startup code

Demo Operation
This demo was designed to work with the Explorer-16 board with a USB PICTail+ daughter board. At
the time this was written, it had only been tested using PIC32MX460F512L Processor Interface Module
(PIM).

To invoke the boot loader, press S4 on the Explorer-16 board and reset the microcontroller. LED D10
will begin flashing to indicate the boot loader is in control. Ensure that the JP3 (Host Enable) and JP1
(Over Current Detection) jumpers are shorted. Insert a FAT-16 formatted USB thumb drive into J7 (USB
Type-A receptacle) with the application firmware image file on it named “image.hex”. The application

Microchip Technology Inc. 54 COM3202 v1.00 Lab Manual

 Lab Manual: COM3202 v1.00

firmware’s hex-record file must be built using the provided (application_link_script\procdefs.ld) linker
script and must fit within the available program Flash memory.

If the boot loader finds a valid “image.hex” file, it will read the file and program it to the program Flash
memory area and launch it. If it does not, LED D10 will begin flashing rapidly to indicate an error.

Architecture

Basic Memory Layout

Interfaces
The thumb drive boot loader was designed in layers so that each layer may be easily replaced if a
different file format, boot medium or IO usage is desired. The interfaces for each of the above mentioned
layers are briefly described below. Some of the interface “routines” are implemented as macros.
(Improvement Note: They could all be given macro translations for easy porting.)

Microchip Technology Inc. 55 COM3202 v1.00 Lab Manual

 Lab Manual: COM3202 v1.00

Boot Loader IO Interface
The boot loader IO interface provides the means for the boot loader to identify if the user wishes to
invoke or abort the loader. It also provides a way to communicate boot loader status to the user.

Header File: boot_io.h

Routines Description
BLIO_InitializeIO Performs any initialization necessary to enable the required IO mechanisms.
BLIO_DeinitializeIO Disables any IO mechanisms used.

Note: It is vital that this routine disables and clears any possible interrupts that
may have been enabled by any IO used.

BLIO_LoaderEnabled This routine identifies if the user wants to invoke the boot loader when as the
system is reset.

BLIO_AbortLoad If the boot medium has not yet been inserted, this routine identifies if the user
wants to abort the loader.

BLIO_ReportBootStatus This routine reports boot loader status and errors to the user.

Build Parameter Required? Description
BOOT_SWITCH Required This macro identifies the switch used to invoke the boot loader.
BOOT_LED Optional This macro identifies the status LED used.
FOSC Optional Used to calculate the oscillator period
TOGGLES_PER_SEC Optional Identifies the blink rate of the status LED
CORE_TICK_PERIOD Optional Calculated tick period of the timer core timer
(Improvement Note: The build parameters could be abstracted better.)

Media Interface
The media interface provides access to and control of the medium used to access the application’s image
file. In this demo, it provides a wrapper around the MDD FAT FS implementation and the USB MSD
stack and the Loader interface, described below. It could be replaced to access any desired medium

Header File: boot_media.h

Routines Description
BLMedia_InitializeTransport This routine performs any initialization required by the boot medium.
BLMedia_DeinitializeTransport This routine de-initializes the boot medium.

Note: It is vital that this routine disables and clears any media-related
interrupts.

BLMedia_MonitorMedia This routine is called repeatedly to maintain the boot medium (before
the “LoadFile” routine is called).

BLMedia_MediumAttached This routine is called to identify if the boot medium has been attached
to the system or not.

BLMedia_LocateFile This routine is called to attempt to locate the boot image file.
BLMedia_LoadFile Once the file has been located, this routine is called to read, translate,

and load the image.

Build Parameters Required? Description
BOOT_FILE_NAME Optional This identifies the name of the application’s image file.

Default: “image.hex”

Microchip Technology Inc. 56 COM3202 v1.00 Lab Manual

 Lab Manual: COM3202 v1.00

MAX_LOCATE_RETRYS Optional Defines the number of attempts to locate the image file

before failing.
Default: 3

MAX_NUM_MOUNT_RETRIES Optional USB MSD specific parameter that identifies the
number of attempts to mount the thumb drive.
Default: 10

BL_READ_BUFFER_SIZE Optional USB MSD specific parameter that defines the size of
the read buffer (in bytes).
Default: 512

Loader Interface
The loader interface provides a for the media layer to translate and program the application’s image file.
It can be replaced or modified to support different file formats.

Header: boot_load.h

Routines Description
Loader_Initialize This routine performs any initialization required by the loader.
Loader_GetFlashBlock This routine translates raw data read in chunks from the file into

binary data ready to program to a block of Flash memory.
Loader_ProgramFlashBlock Once the data has been translated, this routine programs the block of

Flash memory.
Loader_PermitProgramming This routine can be implemented to provide a way to enable and

disable actual programming of Flash.
Loader_ValidateSerialNumber This routine can be implemented to provide a way to validate a serial

number embedded in the application image.
Loader_ValidateRevisionNumber This routine can be implemented to provide a way to validate a

revision number embedded in the application image.
Loader_CheckErrorDetection This routine can be implemented to provide a way to detect if the

image has been correctly received.

Build Parameters Required? Description
APPLICATION_ADDRESS Required Provides the virtual address of the application’s entry

point in memory (once it has been programmed to
Flash).

PROGRAM_FLASH_BASE Required Provides the physical address of the first block of Flash
memory available for the application image.

PROGRAM_FLASH_LENGTH Required Provides the length (in bytes) of the Flash memory
available.

FLASH_BLOCK_SIZE Required Provides the size (in bytes) of one block of available
Flash memory

BLOCK_FILL_DEFAULT Optional Provides a value used to fill any unused space in each
Flash block.
Default: 0xFF

Microchip Technology Inc. 57 COM3202 v1.00 Lab Manual

 Lab Manual: COM3202 v1.00

Common Interface Elements
There are some elements that are common to all layers or that are not specific to a any of the above
defined interfaces.

Header File: boot.h

Note: This file aggregates/includes all of the other boot loader header files (including boot_config.h) so it
is the only one that needs to be included by source (.c) files.

Routines Description
BL_ApplicationIsValid This routine can be implemented to detect if the application image

currently programmed into Flash memory is valid.
BL_ApplicationFailedToLaunch This routine can be implemented to provide error behavior if the

application image fails to launch and returns to the boot loader.
(Note: This is highly improbable since an invalid application will
most likely hang the system.)

Boot Status Codes
The boot loader source code contains calls to BLIO_ReportBootStatus in appropriate places. These calls
report a status code (and, optionally, a message string) to advise the user of the boot loader’s current
status. The codes are defined by an expandable enumerated data type defined in the configuration header.
(Refer to the definition of the BOOT_STATUS enum in the “boot_config.h” header.)

Notes
For convenience several interface routines are defined by macros in boot_config.h.
The boot loader has been implemented as sample code. However, elements of it may be later become
libraries and be moved to the “Microchip” directory.

“read_me.txt”

This file contains last minute updates and information about the Microchip
USB Thumb Drive Boot Loader demo (here after referred to as just the "boot
loader").

This distribution is a beta release only. All contents are provided
"as is", with no promise of support or suitability for any particular
purpose. Also, please refer to copyright notices associated with
individual items included in this release.

Getting Started:

To use the boot loader, you can either open the workspace file
(usb_host_thumbdrive_bootloader_demo\usb_host_thumbdrive_bootloader_demo.mcw)
in MPLAB, build it, and program it to Flash on a PIC32MX4xxFxxxx part.
Alternately, you can import the pre-built bootloader.hex file (see
bootloader\precompiled\bootloader.hex) and program it to Flash.

Two pre-compiled application demos are provided (both hex file and
the associated map file so you can see the memory mapping used). You
can use these pre-compiled applications to test the boot loader or you

Microchip Technology Inc. 58 COM3202 v1.00 Lab Manual

 Lab Manual: COM3202 v1.00

can use the included "procdefs.ld" to build your own applications for
the boot loader.

Usage:

The boot loader provides a means of loading a properly-built application
hex-file image from a USB Thumb Drive, programming it to Flash on the
microcontroller and booting (launching) the application image. To do
this, the application image must be built using the "procdefs.ld" linker
script (place it in the application's main project folder, but DO NOT
include it in the project from within MPLAB). After the application
has been properly built, copy its hex file and name it image.hex to the
root of the thumb drive. You then press S4 on the Explorer 16 board
while resetting the micro. This will enter the boot loader mode, as
indicated by LED D10 flashing. Insert the thumb drive into the USB
Type-A receptacle and the boot loader will load and boot the application
image. If it is unable to find the file, D10 will flash rapidly to
indicate an error. To abort the load, press S4 a second time.

Folders and Contents:

 Microchip
 |
 | This directory contains the Microchip library code used by the
 | usb_host_thumbdrive_bootloader_demo.
 |
 +-- Include
 |
 | This directory contains the interface header files for the
 | libraries used by the boot loader.
 |
 +-- MDD File System
 |
 | This directory contains the file system support library for the
 | boot loader.
 |
 +-- USB

 This directory contains the USB library support for the boot
 loader.

 usb_host_thumbdrive_bootloader_demo
 |
 | Main boot loader distribution folder. This folder also contains the
 | boot loader's main MPLAB workspace file.
 |
 +-- application
 | |
 | | This folder contains the linker script that must be used to build
 | | an application for the boot loader (procdefs.ld) as well as
 | | hex files for pre-built sample applications.
 | |
 | +-- usb_cdc_serial_device_demo
 | |

Microchip Technology Inc. 59 COM3202 v1.00 Lab Manual

 Lab Manual: COM3202 v1.00

 | | This folder contains a sample USB CDC Serial device demo
 | | pre-built for the boot loader.
 | |
 | +-- usb_hid_mouse_device_demo
 |
 | This folder contains a sample USB HID-Mouse device demo
 | pre-built for the boot loader.
 |
 +-- bootloader
 | |
 | | This folder contains the source code for the boot loader.
 | |
 | +-- Objects-PIC32MX-usb_host_thumbdrive_bootloader
 |
 | This folder contains pre-build files for the boot loader.
 |
 | NOTE: These files will be over-written if you build the
 | boot loader, so copy them somewhere else if you wish
 | to keep them.
 |
 +-- documentation

 This directory contains a documenet describing the basic
 architecture and interfaces for each layer of the boot loader.

Notes:

Use the "boot_config.h" file to customize the boot loader. The following
items can be easily modified.

APPLICATION_ADDRESS

 This is the virtual address of the application's entry point. If the
 location of the application is changed, this must be changed so that
 the boot loader can correctly launch the application.

PROGRAM_FLASH_BASE

 This is the physical address of the application in program Flash memory.
 This address should be the physical equivalent to APPLICATION_ADDRESS.

PROGRAM_FLASH_LENGTH

 This is the length of the program Flash memory space (starting from
 PROGRAM_FLASH_BASE) that is available for the application.

If the program address, Flash base, or size is modified, the "procdefs.ld"
file will also need to be modified appropriately.

FLASH_BLOCK_SIZE

 This is the size of a single block (or page) of program Flash.

Microchip Technology Inc. 60 COM3202 v1.00 Lab Manual

 Lab Manual: COM3202 v1.00

BOOT_FILE_NAME

 This defines a string that provides the expected name of application's
 image (hex) file.

BL_READ_BUFFER_SIZE

 This defines the size of the buffer used to read data from the
 thumb drive.

BOOT_SWITCH

 This identifies the switch used to activate the boot loader.

Refer to the file(s) available in the "documents" directory and the
source code for additional details.

Date: 11/11/2008

Microchip Technology Inc. 61 COM3202 v1.00 Lab Manual

 Lab Manual: COM3202 v1.00

Appendix E – Application Event Handler Example for USB Embedded
Host Certification

The following function is used in Microchip’s EH certification project and is provided as a reference
example showing a minimal set of USB events which the application should handle

BOOL USB_ApplicationEventHandler(BYTE address, USB_EVENT event, void *data, DWORD size)
{
 #ifndef MINIMUM_BUILD
 switch(event)
 {
 case EVENT_REQUEST_POWER:
 // The data pointer points to a byte that represents the amount of power
 // requested in mA, divided by two. If the device wants too much power,
 // we reject it.
 if (*(BYTE*)data <= (MAX_ALLOWED_POWER / 2))
 {
 return TRUE;
 }
 else
 {
 UART2PrintString("\r\n***** USB Error - device requires too much current
*****\r\n");
 }
 break;

 case EVENT_RELEASE_POWER:
 // Since we have support for only one device, we do not need to
 // track power released.
 return TRUE;
 break;

 case EVENT_VBUS_OVERCURRENT:
 UART2PrintString("\r\n***** USB Error - overcurrent detected *****\r\n");
 return TRUE;
 break;

 case EVENT_HUB_ATTACH:
 UART2PrintString("\r\n***** USB Error - hubs are not supported *****\r\n");
 return TRUE;
 break;

 case EVENT_UNSUPPORTED_DEVICE:
 UART2PrintString("\r\n***** USB Error - device is not supported *****\r\n");
 return TRUE;
 break;

 case EVENT_CANNOT_ENUMERATE:
 UART2PrintString("\r\n***** USB Error - cannot enumerate device *****\r\n");
 return TRUE;
 break;

 case EVENT_CLIENT_INIT_ERROR:
 UART2PrintString("\r\n***** USB Error - client driver initialization error
*****\r\n");
 return TRUE;
 break;

 case EVENT_OUT_OF_MEMORY:
 UART2PrintString("\r\n***** USB Error - out of heap memory *****\r\n");
 return TRUE;
 break;

Microchip Technology Inc. 62 COM3202 v1.00 Lab Manual

 Lab Manual: COM3202 v1.00

 case EVENT_UNSPECIFIED_ERROR: // This should never be generated.
 UART2PrintString("\r\n***** USB Error - unspecified *****\r\n");
 return TRUE;
 break;

 }
 #endif

 return FALSE;
}

Microchip Technology Inc. 63 COM3202 v1.00 Lab Manual

