
1

COM3202COM3202

Designing a USB Embedded Host
Application

Designing a USB Embedded Host
Application

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 2

Class Objectives

After taking this class, you will be able to
Describe the electrical, mechanical, protocol
and compliance requirements for a USB
embedded host design,
Apply the Microchip Embedded Host
frameworks to:

Design an embedded host application using an
existing client driver
Create your own “generic” client driver on a
PIC24/PIC32 based USB embedded host.
Add USB thumb drive capability to your application
(datalogging, file manipulation & bootloading)

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 3

Agenda

Part 1:
Introduction to USB Embedded Host

Part 2:
Designing a Custom Class, Full-Speed USB
Embedded-Host Application

Part 3:
Designing a Mass-Storage Class, Full-Speed
USB Embedded-Host Application

Part 4:
Using the USB Thumb Drive Boot Loader
Application

2

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 4

Class Folders
- After Installing the Class CD -

C:\RTC\COM3202
\Microchip
\Lab1..Lab6
\USB Host - Mass Storage - Simple Demo
\USB Host - Mass Storage - Thumb Drive
Data Logger
\USB Host - MCHPUSB - Generic Driver Demo
\Presentation & Handouts
\Users Guides & Data Sheets
\Development Tools

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 5

Resources Used
Hardware

PIC24 (MA240014) or PIC32 (MA320002) USB PIM
Explorer 16 Board (DM240001)
USB PICtail™ Plus Daughter Board (AC164131)
PICDEM™ FS USB Demo Board (DM163025) pre-
programmed with default factory application

Tools
MPLAB® IDE w/C30 or C32
MPLAB REAL ICE™ Emulator (DV244005) or ICD3
(DV164035)
USB Protocol Analyzer (Optional)

Software
Microchip Application Framework v2009-08-31
(MCHPFSUSB v2.5b + MDD v1.2.3), available from

www.microchip.com/usb

Part 1Part 1

Introduction to USB Embedded HostIntroduction to USB Embedded Host

3

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 7

Objectives (Part 1)

To know what USB hosting options are
available
To understand how Embedded Host is
different from Full Function (Standard)
Host
To know where to go next to get more
information, tools, training, etc. to get a
design going

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 8

Agenda (Part 1)

Overview of USB Hosting Options
Connectors
Certification Considerations For USB
Embedded Host
Development Resources

Overview of USB Hosting
Options

Overview of USB Hosting
Options

4

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 10

Overview

Full-Function Host
Always a host, never a USB device
Standard A connector
Must always supply power
Has sufficient hardware to support almost
all USB devices

Example: Personal Computer

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 11

Overview

Embedded Host
Always a host, never a USB device
Standard A connector
Must always supply power
Restricted ability to add new device support

Example: Data Logger

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 12

Overview

Dual Role Devices (DRDs)
2 connectors (Standard A & Standard
B/miniB)
Wants to be either embedded host or USB
device but doesn’t need to dynamically
switch

Example: Data Logger with field update
via PC

5

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 13

Overview

On-The-Go (OTG)
Mobile, simple hosts
Want to be host sometimes but device
sometimes
Power consumption
Micro A/B connector

Example: PDA

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 14

OTG vs. DRD

Both are Host and Peripheral in one
Full Speed Peripheral / Host Capable

DRD (Dual Role Device)
Contains both a Host (type-A) and a Peripheral (type-B) connector
Peripheral or Host role is determined through which Physical
connector is used
If both are accessible, both must be functional

OTG (On-The-Go)
Contains Micro A/B connector
Cable connection decides who is host initially
Host Negotiation Protocol (HNP) used to dynamically and
temporarily swap roles

ConnectorsConnectors

6

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 16

“mini-B”
FS, HS
Device

“B”
FS, HS
Device

Embedded Host/DRD
- Standard USB 2.0 Connectors -

“A” Plug

USB Host

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 17

OTG

OTG Plugs and Receptacles
Micro-B plug and receptacle

Micro-A/B receptacle
Only allowed on OTG products

Micro-A plug
Indicates who is initially the host

Certification Considerations for
USB Embedded Host

Certification Considerations for
USB Embedded Host

7

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 19

Agenda
- Certification Considerations -

Electrical
Targeted Peripheral List
Power
Speed
Transfer Types
Hub Support
Indications to the User

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 20

Electrical

The Type A port must pass standard host
electrical compliance tests, per “USB
Compliance Systems Checklist sec 3.1”

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 21

PIC24F or PIC32MX
USB device

Full size A
Receptacle

Example Circuit

VBUS

D+

D-

GND

5v

PPTC

A/D

VBUS

D+

D-

VUSB

2KΩ

2KΩ

150µF

1µF

3.3v

Input

8

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 22

Targeted Peripheral List (TPL)

List of supported devices for that
embedded host

Devices not on that list will not be able to
enumerate

Devices are identified via specific
VID/PID, or class code (class, subclass,
protocol)
TPL may be specified in 2 forms

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 23

Example TPL
- Listing Specific Products (VID/PID) -

FSAll-in-one
Printer/Scanner

0x23110x03F0D125X1Hewlett-
Packard

LSUSB Wheel
Mouse

0xC00E0x046DM-BJ58Logitech

SpeedDescriptionProductIDVendorIDModelManufacturer

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 24

Example TPL
- Listing Supported Device Classes -

Devices Tested

LS, FS0x500x040x08Support for USB
Floppy drives

Mass Storage

Speeds
Supported

ProtocolSub-
Class
Code

Class
Code

DescriptionClass Name

FSUSB Floppy
Drive

0x00000x0644FD-05PUBTEAC Corp.

SpeedDescriptionProductIDVendorIDModelManufacturer

9

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 25

Power

Embedded Hosts must be capable of
supplying 8mA (min.)
They must also be capable of supplying
the max. current that any specific device
on the TPL requires (up to 500mA max).
For class support, Embedded Hosts must
be capable of supplying up to 500mA
Embedded Hosts must report a failure to
the user when peripherals consume more
current than the host supplies.

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 26

Speed

Embedded Hosts only need to support the
speeds required by the devices on it’s
TPL

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 27

Transfer Types

All Embedded Hosts must support control
transfers in order to enumerate the
selected peripherals
Embedded Hosts may support one or
more of the remaining three transfer types
as required by the TPL

10

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 28

Hub Support

Hub support is not required for Embedded
Host ports
The Embedded Host must provide an
indication to the user of any unsupported
Hub configuration.

Our embedded host stack currently does
not provide hub support

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 29

Indications to the User

On connection of a peripheral, an
Embedded Host must indicate to the user
whether the peripheral is supported

Indicator may be as simple as a
“success/failure” LED
Textual messages are preferred for
Embedded Hosts which contain such a
display

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 30

Additional Considerations For Dual
Role Devices

Port accessibility
If more than one connector is accessible at
any point of time then they need to be able
to work at the same time

Checklists
Peripheral
Systems

11

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 31

PIC24F or PIC32MX
USB device

Full size A
Receptacle

DRD Example Circuit

VBUS

D+
D-

GND

5v

PPTC

A/D

VBUS

D+

D-

VUSB

2KΩ

2KΩ

150µF

1µF

3.3v

Input

B, Micro B,
or Mini B

Receptacle
VBUS

D+
D-

GND

1µF 150KΩ

Development ResourcesDevelopment Resources

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 33

Software Architecture

OTG Controls HostDevice

Function
Drivers

Class
Drivers

User Code

Hardware

12

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 34

Software Examples Available
- www.microchip.com/usb -

Embedded Host
Data logging to a thumb drive
Bootloading from a thumb drive
MCHPUSB host – temperature, pot reader
Printer Host (PCL5 and PostScript)
HID Host – talking to a keyboard
CDC Host – hosting a serial to USB
converter

Dual Role Device
MSD Host + HID Device

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 35

Demo Tools Available
Development Kit

PIC24F USB PIM (MA240014)
PIC32MX USB PIM (MA320002)
USB PICtail™ Plus Daughter Card
(AC164131)
Explorer 16 (DM240001)

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 36

Demo Tools Available

Starter Kits
PIC24F Starter Kit (DM240011)
PIC32MX USB Starter Board (DM320003)

13

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 37

Demo
USB Embedded Host
MCHPUSB – Generic Driver Demo

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 38

Summary (Part 1)

We covered:
What USB host options are available
How they are different

Mechanical
Electrical

Embedded Host & DRD Certification
considerations
Available development resources
Built/Ran Embedded Host Demo
OTG protocol/design covered in a separate
class

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 39

References

1) EH_MR_rev1.pdf – “Requirements and
Recommendations for USB Products with Embedded
Hosts and/or Multiple Receptacles rev 1.0”

2) EH_compliance_v1_0.pdf – “USB Embedded Host
Compliance Plan rev 1.0”

3) compchksys080205.pdf – “USB Compliance
Checklist (Systems)”

4) compchkperi080205.pdf – “USB Compliance
Checklist (Peripherals)”

Both available on class CDROM in \Users Guides & Data
Sheets\USB Standards, or from www.usb.org

14

Part 2Part 2

Designing a Custom Class, Full-Speed USB
Embedded-Host Application

Designing a Custom Class, Full-Speed USB
Embedded-Host Application

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 41

Objectives (Part 2)

When you finish this section you will be able
to:

Design an embedded host application using
the Microchip USB Framework
Implement a "generic" client driver for the
Microchip USB Framework
Demonstrate your embedded host
application and driver

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 42

Agenda (Part 2)
Review of Key USB Concepts
USB Embedded Host Framework Basic
Structure
Application Design Using Existing Client Driver

Lab 1 – Implement Application using Microchip-
Provided Generic Client Driver

Client Driver Design
Enumeration & Initialization

Lab 2 – Implement a Custom “Polled”
Generic Client Driver

Event Handling
Lab 3 – Implement a Custom “Event-Driven”
Generic Client Driver

VBus Monitoring & Stack Shutdown
Summary/References

15

Review of Key USB ConceptsReview of Key USB Concepts

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 44

Device

Host

DeviceDevice

Hub

Tier 1

Tier 2

Tier 3

USB is a Tiered
Star Network
Host is com
master

Polled bus
Hubs expand
network
Devices are
addressed &
enabled by the
host

12

34

Each Device is
assigned an address

from 1-127 by the host

Basics

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 45

Data Transfer to/from Endpoints
Up to 32 Endpoints (16 IN/16 OUT)
1 Transfer Type Per Endpoint

Data Transfer Types:
Control – ex. Enumeration Data
Interrupt – ex. Key-press Data
Isochronous – ex. Audio Data
Bulk – ex. Thumb Drive Data

Endpoints & Transfer Types

16

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 46

Summary - Data Transfer Types

Transfer/
Endpoint

Type

Polling Interval % Reserved
BW/Frame for
all transfers of

this type

Max. # Data
Bytes/Frame/Endpoint

(Max# transactions per frame
@ Max Ep Size)*

Data
Integrity

Interrupt Fixed, Periodic 90 64 (1 x 64) Yes

Isochronous Fixed, Periodic 90 1023 (1 x 1023) No

Bulk Variable, Uses
Free Bandwidth

0 1216 (19 x 64) Yes

Control Variable 10 832 (13 x 64) Yes

*Assumes transfers use maximum packet sizes allowed per Ep type

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 47

Device Classes

Joystick

Mouse
External

Hard Drive

ICD2

Modem

Floppy
DriveData Glove

Keyboard

Ethernet
Adapter

Human Interface Device Class
(HID)

Mass Storage Device
Class (MSD)

Communication Device
Class (CDC)

Custom Class
(Vendor Class)

Many more classes….

PICkit™ 2
Starter Kit

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 48

USB Layers
Client SW Talks
to Function SW
“Virtually”
Control by Host
System Layer
Actual Data
Transfer
Occurs on
Physical Layer

Programmers Model

17

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 49

Functional Interfaces

Host Side “Client” API
MPUSBOpen(VID, PID,
Endpoint, Direction)
MPUSBRead(Pointer,
Size, Timeout)
MPUSBWrite(Pointer,
Size, Timeout)
MPUSBClose(Handle)

Device Side “Function” API
putrsUSBUSART(const rom
char *data)
putsUSBUSART(char *data)
mUSBUSARTTxRom(rom byte
*pData, byte len)
mUSBUSARTTxRam(byte *pData,
byte len)
getsUSBUSART(char *buffer,
byte len)
byte mCDCGetRxLength(void)

USB Embedded Host Framework
- Basic Structure -

USB Embedded Host Framework
- Basic Structure -

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 51

ApplicationApplication
Uses a layered
design
Provides device
access & control
Supports
multiple client
drivers

USB Host LayerUSB Host Layer

USBUSB
ClientClient
DriverDriver

USBUSB
ClientClient
DriverDriver

USBUSB
ClientClient
DriverDriver

Which layers Which layers
are these from are these from

the earlier the earlier
diagram?diagram?

ApplicationApplication

USBUSB
ClientClient
DriverDriver

USBUSB
ClientClient
DriverDriver

USBUSB
ClientClient
DriverDriver

ClientClient
LayerLayer

Host SystemHost System
LayerLayer

USB Embedded Host FW Stack
- Structure -

18

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 52

Driver Design

Flow of Calls
1. Main Loop
2. Driver API
3. Host CDI
4. USBTasks()

ISR

Application

Client Driver

Host
Layer

Application Design Using
Existing Client Driver

Application Design Using
Existing Client Driver

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 54

Application Design

Objective:
Design an embedded host application
using the Microchip USB Framework

What should the Application do?
How do I access the device?
How do I use the USB Framework?

19

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 55

Application Design

What should the application do?
Demo the PICDEM™ FS USB Board
(a custom/vendor-class USB peripheral)

Read Device FW Revision
Number
Read Potentiometer
Read Temperature
Display data read
Control 2 LEDs on the
Device

Up to you,
Normally…

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 56

Application Design

How do I access the device?
Command-Response Protocol Packets

Example:
Command: 0x00, 0x02 (“Get Firmware Version”)
Response: 0x00, 0x02, 0x01, 0x00 (“v1.0”)

See Appendix B in the Lab Manual
for the full command set

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 57

Application Design

Accessing the device (continued)…
Generic Function/Client Driver API

USBHostGenericRead(...)
USBHostGenericWrite(...)
USBHostGenericRxIsBusy(...) –or-
USBHostGenericRxIsComplete(...)
USBHostGenericGetRxLength(...)
USBHostGenericTxIsBusy(...) –or-
USBHostGenericTxIsComplete(...))

Complete API documented in AN1143 and USB
Embedded Host Library Help File

20

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 58

Application Design

How do I use the USB Framework?
Use USBConfig.exe
Configuration Code Generator w/GUI

Choose Microchip client drivers
Select configuration settings
Define the host’s Targeted Peripheral List

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 59

Application Design

Select the target
device
Select the
device type
Select the ping-
pong mode
used by the
USB interface*

Main Tab

*PIC32 supports “Ping-Pong on All Endpoints”, PIC24 supports all modes.

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 60

Application Design

Choose
Transfer Types
& Settings
Choose Power
Settings
Define
Application
Event Handler
Enable
“Transfer
Complete”
Event Signaling

Host Tab

More on
Events,

later…

21

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 61

Application Design

TPL Tab
Description
VID/PID or Class,
Subclass, &
Protocol
Microchip Client
Driver
Initial
Configuration &
Flags

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 62

Application Design

Driver Tab
Generic, HID,
Mass Storage
Choose host
mode
Adjust any
parameters

Click Generate!Click Generate!

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 63

Application Design

Generates:
usb_config.c

TPL Table
Driver Table

usb_config.h
Defines for
Configuration Options
USBInitialize()
USBTasks()

22

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 64

Application Design

Example usb_config.h

#define USB_SUPPORT_HOST
#define USB_PING_PONG_MODE USB_PING_PONG__FULL_PING_PONG
#define NUM_TPL_ENTRIES 1
#define USB_MAX_GENERIC_DEVICES 1
#define USB_NUM_CONTROL_NAKS 20
#define USB_SUPPORT_INTERRUPT_TRANSFERS
#define USB_NUM_INTERRUPT_NAKS 3
#define USB_INITIAL_VBUS_CURRENT (100/2)
#define USB_INSERT_TIME (250+1)
#define USBTasks() \

{ \
USBHostTasks(); \

}
#define USBInitialize(x) \

{ \
USBHostInit(x); \

}

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 65

Application Design

Example of usb_config.c

USB_TPL usbTPL[] =
{

{ INIT_VID_PID(0x04D8ul, 0x000Cul), 1, 0, {0|SET_CONFIG} }, // PICDEM FS
USB

};

CLIENT_DRIVER_TABLE usbClientDrvTable[] =
{

{
USBHostGenericInit,
USBHostGenericEventHandler,
0

}
};

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 66

Application Design

Example Application:

#include “USB/usb.h”
#include “USB/usb_host_generic.h”

int main (void)
{

USBInitialize(0);

while (1)
{

USBTasks();

// Call “Generic” driver API routines as needed
// ** No blocking Code **

}

return 0;
}

23

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 67

Application Design Using Existing
Client Driver

Summary:
Implement the application
Use Microchip Client Driver for device access
Configure the USB Host Framework with
USBConfig.exe
Include usb_config.c in your project
Include usb.h & client driver header (eg.
usb_host_generic.h)
(usb_config.h gets included by usb.h)

Include the USB Host Framework Files
Call API routines as appropriate

Cool, can I Cool, can I
try it?try it?

Lab 1: Implement Application Using
Microchip-Provided Generic Client Driver

Lab 1: Implement Application Using
Microchip-Provided Generic Client Driver

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 69

Lab 1 Objectives

Assemble Hardware
PIC24 or PIC32 PIM
Explorer 16
USB PICtail™ Plus
PICDEM FSUSB programmed with default factory
application

Use MPLAB® IDE to build application
skeleton
Use USBConfig.exe to configure the USB
Use REAL ICE™ emulator to program the
application into the Explorer 16 board
Add missing “To Do” items
Advanced: Add Unimplemented Features

24

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 70

Lab 1 Summary

The application initializes the USB Framework,
and waits for a device
The application state machine switches non-
blocking “tasks”
The application sends command packets,
receives response packets, and displays the
data received
The application utilizes the generic client driver
“polled” API functions to send/receive data
The generic client driver transfers the packets
to and from the device

Client Driver DesignClient Driver Design

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 72

Client Driver Design

USB Embedded Host Framework

ApplicationApplication
Uses a layered
design
Provides device
access & control
Supports multiple
client drivers

USB Host LayerUSB Host Layer

USBUSB
ClientClient
DriverDriver

USBUSB
ClientClient
DriverDriver

USBUSB
ClientClient
DriverDriver

25

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 73

Client Driver Design

Why Split out the “Client Driver” from the
Application?

So the application can be written without
worrying about USB details
So drivers can be easily replaced or mixed
& matched as needed for different
applications

Why support multiple Client Drivers?
A single host may support more than 1
device
(Even if it only has 1 USB port)
Hubs may add tiers to the “network”
(Hubs are not yet supported)
Because a device may be “composite”

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 74

Client Driver Design

Flow of Calls
1. Main Loop
2. Driver API
3. Host CDI
4. USBTasks()

WhatWhat’’s a s a
CDI?CDI?

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 75

Client Driver Design

Client Driver Interface (CDI) Routines:
Write Example:

Read Example:

flags.txBusyflags.txBusy = 1;= 1;

if (if (USBHostWriteUSBHostWrite(address(address, GENERIC_OUT_EP, &buffer, length) != USB_SUCCESS), GENERIC_OUT_EP, &buffer, length) != USB_SUCCESS)

flags.txBusyflags.txBusy = 0; // Clear flag to allow re= 0; // Clear flag to allow re--trytry
......

flags.rxBusyflags.rxBusy = 1;= 1;

rxLengthrxLength = 0;= 0;

if (if (USBHostReadUSBHostRead(address(address, GENERIC_IN_EP, &buffer, length) != USB_SUCCESS), GENERIC_IN_EP, &buffer, length) != USB_SUCCESS)

gc_DevData.flags.rxBusygc_DevData.flags.rxBusy = 0; // Clear flag to allow re= 0; // Clear flag to allow re--trytry

......

26

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 76

Client Driver Design

CDI Routines (continued):
if (if (flags.rxBusyflags.rxBusy))

{{

if (if (USBHostTransferIsCompleteUSBHostTransferIsComplete(address(address, GENERIC_IN_EP,, GENERIC_IN_EP,…… &&byteCountbyteCount))))

{{

flags.rxBusyflags.rxBusy = 0;= 0;

rxLengthrxLength = = byteCountbyteCount;;

}}

}}

if (if (flags.txBusyflags.txBusy))

{{

if (if (USBHostTransferIsCompleteUSBHostTransferIsComplete(address(address, GENERIC_OUT_EP,, GENERIC_OUT_EP,…… &&byteCountbyteCount))))

{{

flags.txBusyflags.txBusy = 0;= 0;

}}

}}

Where would this Where would this
logic go?logic go?

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 77

Client Driver Design

A polled driver may have a “Tasks” routine:
Update driver state
Called along with host “Tasks” routine
Handled by “USBTasks()”
Called from the application’s main loop
“USBTasks()” is a macro

#define #define USBTasksUSBTasks() () \\

{ { \\

USBHostTasksUSBHostTasks(); (); \\

USBHostGenericTasksUSBHostGenericTasks(); (); \\

}}

Does Does
USBConfig.exeUSBConfig.exe

handle this?handle this?

Yes! Yes!
If needed.If needed.

Enumeration and InitializationEnumeration and Initialization

27

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 79

Review of Key Concepts

DeviceDevice
AttachedAttached

ResetReset
DeviceDevice Read Device DescriptorRead Device Descriptor

(VID/PID, Class)(VID/PID, Class)

Check forCheck for
DeviceDevice--LevelLevel

SupportSupport

Assign AddressAssign Address
To DeviceTo Device

Read Read Configuration(sConfiguration(s))
(Class)(Class)

Check forCheck for
InterfaceInterface--Level Level

SupportSupport

Select and SetSelect and Set
A ConfigurationA Configuration

The Enumeration Process

Device Is NowDevice Is Now
Ready To UseReady To Use

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 80

Enumeration & Initialization

Microchip USB Framework Initialization
The App must call “USBInitialize()” before
calling any other USB routine
Implemented as a macro

Can be used to initialize other layers
Not recommended
(Unless necessary)

#define USBInitialize(x) \
{ \

USBHostInit(x); \
USBHostGenericInit(x) \

}

Why Why
Not?Not?

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 81

Enumeration & Initialization

INIT

DETACH

ATTACH

ADDRESS

CONFIG
RUN

Attach

Address
Assigned

Configured

Detached

Detached

Detached

Detached

Host Layer State
Machine
Enumerates Device
Initializes Client
Driver

How does it How does it
initialize the initialize the
client driver?client driver?

28

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 82

Enumeration & Initialization

Client Driver Interface “Call Back” Routines
USBHostGenericInit(…)

Initializes the generic driver
Called by the host layer (up the stack)
Called after the device has been enumerated (not on
system boot)

USBHostGenericEventHandler(…)
Receives bus events (like device detach)
We will look at events closer later…

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 83

Enumeration & Initialization

USBInitialize()
(Called before main loop)

USBTasks()
(Called in main loop)

Device Attached
USBHostGenericInit()

What if I What if I
support 5, 10 support 5, 10

or 20 or 20
clients?clients?

We need a We need a
tabletable--driven driven

method method

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 84

USBHostHIDInit(…)
{
num_keys = 0;
...
flags = INITIALIZED;
return TRUE;

}

USBHostHIDEventHandler(…)
{
switch(event)
{
case EVENT_DETACH:

...
}
...

}

Enumeration & Initialization

USBHostGenericInit(…)
{
rx_size = 0;
...
flags = INITIALIZED;
return TRUE;

}

USBHostGenericEventHandler(…)
{
switch(event)
{
case EVENT_DETACH:

...
}
...

}

p->Initialize(…)

p->EventHandler(…)

p->Initialize(…)

p->EventHandler(…)

Client DriverClient Driver
Table

But, how does But, how does
the host layer the host layer
know which know which

driver to call?driver to call?

29

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 85

Enumeration & Initialization

p->Initialize(…)

p->EventHandler(…)

p->Initialize(…)

p->EventHandler(…)

Client Driver
TableClient

DriverSupport TypeDevice

TPL Table

0

1

The TPL Table
Identifies the device
Identifies the support type
Provides an index into the client driver table

PICDEM™ FS USB VID/PID

USB Keyboards HID Class 1

0

TPL Table +TPL Table +
Client Driver Table =Client Driver Table =
Call to Right DriverCall to Right Driver

Lab 2: Implement a Custom “Polled”
Generic Client Driver

Lab 2: Implement a Custom “Polled”
Generic Client Driver

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 87

Lab 2 Objectives

Implement a generic “polled” client Driver
Define a client driver table for it
Define a TPL table for our device
Test it using the application from Lab 1

30

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 88

Lab 2 Summary

The host layer enumerates the device
Then, the host layer looks up the appropriate
driver and calls its Initialize() routine
The application accesses the device via the
driver’s polled API functions
Using table-driven methods, the host layer can
manage multiple client drivers

Event HandlingEvent Handling

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 90

Event Handling

Review Polling
1. USBTasks()
2. USBHostTasks()
3. USBHostGenericTasks()
4. Event causes ISR to fire
5. Client Driver polls Host Layer

to discover event
6. If needed, the App polls the

Client driver to discover the
event

This seems like a lot of This seems like a lot of
time wasted time wasted ““doubledouble””

polling for status changes.polling for status changes.

31

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 91

Event Handling

Event driven
1. USBTasks()
2. USBHostTasks()
3. Event causes ISR to fire
4. Host Layer Calls Client Driver’s

Event Handling Routine
5. If needed, Client Driver calls

App’s Event Handling Routine

EliminatesEliminates
DoubleDouble
PollingPolling

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 92

Event Handling
A Minimal Client Driver Event Handler (EVENT_DETACH)

BOOL USBHostGenericEventHandler (BYTE address, USB_EVENT event,
void *data, DWORD size)

{
switch (event)
{
case EVENT_DETACH:

// Notify that application that the device has been detached.
USB_HOST_APP_EVENT_HANDLER(address, EVENT_GENERIC_DETACH,

data, sizeof(BYTE));
flags.val = 0;
address = 0;
return TRUE;

default:
return FALSE;

}
}

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 93

Event Handling

Client Driver Transfer Event Handling
case EVENT_TRANSFER:

// Notifiy the application of the completion of an Rx or Tx transfer.
if (pData->bEndpointAddress == (GENERIC_IN_EP))
{

flags.rxBusy = 0;
rxLength = pData->dataCount;
USB_HOST_APP_EVENT_HANDLER(address, EVENT_GENERIC_RX_DONE,

pData->pUserData, pData->dataCount);
}
else if (pData->bEndpointAddress == (GENERIC_OUT_EP))
{

flags.txBusy = 0;
USB_HOST_APP_EVENT_HANDLER(address, EVENT_GENERIC_TX_DONE,

pData->pUserData, pData->dataCount);
}
break;

So, how many So, how many
different different

events are events are
there?there?

32

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 94

Event Handling

Standard Events
USB_EVENT enum
Some sent to client, then
optionally to application
Some are used by the
device stack
Some indicate errors –
directly sent to the
application’s event handler
Documented in “Help” file
Can be extended by drivers

typedef enum
{

EVENT_NONE = 0,
EVENT_TRANSFER,
EVENT_SOF,
EVENT_RESUME,
EVENT_SUSPEND,
EVENT_RESET,
EVENT_ATTACH,
EVENT_DETACH,
EVENT_HUB_ATTACH,
EVENT_STALL,
EVENT_SETUP,
EVENT_VBUS_SES_END,
EVENT_VBUS_SES_REQUEST,
EVENT_VBUS_SES_VALID,
EVENT_VBUS_OVERCURRENT,
EVENT_REQUEST_POWER,
EVENT_RELEASE_POWER,
EVENT_UNSUPPORTED_DEVICE,
EVENT_CANNOT_ENUMERATE,
EVENT_CLIENT_INIT_ERROR,
EVENT_OUT_OF_MEMORY,
EVENT_UNSPECIFIED_ERROR,
EVENT_USER_BASE = 10000,
EVENT_BUS_ERROR = UINT_MAX

} USB_EVENT;

How?How?

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 95

Event Handling
Extending USB_EVENT type for driver-specific
events

Start with EVENT_USER_BASE
Increment by one for each event
Add an offset for the driver.

#define EVENT_GENERIC_ATTACH (EVENT_USER_BASE)
#define EVENT_GENERIC_DETACH (EVENT_USER_BASE)
#define EVENT_GENERIC_TX_DONE (EVENT_USER_BASE)
#define EVENT_GENERIC_RX_DONE (EVENT_USER_BASE)

#define EVENT_GENERIC_ATTACH (EVENT_USER_BASE + 0)
#define EVENT_GENERIC_DETACH (EVENT_USER_BASE + 1)
#define EVENT_GENERIC_TX_DONE (EVENT_USER_BASE + 2)
#define EVENT_GENERIC_RX_DONE (EVENT_USER_BASE + 3)

#ifndef EVENT_GENERIC_OFFSET
#define EVENT_GENERIC_OFFSET 0

#endif
#define EVENT_GENERIC_ATTACH (EVENT_USER_BASE + EVENT_GENERIC_OFFSET + 0)
#define EVENT_GENERIC_DETACH (EVENT_USER_BASE + EVENT_GENERIC_OFFSET + 1)
#define EVENT_GENERIC_TX_DONE (EVENT_USER_BASE + EVENT_GENERIC_OFFSET + 2)
#define EVENT_GENERIC_RX_DONE (EVENT_USER_BASE + EVENT_GENERIC_OFFSET + 3)

Why add a Why add a
driver offset?driver offset?

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 96

Application Event Handling
Application event handler
BOOL Demo_App_EventHandler (BYTE address, USB_EVENT event,

void *data, DWORD size)
{

switch (event)
{
case EVENT_GENERIC_ATTACH:

// Handle the attach event
break;

case EVENT_GENERIC_DETACH:
// Handle the detach event
break;

case EVENT_GENERIC_TX_DONE:
// Handle the data transmit done
break;

...
}
return TRUE;

}

#define USB_HOST_APP_EVENT_HANDLER Demo_App_EventHandler

In usb_config.h

33

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 97

Application Event Handling
- USB Certification -

Requirement
No Silent Failures – must provide indication of

Hub error message
Device not supported message
Over current notification
Reset-able over current protection
Drop voltage
Etc.

Must use LCD, UART, or LEDs to provide a
recognizable, independent notification of the error.
Application Event Handler function must be defined to
catch/display these events to the end-user

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 98

Application Event Handler
- USB Certification -

Application event handler (See Appendix E in
handout for full details)

BOOL Demo_App_EventHandler (BYTE address, USB_EVENT event, void *data, DWORD size)
{

switch (event)
{
case EVENT_REQUEST_POWER:
// The data pointer points to a byte that represents the amount of power
// requested in mA, divided by two. If the device wants too much power,
// we reject it.

if (*(BYTE*)data <= (MAX_ALLOWED_POWER / 2))
{
return TRUE;

}
else
{
UART2PrintString("\r\n***** USB Error - device requires too much current *****\r\n");

}
break;

case EVENT_RELEASE_POWER:
// Since we have support for only one device, we do not need to
// track power released.

return TRUE;
break;

case EVENT_VBUS_OVERCURRENT:
UART2PrintString("\r\n***** USB Error - overcurrent detected *****\r\n");
return TRUE;
break;

case EVENT_HUB_ATTACH:
UART2PrintString("\r\n***** USB Error - hubs are not supported *****\r\n");
return TRUE;
break;

case EVENT_UNSUPPORTED_DEVICE:
UART2PrintString("\r\n***** USB Error - device is not supported *****\r\n");
return TRUE;
break;

case EVENT_CANNOT_ENUMERATE:
UART2PrintString("\r\n***** USB Error - cannot enumerate device *****\r\n");
return TRUE;
break;

...

Lab 3: Implement a Custom “Event-
Driven” Generic Client Driver

Lab 3: Implement a Custom “Event-
Driven” Generic Client Driver

34

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 100

Lab 3 Objectives

Implement an event driven generic client
Driver
Define driver-specific events
Add Event Handler to Application
Understand different application flow to
make efficient use of events

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 101

Lab 3 Summary

An event-driven implementation calls up
the stack
Event-driven method eliminates the need
to “double poll”
Event driven method scales better
(Easier to support multiple clients)
Some events are sent directly to the
application’s event handler - will need to
be processed if certification is desired

VBus Monitoring and Stack
Shutdown

VBus Monitoring and Stack
Shutdown

35

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 103

VBus Overcurrent Monitoring
VBus monitoring is the
application’s responsibility.

Technique is application-
specific.

Mass Storage projects
implement function
MonitorVBUS()
When detect overcurrent,
call host layer function
“USBHostVbusEvent(EVENT
_VBUS_OVERCURRENT)” to
shutdown USB
When overcurrent restored,
call
“USBHostVbusEvent(EVENT
_VBUS_POWER_AVAILABLE)”
to turn the USB peripheral
back on

VBus
(4.4-5.25V)

Explorer 16 + USB PICTail Plus

MCU
ADC

Refer to project “USB Host -
Mass Storage - Thumb Drive

Data Logger”

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 104

USB Host Stack Shutdown

USBHostShutdown(void)
Callable by the Application layer

Shuts down all USB activity, detaching all
devices

Turns off the USB module, frees memory
and resets the host layer state machine
EVENT_DETACH sent to client event handler
EVENT_VBUS_RELEASE_POWER sent to
application event handler

Restart:
Start calling USBTasks()

USB module re-initialized in one of the states

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 105

Summary (Part 2)

Easy-to-use configuration tool available
for Microchip drivers
The Microchip USB Framework handles
most of the USB Details
Layered architecture provides flexibility &
scalability
Polled and Event-Driven implementations
are supported
An Application Event Handler is required
for Embedded Host Certification

Questions?Questions?

36

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 106

(Part 2) App Note References
- www.microchip.com/usb -

AN1140
USB Embedded Host Stack

AN1141
USB Embedded Host Stack Programmers
Guide.

AN1143
USB Generic Client on an Embedded Host.

Part 3Part 3

Designing a Mass-Storage Class, Full-
Speed USB Embedded-Host Application

Designing a Mass-Storage Class, Full-
Speed USB Embedded-Host Application

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 108

Objectives (Part 3)

Understand the requirements for mass storage
devices
Understand the structure and configuration of
the Mass Storage Client Driver
Explain the functionality and configuration
options of Microchip’s Memory Disk Drive
(MDD) File System Library
Create and manipulate files on a USB thumb
drive using PIC® USB microcontrollers

37

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 109

Agenda (Part 3)

Introduction to Mass Storage Devices
Configuring The Mass Storage Client
Driver and Media Interface Layer
The File System Layer (Microchip MDD
File System Library)

File Creation
Lab 4: Creating and Deleting Files

File I/O
Lab 5: Reading and Writing

Common Failure Modes
Summary

Introduction to USB Mass-Storage
Devices

Introduction to USB Mass-Storage
Devices

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 111

The Mass-Storage Class

Includes devices that transfer files
Hard Drives
CD/DVD Drives
Flash-memory Drives
Cameras

In PCs, these devices appear as drives
Users can easily copy, move or delete these
files

38

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 112

USB Mass-Storage Devices
- Hardware Requirements -

USB Device
Controller

USB

Device MCUMedia
ControllerMedia

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 113

USB Mass-Storage Devices
- Functional Requirements -

The hardware/firmware must perform the
following functions:

Detect and respond to generic USB requests
and other events on the bus
Detect and respond to class-specific USB
mass-storage requests for information or
other action
Detect and respond to SCSI commands
received in USB transfers

Read/Write blocks of data to/from the media
using Logical Block Addressing
Request status information
Control device operation

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 114

Transport Protocols

USB Mass Storage devices use media command
sets from several existing protocols

SCSI Primary Commands – 2 (SPC-2)
Multi-Media Command Set (MMC-5)

These commands are used to perform various
functions, such as reading, writing, checking
media status etc.
The command blocks of these command sets
are placed in a USB wrapper which follows a
USB transport protocol

Most common protocol is called “Bulk-Only
Transport”

39

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 115

Bulk-Only Transport Protocol

A data transfer has 2-3 stages:
“Command Block Wrapper” (CBW)

31 byte packet (see AN1142)
Sent to the OUT EP

Data (optional – depends on command)
“Command Status Wrapper” (CSW)

13 byte packet (see AN1142)
Read from the IN EP

CBW contains a 128-bit SCSI command
block for the device to execute

Generated by the mass storage client driver

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 116

The Mass-Storage Class
- Descriptor Fields (Generic SCSI Media) -

Device
(bClass: 0x00 - specified at interface level)
(bSubclass: 0x00 - specified at interface level)
(bProtocol: 0x00 - specified at interface level)
(iSerialNumber: “01234ABCDEFG” – min 12 chars)

Configuration#1
(bNumInterfaces: 0x01 – minimum)

Interface#1
(bInterfaceClass: 0x08 – Mass Storage Class)
(bInterfaceSubClass: 0x06 – SCSI Primary
Command-2 (SPC-2))
(bInterfaceProtocol: 0x50 – Bulk-only Transport)

Endpoint 0
(Control - OUT)

Endpoint 0
(Control - IN)

Endpoint 1
(Bulk - OUT)

Endpoint 1
(Bulk - IN)

USB Host
Communications

Pipes

Standard USB and/or
class-specific requests

“Bulk-Only Transport”
Protocol

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 117

Embedded Host Stack
- Support for thumb drive applications -

File System Support
Layer

Provides an interface to
“file” data structures,
used in all major PC
operating systems

Media Interface Layer
Converts file system
commands to SCSI
commands

Mass-Storage Client
Driver

Wraps SCSI commands
in a USB wrapper

Host Layer
Handles enumeration and
USB bus details

USB Embedded Host
Driver (AN1140/1141)

Mass-Storage Client
Driver (AN1142)

Media Interface
Layer (SCSI)

File System Support
(AN1045)

Application

40

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 118

Demo
USB Embedded Host
Datalogging to a Thumbdrive

Configuring The Mass Storage Client
Driver and Media Interface Layer

Configuring The Mass Storage Client
Driver and Media Interface Layer

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 120

USB Configuration (Main)

Select the target
device
Select the
device type
Select the ping-
pong mode
used by the
USB interface*

Main Tab

*PIC32 supports “Ping-Pong on All Endpoints”, PIC24 supports all modes.

41

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 121

USB Configuration - Host

Enable support
for Bulk and
Control transfers
Allow a large
number of NAKs
Increase the
attach-debounce
interval
Define the
application event
handler
Transfer Events
not required
for MSD client
driver

Host Tab

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 122

USB Configuration - TPL

Enter
Description
Enter Class,
Subclass,
Protocol ID
values
Select Mass
Storage Client
Driver
Click “Add to
TPL”

TPL Tab

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 123

USB Configuration – Mass Storage

Check “Mass
Storage Client is
used in Host
Mode”
Make sure SCSI
interface is
selected

Mass
Storage Tab

Click Generate!Click Generate!

42

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 124

USB Configuration

Example usb_config.h
#define NUM_TPL_ENTRIES 1
#define USB_NUM_CONTROL_NAKS 200
#define USB_SUPPORT_BULK_TRANSFERS
#define USB_NUM_BULK_NAKS 20000
#define USB_INITIAL_VBUS_CURRENT (100/2)
#define USB_INSERT_TIME (250+1)
#define USB_HOST_APP_EVENT_HANDLER USB_ApplicationEventHandler

// Host Mass Storage Client Driver Configuration

#define USB_MAX_MASS_STORAGE_DEVICES 1

// Helpful Macros

#define USBTasks() \
{ \

USBHostTasks(); \
USBHostMSDTasks(); \

}

#define USBInitialize(x) \
(\

USBHostInit(x) \
)

#endif

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 125

USB Configuration

Example of usb_config.c
// ***
// Media Interface Function Pointer Table for the Mass Storage client driver
// ***

CLIENT_DRIVER_TABLE usbMediaInterfaceTable =
{

USBHostMSDSCSIInitialize,
USBHostMSDSCSIEventHandler,
0

};

// ***
// Client Driver Function Pointer Table for the USB Embedded Host foundation
// ***

CLIENT_DRIVER_TABLE usbClientDrvTable[] =
{

{
USBHostMSDInitialize,
USBHostMSDEventHandler,
0

}
};

// ***
// USB Embedded Host Targeted Peripheral List (TPL)
// ***

USB_TPL usbTPL[] =
{

{ INIT_CL_SC_P(0x08ul, 0x06ul, 0x50ul), 0, 0, {TPL_CLASS_DRV} } // SCSI Thumb Drives
};

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 126

Media Interface Layer APIs
- usb_host_msd_scsi.c -

Detect a valid attached drive
Called by application layer
USBHostMSDSCSIMediaDetect()

Initialization
Called by file system layer
USBHostMSDSCSIMediaInitialize()

Blocking Read/Write API
Called by the file system layer
USBHostMSDSCSISectorWrite()
USBHostMSDSCSISectorRead()

Event-Handler
Call-back by the client driver event handler
USBHostMSDSCSIEventHandler()

Mass-Storage
Client Driver

Media Interface
Layer (SCSI)

Higher Layers
(Mostly MDDFS)

43

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 127

Media Interface Layer
- Blocking Read/Write Operations -

BYTE USBHostMSDSCSISectorRead(DWORD sectorAddress, BYTE *dataBuffer)
{

DWORD byteCount;
BYTE commandBlock[10];
BYTE errorCode;

// Fill in the command block with the READ10 parameters.
commandBlock[0] = 0x28; // Operation code
commandBlock[1] = RDPROTECT_NORMAL | FUA_ALLOW_CACHE;
commandBlock[2] = (BYTE) (sectorAddress >> 24); // Big endian!
commandBlock[3] = (BYTE) (sectorAddress >> 16);
commandBlock[4] = (BYTE) (sectorAddress >> 8);
commandBlock[5] = (BYTE) (sectorAddress);
commandBlock[6] = 0x00; // Group Number
commandBlock[7] = 0x00; // Number of blocks - Big endian!
commandBlock[8] = 0x01;
commandBlock[9] = 0x00; // Control

errorCode = USBHostMSDRead(deviceAddress, 0, commandBlock, 10,
dataBuffer, mediaInformation.sectorSize);

if (!errorCode)
{

while (!USBHostMSDTransferIsComplete(deviceAddress, &errorCode,
&byteCount))

{
USBTasks();

}
}

}

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 128

Event Generation

The client driver can be configured to receive
transfer events from the host layer

(via the Host Tab setting)
The media interface layer can also be
configured to receive these transfer events from
the client driver

(via the Mass Storage Tab setting)
Did we enable them with USBConfig.exe ?

No.
Our file system functions block, so there is *no*
need for the media layer to be event-driven

Media layer polls the MSD client driver
MSD client driver polls host layer

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 129

Mass Storage Client Driver
Routines

Polled API
USBHostMSDRead(...)
USBHostMSDWrite(...)
USBHostMSDTransferIsComplete(...)

44

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 130

Flow of Calls – Mass Storage
Enumeration & Initialization

Before the main loop
USBInitialize()

In the main loop
USBTasks()
• USBHostTasks()
• USBHostMSDTasks()
USBHostMSDSCSIMediaDetect()

Called to detect attachment

Device Attached
Host layer enumerates drive and calls
USBHostMSDInitialize()

Function updates a data structure
Client driver tasks routine polls data
structure to discover event

Calls USBHostMSDSCSIInitialize()
Saves USB address

USBHostMSDSCSIMediaDetect() now
returns TRUE

Calls file system initialization function
FSInit() Host Layer

Mass-Storage
Client Driver

Media Interface
Layer (SCSI)

App/MDDFS

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 131

Basic Thumb Drive Usage
#include "USB/usb.h"
#include "USB/usb_host_msd.h"
#include "USB/usb_host_msd_scsi.h"
#include "MDD File System/FSIO.h"
int main(void)
{
USBInitialize(0);
while(1) {
USBTasks();
if(USBHostMSDSCSIMediaDetect()) {
deviceAttached = TRUE;
if(FSInit()) {
myFile = FSfopen("test.txt","w");
FSfwrite("This is a test",1,12,myFile);
FSfclose(myFile);
while(deviceAttached = TRUE){
USBTasks();
...do other tasks

}
}

}
}
}

Initialize USB

Check for Device

Once Device is Detected
1) Initialize the MDD FS
2) Open a file
3) Write to the file
4) And close the File
5) Do other tasks

Drive State Machines

The File System Layer (Microchip MDD
File System Library)

The File System Layer (Microchip MDD
File System Library)

45

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 133

Microchip MDD File System Library
- Overview -

Provides an interface to file systems
compatible with ISO/IEC specification
9293 (commonly referred to as FAT12 and
FAT16, used on earlier DOS operating
systems by Microsoft® Corporation)
Also supports the FAT32 file system (long
filenames are not supported)
Supports USB, SD/MMC and CF card
physical interfaces.

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 134

MDD File System Library Layout

Your application codeYour application code

FSfopen, FSfwrite, FSfread, . . .FSfopen, FSfwrite, FSfread, . . .

USBUSB
(AN1145)(AN1145) CompactFlashCompactFlash®®SecureDigitalSecureDigital™™

Application LayerApplication Layer

File Manipulation LayerFile Manipulation Layer

Physical LayerPhysical Layer

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 135

Device Organization

Flash memory is
organized into
“sectors”
The first sector of the
device is usually the
Master Boot Record
(MBR)
The MBR contains
information about
partitions

Boot Data

Signature Code

Partition Table Entry 1

Partition Table Entry 2

Partition Table Entry 3

Partition Table Entry 4

The MBRThe MBR

46

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 136

Partition Organization

Several sectors are
reserved for special use
(the system region)
Data sectors are
grouped into “clusters”
Each file and directory
uses at least one
cluster

System Region

Data Region

A PartitionA Partition

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 137

MDDFS Operation

Stores file information in FSFILE objects
Reads/writes in one-sector blocks
(typically 512 bytes)
Caches a sector of the FAT and a sector
of data
FAT and data reads and writes are only
performed when necessary
MDD Function calls are blocking

Media interface layer (USB) must arrange to
call USBTasks() to drive the USB host state
machine to complete reads/writes.

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 138

Max. Partition Size, File Sizes

FAT12:
Max. Partition Size: 32 MB
Max. File Size: 32 MB

FAT16:
Max. Partition Size: 2 GB
Max. File Size: 2 GB

FAT32:
Max. Partition Size: 2 TB (Windows: 32 GB)
Max. File Size: 4 GB

47

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 139

Licensing

Before using MDD Library for any
supported media in your designs, please
review the MDD License Agremment
c:\Microchip Solutions\Microchip\MDD
File System\License Agreement.pdf

You must investigate potential licensing
requirements

http://www.microsoft.com/iplicensing/

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 140

The FSFILE Structure
- (Defined in FSIO.h)-

Contains file parameters:
The file name and extension
Information about the directory that
contains the file’s entry
The current position in the file
The starting location of the file on the
device
The size of the file (in bytes)

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 141

Date/Time Sources
- (Defined in FSconfig.h)-

None
Date and time will be written to a static value and
incremented when updated
Will not put accurate time stamp information in file
entries

Real-time Clock & Calendar
Date and time will be updated based on
the value in the RTCC module registers
User must configure RTCC before operation

User Defined Clock
User updates times manually with SetClockVars
function
Should be called before creating a file or directory
and before closing a file

48

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 142

The FSInit()Function

Initializes data structures
Loads device information from the MBR
and Boot Sector
Initializes Media
Prototype:
int FSInit (void);

Returns:
TRUE if initialization is successful
FALSE otherwise

File CreationFile Creation

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 144

The FSfopen()Function

Loads file information or creates a new file
Prototype:
FSFILE * FSfopen (const char * fileName, const char * mode);
Arguments

fileName: The name of the file to open
Mode: READ, WRITE, or APPEND

Returns:
A pointer to the initialized file object on success
NULL on failure

Example

FSFILE * pointer;
pointer = FSfopen (“FILE.TXT”, “w”);
if (pointer == NULL)

// Error

49

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 145

The FSfclose()Function

Updates information in the root and FAT
Frees the memory used by the FSFILE object
Prototype:
int FSfclose (FSFILE * fo);
Argument: A pointer to the file to close
Returns:

0 if the file was closed successfully
EOF (-1) otherwise

Example

FSFILE * pointer;
pointer = FSfopen (“FILE.TXT”, “w”);
if (FSfclose (pointer) != 0)

// Error

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 146

The FSremove()Function

Deletes the FAT entries for a file
Marks the root directory entry as deleted
Prototype:
int FSremove (const char * fileName);
Argument: The name of the file to delete
Returns:

0 on success
EOF (-1) otherwise

Example

if (FSremove (“FILE.TXT”) != 0)
// Error

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 147

The FSrename()Function

Allows the user to rename files
Prototype:
int FSrename (const char * fileName, FSFILE * fo);
Arguments:

fileName: The new name of the file
fo: Pointer to the file being renamed

Returns:
0 if file is renamed successfully
EOF (-1) otherwise

Can also rename directories

Example
FSFILE * pointer;
pointer = FSfopen (“FILE.TXT”, “w”);
if (FSrename (“FILE2.TXT”, pointer) != 0)

// Error

50

Lab 4: Creating and Deleting FilesLab 4: Creating and Deleting Files

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 149

Lab 4 Objectives
Complete the “MKFILE” command, which
will create an empty file
Complete the “REN” command, which will
rename an existing file
Complete the “DEL” command, which will
delete a file
Be able to explain the functionality and
parameters of:

FSfopen()
FSfclose()
FSrename()
FSremove()

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 150

Lab 4 Summary

Files can be created using the FSfopen()
function
It’s necessary to call FSfclose()to update file
information when you’re done using your file
The FSrename()function can be used to
rename an existing file
The FSremove()function can be used to delete
an existing file

51

File I/OFile I/O

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 152

The FSfread()Function

Reads ‘n’ objects of ‘size’ bytes from an open
file and store them in the buffer specified by ‘ptr’
Prototype:
size_t FSfread (void * ptr, size_t
size, size_t n, FSFILE * stream);
Pre-condition:

File is open in READ mode
Arguments:

ptr: A pointer to the buffer to store the data
size: The size of the objects to read (in bytes)
n: The number of objects to read
stream: The file to be read from

Returns: The number of objects (not bytes) read

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 153

The FSfeof()Function

Determines if the user has read up to the
end of the file
Prototype:
int FSfeof (FSFILE * stream);
Pre-condition:

File is open in READ mode
Argument: A pointer to the file to check
Returns:

Non-zero if EOF is reached
0 otherwise

52

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 154

The FSfwrite()Function

This function will write ‘n’ items of ‘size’ bytes from the
structure pointed to by ‘ptr’ to the file pointed to by
‘stream’
Prototype:
size_t FSfwrite (const void * ptr, size_t
size, size_t n, FSFILE * stream);
Pre-condition:

File is opened in WRITE or APPEND mode
Arguments:

ptr: A pointer to the data to be written
size: The size of the objects to write
n: The number of objects to write
stream: The file the data will be written to

Returns: The number of objects written

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 155

The FSfprintf()Function

This function will write specially formatted
strings to a file
Prototype:
int FSfprintf (FSFILE * fptr, const
rom char * fmt, …);
Arguments:

fptr: The file the data will be written to
fmt: The string to write
…: Format specifiers

Returns:
Count of characters written on success
EOF (-1) on failure

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 156

FSfprintf()Format Specifiers
(See AN1045 for Details)

Flag characters (-, +, 0, ‘ ‘, #)
Selects a Prefix

Field Width
Field Precision
Size Specification
Conversion Specifier

Example

unsigned long test = 0x1234ABCD;unsigned long test = 0x1234ABCD;
FSfprintf (fPtr, FSfprintf (fPtr, ““Example %Example %##3030.20.20llXX””, test);, test);
OutputOutput
Example 0X0000000000001234ABCD0X0000000000001234ABCD

53

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 157

Flag Characters
-
The result of the format conversion will be left justified
+
A ‘+’ sign will be prefixed to a signed result if it is positive (negative results are

automatically prefixed by ‘-’)
0
The result will be prefixed with leading zeros until the field width is filled.

Specifying precision or ‘-’ flag will cause this flag to be ignored.
{space}
Prefixes a space char to the beginning of a positive result. If ‘+’ is also

specified, this flag will be ignored.
#
Present alternate forms of conversion
Octal (o) results will be increased in precision and preceded by a 0
Hex (x) conversions will be prefixed by “0x”
Hex (X) conversions will be prefixed by “0X”
Binary (b) conversions will be prefixed by “0b”
Binary (B) conversions will be prefixed by “0B”

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 158

Field Width

The field width specifier follows the flags.
If the result is shorter than the width, it is
padded with leading spaces (or zeros if
flagged) until it fills the field width. If the
result is left justified, it will be followed by
trailing spaces. If the field width is
specified by an ‘*’ character a 16-bit
argument will be read from the list of
format specifiers to specify the width. In
this case, if the value is negative, it will be
as if the ‘-’ flag is specified, followed by a
positive field width.

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 159

Field Precision

The field precision specifies the number
of digits present in the converted value
for an integer conversion or the maximum
number of chars in the converted value
for a string conversion. It is indicated by
a period (.) followed by an integer value
or an asterisk. If the precision isn’t
specified, the default (1) will be used. If it
is specified by ‘*’ a 16-bit argument will
be read from the list of format specifiers
to specify precision.

54

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 160

Size Specifiers

Applies to any integer or pointer conversion
specifier
Determines what type of argument is read from
the format specifier list

-Tptrdiffrom_t

ttptrdiff_t

-Zsizerom_t

zzsize_t

q-long long, unsigned long long

lllong, unsigned long

j (64-bit)j (32-bit)intmax_t, uintmax_t

-Hshort long, unsigned short
long

hhshort int, unsigned short int

hhhhsigned char, unsigned char

C30C18Argument

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 161

Conversion Specifiers

c: The int argument is converted to an
unsigned char value and the character
represented by that value will be written
d,i: The int argument is converted to a signed
decimal
o: The unsigned int argument is converted to
an unsigned octal
u: The unsigned int argument will be converted
to an unsigned decimal
b,B: The unsigned int argument will be
converted to unsigned binary
x,X: The unsigned int argument will be
converted to an unsigned hexadecimal using
the letters ‘a’-’f’ (x) or ‘A’-’F’ (X) for 10-15

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 162

Conversion Specifiers

s,S: Characters from a data (s) or program (S) memory
array of char arguments are written until either a
terminating zero character is seen or the number of
chars is equal to the precision.
p,P: The pointer to a data or program memory is
converted to an equivalent sized unsigned int type and
processed with the x (p) or X (P) conversion specifier.
In C18 the pointer will be a 24-bit pointer if the ‘H’ size
specifier is present; otherwise it will be a 16-bit pointer.
%: A percent sign will be written.
n: The number of characters written so far will be
stored by this argument, which is a pointer to an integer
type in data memory. The size of the integer type is
determined by the size specifier present for the
conversion (16-bit if no specifier is present).

55

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 163

Sample FSfprintf()Strings

Pos = +1
Neg = -1
Spc = 1

FSfprintf (p, “Pos = %+d%c%cNeg = %d%c%cSpc
= % d”, 0x01, 0x0D, 0x0A, 0xFF, 0x0D, 0x0A,
0x01);

Result = +%unsigned char n = 43;
FSfprintf (p, “Result = %hhc%%”, n);

Result = 34%unsigned char n = 34;
FSfprintf (p, “Result = %hhu%%”, n);

String StrinFSfprintf (p, “String %.5S”, “String2”);

Long 73778FSfprintf (p, “Long %lu”, 0x12032);

Test 0x000012efFSfprintf (p, “Test %#12.10x”, 0x12ef);

Test 0B0001001011101111FSfprintf (p, “Test %#20B”, 0x12ef);

Test 12EFFSfprintf (p, “Test %10X”, 0x12ef);

OutputFunction Call

Lab 5: Reading and Writing FilesLab 5: Reading and Writing Files

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 165

Lab 5 Objectives

Complete the “LOG” command, to log data from
a peripheral
Complete the “TYPE” command, to display file
contents
Complete the “COPY” command, to copy files or
create a file from the terminal
Be able to explain the functionality and
parameters of:

FSfread()
FSfwrite()
FSfprintf()

56

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 166

Lab 5 Summary

The FSfwrite()function can be used to write
information to a file
The FSfread()function can be used to read
information from a file
The FSfprintf()function will write specially
formatted information to a file

MDD Library ConfigurationMDD Library Configuration

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 168

FSconfig.h

Firmware configuration options are
located in FSconfig.h

Max concurrent open files
Media sector size
Timestamp clock mode
Feature disable options
Static/dynamic FSFILE allocation
Function pointers

57

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 169

HardwareProfile.h

Hardware configuration options are
located in HardwareProfile.h

System clock
Physical Interface type
I/O selection

Common Failure ModesCommon Failure Modes

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 171

Common Reported Failure Modes

Unsupported Sector Size (MDDFS)
512 bytes is most common
Editable in FSconfig.h

Unsupported Media Interface (MSD Client)
Most use SCSI
Some use SFF-8070i

Unsupported File System (MDDFS)
We support FAT

If your thumb drive is not working and
you *don’t* see these errors, let us know!

58

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 172

Detecting/Responding to Errors

Unsupported Sector Size (MDDFS)
Call FSerror() after failed FSinit()
Returns CE_UNSUPPORTED_SECTOR_SIZE

Unsupported Media Interface (MSD Client)
Failure detected during enumeration
EVENT_UNSUPPORTED_DEVICE passed to the
application event handler

Unsupported File System (MDDFS)
Call FSerror() after failed FSinit()
Returns CE_UNSUPPORTED_FS

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 173

Summary (Part 3)

We covered:
Basic USB Thumb Drive Application
Architecture

USB Mass Storage Device Basics
Configuration of the Mass Storage Client Driver
MDD File System Library functions
Configuring the MDD File System Library

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 174

Additional Resources (Part 3)

Application Note 1045, “Implementing File
I/O Functions Using Microchip’s Memory
Disk Drive File System Library”,
Application Note 1142, “USB Mass
Storage Class on an Embedded Host”,
Application Note 1145, “Using a USB
Flash Drive with an Embedded Host”,
All available at Microchip Technology’s
USB Development page at
http://www.microchip.com/usb/

59

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 175

Additional Resources (Part 3)

ISO®/IEC Specification 9293, “Information
technology – Volume and file structure of disk
cartridges for information interchange,”
available from www.iso.org
“FAT32 File System Specification,” available
from Microsoft
The USB Implementers Forum, Inc. at
www.usb.org
USB Mass Storage, by Jan Axelson (ISBN:
9781931448048)
USB Complete 4/E, by Jan Axelson (ISBN:
9781931448086)

Part 4Part 4

Using the USB Thumb Drive Boot Loader
Application

Using the USB Thumb Drive Boot Loader
Application

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 177

Objectives (Part 4)

Learn how to implement the USB Thumb
Drive Boot Loader and application

60

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 178

Agenda (Part 4)

Definition
USB Bootloader Architecture
Application Configuration & Use

Lab 6: Update Firmware Using the Thumb
Drive Boot Loader

Summary and Questions

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 179

Boot Loader

FLASH must be “self-writing”
Program memory “shifted”
Linker scripts:

Boot loader code
Application code

Boot loader dictates
“programming” media

Definition

A BOOT LOADER is firmware located in a microprocessor’s program
memory which allows users to change the application code using an
external interface such as RS-232, I2C, SPI or USB instead of using a
special programming interface (e.g. ICSP or JTAG)

BOOT LOADER
PROGRAM

PROGRAM
MEMORY

RESET VECTOR

INT VECTORS

CONCEPTUAL VIEW OF PROGRAM FLASH

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 180

USB Host Boot Loader
Architecture

Boot Loader Main Logic

Boot Media

Boot
Loader

IOHex
Loader

FAT FS

MSD/SCSI

USB Host

61

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 181

USB Host Boot Loader
Architecture

Boot Loader
IO Interface

Invoke or Cancel boot loader mode
Communicate boot loader status
APIs and build parameters in boot_io.h file

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 182

USB Host Boot Loader
Architecture

Defines medium used to access application
Default wrappers for:

MDD FAT FS
USB MSD stack
Hex Loader

APIs and build parameters in boot_media.h file

Media Interface

FAT FS

MSD / SCSI

USB Host

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 183

USB Host Boot Loader
Architecture

Hex
Loader

Used to decode and program image
Default format is Intel Hex record

Replace or modify to change format
APIs and build parameters in boot_load.h file

62

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 184

USB Host Boot Loader
Basic Operation

Execute boot loader startup code
If (bootstrap condition met)

{
Initialize boot loader USB host stack
Find application firmware file
Parse file
Program to flash
}

Jump to application startup code

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 185

USB Host Boot Loader
Restrictions

FS Format: MDD FAT 16/32
File Format: Intel Hex record
Boot File Name: Change in boot_config.h

Default is “image.hex”
USB Support: boot loader has host stack
Configuration bits must be defined in boot
loader code
Program Flash must be shared with boot loader
code
Special linker scripts must be used for the
application

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 186

PIC32MX460 USB Host Boot Loader
Memory Layout - Flash

BOOT LOADER

EXCEPTION VECTOR

INTERRUPT VECTOR

RESET CODE

BOOT FLASH

BFC0 0200

BFC0 0180
9/BFC0 0000

For boot loader

63

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 187

PIC32MX460 USB Host Boot Loader
Memory Layout – Kernel Flash

APPLICATION

EXCEPTION VECTOR

INTERRUPT VECTOR

RESET CODE

USB HOST STACK FOR
BOOT LOADER

BASE BOOT LOADER CODE

KERNEL FLASH

9/BD00 0000

For Application

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 188

PIC24GB110 USB Host Boot Loader
Default Memory Layout - Flash

Reset Vector
Primary Interrupt

Vector Table

Alternate Interrupt
Vector Table

User Flash

Flash Configuration Words

Configuration Registers

Device ID

0x000000

0x000004

0x000200

0x7FFFFE

0xFFFFFE

0x0000FE

0x000104

0x00A804

0x02A9F8

Application Code

Boot loader Code

boot loader IVT

0x00A908
0x00A912

Application “Remapped” IVTs (“goto’s”)

Add special linker script &
add/edit “MSD boot loader
Remapping.c” to your project

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 189

USB Host Boot Loader
boot_config.h

Define application file name
#define BOOT_FILE_NAME "image.hex“

Define size of read buffer
#define BL_READ_BUFFER_SIZE 512

Define application addressing
// Address of main application's Startup code
#define APPLICATION_ADDRESS 0x9D020000

// These macros define the maximum size of a Flash
block. Change procdefs.ld if these change.

#define PROGRAM_FLASH_BASE 0x1D020000
// Physical address

#define PROGRAM_FLASH_LENGTH 0x00060000
// Length in bytes

#define FLASH_BLOCK_SIZE (1024 * 4)
// Size in bytes

64

Lab 6: Update Firmware Using the Thumb
Drive Boot Loader

Lab 6: Update Firmware Using the Thumb
Drive Boot Loader

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 191

Lab 6 Objectives
Build/run an existing application

USB “Generic Device” Demo
Prepare the application for use with
the thumb drive boot loader
Program the thumb drive boot loader
into the device
Load/run the modified application
from a thumb drive.

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 192

Summary (Part 4)

We covered:
USB Thumb Drive BootloaderArchitecture
Configuring an Application for use with the
boot loader

65

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 193

Additional Resources (Part 4)

PIC32 USB Thumb Drive Boot loader
Documentation

See Appendix D in Lab Manual

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 194

Covered what USB embedded host
enabled options are available, how they
are different and where/when they should
be selected.
Covered how to use the Microchip USB
Embedded Host framework to create a
custom USB peripheral application on a
PIC24/PIC32-based USB embedded host.
Covered how to use the Microchip USB
Embedded Host framework to add USB
thumb drive capability to your application

Class Summary

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 195

Summary: App Note References
- www.microchip.com/usb -

AN1045
Implementing File I/O Operations Using Microchip’s
MDD FS Library

AN1140
USB Embedded Host Stack

AN1141
USB Embedded Host Stack Programmers Guide.

AN1142
USB Mass Storage Class on an Embedded Host.

AN1143
USB Generic Client on an Embedded Host.

AN1145
Using a USB Flash Drive on an Embedded Host

66

Thank You.Thank You.

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 197

Trademarks
The Microchip name and logo, the Microchip logo, Accuron, dsPIC, KeeLoq,
KeeLoq logo, MPLAB, PIC, PICmicro, PICSTART, PRO MATE, rfPIC and
SmartShunt are registered trademarks of Microchip Technology Incorporated in
the U.S.A. and other countries.
FilterLab, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL, SmartSensor
and The Embedded Control Solutions Company are registered trademarks of
Microchip Technology Incorporated in the U.S.A.
Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM,
dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense,
In-Circuit Serial Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB
Certified logo, MPLIB, MPLINK, mTouch, PICkit, PICDEM, PICDEM.net, PICtail,
PIC32 logo, PowerCal, PowerInfo, PowerMate, PowerTool, REAL ICE, rfLAB,
Select Mode, Total Endurance, UNI/O, WiperLock and ZENA are trademarks of
Microchip Technology Incorporated in the U.S.A. and other countries.
SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.
All other trademarks mentioned herein are property of their respective
companies.
© 2009, Microchip Technology Incorporated. All Rights Reserved.

Appendix
- OTG Slides From COM3202 v0.95-

Appendix
- OTG Slides From COM3202 v0.95-

67

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 199

Agenda

Overview
Mechanical
Protocol
Electrical
Certification Considerations
Resources (Examples, Classes, Software,
etc.)

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 200

New 5th pin

Old connectors had 4 pins on the
receptacle that were used: VBUS, GND,
D+, and D-
OTG connectors have 5 pins on the
receptacle that are used: VBUS, GND, D+,
D-, and ID

ID pin is used to determine which side of the
cable is the A (host) side
ID should be pulled high through a resistor

Built into PIC24F and PIC32MX device with USB
OTG devices

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 201

Mechanical

OTG Plugs and Receptacles
Micro-B plug and receptacle

Micro-A/B receptacle
Only allowed on OTG products

Micro-A plug
Indicates who is initially the host

68

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 202

Mechanical

Micro A/B Receptacle
Pin 1: VBus
Pin 2: D-
Pin 3: D+
Pin 4: ID
Pin 5: GND

Pin 1

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 203

Mechanical

Micro B Receptacle
Pin 1: VBus
Pin 2: D-
Pin 3: D+
Pin 4: ID
Pin 5: GND

Pin 1

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 204

Mechanical

Micro A Plug
Pin 1: VBus
Pin 2: D-
Pin 3: D+
Pin 4: GND (ID)
Pin 5: GND

Pin 1

69

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 205

Mechanical

Micro B Plug
Pin 1: VBus
Pin 2: D-
Pin 3: D+
Pin 4: Floating (ID)
Pin 5: GND

Pin 1

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 206

OTG Cable Example

Micro
A PlugMicro

A/B

Host Peripheral

Micro
B Plug Micro

A/B

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 207

OTG Cable Example

Micro
A PlugMicro

A/B

HostPeripheral

Micro
B Plug

Micro
A/B

70

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 208

OTG Cable Example

Micro
A PlugMicro

A/B

Host Peripheral

Micro
B Plug Micro

B

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 209

OTG Cable Example

Micro
A/B

Peripheral DOESN’T FIT!!

Micro
B

Micro
A Plug

Micro
B Plug

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 210

Mechanical

Cables
Allowable Types

Micro-A plug to Micro-B plug
Micro-A plug to Standard-A receptacle

Connect Std USB Thumb drive to OTG Host
Micro-B plug to Standard-A plug

Connect OTG B-device to PC Host
Captive cable with Micro-A plug

Length
2 meters or less (different from USB-v2.0
limit of 5 meters)

71

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 211

Agenda

Overview
Mechanical
Protocol
Electrical
Certification Considerations
Resources (Examples, Classes, Software,
etc.)

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 212

Agenda (Protocol)

OTG Descriptor
Set Feature Requests
Targeted Peripheral List
Session Request Protocol (SRP)
Host Negotiation Protocol (HNP)

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 213

OTG Descriptor

Attribute Fields
D7-D2: reserved
D1: HNP supported
D0: SRP supported

Bitmap1bmAttributes2

OTG type = 9Constant1bDescriptorType1

Size of Descriptor (always 3)Number1bLength0

DescriptionValueSizeFieldOffset

Returned in the GetDescriptor(Configuration)
request

Required only if B-Device supports either SRP or
HNP

72

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 214

Set Feature Requests

a_hnp_support
Lets the B-device know that the A-Device supports
HNP
Only allowed to set on B-devices that support HNP
Must be set before the device configuration is set

a_alt_hnp_support
Lets the B-device know that it is connected to a port
that does not support HNP but the A-Device has a
port available that does.

b_hnp_enable
Lets the B-device know that it is allowed to perform
HNP

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 215

Set Feature Requests

Can be set in the default, address, or
configured states
Only cleared at the end of a session or on
a bus reset

Clear feature does not work on these
features

If HNP is not supported on the B-Device
then it should STALL on any of these Set
Feature requests

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 216

Targeted Peripheral List (TPL)

List of supported devices for that
embedded host and OTG

Devices not on that list will not be able to
enumerate
Not able to list classes for OTG, allowable
on embedded host

Manufacturer, Model, and Description are
minimally required

73

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 217

Session Request Protocol (SRP)

Saves power on A-Device
B-Device needs way to request VBUS from
A-Device

Session
The time between when VBus rises above
the valid threshold until it drops below the
valid threshold again

?

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 218

Session Request Protocol (SRP)

4.4v

4.0v

2.0v

0.8v
0.2v

Session Valid
(VB_SESS_VLD)

Session End
(VB_SESS_END)

Session Valid
(VA_SESS_VLD)

VBUS Valid
(VA_VBUS_VLD)

A-Device B-Device

5.25v
Max supply
(VA_VBUS_OUT)

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 219

Session Request Protocol (SRP)

SRP support
DRDs required to be able to respond to and
initiate SRP
A-Devices allowed to respond to SRP
B-Devices allowed to initiate SRP

74

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 220

Session Request Protocol (SRP)

Requesting VBUS
VBUS pulsing and/or D+ pulsing

B-Device required to be able to initiate both
VBUS and D+ pulsing
A-Device only required to recognize one of the
two

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 221

Session Request Protocol (SRP)

B-Device
Before attempting to start new session must
first determine the previous session has
ended

Time the decay of the previous session end
Pull VBUS down to speed up end of session

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 222

Session Request Protocol (SRP)
D+ Pulsing and VBUS Pulsing

A-Device Driving B-Device Driving

A-Device Pull-Downs B-Device Pull-ups

VIH

VIL

D+

VA_VBUS_VLD

VA_SESS_VLD Max

1 2 3 5 64

?

75

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 223

Session Request Protocol (SRP)
VBUS Pulsing

VB_SESS_VLD Max

VB_SESS_END Max

VA_SESS_VLD Max

VA_VBUS_VLD

VA_VBUS_OUT Max

VB_SESS_END Min

A-Device Driving B-Device DrivingA-Device Pull Downs

TA_WAIT_VRISE Max = 100msSession ends up to 5 seconds

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 224

Host Negotiation Protocol (HNP)

Cable determines which device is the host (A-
Device) and the peripheral (B-Device)

Whichever device that has the Micro A plug
plugged into its Micro A/B receptacle is the default
host/A-Device

Micro
A PlugMicro

A/B

Host Peripheral

Micro
B Plug Micro

A/B

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 225

Host Negotiation Protocol (HNP)

HNP allows devices to switch roles without
having to switch cable

The B-Device will become the host until the session
ends
A-Device continues to source the VBUS power

Micro
A PlugMicro

A/B

Micro
B Plug Micro

A/B

Host Peripheral
HostPeripheral

Host Peripheral
HNP

Session End

76

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 226

Host Negotiation Protocol

1) A-Device uses SetFeature(HNP)
2) During suspend the B-Device turns off D+

pull-up
3) A-Device turns D+ pull-up on.
4) B-Device detects D+ pull-up and asserts a bus

reset
5) When B-Device is done, stops all bus activity

and enables its D+ pull-up after idle state is
reached

6) A-Device detects idle and disables its pull-up
7) A-Device either asserts reset or turns off VBUS

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 227

Host Negotiation Protocol (HNP)

A-Device Driving

B-Device DrivingA-Device Pull-Downs

B-Device Pull-ups

VIH

VIL

D+

1 2 3 5 64

A-Device Pull-ups

7

A Host Bus Traffic

B Host Bus Traffic

B-Device Driving

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 228

Host Negotiation Protocol (HNP)

VIH

VIL

D+

1 2 3 4

A-Device Driving

B-Device DrivingA-Device Pull-Downs

B-Device Pull-upsA-Device Pull-ups

A Host Bus Traffic

B Host Bus Traffic

B-Device Driving

1) A-Device uses SetFeature(HNP)
2) During suspend the B-Device turns off D+ pull-up
3) A-Device turns D+ pull-up on
4) B-Device detects D+ pull-up and asserts a bus reset

77

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 229

Host Negotiation Protocol (HNP)

VIH

VIL

D+

1 2 3 5 64 7

A-Device Driving

B-Device DrivingA-Device Pull-Downs

B-Device Pull-upsA-Device Pull-ups

A Host Bus Traffic

B Host Bus Traffic

B-Device Driving

5) B is now the host and controls the bus
6) When B-Device is done, stops all bus activity
7) On the Idle condition the B-Device enables its D+ pull-up and the A-

device disables its pull-up
8) A-Device either asserts reset or turns off VBUS

8

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 230

Quiz!

1) True or False: I can make a compliant
OTG device that supports all thumb
drives (memory sticks).

2) I have an OTG cable.
1) What plugs are on the cable?
2) How do I know which is the default

peripheral and host?
3) What is SRP used for?
4) What is HNP used for?

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 231

Agenda

Overview
Mechanical
Protocol
Electrical
Certification Considerations
Resources (Examples, Classes, Software,
etc.)

78

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 232

Agenda (Electrical)

VBus
Currents
Capacitance and Resistance limits
Rise/Fall times

ID resistances
Signal Propagation Times

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 233

OTG Current Sourcing Requirements

A-Devices supporting loads <= 100mA
IA_VBUS_OUT min = 8mA
4.4v <= VA_VBUS_OUT <= 5.25v
Must error if VA_VBUS_OUT < VA_VBUS_VLD

A-Devices supporting loads > 100mA
4.75v <= VA_VBUS_OUT <= 5.25v

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 234

OTG Current Draw Limits

Dual Role Device
Unconfigured: 150uA average over 1ms

Peripheral Only
Unconfigured: 8mA average over 1ms

79

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 235

Pull-ups and Pull-downs

A-Device
When Idle or acting as host,
D- and D+ pull downs enabled
When acting as a peripheral,
D+ pull down is disabled
Allowed to disable the pull
downs during the interval of
packet transmission when
either a host or a peripheral
14.25KΩ < Rpd < 24.8KΩ

D+

Rpd

D-

Rpd

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 236

Pull-ups and Pull-Downs

B-Device
RB_SRP_UP > 281Ω
RB_SRP_DWN > 656Ω
D+ pull-up same as USB
2.0 devices

RB_SRP_DWN

VBUS

RB_SRP_UP

VBUS

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 237

VBus (OTG)
- Allowable Resistance & Capacitance -

Pin 1

RA_BUS_IN CDRD_VBUS

When A-Device is powered but not
supplying VBus, RA_BUS_IN max <= 100KΩ
If A-Device supports VBus pulsing for SRP,
RA_BUS_IN min >= 40KΩ, otherwise it can be
lower
1.0µF < CDRD_VBUS < 6.5µF

As compared to CHST_VBUS > 120µF

80

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 238

ID Resistances

Pin 1

Pin 1

Ra_PLUG_ID <= 10Ω

Micro A Plug

Pin 1

Rb_PLUG_ID >= 100KΩ

Micro B Plug

Vdd

Rpu

Vdd * Ra_PLUG_ID _
(Rpu + Ra_PLUG_ID)

Vdd * Rb_PLUG_ID _
(Rpu + Rb_PLUG_ID)

< VIL-MAX

> VIH-MIN

For Vdd = 3.3v,
56.67Ω < Rpu < 25KΩ

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 239

Propagation Times (max)

T1 to T2 – From pin of controller in A-Device to pin of the USB
connector

OTG A-Device = 1ns
Embedded Host or Full host = 3ns

T2 to T3 – From pin of connector on A-Device to pin of
connector on B-Device

OTG Cables = 10ns
Standard Cables = 26ns
Micro-A to Standard-A adaptor = 1ns

T3 to T4 – From pin of connector to pin of controller on B-
Device

1ns

B-Device

T1
T3T2

T4

A-Device

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 240

Quiz!

1) True or False: If I plug in any 100mA
normal USB device into an OTG device,
everything should always be fine.

2) True or False: There is no electrical
difference between an OTG host and an
Embedded host.

81

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 241

OTG vs. Embedded Host

CHST_VBUS > 120µF1.0µF < CDRD_VBUS < 6.5µFElectrical

AMicro A/BMechanical

Allowed to support generic classes
(i.e.- any HID mouse)

Limited to specific
Manufacturer/ Model/
Description entries

Targeted Peripheral
list

DisallowedRequiredHNP

OptionalRequiredSRP

Embedded HostOTG

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 242

Agenda

Overview
Mechanical
Protocol
Electrical
Certification Considerations
Resources (Examples, Classes, Software,
etc.)

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 243

Certification Considerations
Embedded Host

Checklists
Systems

No Silent Failures
Hub error message
Device not supported message

Power
Over current notification
Resettable over current protection
Drop voltage

TPL

82

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 244

Certification Considerations
OTG

Checklists
OTG
Peripheral
Systems

SRP
HNP
TPL
Power restrictions

Un-configured power

© 2009 Microchip Technology Incorporated. All Rights Reserved. COM3202 Slide 245

Certification Considerations
DRD

Port accessibility
If more than one connector is accessible at
any point of time then they need to be able
to work at the same time

Checklists
Peripheral
Systems

