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17091 PS2

Digital Power Conversion Using 
dsPIC® DSCs: Power Factor 

Correction 



Class Objectives

� When you finish this class you will:
� Understand what Power Factor Correction 

(PFC) is and its significance
� Be able to identify different PFC topologies 

and their design implementations
Understand implementation of digital PFC
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� Understand implementation of digital PFC
� Know how to improve PFC performance 

through advanced adaptive control 
techniques 



Agenda

� Power Factor and its Significance
� How to Achieve Power Factor Correction 
� Overview of Different Boost Type PFC 

Designs
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Designs
� Digital PFC Using the dsPIC ® DSC
� Advanced PFC Techniques
� Overview of 720W AC -DC Reference 

Design



What is Power Factor?

� Power factor for an AC powered system is defined as the 
ratio of the real power flowing to the load, to the apparent 
power in the circuit.

PF is a dimensionless number between 0 and 1. 
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� PF is a dimensionless number between 0 and 1. 
� Power Factor is unity (1) when the voltage and current are in 

phase.
� For two systems with the same real power, the system with 

the lower PF will have higher circulating currents (higher 
apparent power)



What is Power Factor?
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Examples of PF Degradation

Case 1

Case 2

Sinusoidal Current with 
phase shift

Applied Voltage

Applied Voltage

Resulting

Current

Resulting
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Case 2

Case 3

Semi-Sinusoidal Current 
with no phase shift

Non-Sinusoidal Current 
with phase shift

Applied Voltage

Resulting

Current

Resulting

Current



Measuring Power Factor

Displacement factor = Real Power / apparent power =  cos φφφφ

φ

Real Power

Reactive Power

Added Reactive 
Power due to 
distortion

θ

Not present when load is linear
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Distortion Factor accounts for non-sinusoidal curre nts

THD: Total Harmonic Distortion

Power Factor = cos φ  ∗ 
1 cos φ

−−−−−−−−−−−−−−−−−−−−−−− =   −−−−−−−−
1 + (I2 / I1)2 + (I3 / I1)2 + ........ 1 + THD2

Displacement factor Distortion factor



Why Implement PFC?

� Reduce Energy Loss
� Losses in active/passive elements
� Losses in transmission and distribution

� Energy needed by reactive elements

� Reduce Cost
� Power generation, transmission and distribution capacities need to be 

over-sized
� Power losses in the distribution system resulting in voltage sags, over-
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� Power losses in the distribution system resulting in voltage sags, over-
heating and even premature failure of equipment

� Components with higher ratings needed for sustaining high harmonic peak 
currents

� Regulation Requirements (i.e. EN61000-3-2)
� Limits up to the 40th Current harmonic are imposed
� Applies to equipment greater than 75W and less than 1000W
� Equipment with <= 16A per phase, 230V line voltage



Agenda

� Power Factor and its Significance
� How to Achieve Power Factor Correction 
� Overview of Different Boost Type PFC 

Designs
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Designs
� Digital PFC Using the dsPIC ® DSC
� Advanced PFC Techniques
� Overview of 720W AC -DC Reference 

Design



SMPS Without PFC

Off-line switch -mode power supply
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� Cbulk must be large enough to reduce voltage ripple and 
meet specified holdup requirements

� Restoring capacitor current occurs near the peak of AC 
input  (Vac > Vout), resulting in large current spikes



Adding PFC

� Recap -> We want to shape the input current to follow the 
input voltage (resistive load) to maximize real power 
available

� Two methods available:
� Passive Power Factor Correction
� Active Power Factor Correction
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� Low frequency
� High Frequency – Main focus for this class

Reactive 
Power

φ

Real Power

Voltage

Current
Voltage

Current



Passive PFC

� Passive PFC circuits incorporate passive filter components 
(inductor and capacitors) to compensate for the inherent 
power factor of the circuit (load).

� Pro’s of Passive PFC
� Common and simplest form of PFC

Cost effective at lower power ranges
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� Cost effective at lower power ranges
� Not a source of EMI

� Con’s of Passive PFC
� Poor PF: 0.7-0.8 (for SMPS applications)
� Filter elements are large (AC line frequency)
� Output rail voltage not regulated
� High losses



Passive PFC Example

A 500W AC Induction motor connected to 208V 60Hz line 
voltage shows a PF of 0.65 (lagging). What  capacitance is 
required to correct the phase shift and give unity PF?
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49.46

Real Power (P) - 500W

Reactive 
Power (Q)
584.6VAR

C = ?



Active PFC

� An active power factor correction circuit uses feedback 
circuitry along with a switch mode converter (high switching 
frequency) to change the wave shape of the current drawn 
to improve the power factor. 

� Implemented in most switch mode power supplies
� Con’s of Active PFC
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� Complexity
� More expensive but smaller form factor

� Pro’s of Active PFC
� PF up to 0.998
� Very low THD (corrects for distortion and displacement)
� Corrects for AC input voltage (universal mains)
� Regulated output voltage



Active PFC Block Diagram

EMI Filter 
+ Rectifier

LoadAC Supply

Vac Iac VdcPWM

Basic Block Diagram
Decides the PFC strategy

PFC

Converter
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Controller

Typical Active PFC Requirements:
� Feedback Voltage
� Input Voltage/Current
� Compensation network (controller) 
� PWM



Active PFC Solutions
Buck Converter

Boost Converter
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Boost Converter Operating Modes 

� Discontinuous 
Conduction Mode

Input Current

� Critical Conduction 
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Input Current

� Critical Conduction 
Mode

� Continuous 
Conduction Mode Input Current



Active PFC Example
Boost 
Diode

PFC 
Inductor

IILL IILL

IIACAC

ttONON
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IIDD

Average Current Mode Control

The average current through the inductor is made to follow the input 
voltage profile to improve Power Factor and minimize current harmonics



Agenda

� Power Factor and its Significance
� How to Achieve Power Factor Correction 
� Overview of Different Boost Type PFC 

Designs
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Designs
� Digital PFC Using the dsPIC ® DSC
� Advanced PFC Techniques
� Overview of 720W AC -DC Reference 

Design



Interleaved PFC

Vbulk

IL_PFC_A

IL_PFC_B

IPFC_SWB

IPFC_SWA

IC

ID_PFC_A

ID_PFC_B
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PWMPFC_B
PWMPFC_A

VIN
85 … 264V AC

� Two independent boost converters connected in parallel operating 180°out of phase
� Great for high power applications with size constraints 



Benefits of IPFC

� Inductor ripple currents are 
out of phase and tend to 
cancel each other out. Best 
current ripple cancellation 
occurs at 50% duty cycle.

� Inductors stored energy 
requirement is ½ that of 
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requirement is ½ that of 
single phase PFC (reduction 
in magnetic volume)

� Interleaving also reduces the 
output capacitor ripple 
current

� Higher efficiency 



IPFC Ripple Cancellation

� Maximum ripple current will occur at the peak of the 
minimum input voltage (85Vac). 
� Duty Cycle of ~70% yields an input current ripple that is ~60% of 

the inductor ripple current

Duty Cycle vs. Phase Angle Ripple Current Reduction vs. 
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Semi-Bridgeless PFC

VBulkVac

In-Rush

L
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N

� Also known as two/dual phase PFC
� AC input directly connected to Boost Inductors
� Two diodes in bridge rectifier used for In-Rush Cur rent protection at Start-up. 

Other two diodes link PFC ground to input line
� Both phases can be driven simultaneously or in the case of digital control and 

to improve efficiency each phase is active when L/N  is active



Semi-Bridgeless PFC

Vac

Case 1: Line Positive
- MOSFET Q1 switches
- Diode D3 Reversed Biased
- Current returns through D4 
and through body diode Q2 and 
L2 (introduces new MOSFET 
losses)

L1

L2

D1

D2

D3 D4

Q1 Q2

C1

+
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Vac

Case 2: Neutral Positive
- MOSFET Q2 switches
- Diode D4 Reversed Biased
- Current returns through D3 and
through body diode Q1 and L1

L1

L2

D1

D2

D3
D4

Q1 Q2

C1+



Semi-Bridgeless PFC 
Efficiency Improvements

� For universal input voltage range the peak current through 
the diode bridge occurs at 85Vac. 

� The total bridge consumes ~2% of the input power at low 
line and about 1% at high line. 

� If we eliminate one diode then we could gain ~1% efficiency 
at low line.

•© 2013 Microchip Technology Incorporated. All Rights Reserved. 17091 PS2 Slide      25

at low line.



Bridgeless PFC

Vbulk

VIN
85 … 264V AC
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� Efficiency is improved as the diode bridge is compl etely eliminated but MOSFET 
losses will increase 

� Line is floating compared to PFC ground so simple c ircuitry (resistor divider 
network) to sense the input voltage can not be used . Instead an opto-coupler based 
circuit or low frequency transformer has to be used . 

� EMI is difficult to reduce as more parasitic capaci tance contribute to common mode 
noise.



Bridgeless PFC

Vac

D1

D2

Q1 Q2

C1

+

L1

Case 1: Line Positive
- MOSFET Q1 switches
- Current returns through Q2

•© 2013 Microchip Technology Incorporated. All Rights Reserved. 17091 PS2 Slide      27

Vac

D1

D2

Q1 Q2

C1

+

L1

Case 2: Neutral Positive
- MOSFET Q2 switches
- Current returns through Q1



Agenda

� Power Factor and its Significance
� How to Achieve Power Factor Correction 
� Overview of Different Boost Type PFC 

Designs
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Designs
� Digital PFC Using the dsPIC ® DSC
� Advanced PFC Techniques
� Overview of 720W AC -DC Reference 

Design



Digital Implementation - IPFC

L2

D1

D2

Q1 Q2
PWM1 PWM2

L1

|Vac|

K1 K2

DC Bus Voltage
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Digital Signal Controller (dsPIC ® DSC)

PWM 
Module

Digital Control System

VDCIQ2IQ1VAC

A to D Converter

PWM1

PWM2

K3 K4



IPFC Control Scheme

Voltage Error Comp

VDC

VAC

IQ1

PWM
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Calc 

VRMS
VAC

* VAC

*

VPI
VDCref +

-
VERR

Voltage Error Comp

P
D

C
1

IERR

Current Error Comp-
+

IACref 

Calc 

1/VRMS
2

IERR

Current Error Comp

P
D

C
2+

IQ2

Q1_DRV

Q2_DRV

-



Voltage Compensator

VDCref = 805

+
VERR 

VDC_sense
(10-Bit)

PI Compensator

-
x32 

VERR (Q15)
+

U(n) Clamp to 0 

U(n) < 0 

VPI 

Kp and Ki are Q15

•© 2013 Microchip Technology Incorporated. All Rights Reserved. 17091 PS2 Slide      31

(10-Bit)

Find VDCref by determining the base voltage that gives 3.3V on the ADC pin



Voltage Compensator Cont.
_PI32:
; Input:
;   w0 = address of tPI32 data structure
;   w1 = reference value
;   w2 = control input
;
;  Return:
;   w0 = control output

;save working registers
push    w8
push    CORCON         ;prepare CORCON for fractional computation
fractsetup      w8

sub.w   w1, w2, w4           ;w4 = error
sl          w4, #5, w4           ;error *= 32
mov      w0, w8 ;w8 = &PI

typedef struct {
int Ki;
long sum; // integrator sum
int Kp;
int psc;  // output postscaler
int out; // unscaled output

} tPI32;

MAC = Multiply and accumulate
Accumulator += (Q15 * Q15)
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mov      w0, w8 ;w8 = &PI
disi       #11 ;disable interrupts for next 11 cycles
clr         b, [w8]+=4, w5     ;w5 = Ki, w8 = &sum_hi
lac        [w8--], b ;b = sum_hi, w8 = &sum_lo
mov      [w8], w0 ;w0 = sum_lo
mov      w0, ACCBL          ;accbl = w0 = sum_lo
mac      w4*w5, b              ;b += Ki*error
mov      ACCBL, w0          ;w0 = accbl
mov      w0, [w8++]           ;sum_lo = w0 = accbl, w8 = &sum_hi
sac       b, [w8++]              ;sum_hi = b, w8=&Kp
clr         a, [w8]+=2, w5     ;w5 = Kp, w8 = &psc
mac      w4*w5,b               ;b += Kp*error
sac.r     b, w0 ;w0 = result
btsc      w0, #15 ;skip next instruction if w0>=0
mov      #0, w0 ;clear result if negative

pop        CORCON           ;restore CORCON.
pop        w8                      ;restore working registers.
return

Accumulator += (Q15 * Q15)

Q15 * Q15 = 2.30

LHU

0153039

ACC

Decimal point

End value is rounded
Accumulator high is most significant



Input Voltage RMS

VPEAK

Software finds maximum filtered V ac

Look forLook for
peak

if((uin_filter_input > uin_filter_max) && (peakDetectFlag == 1))
{

uin_filter_max = uin_filter_input;
}

if(uin_filter_input > uin_filter_input_last)
{

upcnt++;
downcnt = 0;

if((upcnt >= 5) && (peakDetectFlag == 0))
{
peakDetectFlag = 1;

}
}

Calc Calc VVRMSRMS
& reset& reset
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RMS Voltage : V RMS = Vpk * 0.707

Measure V ac: 19.2kHz
Filtered V ac: 4.8kHz (~50 samples per half wave)

tt

}
else if(uin_filter_input < uin_filter_input_last)
{
upcnt = 0;
downcnt++;

if((downcnt >= 5) && (peakDetectFlag == 1))
{

peakDetectFlag = 0;
uin_filtered_peak = 

MUL16SX16FU(uin_filter_max, 46341u)>>2;
uin_filter_max = 0;

}
}

uin_filter_input_last = uin_filter_input;

CalcCalc Filtered VV acac



Determine Current Reference

� Current reference is calculated and scaled to a number 
between 0 and 1023 [10 bits] as current feedback is in this 
range. 

� Vrms
2 = (uin_filtered_peak>>2) * (uin_filtered_peak>>2)

= 8bits * 8bits = 16bits
� Multiply VAC * VPI = pfcInputVoltage * u_out
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= 10bits * 15bits = 25bits
� Divide (32/16), (VAC* VPI)/ Vrms

2 = 25bits/16bits = 9Bits
� Shift left one bit (x2) for 10-bit scale 

*

VAC

*

VPI
IACref 

Calc 

1/VRMS
2



Average Inductor Current

IQ1

Avg Current

IQ2

ton toff

Ipk
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Software updates duty cycle and trigger event every  PWM cycle

PWM1

PWM triggers ADC to take sample (@ PDC1 >> 1) 

PDC1
PERIOD

PWM2

PWM triggers ADC to take sample (@ PDC2 >> 1) 

PDC2
PERIOD



Current Sense

� It is important that the current feedback be on dedicated 
S&H circuits to measure the average current accurately

� PWM module triggers the ADC directly no software 
intervention

� ADC generates interrupt when conversion is complete. 
Current compensator called in ADC ISR.
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� Current comp. called 
every PWM cycle so it is 
important to minimize # of 
instructions to reduce 
overall MIPS



Current Compensator

+
IERR 

PI Compensator

-
x32 

IERR (Q15)

+
U(n)

x PERIOD

Update 
PWM 

DC and 
trigger

Kp and Ki are Q15

IACref 

DCM Corr.

Factor
Variable based on load 
and EMI Jitter

Output 

Clamp
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Isense (10-Bit)

• PI Output range (U(n)): -32768 to 32767
• Output Clamp: 0 < U(n) < 30145 (92%)
• Total output = Output Clamp * PERIOD 

= 0 to 92% of PWM period 



Implementing Jitter

� Vary PWM switching frequency by +/- 10%
� PWM Period varies with load so algorithm needs to 

account for this

18021

+10%
Step size of ~1.5%
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16384

14745

-10% Period

totalPeriod =  [(workingPeriod * jitterFactor) << 1]
= signed int * fract * 2

Step size of ~1.5%

At any operating period the Jitter algorithm will a dd +/- 10%



Software Overview

Interrupt based priority scheme:
� High priority – Critical Control algorithms
� Medium priority – Advanced algorithms
� Low priority – Communications 
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Note: Timing diagrams are drawn showing relative trigger events. Block size does not represent actual algorithm duration.



Software Structure

•© 2013 Microchip Technology Incorporated. All Rights Reserved. 17091 PS2 Slide      40



Agenda

� Power Factor and its Significance
� How to Achieve Power Factor Correction 
� Overview of Different Boost Type PFC 

Designs
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Designs
� Digital PFC Using the dsPIC ® DSC
� Advanced PFC Techniques
� Overview of 720W AC -DC Reference 

Design



Advanced PFC Techniques

� New Regulations require higher efficiency,  
higher Power Factor and lower THD

� Unavoidable factors limit performance of 
system at light loads
� EMI Filter 

•© 2013 Microchip Technology Incorporated. All Rights Reserved. 17091 PS2 Slide      42

� EMI Filter 
� Discontinuous Conduction mode

� Fixed minimum power losses limit 
maximum theoretical efficiency at light 
loads 



Problem: Discontinuous 
Conduction Mode (DCM)

� VAC varies from 0V to VAC(PK) on 
every sine wave cycle causing 
boost converter to operate in 
DCM (occurs near zero 
crossings and depends on load)

� The Boost Converter will 

VAC

iAC

ωt
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( )
L

TDV
i SAC
AC 2

⋅⋅<

� The Boost Converter will 
operate in DCM when:

Transition between 
CCM and DCM modes

AC

0
̟

ωt



DCM Correction

� When inductor current becomes discontinuous the 
current sampling point (PDC/2) is no longer the average 
inductor current

� With the CT in series with boost MOSFET, we only see 
ton current. Additional circuitry is needed to see when 
inductor current reaches zero to determine toff.
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IQ

No longer the average
Inductor current

ton toff DT



DCM Correction

� Add a correction factor in the current control algorithm to 
account for the measured inductor current not being the 
average.

� Proposed solution is to modify the sense current (Isense) 
with respect to the Vac, Vout, and compensator output.
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to comp.+
IERR 

Isense_cor -
x32 

IERR (Q15)
IACref 

DCM Corr.

Factor

Isense (10-Bit) ~9%

~25%

C
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re
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io
n

92%50%
Duty Cycle

VAC

iAC

0
̟

ωt

ωt

SW Applies DCM Corr. Factor



Problem: How to Improve 
Efficiency @ light load

� Design system with lower switching frequency
� Results in larger component sizes
� May impact performance

� Utilize other control schemes like boundary 
conduction mode
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� Higher peak currents may impact EMI
� Efficiency will be impacted at higher load currents

� Implement advanced software algorithms
� PFC Output Bulk voltage reduction
� Switching Frequency reduction
� Phase-shedding (interleaved PFC)



How to Improve PF at Light Load?
(230Vrms@50W)

Input Voltage

Input Current
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Input Current

Inductor Current

EMI Filter Current



How to Improve PF at Light Load?
(230Vrms@50W)
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Bulk Voltage Reduction

� At light loads the bulk voltage is reduced to improve efficiency by 
reducing the switching losses 

� Output bulk voltage increases as soon as a load transient is 
detected to maintain good response

� For large load transients, bulk voltage “boost” is added to improve 
transient response – control loop coefficients are modified
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� Software has 32 
element lookup table 
and interpolates 
between two data 
points based on 
secondary load current
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Frequency Reduction

� At low load conditions, the frequency is reduced gradually in 
steps of 4ns until optimum frequency is reached

� When a load transient is detected, frequency is instantly 
increased to required frequency to maintain good response

� Control loop output scaling and coefficients are modified based 
on the calculated operating frequency
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� Software has 32 
element lookup table 
and interpolates 
between two data 
points based on load
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Agenda

� Power Factor and its Significance
� How to Achieve Power Factor Correction 
� Overview of Different Boost Type PFC 

Designs
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Designs
� Digital PFC Using the dsPIC ® DSC
� Advanced PFC Techniques
� Overview of 720W AC -DC Reference 

Design



Platinum -Rated AC/DC 
Reference Design

� Input / Output: 
� 85~264 VAC 45-65 Hz
� Active PFC (PF up to 0.99)
� 12V DC / 60A (720W max)
� Load Regulation: ± 1.5%

� Efficiency: 
� Up to 94.1%
� Meets ENERGY STAR CSCI Platinum Level
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� Meets ENERGY STAR CSCI Platinum Level

� Special Features:
� Full digital control
� Enhanced system monitoring & fault handling
� Load share bus for N+1 Redundancy

� Dynamic efficiency optimization
� Switching Frequency Adaption
� Dynamic Bulk Voltage Adjustment
� Enhanced Sync Rectifier Control



High Level Block Diagram

Input 
Filter

Rectifier
2-Phase 

Interleaved 
PFC

2-Phase 
Interleaved 
Two-Switch 

Forward

Synchronous 
Rectifier

Output 
Filter

MCP14E4 MCP14E4MCP14E4 MCP14E4

Oring

Current 
Monitor

MCP
9700A

MCP
9700A

Charge 
Pump

GTs

MCP
9700A

CTsCTs

DC-Link

Temp Sensor

Gate Driver
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Power Factor Results
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Green:
Measured Power 
Factor 120Vac
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Recent push for even better PF performance: 
- 0.85 at 5% load
- 0.9 at 10% load
- 0.95 at 20% load
- 0.99 >50% load



Efficiency Analysis
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Summary

� Power Factor Correction reduces energy losses 
and overall costs and is required on most 
switch mode power supplies

� Implementing active PFC especially digital PFC, 
is quite complex but can achieve high PF, low 
iTHD, and work with universal mains.
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iTHD, and work with universal mains.
� The dsPIC © DSC enables advanced PFC 

techniques for improved system performance



Four Digital Power Level

Technical Functions

– Low -power standby
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– Low -power standby
– Programmable soft start
– Power up sequencing
– Primary/secondary
communication bridge



Four Digital Power Level
Level 1
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Four Digital Power Level

Technical Functions

– Output voltage margining
– Load sharing and balancing
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– Load sharing and balancing
– History logging
– Primary/secondary
communication bridge



Four Digital Power Level
Level 2
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Four Digital Power Level

Technical Functions

– Optimize control loop for load
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– Optimize control loop for load
changes
– Enable common platform for
multiple applications
– Operational flexibility for
different power levels



Four Digital Power Level
Level 3
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•Drive
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Four Digital Power Level

Technical Functions

– Dynamic control loop
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– Dynamic control loop
adjustment
– Predictive control loop
algorithms
– Operational flexibility for
different power levels



Four Digital Power Level
Level 4
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•Driver

•DSP



Flyback Converter

Basic Schematic
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PSMC GUI

•© 2013 Microchip Technology Incorporated. All Rights Reserved. 17091 PS2 Slide      66



Flyback Converter

Basic Operation
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•Νο φιρµωαρε νεεδεδ φορ οπερατιον!



Flyback Converter

Power Factor Correction
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•Ουτ οφ Πηασε
•Πλεντψ οφ 
Ηαρµονιχσ



Flyback Converter

Power Factor Correction
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•Ινπυτ χυρρεντ µυστ φολλοω τηε ινπυτ ϖολταγε.



Flyback Converter

Implementing PFC
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Flyback Converter

Dimming Control
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•ΧΧΠ ισ υσεδ το χοντρολ ςρεφ ανδ τηε ουτπυτ ποωερ.



Flyback Converter

Combining PFC and Dimming
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One more…..CIP Module
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Thank You
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