
1

HIF2132A

Designing Stylish HMIs with
Microchip Graphics Library and

Visual Graphics Display Designer
(VGDD) using PIC32 LCC Graphics

 Hands –On

Microchip Technology Inc.

Lab Manual

Regional Training Centers

2

The Microchip name, logo, The Embedded Control Solutions Company, PIC, PICmicro, PICSTART, PICMASTER,
PRO MATE, MPLAB, SEEVAL, KEELOQ and the KEELOQ logo are registered trademarks, In-Circuit Serial Programming,

ICSP, microID, are trademarks of Microchip Technology Incorporated in the USA and other countries.
Windows is a registered trademark of Microsoft Corporation.

SPI is a trademark of Motorola.
I2C is a registered trademark of Philips Corporation.

Microwire is a registered trademark of National Semiconductor Corporation.
All other trademarks herein are the property of their respective companies.

 © 2009 Microchip Technology Incorporated. All rights reserved.
“Information contained in this publication regarding device applications and the like is intended through suggestion only and may be super-
seded by updates. No representation or warranty is given and no liability is assumed by Microchip Technology Inc. with respect to the accu-
racy of such information, or infringement of patents arising from any such use of otherwise. Use of Microchip’s products as critical compo-
nents in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or

otherwise, under any intellectual property rights.”

3

Designing with Microchip Graphics Library

Table of Contents

Lab Exercise 1: How to create a new standalone project .. 1-1
Lab Exercise 2: How to convert a legacy project to the MPLAB® X format 2-1
Appendix A: MPLAB® X IDE Quick Reference Guide .. A-1

Section 1: Managing Projects
1.1 How to open a project…………. ... A-3
1.2 How to add existing files to a project .. A-4
1.3 How to create new files in a project .. A-5
1.4 How to remove a file from a project .. A-7
1.5 How to permanently delete a file .. A-7
1.6 How to save a file or project .. A-7
1.7 How to close a project ... A-8
1.8 How to modify project settings (choose debug tool, build tool, etc.) .. A-8

Section 2: Building Projects
2.1 How to build a project .. A-9
2.2 How to build and run a project with a debugger ... A-9
2.3 How to build and run a project without a debugger ... A-10

Section 3: Debugging Projects
3.1 How to set or change the debugger .. A-11
3.2 How to control program execution when debugging .. A-12
3.3 How to set and clear breakpoints .. A-12
3.4 How to use the Stopwatch ... A-13
3.5 How to display and use Watches ... A-14
3.6 How to view Embedded Memory (SFRs, RAM, Flash, EEPROM and Configuration bits) A-15

4

HIF2132A

H-1

Hardware
Special Instructions for Hardware Setup

Hardware Selection

All the labs included in this manual will work with the hardware combinations discussed below. Microchip Tech-
nology offers many other development tools that may be used to develop graphical applications. If properly con-
figured, any of Microchip’s graphical development tools should work with the provided lab code. Due to time
constraints, we have only tested the hardware combinations used for this class. Information provided in this sec-
tion will assist you with configuring the projects provided to work with either your custom hardware or one of
Microchip’s other graphics development platforms.

Choose the processor you wish to work with today

The labs provided with this class have been tested using the
following Microchip MCU on the PIC32 USB Starter Kit.
Please choose one to use as you work through the hands-on
portion of the class.

PIC32MX795F512L

The PIC32MX795F512L is a highly integrated, powerful 32-bit
microcontroller utilizing an 80 MHz, 1.56 DMIPS\MHz, 32-bit
M4K® Core. The device features 512 KB Flash Memory, 128
KB RAM, USB OTG\Host module, and a variety of other Ad-
vanced Peripherals including Ethernet. For QVGA display
designs at 8bpp, the PIC32MX family may be used to direct
drive the display using a recently developed controllerless
interface.

When working the Microchip
Graphics Library in your applica-
tion, any of the 16– or 32-bit
MCUs may be used. Please visit
www.microchip.com\graphics for
further information.

Information

 Please refer to the device data-
sheet and family reference
manual for further details on
how to use the selected device.

 Application Note AN1368 pro-
vides details for working with
the PIC24FJ DA product family

 Application Note AN1387 pro-
vides details for working with
the PIC32 in a controllerless
application

 The PIC32 controllerless appli-
cation is also described in a
webinar available from
www.microchip.com\graphics

References

http://www.microchip.com/graphics
http://www.microchip.com/graphics

HIF2132A

H-2

The display board

The labs provided with this class have been tested with the 3.2”
Truly QVGA display (shown in figure H.1) boards. Using the Visual
Graphics Display Designer (VGDD), it is easy to migrate projects to
support different screen sizes.

Figure H.1
Truly 3.2” QVGA
Display board
(AC164127-4)

Set up the hardware development platform

This class uses the LCC PICTail graphics board along with the PIC32 USB Starter Kit. The image below shows how
the hardware should be connected. All jumpers on the PICTail should be set to positions (2-3). This sets up the
PICTail to be used in external memory mode.

Hardware Tools: PIC32 USB Starter Kit II
 Low Cost Controllerless (LCC) Graphics Board
 Graphics Display Truly 3.2” 240 x 320 Board

3

Working with Microchip Graphics New Projects For Labs

Step 1 – MPLAB(X) Template For New Project Step 2 – Choose Standard Project

Step 3 – Select PIC32 With PIC32MX795F512L Step 4 – Select Starter Kit (SKDE PIC32) As Debugger

4

Step 5 – Select XC32 For Complier Option

Step 6 – Give Project Name

Step 7 – New Project Generation

HIF2132A

H-5

HardwareProfile.h

#ifndef CFG_INCLUDE_MPLAB_X

…

\\ MPLAB v8 support

 …

 #if defined (__PIC24FJ256DA210__)

 \\ #include “Configs\HWP_DA210_BRD_16PMP_QVGAv1.h”

 \\ #include “Configs\HWP_DA210_BRD_16PMP_WQVGAv1.h”

 …

 #endif

…

#else \\MPLAB®X support

…

#if defined(CFG_INCLUDE_DA210_BRD_16PMP_QVGAv1)

 #include “..\Configs\HWP_DA210_BRD_16PMP_QVGAv1.h”

#elif defined (CFG_INCLUDE_DA210_BRD_16PMP_WQVGAv1.h”

…

Attention

An abbreviation guide is provided with the
Microchip Applications Library installation
 ..\Microchip\Help\abbreviations.html

Reference for Working with Microchip Graphics Demo Projects

When building applications, there will be programs that are specific to your selected hardware. In the demo code that
comes with the Graphics Library, we have created generic programs that are applicable to the multiple hardware plat-
forms supported by the demos. To link these generic programs to specific hardware, we created the HardwareProfile.h file
that is specific to the selected hardware.

In the Graphics Demos that are provided with the library, the HardwareProfile.h becomes the hardware profile file selec-
tor. The file that is selected will depend on which MCU and hardware platform are used. These hardware dependent
files are located in the demo and lab project folders under the ..\<project>\Config subdirectory.

When you develop your own specific hardware profile, you may opt to directly replace the contents of the provided
HardwareProfile.h file with your own hardware specific code.

The above code snippet is taken from the HardwareProfile.h file used in the hands-on labs and shows just the portions of
the code that are used to select the correct hardware profile when using a DA210 development platform.

Notice that there are 2 sections to the code. The top section is used by MPLAB 8 IDE users. The value
“__PIC24FJ256DA210__” is set by the MPLAB8 IDE when a user selects that particular MCU for their project. The user
must then open the HardwareProfile.h file, locate the DA210 section, then uncomment the correct include statement
based on the display board used.

The second section is for MPLAB®X ™ IDE users. When using the MPLAB C Compiler for PIC24 or PIC32 in the MPLAB®X ™
environment, we are able to set preprocessor macros. The values “CFG_INCLUDE_MPLAB_X” and
“CFG_INCLUDE_DA210_BRD_16PMP_QVGAv1” are set in the project build options for the compiler.

Another benefit of the MPLAB®X ™ IDE environment is the ability to establish multiple build configurations within a single
project. Build configurations are used to store common build parameters such as the MCU part number, the compiler
toolchain, the debugger and or programmer that will be used, linker settings, include directories, and (in the case of the
16– and 32– bit compilers), the preprocessor macros. For any given project, multiple configurations may be defined. In
the graphics demo MPLAB®X projects, we take advantage of this feature by providing multiple configurations for each of
the projects. The user simply has to select the correct hardware configuration.

C:/Microchip Solutions v2011-07-14/Microchip/Help/Abbreviations.htm

HIF2132A

H-6

Using Table H.1, select the configuration for the LCC hardware. NOTE: The MPLAB®X ™ IDE appends the project name to
the front of the configuration name.

 a) In MPLAB®X , set the desired project as the Main Project (refer to Appendix A for details).

 b) Choose the desired configuration from the drop down menu in the top toolbar

Tools

Configuration Supported MCU Supported Display Board

PIC24_GA010_GFXv3_EX16_8PMP_QVGAv1 PIC24FJ128GA010 Truly 3.2” QVGA

PIC24_GA010_GFXv3_EX16_8PMP_WQVGAv1 PIC24FJ128GA010 Powertips 4.3” WQVGA

PIC24_DA210_DEV_16PMP_QVGAv1 PIC24FJ256DA210 Truly 3.2” QVGA

PIC24_DA210_DEV_16PMP_WQVGAv1 PIC24FJ256DA210 Powertips 4.3” WQVGA

PIC32_795_GFXv3_EX16_8PMP_QVGAv1 PIC32MX795F512L Truly 3.2” QVGA

PIC32_795_GFXv3_EX16_8PMP_WQVGAv1 PIC32MX795F512L Powertips 4.3” WQVGA

Table H.1
MPLAB®X ™ Configurations for use with Graphics Demos

The configurations may be customized to add additional hardware platforms or to support your custom hardware.

Select Customize... from the bottom of the configuration list.

When the project properties box appears, choose the
Manage Configurations button in the lower left corner.

YOUR PROJECT IS NOW CONFIGURED AND YOU ARE READY TO BEGIN WORKING ON YOUR CODE. Happy Coding!!

Customizing Configurations

HIF2132A

H-7

In the Configurations window, choose New

Name the configuration and select OK

In the project properties window, select the
desired properties. Additional build op-
tions may be set by clicking on the compiler
or linker name under the new created con-
figuration. Please see the MPLAB®X ™ help
files for more information.

HIF2132A

H-8

This page intentionally left blank

GFX

1-1

Lab 1
Creating the Splash Screen

In this lab, you will demonstrate your ability to use VGDD
to implement the library’s primitive layer APIs as we cre-
ate a splash screen for our HMI.

Solution files may be found at:

 C:\RTC\HIF2132A\Solution Files

1) Use the VGDD utility to generate font, image and application source files.
2) Via VGDD, use the Microchip Graphics Library Primitive Layer (GPL) to render images, text strings and shapes to the

graphics LCD display.
3) Explore how gradients and transparency can be used to enhance the splash screen.

 Expected Results

 MPLAB®X IDE v1.20 or higher

 Visual Graphics Display Designer
(VGDD) v3.7 or higher

 REAL ICE™ or MPLAB ICD 3

 Graphics LCD Controller PICtail ™
Plus LCC Board

 PIC32 USB Starter Kit II

 Truly 3.2” QVGA LCD Display

 If using PIC32, you will need to use
Microchip® XC32 Compiler

Tools

Figure 1.1
When the lab is fully completed, you
should see this on your LCD panel.

Purpose

Objectives

GFX

1-2

Hands-On Labs:
C:\RTC\HIF2132A\PIC32_Labs
Font Files:
All fonts used in this lab have been
preinstalled on the lab computers
Image Files:
..\RTC\HIF2132A\Images
Visual Graphics Display Designer:
..\RTC\HIF2132A\VGDD.exe
Icon Files:
..\RTC\HIF2132A\Icons

In lab 1, we will create the splash screen shown in figure 1.1. The information
box to the left is provided to help you navigate the lab directory. For this lab
you will using either, depending on the development board you have chosen:

Figure 1.2
VGDD window when it is first
opened.

Procedure

Launch Visual Graphics Display Designer

If it is not already open, please launch VGDD
C:\RTC\HIF2132A\VGDD.exe

Create a new project

Click on New Project in the VGDD window

Information

GFX

1-3

Figure 1.3
Clicking New Project launches the
Project settings screen.

Set up the path for Microchip’s Applications Library (MLA).

Navigate to

And double click to select

Near the middle of the Project Settings window, locate the Microchip Appli-
cations Library Path option and click the Select button next to it.

When the correct file is selected, the text will turn green as shown in Figure 1.4.
Click OK to continue.

Figure 1.4
Mal.xml was found

You may return to project set-
tings at anytime by selecting the
Project Settings icon in the VGDD
toolbar.

Information

GFX

1-4

The red text indicates that VGDD is not able to find Microchip’s GRC applica-
tion. Next, we need to set up the path where the Microchip GRC application
may be found. Select the ellipsis next to the path name and navigate to :

Before fonts and images may be used by the Microchip Graphics Library, they
must be converted into formats the library can use. VGDD has a built in con-
version utility; however, we will be using Microchip’s Graphics Resource Con-
verter (GRC). If it is not checked, please check the box to “Use Microchip’s
Graphics Resource Converter”.

Figure 1.5
GRC settings

Set up the path for Microchip’s Graphics Resource Converter

Double click to select the application file

Select the compiler

For the purpose of this class, the MPLAB® XC compilers will be used. If you
are using a PIC24, please choose XC16. If you are using a PIC32, please choose
XC32.

Attention

The compiler version selected
will impact the format for the
converted font and image files.
Selecting the wrong compiler
will result in compiler errors.

Figure 1.6
If using PIC24, choose XC16

Figure 1.7
If using PIC32, choose XC32

GFX

1-5

Attention

These settings will be added to
the HardwareProfile.h file to
properly orient the display.
Incorrect settings will result in
odd looking displays.

Change the default screen settings to match your display.

Graphics Display Powertip 3.2” display
 Width = 320
 Height = 240

Set up the display parameters.

Microchip Graphics Library uses information in HardwareProfile.h to com-
municate with the display controller drivers. When VGDD generates the
source code, HardwareProfile.h is populated with these values.

Choose the color depth for the controller you will use in your application.
The drivers used in this class support a maximum of 16 bpp.

When choosing 4-bit or 8-bit
color, palettes (aka indexed color)
are used. VGDD will set up these
palettes for use in the applica-
tion.

For applications that employ a
graphics driver capable of 18– or
24– bit color, you may select
those options here.

Information

Figure 1.8
Color depth selection

The paths provided for GRC and
the MLA will be used the next
time you create a project.

The options at the bottom of the
screen are provided so you may
customize the VGDD player
(screen simulator). For the pur-
pose of this class, we will work
with the default options.

Information

Save the settings and proceed to screen design.

When you are happy with the settings click Ok.

Figure 1.9
VGDD simulator options

GFX

1-6

Figure 1.10
VGDD screen design environment

DISPLAY
FIELD

OBJECT
PARAMETERS

PARAMETER
HELP

OBJECT
INFORMATION

Change the screen name

VGDD will use the screen name in the code. To help make our code more
readable, we will change the name to SplashScreen.

In the object parameter box (labeled Widget), select the (Name) parameter.
Left click in the in the name field. When the cursor appears, change the value
to Splash Screen.

You will use this same method to
change Widget names when we
start working on the labs.

The value in name field is the
value that will be used in the
code.

Information

GFX

1-7

Change the screen background color

In the object parameter box (labeled Widget), select the BackColor pa-
rameter. Left click in the in the field to the right of the parameter name,
then click the ellipsis that appear to the far right of the field.

The Known tab is used to store
indexed color values from Micro-
chip’s color definitions file.

The Eyedropper can be used to
select colors from anywhere on
the PC monitor.

The Custom tab is used to load
previously saved color definition
files.

Information
When the Choose Colour window pops up, select the desired
screen color then click Apply. (RGB = 0,0,0 for Black)

 Other parameters will behave
the same way. When in doubt,
click the parameter name to find
out what options might be avail-
able. In some cases, you’ll be
able to choose from a dropdown
menu. In others, the ellipsis will
open a selection (chooser) win-
dow.

Information

Figure 1.11
Display in VGDD after clicking Apply

Attention

The ellipsis will not be present
until the BackColor property has
been selected.

GFX

1-8

VGDD provides 3 options for add-
ing objects to the screen.

1 — Select the object then dou-
ble click in the display field.

2 — Select the object, then click
and drag in the display field to
size the object.

3 — Double click the object.

No matter the option you choose
to add the widget, you will be
able to resize it later by dragging

Information

Add the Microchip logo to the screen.

To add the image, we will add a PutImage primitive to the screen.

To add a PutImage primitive, select PutImage from the GPL Controls box
then double click in the display field.

Attention

When the PutImage primitive is
added, the Bitmap field will be
highlighted and blink several
times to catch your attention. If
you inadvertently click some-
where else in the screen, the
ellipsis to the right of the bitmap
field will disappear. Clicking on
the Bitmap field will cause the
ellipsis to reappear.

With the PutImage primitive selected, click the Bitmap field in the Widget
properties box and click on the ellipsis that appear on the far right of the
field.

GFX

1-9

Clicking the ellipsis will open the Bitmap Chooser window where you
may select from all the images that have been added to the project. For
this exercise, we will need to add an image to use on our splash screen.

Click Add

And navigate to Select the

file.

As more images are added to the
project, they will be sorted into
IN USE and NOT IN USE types. To
avoid wasting memory resources,
images in the NOT IN USE type
will NOT be converted for appli-
cation use.

Information

Figure 1.12
Bitmap Chooser

You may open the Bitmap
Chooser window at anytime by
clicking the Bitmap Chooser icon
in the toolbar

Information

Figure 1.13
Bitmap Chooser with Logo file added

GFX

1-10

Bitmap properties for a selected image are shown in the field to the
right of the image list. In this image property box, we can add a com-
pression algorithm to the image by selecting the Compression Type field
and choosing a value from the drop down menu.

We may also choose the storage location by selecting the Type field and
choosing a value from the drop down menu. The storage location op-
tions are:

FLASH_VGDD: Fonts will be stored in internal FLASH and all declarations
and definitions will be included in the generated code.
FLASH: Fonts will be stored in internal FLASH; however, the generated
code will not include font definitions. Use this option only if you need to
use an external font converter (e.g. Microchip Graphics Converter).
EXTERNAL: Use this option to generate a bin file so fonts may be stored
in external memory. The bin file name is set in the BinFileName field.

Figure 1.14
Image property box

Figure 1.15
VGDD display after the image is
added to the Picture widget.

When you add a bitmap to an
object within VGDD, the object
will automatically resize to match
the shape of the bitmap file se-
lected.

Information

Information

Verify the settings are as shown in Figure 1.14. To add the image to the
screen, double click the image in the Bitmap chooser window.

GFX

1-11

Add the text string to the screen.

Now we will add a text string using the OutTextXY primitive object. In the
GPL Controls box, select OutTextXY.

Left click in the display field and drag the mouse to size the text box. Don’t
worry if it isn’t correct yet. We will size it correctly in a few moments.

With the text box selected, choose Color parameter in the Widget box and
click the ellipsis to use the Color Chooser window to change the string color
to Red (RGB = 255,0,0) When the desired color is displayed, click Apply.

Attention

The ellipsis will not be present
until the Color property has
been selected.

GFX

1-12

To change the string value, click the Text property in the Widget box. In the
field to the right, change the text to Microchip Graphics Library.

Figure 1.16
Display in VGDD with text added.

Change the font used to draw the text string

The default font is too small, so we need to change it. Click the Font property
in the Widget box; then click the ellipsis that appear to the right.

The font used for Widgets (GOL,
Custom, or External) is set in the
Scheme box. We will explore
Style Schemes in Lab 2.

Information

If you wish to explore resizing the
OutTextXY box, use the mouse to
drag the handles until the object
is the desired size.

To move an object, left click the
mouse in the middle of the object
until the cross sign appears then
drag the object to the desired
position. You may also “nudge”
objects into position using the
arrow keys on the keyboard.

Information

GFX

1-13

In the Font Chooser window, we can either add a new font or change the ex-
isting font to meet our needs. For the purpose of this exercise, we will add a
new font from the available installed fonts on the computer.

Click the Add button in the Font Chooser window.

Figure 1.17
Font Chooser window

Attention

VGDD is only able to access pre-
installed fonts. Please refer to
Windows Help files for instruc-
tions on how to install a font.

In the list of installed fonts, choose a font, set it’s style and size, then click OK.
The font we need is Microsoft Sans Serif, Bold, 18 points.

Figure 1.18
Listing of installed fonts

You may open the Font Chooser
window at anytime by clicking the
Font Chooser icon in the toolbar

Information

GFX

1-14

Figure 1.19
Font Chooser window
after new font added.

Double click the newly added font to apply it to the string shown in the se-
lected OutTextXY widget on the display. If needed, use the widget handles to
resize the text box.

VGDD offers two options to help you reduce the memory footprint required
for the font. First, you may choose RANGE in the Charset parameter. With
this option, only the ASCII characters between StartChar and EndChar will be
included in the generated font table. Second, you may choose SELECTION.
This option is more complicated, but employs a font filter to limit the font
table to necessary characters as determined by the strings used in the VGDD
project. More details on these options are discussed in on the VGDD Wiki
Help page that is accessed by clicking the help icon in the toolbar.

To change the storage location of
the font table, use the Type field
in the font chooser window. The
available types are:

FLASH_VGDD: Fonts will be
stored in internal FLASH and all
declarations and definitions will
be included in the generated
code.
FLASH: Fonts will be stored in
internal FLASH; however, the
generated code will not include
font definitions. Use this option
only if you need to use an exter-
nal font converter (e.g. Microchip
Graphics Converter).
EXTERNAL: Use this option to
generate a bin file so fonts may
be stored in external memory.
The bin file name is set in the
BinFileName field.

Information

Figure 1.20
VGDD display with the
new font applied

GFX

1-15

Add primitive shapes and lines.

Using the GPL controls, we will now add the primitive shapes and decorative
lines to the screen. First, we will draw the filled bevel using the Arc control.
Select the Arc, then left click and drag in the display field to size the bevel.

Figure 1.21
VGDD display with the
arc primitive added

In the Widget properties box, adjust the arc properties so that a filled bevel
will be shown on the display. Change the Fill parameter to True, then adjust
the radius to 5 (left click next to Radius2 and change the value to 5). Hit En-
ter when done to apply the changes.

Figure 1.22
VGDD display with a
filled bevel added

GFX

1-16

Using the GPL controls, add a rectangle, a circle to the screen. Using the
Widget properties box, please adjust the parameters as shown below in
Figures 1.23 and 1.24.

Figure 1.23
Properties for the
circle primitive

Figure 1.24
Properties for the
rectangle primitive

The Line, Circle and Rectangle
primitives have common parame-
ters to change the style of the
line used to draw the primitive.

THICKNESS:
NORMAL_LINE (lines will be 1
pixel thick)
THICK_LINE (lines will be 3 pixels
thick)

TYPE:
SOLID_LINE
DOTTED_LINE
DASHED_LINE

Information

Save time when drawing multi-
ples of the same object by using
copy

And paste

Icons on the toolbar.

You may also use the typical Win-
dows shortcuts
CTRL+C to copy
CTRL+V to paste
CTRL+X to cut

Tips and Tricks

Figure 1.25
VGDD display with
rectangle and circle

GFX

1-17

Align the objects on the display.

VGDD provides several editing functions to help us align objects on the dis-
play. Select the rectangle, filled arc (bevel) and circle primitives by holding
the shift key as you click on each primitive.

With all the primitives selected, click the alignment icon to get a drop down
menu of alignment options and choose Center Horizontally.

Continue working with the alignment options until you are happy with the
screen’s appearance.

Save the project

It’s a good practice to save your project prior to generating the code. Click the Save
Project icon in the toolbar.

You will first be prompted for a project name. Save your project to

OR

Next, you will be prompted for a screen name. In projects with multiple screens, you
will save each screen individually. Save the screen in the same directory as:

Attention

Always select the widget you
want to align to first, then se-
lect the other widgets.

Because there is not a center on
screen alignment option, it is
sometimes difficult to center the
objects screen well. To get
around this limitation, draw a
rectangle the size of the screen
and align the objects to that rec-
tangle. When you are finished
aligning, delete that rectangle.

Tips and Tricks

GFX

1-18

Figure 1.26
VGDD MPLAB®X
Wizard

When the Wizard launches click Next, then set up the project settings.

If using a PIC32, use this project:

In the Generate Source Files section, check the option to generate code in
MPLAB®X Project’s Parent Folder as shown in Figure 1.26. Then click Next.

Figure 1.27
Set MPLAB®X
Project tab

Generate C code.

Now that we have a design for the splash screen, we are ready to generate
the code we will use on our hardware. The first step in this process is to use
the MPLABX wizard to set up the project. When you go through this process
at home, you will need to create an MPLABX project first, close it, then run
the Wizard. To save time during the labs, all of the MPLABX projects have
been created for you.

Launch the MPLAB®X Wizard from the toolbar
Select OK when prompted to save your project.

Attention

Although you have saved your
project, you will be prompted
to save the project again when
you launch the MPLAB®X Wiz-
ard. This is by design to insure
you have saved your work.

DANGER!

To avoid error messages, please
close MPLAB®X prior to running
the wizard.

GFX

1-19

Attention

After running through the Wiz-
ard on a new project, selecting
the option to Generate Skeleton
files will overwrite existing files.
If you wish to preserve existing
application code in VGDDmain.c,
VGDDmain.h, HardwareProfile.h
and GraphicsConfig.h files,
choose only the Modify Skeleton
files option.

Since this is the first time generating code, we need to populate the MPLAB®X
project and generate application specific files. You will not usually run the
MPLAB®X Wizard again unless you specifically need to change the MPLAB®X
project (e.g. changing the hardware).

Also in the Set Options tab, you will find options for the width of the parallel
master port (PMP). This option sets the width of the data path between the
PIC microcontroller and the LCD graphics controller. The Explorer 16 will only
support an 8-bit data path to the LCD graphics controller board; therefore, if
you will be using the Explorer 16 + PIC32 PIM hardware, you MUST check this
box to avoid build errors in the generated code. Because LCC uses a virtual
LCD controller, checking or not checking the PMP options will have no effect
on the generated code.

Select the Parallel Port option appropriate for the hardware you are using.

After the setting are correct, click Next.

GFX

1-20

In the Modify MPLABX Project tab, verify that all checks were OK, then click
the Modify button.

A notification window will pop up when the modification is complete. Close
that window by selecting OK, then click Next to continue.

In the Finish tab, you will see a warning similar to the one shown in Figure
1.31 on page 1-21 indicating that you need to generate code. Click the Gen-
erate Code button.

When you are generating code
for the hardware you have cus-
tom designed, do not generate
the HardwareProfile.h file and
skip this step.

Information

After the settings are correct, click Next.

In the Hardware tab, we will choose the development hardware we are using.
These settings will tell VGDD which HardwareProfile.h and which graphics
driver files we will need. When you are designing for your own hardware,
deselect the option to generate the HardwareProfile.h file on the Set Options
screen.

For these hands-on labs, we will select the development platforms. If you are
using PIC24, choose the options shown in Figure 1.30. If you are using
PIC32, choose the options shown in Figure 1.31.

Figure 1.30
Hardware Options for PIC24

Figure 1.31
Hardware Options for PIC32

GFX

1-21

Figure 1.34
Code Genera-
tion window

When the code generation is complete, the Footprint in bytes will contain
information to help you estimate the amount of memory your screen design
will need based on your compiler selection.

Of particular interest is the memory required for bitmaps and fonts. This
number will help us determine if we need to use external memory for the
application.

Figure 1.32
Finish tab

In the Code Generation pop-up window, verify the project settings are correct
for the hardware you are using and that the generated source files are placed
in the MPLABX Parent folder.

If using a PIC32, use this project:

Figure 1.33
Code Generation
window

GFX

1-22

Program the micro and view the results.

Now that we have source code, let’s program the boards and see how it looks
on the actual display.

Launch MPLAB ® X by double clicking the icon on the desktop

MPLAB X IDE

Build the code and program the device by clicking

Your display should resemble the picture in Figure 1.35

Figure 1.35
What you should
see on your display

DANGER!

If you close VGDD, make sure you
save the project and remember
where you have saved it. We will
use this project again in the bo-
nus procedures section.

Open the appropriate Lab1 project located at

and select the correct configuration for the hardware you are using.

Using the information provided in the Hardware section at the beginning of
this manual, verify you have the board properly connected, power applied
and the programmer\debugger attached.

Congratulations!! You have completed Lab 1! If the allotted time has not expired,
you may move on to complete the bonus procedure to explore the use of gradient
backgrounds and screen transparency.

GFX

1-23

Bonus Procedure

Change the screen background to a gradient

Microchip Graphics Library supports gradient backgrounds using either the
BarGradient(…) or BevelGradient(…) functions. In VGDD, a Gradient
(implemented as the BevelGradient(…))is provided in the GPL Controls box.

Return to the project you were working on in VGDD. Click on the Gradient
primitive in the GPL Controls box, then left click in the display to cover the
entire screen. Notice that the starting colors selected for the gradients are
randomized. Will you find a color combination you hadn’t considered before?

If you have made it this far and there is still time remaining in the lab, let’s examine how we might use the new
gradient and transparency features to enhance our splash screen appearance. If you do not have time for this
step, that’s ok. The instructor will go over the solution with you or you may review the solution file at a later date.

Instead of dragging to size an
object, you may enter the desired
coordinates into the Widget pa-
rameters box. To fill the screen,
the coordinates will be:
Top — 0
Left — 0
Bottom — max vertical-1
Right — max horizontal-1

Tips and Tricks

DON’T PANIC! Your work is not gone, it’s just hidden below the large rectan-
gle you just placed on the screen. Before we change the gradient Z-order,
let’s get its parameters situated. In the Widget box, change the Radius pa-
rameter to 0 so the gradient will have sharp corners. Also adjust the coordi-
nates if needed. Explore the options for Gradient Length, Gradient Type,
Color 1 (Gradient Start Color) and Color 2 (Gradient End Color).

When you are happy with the gradient appearance, send the gradient to the
back (Z-order 0) by clicking the Send to Back icon in the toolbar.

GFX

1-24

With the SplashScreen selected, set the Transparency color in the Widget
box.

Attention

When using thick, non-solid
lines, the background will show
through on the PC monitor.
This is a limitation within Win-
dows. When the code is pro-
grammed on the hardware, the
rectangle will be correct.

Now we can definitely see the background color on the Microchip logo. To
hide the background, we will use the transparency feature in Microchip
Graphics Library. To implement this we will need to select the SplashScreen
so we can modify the parameters. In the events box (top far right side of
VGDD), double click on the SplashScreen level.

When choosing a transparency
color, remember that Microchip
Graphics Library will ignore every
pixel of that very specific color.
Make sure that the transparency
color is not used in the image you
are trying to make “transparent”.

The image used for this lab was
modified so it’s background color
is solid black (RGB = 000). Pixels
of any other color (even RGB =
001) will be drawn.

Information

Figure 1.36
VGDD display before
transparent color is set

Set transparent color to hide the image background

GFX

1-25

Figure 1.37
VGDD display after trans-
parent color is set

Generate code for the altered screen

Click the Generate Code icon in the toolbar, verify the project settings, then
click Generate Code in the pop up window.

Launch MPLAB ® X by double clicking the icon on the desktop

If it isn’t already, open the Lab1.X project located at

and select the correct configuration for the hardware you are using.

Using the information provided in the Hardware section at the beginning of
this manual, verify you have the board properly connected, power applied
and the programmer\debugger attached.

Build the code and program the device by clicking

Your display should resemble the picture in Figure 1.37

GFX

1-26

Results

You have just learned how to use VGDD to generate Microchip Graphics Library code to generate a
splash screen with images and fonts that may be easily integrated with your application. Also, you have
learned that the GPL Controls generate Microchip Graphics Library primitive layer function.

Code Analysis

The simple application that you have generated implements a touch screen module and uses primitive
rendering functions to draw a simple splash screen. Each primitive function is affected by the global
drawing attributes such as line type, line size and color. For texts, the font and current color settings
affect the way the text appears on the screen. All of this is included in the code generated by VGDD so
that you may focus on application development.

Conclusions

Having learned how to use the Primitive Layer of the Graphics Library you are now ready to move up-
ward to the next layer and learn the Graphic Object Layer that implements the Widgets. This gets you
closer to fully integrating your application with a graphical solution. The next lab will give you a introduc-
tion to the Graphics Object Layer and use the Widgets that come with the library. Since the widgets in
the Graphics Object layer call upon the primitive layer functions, you are now armed and ready to create
your own widgets. An app note on this topic will be out soon.

GFX

2-1

Lab Exercise 2
Adding and Creating a Menu Screen

Static text without frame

Static texts without
frames

Button with centered
text

Icons — Rounded Buttons with
bitmaps on top

Attention

Your screen may look
different than what is pictured.

In this lab, you will demonstrate your ability to use VGDD to
create a menu screen for use in our application. You will use
the style scheme box, create icons, and format widgets to meet
our application needs for the HMI.

Solution files may be found at:

 C:\RTC\HIF2132A\Solution Files

Purpose

1) Use VGDD to create a menu screen using 3 rounded buttons and 4 static texts.
2) Within VGDD, create and apply new style schemes.
3) Explore code generated by VGDD.

 Expected Results

Objectives

Figure 2.1
When the lab is fully completed (prior
to completing the bonus steps), you
should see this on your LCD panel.

 MPLAB®X IDE v1.20 or higher

 Visual Graphics Display Designer
(VGDD) v3.7 or higher

 PIC32 USB Starter kit II

 Truly 3.2” QVGA LCD Display

 Graphics LCD Controller PICtail ™
Plus LCC Board

 If using PIC32, you will need to use
Microchip® XC32 Compiler

Tools

GFX

2-2

In lab 2, we will add a screen to the project we worked on in Lab 1. To give us
all a fresh start, we will work from a new project. If needed, please launch
VGDD from:

If it VGDD is open from the previous lab, please close the VGDD project used
in Lab 1 and open the Lab2_VGDD.vdp project found at :

Procedure

Add a new screen to the project.

Change the Screen Name.

To add a new screen to the project, click the new screen icon on the toolbar.

With Screen2 selected, change the screen name in the Widget box by left click-
ing in the (Name) field and typing in MenuScreen.

Change the screen background color to Black (0,0,0).

Attention

VGDD allows you to import
screens used in other VGDD pro-
jects; however, the bitmaps and
fonts used to create that screen
are not stored with the screen.
This means that after the screen
is imported, you must add the
bitmaps and fonts manually.

To import a screen choose

from the top menu bar.

Hands-On Labs:
C:\RTC\HIF2132A\PIC32_Labs
Font Files:
All fonts used in this lab have been
preinstalled on the lab computers
Image Files:
C:\RTC\HIF2132A\Images
Visual Graphics Display Designer:
C:\RTC\HIF2132A\VGDD.exe
Icon Files:
C:\RTC\HIF2132A\Icons

Information

GFX

2-3

Add a button to the Menu Screen

Attention

VGDD also supports Windows
shortcuts for Cut, Copy, Paste
and Delete.

Click Button in the GOL Widgets box and double click on the screen.

Notice that the button is not the shape we need for our design. Resize the
button using the handles around the button or by changing the coordinate
values in the coordinate fields of the Widget box :
top = 84, bottom = 155, right = 96, left = 21

Use copy and paste to add 2 more buttons to the screen

To copy an object, select the object to copy (in this case, Button1) and click
the copy icon in the toolbar.

To paste the object, click the paste icon in the toolbar. Do this twice to
add 2 buttons.

To cut an object, use the Cut icon

To delete an object, use the De-
lete icon

Information

Drag the buttons into position, so that the 3 buttons are roughly centered on
the screen.

GFX

2-4

Add bitmaps to the 2 buttons on the left

With the button on the far left selected, click in the Bitmap field in the Widget
box. In the Bitmap Chooser, double click to choose the Rotate_Icon image.

Figure 2.2
Screen after adding the
bitmap to Button 1

Now, change the bitmap on the middle button. Click on the Bitmap field in the
Widget box. When the Bitmap chooser window pops open, double click the
Temp_Icon file.

Notice that the button resizes to
match the bitmap. If you need
the button to be larger, you may
resize it now. Because of the way
bitmaps are drawn on buttons,
you will not be able to size the
button smaller than the bitmap.
In a later step, we will show you
how to hide the button panel so
you should not need to size the
button smaller than the bitmap.

Information

Figure 2.3
Screen after adding the bit-
map to the middle button

You may add as many bitmaps in
the Bitmap chooser as you think
you may need in your application.
If the bitmap is not used, it will
show up under the Type
NOT_USED section. Bitmaps in
this section are converted.

Information

GFX

2-5

Since we do not want text to be written atop our icons, we need to clear the
text field for the two buttons to the left. With the button selected, click in the
Text field in the Widget box then delete the string.

Figure 2.4
Screen after removing the text
from the buttons.

Finally, notice that the corners around our buttons show the button face color.
To save drawing time and to remove those unwanted colors, we will use the
NO_PANEL option for the button. With the button selected, click in the
NoPanel field in the Widget box and choose True from the drop down menu.

A more common use of the
BTN_NOPANEL bit is to provide
button behavior without showing
the button. When using this fea-
ture, you can create a text with
button properties, or if used with
an image, create an icon with but-
ton properties.

Information

GFX

2-6

Figure 2.5
Screen after setting the
NoPanel option to True

Change the far right button properties to better match the two icons

Now we need to change the far right button parameters so it better blends with
our application. With the far right button selected, click in the Radius field of
the Widget box and change the value to 10. This will round the corners to
about the same curvature on the icons we used on the other 2 buttons.

Using the handles on the button, resize it to match the two icons. The align-
ment guides may help you.

Figure 2.6
For right button with
rounded corners

To resize an object to match an-
other, select the object of the
desired size (e.g. the middle but-
ton on the screen) hold the CTRL
key, and then select the object
you want to resize. On the menu
tool bar, click the Size icon

And choose Make Same Size
from the drop down menu.

Tips and Tricks

Figure 2.7
Screen after far right
button parameters
changed.

Finally, we will change the button text to read LED. With the far right button
selected, click in the text field in the Widget box and change the string.

GFX

2-7

Add a style scheme to give the far right button

To give the far right button a “flat” appearance (i.e. no 3D effect), we will need
to create a new style scheme and modify certain parameters. With the far right
button selected, click the Widget info tab in the Information box at the bottom
of the VGDD window.

On the right side of the Widget Info tab, we see information showing us
how the style scheme parameters will affect the widget. Refer to this in-
formation as we work in the style scheme box.

To avoid impacting other screens in our project that may be using the de-
fault style scheme (named New), we will first create a new scheme. In
the Schemes box, click the New button

Notice that the name in the drop down menu changes to New1. In the
Name field of the Schemes box, change the scheme name from New1 to
Flatbuttons.

Figure 2.8
Widget Info tab for a
button widget

The information to the left of in
this tab lets us know how many
instances of the widget are in use
in the project, how much ROM,
how RAM and how much Heap is
needed to support the selected
widget.

Information

GFX

2-8

To match our application needs, we would like the face color to be gray. In the
style scheme box, change the Color0 parameter to a medium gray shade
(192,192,192). You may either click the ellipsis to bring up the color chooser
window, or you may simply type the R,G,B value into the Color0 field.

To give the button a flat appearance, we now need to change the
Embossdkcolor and Embossltcolor fields to match Color0. One way to do this is
to highlight the R,G,B value in the Color0 field and copy and paste it into the
Embossdkcolor and Embossltcolor field using the Windows copy and paste
shortcuts (Ctrl+C and Ctrl+V). Or, you may use the color chooser window.

Our application also requires that the LED text string appear Red. Change the
TextColor0 field to Red (255,0, 0).

You may have noticed that you are not seeing the changes on the screen. This is
because the button widget style scheme parameter is still pointing to the de-
fault style scheme. With the far right button selected, click the Scheme field
in the Widget box and choose Flatbuttons from the dropdown menu

GFX

2-9

Figure 2.9
Screen with all buttons
formatted and placed

Add a static text box to label the menu screen.

Now we need to let our users know what this menu screen is for. Add a static
text widget to the top center of the screen by selecting static text from the
GOL Widgets box and double clicking in the screen area.

With the static text selected, change the Text field in the Widget box to read
Development Board Status. Using the handles, resize the static text so that all
the letters in the string are visible.

Figure 2.10
Screen with static text us-
ing default scheme added

Notice that the static text box uses the default scheme,
but we would like the box to disappear and use white text
in a larger font. To achieve this goal, we will need to add
another style scheme. Create a new scheme named
TitleBox and change the parameters as shown in Figure
2.11

Commonbkcolor = 0,0,0
Font = MicrosoftSansSerifBold18
Textcolor0 = 255,255,255

Figure 2.11
TitleBox scheme parameters

GFX

2-10

Attention

You may need to adjust the size
and position of the title box to
achieve this result.

Figure 2.12
Screen with StaticText as
the screen title

Add static text boxes to label the buttons

The last step in our menu screen is to add static text boxes to label the but-
tons. Because we need smaller font for the labels, we will need to create
one more style scheme. Create a new scheme named Labels with parame-
ters as shown in Figure 2.13.

Add another static text box by selecting Static Text in the GOL Wid-
gets box and double clicking in the screen area. With the static text
selected, change its properties in the Widget box as shown in Figure
2.14 on page 2-11.

Figure 2.13
Parameters for the Labels Style Scheme

Style Scheme Parameters

Name = Labels
Commonbkcolor = 0,0,0
Textcolor0 = 255,255,255

References

Static Text Parameter

Scheme = Labels
Frame = Disabled
TextAlign = Center
Text = Rotate
 Pot

References

GFX

2-11

When the static text and style scheme properties are correctly
set, use the copy and paste feature to add the next two labels.
Position them to be centered beneath the appropriate buttons
then change the text strings as shown in Figure 2.15.

Figure 2.14
Static Text properties for
the first button label

Static Text Parameter

Scheme = Labels
Frame = Disabled
TextAlign = Center
Text = Rotate
 Pot

References

When adding the text string, notice the drop down box on the right side of
the text field. You may type the text in this box using the Enter key to cre-
ate a new line. Once all the text is added, click the down arrow again. You
will see the text as a continuous string in the text field; however, the screen
will show the text on multiple lines.

Figure 2.15
Correct text strings and
positions for the button
labels

You may expand the user touch
space by using buttons with the
NO_PANEL property set to true
instead of using static texts to
form the button labels.

Information

GFX

2-12

Congratulations!! You have completed Lab 2!

Generate the code.

Using the MPLAB®X Wizard, generate the code and populate the MPLAB®X
project for Lab 2.

If using a PIC32, use this project:

If you need a reminder for this
step, please refer to Lab 1 steps
15 and 16 discussed on pages 1-
17 thru 1-21 of this lab manual.

Information

Program the micro and view the results.

Now that we have source code, let’s program the boards and see how it looks
on the actual display.

Launch MPLAB ® X by double clicking the icon on the desktop

MPLAB X IDE

If it is still open, please close the previous MPLAB®X project (Lab1_PIC24.X or
Lab1_PIC32.X). Open the appropriate Lab2 project located at :

and select the correct configuration for the hardware you are using.

Using the information provided in the Hardware section at the beginning of
this manual, verify you have the board properly connected, power applied
and the programmer\debugger attached.

Build the code and program the device by clicking

Your display should resemble Figure 2.16. Touch anywhere on the display to
move to the menu screen you just added.

Figure 2.16
Lab 2 complete. Touch anywhere on the Splash Screen to move to the Menu Screen

DANGER!

To avoid error messages, please
close MPLAB®X prior to running
the wizard. Closing MPLAB®X is
not necessary if you are only gen-
erating code.

GFX

2-13

Results

You have just learned how to use VGDD to add and style Microchip Graphics Library widgets. You have
also learned that VGDD’s Widget properties box makes it easy to adjust widget statebits to suit the initial
appearance of the display. You have also learned how to modify the style schemes assigned to objects
to change the appearance of the objects.

Code Analysis

The code that you generated created both the SplashScreen and MenuScreen screens for our applica-
tion and used the GOLDraw() leave the management of rendering of objects to the library functions.
Using the state bits you can modify how an object is rendered. Also with the style scheme you can eas-
ily modify the color values or font to change the style scheme assigned to the object.

Conclusions

Having learned how to create the screens for our HMI application, it is time to move forward and learn
how to accept user inputs.

GFX

2-14

 THIS PAGE INTENTIONALLY LEFT BLANK

GFX

3-1

In this lab, you will demonstrate your ability to read the touchscreen
interface and provide system and widget control in response to a user
input (e.g. user touching the touchscreen). Using VGDD, you will cre-
ate a simple user interface screen that implements widgets to control
the LEDs on the USB Starter Kit II on the LCC Development Board.

Solution files may be found at:
 C:\RTC\HIF2132A\Solution Files

Purpose

1) Provide customized control for both the system and widgets via the GOLMsgCallback() functions.
2) Use VGDD to generate user event code.
3) Add code to the MPLABX project to control LEDs.

 Expected Results

Objectives

Lab Exercise 3
Interfacing the User

 MPLAB®X IDE v1.20 or higher

 Visual Graphics Display Designer
(VGDD) v3.7 or higher

 3.2” QVGA LCD Display

 Graphics LCD Controller PICtail ™
Plus LCC Board

 PIC32 USB Starter Kit II

 If using PIC32, you will need to use
Microchip® XC32 Compiler

Tools

When this lab is complete, you will be able to:

 See the images for Rotate Potentiometer and Check Temperature on the menu screen change with a user press.

 Press the LED button to move from the menu screen to an LED Control screen.

 Use checkbox options in the LED control screen to change LEDs on the board.

GFX

3-2

In lab 3, we will be using VGDD to create and test the LED Control screen for
our application HMI.

To implement the user interface, we will work exclusively with the 4-wire resis-
tive touch overlay that is provided on the display boards. The touch screen
driver functions (TouchScreen.c, TouchScreen.h, TouchScreenResistive.c, and
TouchScreenResistive.h) implement the sampling of the user touch. Sampling
is done by the function TouchProcessTouch(). This function sets up the 2 ana-
log signals and 2 digital signals on the touch screen and uses the A/D module to
obtain the actual samples. In our application, a timer interrupt calls the
TouchProcessTouch() to update the touch positions variable in the touch
screen driver.

The application will call the TouchGetMsg() function (located in the touch-
screen driver files) to check if there is a valid touch. TouchGetMsg() populates
the message structure GOL_MSG. To have the library process that message,
the application will call the GOLMsg() function. The library evaluates the mes-
sage and parses the active linked list to determine which widget, if any, was
affected by the users touch.

If further processing is needed for the application to respond to the touch, the
application will provide code in the GOLMsgCallback() function. This function is
called by GOLMsg() and implemented in the application. Using the passed
parameters, the application will be able to interpret the message. Based on
that interpretation, the application can then modify widgets, update system
variables, and in multiple screen applications, change the screen states.

Fortunately, VGDD generates all of this code for us so that we will be able to
focus on the application needs!

Procedure

The touchscreen driver functions
are application dependent. Ex-
amples have been provided for
your use in the Board Support
Package folder in the Microchip
Applications Library installation
path. Note that all the graphics
demos make use of these drivers.

Information

For simplicity, we have chosen to
use the ADC module with soft-
ware to control the touchscreen
interface. As such, the display
may need to be recalibrated
more frequently. To achieve
more accurate touch perform-
ance that does not require fre-
quent recalibration, please use
the AR1021, AR1011, or AR1100
touch control chips from Micro-
chip Technology. A driver for the
AR1021 is provided in the Board
Support Package directory.

Information
Launch Visual Graphics Display Designer

If it is not already open, please launch VGDD

OR
Double click the VGDD icon on your desktop

And open the VGDD project located at:

Notice that when a project with multiple screens is opened, only the
first screen is shown in VGDD. You may open the other screens by dou-
ble clicking the screen name in the Project Explorer window at the bot-
tom of the screen. Alternatively, you may open all screens in the pro-
ject by right clicking Screens and selecting “Open all project screens”.

Hands-On Labs:
C:\RTC\HIF2132A\PIC32_Labs
Font Files:
All fonts used in this lab have been
preinstalled on the lab computers
Image Files:
C:\RTC\HIF2132A\Images
Visual Graphics Display Designer:
C:\RTC\HIF2132A\VGDD.exe
Icon Files:
C:\RTC\HIF2132A\Icons

Information

GFX

3-3

If you’d like to close a screen,
click the x next to the screen
name in the tabs at the top of the
VGDD display field.

To remove a screen from the pro-
ject, right click the screen name
in the Project Explorer window
and select “Remove Screen from
Project”.

Information
Open the Event Editor for a Checkbox user event

For this lab, we are using a project that employs the screens we designed in the
first two labs. To save time, the LED Control Screen has been added and de-
signed for you.

Activate the LEDControlScreen by clicking the tab in the VGDD display box.

In the Events box (on the far right of the VGDD screen), notice that the Check-
box is highlighted an available user events are listed. Notice that when you
move your mouse over an event, a brief description is displayed as shown in
Figure 3.2.

Double click to select the CB_MSG_CHECKED event to open the Events editor
window for that user event.

Select the top left checkbox. For the PIC32 project, this will be the checkbox we
will use to control LED D3. For the PIC24 project, this will be the checkbox we
will use to control LED D1.

Figure 3.2
Events Box

Figure 3.3
Events Editor

A user event is an event triggered
by a user’s action. For these
hands-on labs, the events are
triggered by touching the screen.

Information

GFX

3-4

Check the box next to the CB_MSG_CHECKED event in the Events column of
the window so that the event code we create will be included in the code.

Our application requires that we perform 3 actions when the user touches the
checkbox:

1 — The checkbox must be checked or unchecked (the library will handle this
by default) .
2 — The checkbox string must be changed to read “LED Dx OFF” when the
check box is unchecked or “LED Dx ON” when the check box is checked.
3 — The status shown in the static text at the bottom of the screen must be
changed to indicate that an LED is turned on.

Since we know that the Graphics Library messaging interface, , will
set the bits required for the checkbox to look checked, we do not need to add
this code. Changing the string used to label the checkbox and changing the
static text string are not handled by the messaging interface; therefore, we need
to provide code to handle those tasks.

Add code to handle the Check Box events

The check box widget may accept 2 messages: CB_MSG_CHECKED and
CB_MSG_UNCHECKED. The Microchip Graphics Library message interface will
automatically set (or clear) the CB_CHECKED state bit and will set
CB_DRAW_CHECK state bit which will update the screen. Although VGDD will generate

much of the code for us, it is nec-
essary to understand the avail-
able states, as well as the mes-
sage defaults for the widgets.
Please refer to the Graphics Li-
brary Help file for more details on
the widget states.

..\..\1667\Microchip\Help

References

In the Objects drop down menu (middle left of the Event Editor window),
choose the CheckBox1 widget. It should have the words “This Widget” to the
right. If it does not, you have the wrong widget selected. Refer to Figure 3.4.

Figure 3.4
Correct object drop
down menu options

The object selected in this box, is
the object that we wish to be
affected by the message re-
ceived. For this portion of the
lab, we will add code to enhance
the action for (affect) CheckBox1.

Information

GFX

3-5

Now, in the Actions drop down menu (located in the middle right of the Event
Editor screen), choose the Set CheckBox Text option. Refer to Figure 3.5.

Figure 3.5
Available actions for
the selected object

Then click the button to the right to Insert Code.

The Microchip Graphics Library function required to complete the selected ac-
tion will appear in the editor window at the bottom of the Events Editor window
as shown in Figure 3.6

Figure 3.6
Inserted code

We now need to provide the new string for the Checkbox widget. Since Check-
Box1 refers to LED D1 (for the PIC24) or LED D3 (for the PIC32), change the in-
serted code to:

PIC24 Users:
CbSetText((CHECKBOX *)pObj, (XCHAR *) “LED D1 OFF”);

PIC32 Users:
CbSetText((CHECKBOX *)pObj, (XCHAR *) “LED D3 OFF”);

As mentioned earlier, the GOL Message handler will set (or clear) the
CB_DRAW_CHECK bit by default. Setting this bit will update the check mark,
but will not update the Checkbox string. To draw the new string, we will need
to add an action to “Show/Update” the widget. In the Action drop down menu,
select the Show/Update CheckBox option, then click Insert Code.

DANGER!

If you do not change the code to
provide the string, you will see
build errors when you try to com-
pile. The *pText pointer is a
place holder for the new string.

Attention

Code is inserted at the last loca-
tion of the editor cursor. Be
sure to press Enter after insert-
ing code.

Figure 3.7
Available actions for
the selected object

The Actions shown represent the
available GOL Widget APIs for the
selected widget. Further descrip-
tion for these actions may be
found in the graphics library help
file.

Information

GFX

3-6

Using the VGDD Event Editor, we may also add code that will affect another
widget on the screen when an object receives a GOL Message. For this lab, we
would like to change the status shown in StaticText2 to indicate if an LED has
been turned on or turned off. In the Objects drop down menu, select the
StaticText2 object.

In the Actions drop down menu, select the Set StaticText Text option and click
Insert Code.

As with the code generated to set the CheckBox string, we will need to modify
the inserted code to provide the string we’d like displayed. Change the inserted
code to replace the string pointer reference (...XCHAR *pText) ; to

 ...(XCHAR *) “An LED has been turned ON”);

When referencing a widget that is
not the widget receiving the mes-
sage, VGDD will use the API to
find a pointer to the widget se-
lected to receive an Action.

Information

Recall, the GOL Message handler will not perform default actions for widgets
that did not receive the message; therefore, to draw the new string, we will
need to add an action to “Show/Update” the widget. In the Action drop down
menu, select the Show/Update StaticText option, then click Insert Code.

Finally, we need to add an application specific function call to update the LEDs.
For this purpose, we will use the SetLED() function explained in the information
box to the left on this page. In the Event Editor window, add the following
code:

PIC24 Users:
 SetLED(LED_ON, 1);

PIC32 Users:
 SetLED(LED_ON, 3);

When you are finished, the Event Editor window will resemble Figure 3.8 or
Figure 3.9 on page 3-7 of this manual.

The LEDs will be turned on and off
using the application provided
function:

SetLED(status, whichOne)

where the status (LED_ON or
LED_OFF) will turn on or off the
status specified by whichOne.
The parameter whichOne is the
number following the LED we
need to turn on or off. For exam-
ple, to turn on LED D1, we will use

 SetLED(LED_ON, 1);

Information

GFX

3-7

Figure 3.9
Event Editor with correct code inserted for PIC32 Users

When you are finished editing the code as shown in Figure 3.8 or Figure 3.9,
click OK. To save time, the appropriate code has already been added for the
other checkbox events. Please take the time to use the Events window to ex-
amine the other CheckBox messages. Recall, double clicking on an event will
open the Event Editor window.

On the MenuScreen, add the code to change the buttons on a press

In applications that use icons, changing the bitmaps on a user press will
help the user see the press. Using VGDD, select the MenuScreen by double
clicking the MenuScreen in the Project Explorer window at the bottom of
VGDD. The messaging interface within

the Microchip Graphics Library
supports the following messages
for buttons:
 BTN_PRESSED
 BTN_STILLPRESSED
 BTN_RELEASED
 BTN_CANCELPRESS

Information

8

On the MenuScreen, use the mouse to select the Rotate Potentiometer
button.

In the Events box, double click the BTN_MSG_PRESSED under Button1 to
open the Events Editor window.

At the top of the Events Editor window, check the box next to
BTN_MSG_PRESSED. In the Objects drop down menu, choose the Button1
(BUTTON) This Widget option.

In the Actions drop down menu, select the Set Button Bitmap option then
click the Insert Code button.

Attention

If you do not, see “This Widget”
next to Button1, you have the
wrong widget selected. Close
the Events Editor window and
go back to the Events screen as
shown in Figure 3.x.

9

Notice that a new drop down menu appears called Bitmap. Use the Bitmap
drop down menu to select the Rotate_Icon_Dark image.

The New button next to the Bit-
map drop down menu may be
used to add images that are not
already in the project.

Information

With the image name selected, click the Insert Code button.

Attention

The default action performed
by the GOL Messaging interface
is to set the BTN_DRAW bit. As
such, we do not need to select
the Show/Update option for the
button as we did for the Check-
Box widget earlier in this lab. Select OK to close the Event Editor window. To save time, the events for

BTN_STILLPRESSED and BTN_CANCELPRESS have been populated for you.
The BTN_STILLPRESSED event is set up to also show the dark icons while
the button is pressed. The BTN_CANCELPRESS is set up to return the but-
ton to show the Rotate_Icon image when the user slides their finger off the
button. We have also set up the events for the Read Temperature option
for you.

Add an event so that pressing the LED button will change screens

Since changing screens is usually triggered by a single user event (e.g. a but-
ton press), we will set the event to move the screen state machine as part
of the GOL_MsgCallback() function. We will examine this state machine as
well as the details on how the screen changes in the next lab.

In the MenuScreen, select the LED button to the far right of the screen. In
the Events box, double click the BTN_MSG_RELEASED under Button3 to
open the Events Editor window.

Attention

We are choosing to change the
screen after the user releases
the button so the user will have
a chance to perceive the button
press before a change occurs.
When changing screens on
BTN_MSG_PRESSED, the screen
change happens immediately.

GFX

3-10

At the top of the Events Editor window, check the box next to
BTN_MSG_RELEASED. In the Objects drop down menu, choose the LED-
ConrolScreen (or LED32ControlScreen for PIC32 users).

Attention

Recall, we will always choose
the object we want affected by
the message. In this case, we
want to switch to the LED Con-
trol screen, so we choose that
screen in the Objects drop
down menu.

In the Actions drop down menu, choose Go to Screen, then click the Insert
Code button.

Generate the code.

For this lab, the MPLAB®X Wizard has been run for you; however, you will
still need to generate the code to update the files with changes you just
made. Click the Generate Code icon and verify the project settings.

If using a PIC32, use this project:

DANGER!

When VGDD generates code, the
<projectname>Screens.c and
<projectname>Resources.c files,
along with their associated
header files are always over writ-
ten; therefore, it is important you
do not place application code
directly in those files. That is rea-
son we placed the SetLED() func-
tion calls in the Events Editor win-
dow instead of the MPLABX pro-
ject. Since the VGDDmain.c and
VGDDmain.h files are only over-
written if they are selected for
overwrite in the MPLAB®X Wiz-
ard, the application specific code
needed to support the LEDs was
added to those files.

Program the micro and view the results.

Now that we have source code, let’s program the boards and see how it looks
on the actual display.

Launch MPLAB ® X by double clicking the icon on the desktop

MPLAB X IDE

Using the information provided in the Hardware section at the beginning of
this manual, verify you have the board properly connected, power applied
and the programmer\debugger attached. Then open the appropriate
MPLAB ® X project.

Build the code and program the device by clicking

Touch anywhere on the display to move to the menu screen. Observe the
changes to the button images on press and release. Press the LED button to
move to LED Control screen. Touch the checkboxes and observe the LEDs
turning on and off.

GFX

3-11

Results

Using Visual Graphics Display Designer (VGDD) we have created a fully functional HMI with limited sys-
tem interaction, based on single event user actions. The VGDD events handler allows us to fully popu-
late the GOL_MsgCallback() functions. We have also learned where we may place our application code
so it will not be overwritten by the VGDD code generator.

Code Analysis

At the conclusion to this lab, the instructor will walk you through the application specific portions of the
code used to handle the LEDs. In general, code was added in the board initialization section in
VGDDmain.c to set up the appropriate I/O for use with an LED. We also added a function called
SetLED() to the VGDDmain.c file so that all we need to add to the VGDD event editor code is a single
function call.

Conclusions

The GOL_MsgCallback() is used to control both the HMI and the system in reaction to a single user
event (e.g. a button press). Using the VGDD events editor, we are quickly able to populate the
GOL_MsgCallback() functions with minimal code addition.

GFX

3-12

 THIS PAGE INTENTIONALLY LEFT BLANK

1

Lab Exercise 4
Primitive Layer Demo

Purpose

Requirements

Objectives

 Development Environment: MPLAB®X IDE v1.20 or higher

Software:
C Compiler: MPLAB

®
 XC32 Compiler for PIC32 v1.00

Hardware Tools: PIC32 USB Starter Kit II
 Low Cost Controllerless (LCC) Graphics Board
 Graphics Display Truly 3.2” 240 x 320 Board

By the end of this lab you will have an LCD panel displaying a rainbow without using a graphics controller. You
will see how to setup a PMP and DMA to act as a “virtual” graphics controller. Additionally, you will learn how to
communicate to a display controller. We will be working in the Lab1.c file included in the Lab 1 project. For your
convenience, a full solution is provided in C:\RTC\GFX5 1670\Lab1\Lab1 Solution\.

1) Create a frame buffer
2) Initialize DMA and PMP peripherals.
3) Run the Primitive demo and see it appear on the LCD.

Microchip’s Primitive is running

2

Procedure

Then, open Lab 4 by selecting from the menu:

File  Open Project… and opening the workspace file appropriate for you development board set

If you still have a previous project open, you can close it by selecting from the menu:

File  Close

Click Build in MPLAB, then program and run the device. If everything is correctly configured you should
see screens showing various object (primitives) such as rainbow objects and embedded images.

:Choose
The MPLABX project for the LCC board with the PIC32 USB starter kit II (PIC32MX795F512L)

3

Observe that the only time the CPU is interrupted from performing tasks in an LCC environment is dur-
ing the DMA ISR. The ISR only takes on average around 60-70 clock cycles. Also observe how easy of
an interrupt routine it is for handling such a complex task.

Open maindemo.c which can be found in the Lab 1 Sol folder. Try changing some of the

SetColor(XXXXX); macros to another color such as:

BRIGHTBLUE

BRIGHTRED

BRIGHTGREEN

WHITE

BLACK

And see how this effects the demo.

Compile the project and program the device. Hit run
Try and see the change you made to the demo..

Did the Primitive Layer Demo appear on your LCD display? If it did, you have now completed Lab 1.
Great Job!

GFX

4-4

Results

You have just learned how to setup a “virtual” display controller and the steps that are involved. This
method takes a seemingly complex problem, breaks it down into its proper steps, and displays the im-
age on an LCD display panel.

Code Analysis

The simple initiation routine that you created does many things. First off it creates a communication
channel from the PIC to the display. Next, it sets up the graphics frame starts the continuous DMA trans-
fer. It then runs the Primitive Layer Demo found in Microchips MAL to ensure the controller is running
properly.

Conclusions

Having learned how to setup a DMA and PMP peripheral to act as a display controller, you are now
ready to start creating applications. This cost effective solution helps keep all tasks on one processor
while still supplying most of the needs of a graphics controller. It is hard to complain when having a
graphics controller with plenty of MIPs left for other purposeful application space.

GFX

A-1

Appendix A
MPLAB® X IDE Quick Reference Guide

Table of Contents
1. Managing Projects

1.1 How to open a project…………. A-3
1.2 How to add existing files to a project A-4
1.3 How to create new files in a project A-5
1.4 How to remove a file from a project A-7
1.5 How to permanently delete a file A-7
1.6 How to save a file or project A-7
1.7 How to close a project A-8
1.8 How to modify project settings (choose debug tool, build tool, etc.) A-8

2. Building Projects
How to build a project A-9
How to build and run a project with a debugger A-9
How to build and run a project without a debugger A-10

3. Debugging Projects

How to set or change the debugger A-11
How to control program execution when debugging A-12
How to set and clear breakpoints A-12
How to use the Stopwatch A-13
How to display and use Watches A-14
How to view Embedded Memory (SFRs, RAM, Flash, EEPROM and Configuration bits) A-15

GFX

A-2

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, KEELOQ, KEE-
LOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC32 logo, rfPIC and UNI\O
are registered trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV,
MXLAB, SEEVAL and The Embedded Control Solutions Company are regis-
tered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM,
dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense,
HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM,
MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Genera-
tion, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, fLAB,
Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and
ZENA are trademarks of Microchip Technology Incorporated in the U.S.A.
and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective
companies.

© 2011, Microchip Technology Incorporated

Information contained in this publication regarding device applications
and the like is provided only for your convenience and may be superseded
by updates. It is your responsibility to ensure that your application meets
with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND HETHER EXPRESS OR IMPLIED, WRITTEN OR
ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORM-
ANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims
all liability arising from this information and its use. Use of Microchip
devices in life support and\or safety applications is entirely at the buyer’s
risk, and the buyer agrees to defend, indemnify and hold harmless Micro-
chip from any and all damages, claims, suits, or expenses resulting from
such use. No licenses are conveyed, implicitly or otherwise, under any
Microchip intellectual property rights.

This appendix is intended to be a supplement to lab manuals supplied with a Microchip Technical Training class. Although
it may be useful on its own, it is not intended to provide complete instructions for using all aspects of the MPLAB X Inte-
grated Development Environment. For more detailed information on the use of MPLAB X IDE, please consult one of the
following Microchip Technical Training classes (for additional details, see http:\\www.microchip.com\RTC):
TLS0101—Getting Started with MPLAB X IDE
TLS0999—Transitioning to MPLAB X IDE for users of MPLAB IDE version 8
Or consult the Microchip Developer’s Help Center at http:\\microchip.wikidot.com\mplab:_start

3

Unlike some other IDEs, there is no single icon you can double click on from your
operating system’s file manager. MPLAB X Projects must be opened from within
the IDE.

Section 1.1

How to open a project

There are several methods you can use to launch the Open Project dialog:
Method 1:
Click on the Open Project icon on the main toolbar:
Method 2:
From the menu, select File  Open Project
Method 3:
Using the keyboard: Ctrl Shift O

Navigate to the project’s directory and select the directory itself, which is
represented by a chip icon instead of the usual folder. In MPLAB X IDE, there
is no single project document, so the project’s directory is used to represent
the project in the Open Project dialog.

Click on the Open Project button. You should now see a populated project
tree in the IDE (you may need to click on the ‘+’ next to the chip icon to ex-
pand the subfolders.

In most Microchip Technical
Training classes, projects are
stored in the following directory:

..\RTC\classcode
where classcode is specified in
the presentation or lab manual.

Information

Figure 1.1.1
An Open Project dialog showing
three projects in the TLS0999 direc-
tory

Figure 1.1.2
A populated project tree after open-
ing a project

1. Managing Projects

4

Section 1.2

How to add existing files to a project

Right click on the logical folder in the project tree (e.g. Source Files, Header
Files, etc.) where you wish to add the file(s) and select Add Existing Item…
from the popup menu.

Figure 1.2.1
Popup menu displayed after right
clicking on the Source Files logical
folder in the project tree

The Select Item dialog box will open and display the contents of your project
directory. Select one or more files (Ctrl + click to select additional files).

In most cases you can leave the Store path as: radio buttons set to Relative,
but you may select Auto or Absolute if required for your project.
Relative: Stores paths to files relative to the project directory. For example:
\Lab1.c, or ..\OtherDirectory\Somefile.c
Relative is usually the best choice for files inside your project directory.
Absolute: Stores paths to files with full path from root directory. For exam-
ple: ..\RTC\TLS0999\Lab1\Lab1.c
Absolute is the best choice for files outside your project directory that won’t
be moved such as code shared among several projects or libraries.
Auto: Automatically uses Relative for files inside the project directory and
Absolute for files outside of the project directory.

Click the Select button. You should now be able to expand
the selected logical folder in the project tree and see that
the files have been added to your project.

Figure 1.2.2
The Select Item dialog

Attention

Do not select Add Existing Items
from Folders… as this will dump eve-
rything from the directory you
choose into the selected logical
folder.

5

Figure 1.3.1
New file popup menu

Section 1.3

How to create new files in a project

Method 2:
Click on the New File icon on the main toolbar:
Method 3:
From the main menu select File  New File...
Method 4:
Using the keyboard:

If you chose method 1 above, skip to step 3. If you chose one of the other
methods above, you will be presented with the screen shown in Figure A.6
below. In the New File dialog, select the type of file you wish to create. Any
file created under the Microchip Embedded category or an Empty File from
the Other category will be automatically added to the project tree. Other
file types may need to be added manually.
Click the Next > button after you have made your selection.

You can create a “main” file any-
time you like and just delete the
code that is automatically in-
serted to make it a regular C file.

Information

Figure 1.3.2
New File wizard—Choose File Type

There are three methods you may use to launch the new file wizard:
Method 1:
Right click in the Projects window and select New  file-type from the popup
menu:

Ctrl N

The dialog now prompts you for a file name and potentially a file type de-
pending on your initial selection. It also prompts you for a folder. You can
leave this blank and the IDE will automatically create the file inside your pro-
ject directory. If you wish to locate the file elsewhere, click on the Browse…
button and choose a different location.
If you chose Empty File as the new file type, you will see the dialog in Figure
A.7 on the next page.
If you chose one of the types under the Microchip Embedded category, you
will see a dialog like the one in Figure A.8 on the next page.

6

Figure 1.3.3
New Empty File Dialog

Figure 1.3.4
New Main File Dialog (Microchip
Embedded category)

Attention

You must specify a file extension (e.g.
myNewFile.c) as part of the File
Name if you want the file to be
added to the project tree automati-
cally into the correct logical folder.

It is not necessary to specify the
file extension as part of the file-
name as long as the correct ex-
tension is selected below.

Information

After providing all of the required information, click the Finish button. You
should now see the new file in the project tree. If you don’t see it, you may
need to add the file to the project (see page A-4)

Figure 1.3.5
Project tree with newfile.c and new-
mainp24f.c added to the project.

7

Section 1.4

How to remove a file from a project

Right click on the file you wish to remove and select from the popup menu
Remove From Project

Figure 1.4.1
Project right click menu with Re-
move From Project selected

Section 1.5

How to permanently delete a file

Select a file in the project tree and press

This will permanently delete the file from you system in addition to removing
it from the project. The file will not be recoverable from the Trash.

Delete

Figure 1.5.1
Confirm delete dialog. This will be
your only warning.

DANGER!

DO NOT use the Delete key to simply
remove a file from your project. This
will also PERMANENTLY DELETE the
file from your hard drive. It will not
be recoverable from the Trash folder.

Section 1.6

How to save a file or project

The entire project along with all of its files are saved automatically each time
you build your code. However you may explicitly save the project and all its
files using one of two methods.
Method 1:
Click the “double floppy disk” icon in the toolbar:
Method 2:
From the main menu select File  Save All

Though it is not usually necessary to just save a single file, you can do so by
selecting the file in the editor and then from the main menu File  Save.

8

Section 1.7

How to close a project

There are two methods you can use to close a project:
Method 1:
Right click on the top node of the project in the project tree (the chip icon)
and select Close from the popup menu (about 2\3 of the way down).
Method 2:
From the main menu, select File  Close Project (project name)
where project name is the name of the project you wish to close—there may
be multiple similar menu items if you have more than one project open in
the IDE.

Section 1.8

How to modify project settings

There are three ways to access a project’s settings:
Method 1:
Right click on the top node (chip icon) of a project in the project tree and
select Properties at the very bottom of the long popup menu.

Method 2:
From the main menu select File  Project Properties (project name)
Method 3:
If the Project Environment window is open (bottom left corner by default),
you can click on the “wrench and bolt” icon in its left margin.

Project Properties

From here you can select a different device, debug tool or build tool and you
can modify any of their settings. When choosing a new tool, click the Apply
button to make it show up in the tree on the left side.

Figure 1.8.1
The top node of a project in the pro-
ject tree

Figure 1.8.2
Project Properties button in the Pro-
ject Environment window.

9

2. Building Projects

Section 2.1

How to build a project

There are two ways to access these two build types:
From the Main Toolbar:

There are several ways to build a project in MPLAB X depending on what you
intend to do with the results. This method is only used to see the results of a
build or to produce a release mode hex file.

There are two different types of build you can do:
Build:
This will build only the files in your project that have changed since the last
build or it will build everything if nothing has been built previously. It will
generally be faster to use this type of build, especially for larger projects.
Clean and Build:
This will remove any intermediate files generated by the previous build and
will build every file in your project regardless of whether or not it has
changed since the last build to ensure a full, clean build.

Build

Clean and Build

Alternatively, you can right click on the top node of a project (chip icon) in
the project tree and select either Build or Clean and Build from the popup
menu.

Make in MPLAB IDE 8

Build All in MPLAB IDE 8

Section 2.2

How to build and run a project
with a debugger

When you want to build a project for the purpose of programming a target
to run with a debugger like the MPLAB® ICD 3 or REAL ICE, this is the method
to use.

There are three ways to build and run your code through a debugger:
Method 1:
Click on the Debug Project button on the main toolbar
Method 2:
 Right click on the top node of the project (chip icon) in the project tree and
select Debug from the popup menu.
Method 3:
From the main menu, select Debug  Debug Project (project name)

This will perform the following tasks automatically:
a. a. Build (make) project in debug mode
b. b. Program target (unless using simulator)
c. c. Run code on target

The Build and Clean and Build
functions are not intended for
use before Run Project, Debug
Project or Make and Program
Target. All three of those func-
tions automatically do a build
before performing further steps.
No harm will be done by using
Build or Clean and Build first, but
it will be a duplication of effort
and will waste time.

Information

It is not necessary to do a Build or
Clean and Build before doing a
Debug Project because a build
will be done automatically.

Information

10

Section 2.3

How to build and run a project
without a debugger

When you want to build a project for the purpose of programming a target
to run without a debugger, this is the method to use.

There are three ways to build and run your code on a target:
Method 1:
Click on the Run Project button on the main toolbar
Method 2:
 Right click on the top node of the project (chip icon) in the project tree and
select Run from the popup menu.
Method 3:
From the main menu, select Run  Run Project (project name)

This will perform the following tasks automatically:
a. a. Build (make) project in release mode
b. b. Program target
c. c. Run code on target

It is not necessary to do a Build or
Clean and Build before doing a
Run Project because a build will
be done automatically.

Information

11

3. Debugging Projects

Section 3.1

How to set or change the debugger

Open the project properties window (see page A-8 “How to modify a pro-
ject’s settings” for details)

In the center column under “Hardware Tool”, click on the serial number un-
der the name of the tool you wish to use. If choosing the simulator, just
click on “Simulator” since no serial number is associated with it. Some tools
do not provide a serial number. In that case, click on the text right below
the name of the tool (see PICkit 2 in the figure below for an example).

Click on the Apply button after you make your selection and you should see
the selected tool in the tree of the left column.

Figure 3.1.1
Selecting a hardware tool in the
Project Properties window

Figure 3.1.2
Changing a hardware tool in the
Project Properties window

Clicking on the tool in the tree of the left column will display the tool’s prop-
erties in the right side of the window, where you can modify them to suit
your project’s needs. Click OK when finished.

12

Section 3.3

How to set and clear breakpoints

Standard line breakpoints may be set or cleared by clicking on the line num-
ber in the glyph margin.

Figure 3.3.1
Setting \ clearing a breakpoint

More advanced breakpoint features may be accessed by opening the break-
points window. From the main menu select Window  Debugging  Break-
points.
In the breakpoint window, right click on a breakpoint in the list and select
Customize or Complex Breakpoint from the popup menu for advanced op-
tions.

Section 3.2

How to control program execution
when debugging

Finish Debug Session (Shift + F5)
This is required before you make any changes to your project settings
or source code.

Pause

Reset

Continue (F5)

Step Over (F8) - Execute each line without stepping into functions
(functions are executed without stepping through each line)

Step Into (F7) - Execute each line and step into functions

Run to Cursor (F4)

Set PC at Cursor

Focus Cursor at PC

Debug Toolbar Buttons

Additional functions may be found in the Debug menu.

When you hover the mouse
pointer over a toolbar button a
tool tip will be displayed explain-
ing the function of the button.

Information

13

Run your code. The cycle count will be displayed each time you hit one of
the selected breakpoints. The Trash icon in the margin will reset the cycle
count.

Section 3.4

How to use the stopwatch

From the main menu select Window  Debugging  Stopwatch

In the stopwatch window, click on the Properties button in its margin.

Properties

Select existing breakpoints for the start and stop conditions

Figure 3.4.1
Stopwatch properties button

Figure 3.4.2
Stopwatch properties window

Figure 3.4.3
Stopwatch displaying results from
the starting and ending breakpoints

14

Section 3.5

How to display and use Watches

From the main menu select Window  Debugging  Watches or from the
keyboard press Alt Shift 2

The Watches window should appear as a new tab near the Output window
in the bottom center of the IDE. There are three ways to add a watch value:
Method 1:
Double click on the first empty line in the Name column and type in the
name of the variable\register

Method 2:
Double click on a variable or register name in the editor to select it. Then
left click and drag it to the Watches window.

Method 3:
Right click on a variable\register name in the editor or on a new line in the
Watches window and from the popup menu select New Watch… , then in
the window that opens, enter the desired variable\register name in the text
box or select it from the list by choosing Global Symbols or SFRs

Figure 3.5.1
Adding a watch variable directly to
the watches window

Figure 3.5.2
Dragging a variable from the editor
to the watches window

Figure 3.5.3
New Watch dialog box

Figure 3.5.4
Changing the Value display format

To change the display value, right
click on an entry in the Value col-
umn and select Display Value As
from the popup menu.

Information

Watch variables may be sorted by
clicking on the Name column.

Information

15

Section 3.6

How to view Embedded Memory
(RAM, SFRs, Flash, EEPROM or Configuration Bits)

From the main menu select Window  PIC Memory Views  Memory View n
where n is a value from 1 through 4. It doesn’t matter which one you
choose initially as they are all identical and configurable.

A new tab will open by default in the bottom center part of the IDE. At the
bottom left of this window is a combo box labeled “Memory” that is used to
configure this window to display any valid memory type for the currently
selected device.

Figure 3.6.1
PIC Memory Views menu item

Figure 3.6.2
PIC Memory View showing File Reg-
isters with other options in the
Memory combo box

The Format combo box at the
bottom right of the memory view
window is different for each
memory type, but will configure
the display in a variety of numeric
and symbolic formats.

Information

16

