
1

1

Designing with
Microchip’s Graphic Library

Lab Manual

HIF 2131A

2

Hardware
Special Instructions for Hardware Setup

When running the code on PIC24F device using Graphics PICtail V3:

Procedure to prepare firmware for correct hardware
platform.

Each lab directory will contain a file named HardwareProfile.h. The appropriate hardware profile should
be included in the code. This is set in this file. The following instructions outline the steps to set the cor-
rect hardware profile for your chosen hardware.

To run code using PIC24FJ256DA210 Development Board with the 3.2 inch Truly Display: In the direc-
tory of the current hands on lab open the HardwareProfile.h file and look for the following lines. Uncom-
ment the #include line that will load the hardware profile for Truly display.
NOTE: Only one uncommented line will be used in each section.

HardwareProfile.h

#if defined (__PIC24F__) || defined(__dsPIC33F__) || defined(__PIC24H__)

#if defined (__PIC24FJ256DA210__)
/**
* Hardware Configuration for
* PIC24FJ256DA210 Development Board (DM240312)
***/
/* -- */
/* To use Graphics Display Truly 3.2" 320x240 Board (AC164127-4) */
/* with TFT-G240320LTSW-118W-E display panel */
/* -- */
#include "Alternative Configura-
tions\HardwareProfile_PIC24FJ256DA210_DEV_BOARD_16PMP_MCHP_DA210_TFT_G240320LTSW_118W_E.h"

/* -- */
/* To use Graphics Display Powertip 4.3" 480x272 Board (AC164127-6) */
/* with PH480272T-005-I11Q display panel */
/* -- */
//#include "Alternative Configura-
tions\HardwareProfile_PIC24FJ256DA210_DEV_BOARD_16PMP_MCHP_DA210_PH480272T_005_I11Q.h"

#else
...

1

2

Graphics PICTail Version 3 PIC24FJ256DA210 Development Board

3

3

To run code using Explorer 16 with a PIC24FJ128GA010 with the 3.2 inch Truly Display: In the directory
of the current hands on lab open the HardwareProfile.h file and look for the following lines. Uncomment
the #include line that will load the hardware profile for Truly display.

HardwareProfile.h

#if defined (__PIC24F__) || defined(__dsPIC33F__) || defined(__PIC24H__)

#if defined (__PIC24FJ256DA210__)
...
/**
* Hardware Configuration for
* PIC24FJ256DA210 Development Board (DM240312)
***/
/* -- */
/* To use Graphics Display Truly 3.2" 320x240 Board (AC164127-4) */
/* with TFT-G240320LTSW-118W-E display panel */
/* -- */
#include "Alternative Configura-
tions\HardwareProfile_PIC24FJ256DA210_DEV_BOARD_16PMP_MCHP_DA210_TFT_G240320LTSW_118W_E.h"

/* -- */
/* To use Graphics Display Powertip 4.3" 480x272 Board (AC164127-6) */
/* with PH480272T-005-I11Q display panel */
/* -- */
//#include "Alternative Configura-
tions\HardwareProfile_PIC24FJ256DA210_DEV_BOARD_16PMP_MCHP_DA210_PH480272T_005_I11Q.h"

#else
/**
* Hardware Configuration for
* Explorer 16 (DM240001)
***/
/* -- */
/* To use Graphics Display Truly 3.2" 320x240 Board (AC164127-4) */
/* with TFT-G240320LTSW-118W-E display panel */
/* -- */
#include "Alternative Configura-
tions\HardwareProfile_GFX_PICTAIL_V3_8PMP_SSD1926_TFT_G240320LTSW_118W_E.h"

/* -- */
/* To use Graphics Display Powertip 4.3" 480x272 Board (AC164127-6) */
/* with PH480272T-005-I11Q display panel */
/* -- */
//#include "Alternative Configura-
tions\HardwareProfile_GFX_PICTAIL_V3_8PMP_SSD1926_PH480272T_005_I11Q.h"

To run code using Explorer 16 with a PIC24FJ128GA010 with the 4.3 inch Powertip Display, Uncom-
ment the #include line that will load the hardware profile for Powertip display When using the 4.3” dis-
play, the application code in these labs will be skewed to the left side of the screen.

3

4

To run code using PIC24FJ256DA210 Development Board with the 4.3 inch Powertip Display, Uncom-
ment the #include line that will load the hardware profile for Powertip display

4

HardwareProfile.h

#if defined (__PIC24F__) || defined(__dsPIC33F__) || defined(__PIC24H__)
...
#else
#elif defined (__PIC32MX__)

/***
* Hardware Configuration for
* Explorer 16 (DM240001)
**/
/* -- */
/* To use Graphics Display Truly 3.2" 320x240 Board (AC164127-4) */
/* with TFT-G240320LTSW-118W-E display panel */
/* -- */
#include "Alternative Configura-
tions\HardwareProfile_GFX_PICTAIL_V3_8PMP_SSD1926_TFT_G240320LTSW_118W_E.h"
//#include "Alternative Configura-
tions\HardwareProfile_GFX_PICTAIL_V3_16PMP_SSD1926_TFT_G240320LTSW_118W_E.h"

/* -- */
/* To use Graphics Display Powertip 4.3" 480x272 Board (AC164127-6) */
/* with PH480272T-005-I11Q display panel */
/* -- */
//#include "Alternative Configura-
tions\HardwareProfile_GFX_PICTAIL_V3_8PMP_SSD1926_PH480272T_005_I11Q.h"
//#include "Alternative Configura-
tions\HardwareProfile_GFX_PICTAIL_V3_16PMP_SSD1926_PH480272T_005_I11Q.h"

5

6

To run code using Explorer 16 with a PIC32MX360F512L with 8-bit PMP interface (Graphics LCD Con-
troller PICtail™ Plus SSD1926 Board jumper JP2 set to parallel—8 Bit) and the 4.3 inch Powertip Dis-
play, Uncomment the #include line that will load the hardware profile for Powertip display

To run code using Explorer 16 with a PIC32MX360F512L with 16-bit PMP interface (Graphics LCD Con-
troller PICtail™ Plus SSD1926 Board jumper JP2 set to parallel—16 Bit) and the 4.3 inch Powertip Dis-
play, Uncomment the #include line that will load the hardware profile for Powertip display

To run code using Explorer 16 with a PIC32MX360F512L with 16-bit PMP interface (Graphics LCD Con-
troller PICtail™ Plus SSD1926 Board jumper JP2 set to parallel—16 Bit) and the 4.3 inch Powertip Dis-
play, Uncomment the #include line that will load the hardware profile for Powertip display

7

8

To run code using Explorer 16 with a PIC32MX360F512L with 8-bit PMP interface (Graphics LCD Con-
troller PICtail™ Plus SSD1926 Board jumper JP2 set to parallel—8 Bit) and the 3.2 inch Truly Display:
In the directory of the current hands on lab open the HardwareProfile.h file and look for the following
lines. Uncomment the #include line that will load the hardware profile for Truly display.

5

5

Procedure to set-up Graphics LCD Controller PICtail™
Plus SSD1926 Board.

When using the Graphics LCD Controller PICtail™ Plus SSD1926 Board, jumpers on the board must be
properly set.

Check that all the jumpers are set to the following positions:

• JP1 – don’t care, leave it open

• JP2 – set to PARALLEL – 8-Bit

• JP3 – set to RD1 – FLASH CS

6

When using the PIC24FJ256DA210 Development Board jumpers on the board must be properly set.

Check that all the jumpers are set to the following positions (text in bold are not default settings of the

board):

• JP8 – closed

• JP9 – set to 1 – 2

• JP10 – set to 1 – 2

• JP11 – set to 1 – 2

• JP12 – set to 2 – 4

• JP13 – set to RG8 – S1

• JP14 – set to RE9 – PAD2

• JP15 – set to RB5 – POT(RB5)

• JP17 – set to USART_RX – RX

• JP18 – set to USART_TX – TX

• JP23 – set to PMCS2 – SPI

• JP5, JP6 and JP7 – don’t care

When running the code on PIC24F device using Graphics PICtail V3:

Procedure to set-up PIC24FJ256DA210 Development
Board.

PIC24FJ256DA210 Development Board Jumpers

7

7

The PIC32 Ethernet Starter Kit contains everything needed to begin de-
velopment for Ethernet and USB Host/Device/OTG applications with the
PIC32 Microcontroller family.

PIC32 Starter Kit connector, which can be found on back side of Multimedia Expansion Board, can con-
nect with PIC32 Ethernet starter kits. It can connect with PC via standard A to mini B USB cable for de-
bugging and programming..The starter kit can be powered by USB.

Procedure to set-up PIC32 Ethernet Starter Kit and
����Multimedia Expansion Board

The Multimedia Expansion Board is an integrated yet flexible solution for
development of high impact User Interfaces. The board comes with a 3.2”
Color TFT touch-screen display and interfaces to any PIC32 Starter kit* .

HardwareProfile.h

 /***
 * Hardware Configuration for
 * Starter Kit
 * MultiMedia Development Board
 * Display TFT-G240320LTSW-118W-E
 **/
 //#include "Alternative Configura-
tions\HardwareProfile_MULTI_MEDIA_BOARD_DM00123_16PMP_PIC32_STK_SSD1926_TFT_G240320LTSW_118W_E.h"
 //#include "Alternative Configura-
tions\HardwareProfile_MULTI_MEDIA_BOARD_DM00123_16PMP_PIC32_USB_STK_SSD1926_TFT_G240320LTSW_118W_
E.h"
 #include "Alternative Configura-
tions\HardwareProfile_MULTI_MEDIA_BOARD_DM00123_16PMP_PIC32_ENET_STK_SSD1926_TFT_G240320LTSW_118W
_E.h"

 //#include "Alternative Configura-
tions\HardwareProfile_MULTI_MEDIA_BOARD_DM00123_8PMP_PIC32_STK_SSD1926_TFT_G240320LTSW_118W_E.h"
 //#include "Alternative Configura-
tions\HardwareProfile_MULTI_MEDIA_BOARD_DM00123_8PMP_PIC32_ENET_STK_SSD1926_TFT_G240320LTSW_118W_
E.h"
 //#include "Alternative Configura-

tions\HardwareProfile_MULTI_MEDIA_BOARD_DM00123_8PMP_PIC32_USB_STK_SSD1926_TFT_G240320
LTSW_118W_E.h"

To run code using Multimedia Expansion Board with PIC32 Ethernet Starter Kit with a
PIC32MX795F512L with 16-bit PMP interface.

8

The Microchip name, logo, The Embedded Control Solutions Company, PIC, PICmicro, PICSTART, PICMASTER,
PRO MATE, MPLAB, SEEVAL, KEELOQ and the KEELOQ logo are registered trademarks, In-Circuit Serial Programming,

ICSP, microID, are trademarks of Microchip Technology Incorporated in the USA and other countries.
Windows is a registered trademark of Microsoft Corporation.

SPI is a trademark of Motorola.
I2C is a registered trademark of Philips Corporation.

Microwire is a registered trademark of National Semiconductor Corporation.
All other trademarks herein are the property of their respective companies.

 © 2008 Microchip Technology Incorporated. All rights reserved.
“Information contained in this publication regarding device applications and the like is intended through suggestion only and may be super-
seded by updates. No representation or warranty is given and no liability is assumed by Microchip Technology Inc. with respect to the accu-
racy of such information, or infringement of patents arising from any such use of otherwise. Use of Microchip’s products as critical compo-
nents in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or

otherwise, under any intellectual property rights.”

HIF 2131A

 1-1

Lab Exercise 1
Creating a Splash Screen

Purpose

Requirements

Objectives

Development Environment: MPLAB
®
 v8.60 or newer

Software: Microchip Graphics Library v2.10
 Graphics Resource Converter
C Compiler: MPLAB

®
 C Compiler for PIC24 and dsPIC OR

 MPLAB
®
 C Compiler for PIC32

Hardware Tools: Explorer 16 with PIC24FJ128GA010 or PIC32MX360F512L PIM and
 Graphics LCD Controller PICtail™ Plus SSD1926 Board or
 PIC24FJ256DA210 Development Board
 MPLAB

®
 Real ICE or MPLAB

®
 ICD3 Debugger

Lab files on class PC: C:\...\Lab1…

In this first lab, you will create a Splash Screen for our GUI. The Graphics Resource Converter tool will be
used to generate font and bitmap image files for use in this project. You will learn how to integrate the gener-
ated font and image files into your project. Additionally, you will learn to use some of the basic drawing shapes
and attributes that come with the library. We will be working in the Lab1.c file included in the Lab 1 project. For
your convenience, a full solution is provided in class folder.

1) Using the Graphics Resource Converter, convert bitmap and font into structures the Graphics Library can
use.

2) Write a program that will use the converted bitmaps and fonts along with a variety of primitive shapes to cre-
ate and display the splash screen shown below.

Touchscreen and erase animation functions have been provided so that at the completion of this lab you will be
able to touch the screen to display a new string.

Logo bitmap file (mchpLogo.bmp)

Text string using DoulosSILR
true type font

Drawings using primitive layer
functions

HIF 2131A

1-2

A

Procedure

C:\...\Lab1

Then, open Lab 1 by selecting from the menu:

File ���� Open Workspace...and opening the workspace file appropriate for you development board
setup located at:

If you still have a previous project open, you must first close it by selecting from the menu:

File ���� Close Workspace

To verify your setup, compile the project and program the microcontroller.

Choose:
Lab1 Ex 16 PIC24 Truly 3.2.mcw for the Explorer 16 with PIC24FJ128GA010 PIM or ...
Lab1 DA210 Truly 3.2.mcw for the PIC24FJ256DA210 Development Board or...
Lab1 Ex 16 PIC32 Truly 3.2.mcw for the Explorer 16 with PIC32MX360F512L PIM

Build All
Debug / Release

Select Release mode. Click on the Build All button.

If no errors are reported, click

on the Program button.

Program

Select the programmer by selecting from the menu:

Programmer Programmer Programmer Programmer ���� Select Programmer Select Programmer Select Programmer Select Programmer ���� MPLAB® ICD 3 MPLAB® ICD 3 MPLAB® ICD 3 MPLAB® ICD 3 or REAL REAL REAL REAL

Some of the graphics boards may
require touchscreen calibration.
Please complete the calibration
procedure following instructions on
the LCD panel to insure correct
operation throughout the labs. If
necessary, you may manually en-
ter the calibration mode by holding
switch S3 (for Explorer 16) or S1
(for PIC24FJ256DA210 Dev
Board) as you press and release
MCLR.

HIF 2131A

 1-3

If your set up is correct, you will see this screen.

What you see on the screen is a 16
bpp bitmap stored in a 160 x 120
pixel format. To display the image
over the full screen width, we speci-
fied the IMAGE_X2 stretch factor in
the PutImage API.

To begin, we will replace the Silicon Desert portion of the image shown above with a Microchip logo. To
do this, you must first transform the logo bitmap file to a usable format using the Bitmap and Font con-
version tool. Launch the tool using:

C:\...\Graphics Resource Converter v2.10 C:\...\Graphics Resource Converter v2.10 C:\...\Graphics Resource Converter v2.10 C:\...\Graphics Resource Converter v2.10 ���� Graphics Resource Converter.exeGraphics Resource Converter.exeGraphics Resource Converter.exeGraphics Resource Converter.exe

Load the bitmap file mchpLogo.bmp by clicking Add Images Add Images Add Images Add Images in the tool.
Verify that image size is 202x100 pixels and color depth is 4 bpp. Also verify the label reads mchpLogo.

For PIC24, set the build to C30.
For PIC32, set the build to C32.

Click ConvertConvertConvertConvert.

Save file as type “Array in Internal Flash.c”Save file as type “Array in Internal Flash.c”Save file as type “Array in Internal Flash.c”Save file as type “Array in Internal Flash.c”
Save converted File to : C:\...\Lab1\NewIntro.cSave converted File to : C:\...\Lab1\NewIntro.cSave converted File to : C:\...\Lab1\NewIntro.cSave converted File to : C:\...\Lab1\NewIntro.c

4

5

6

Bitmap File Path:Bitmap File Path:Bitmap File Path:Bitmap File Path:

C:\...\BitmapsC:\...\BitmapsC:\...\BitmapsC:\...\Bitmaps
mchpLogo.bmpmchpLogo.bmpmchpLogo.bmpmchpLogo.bmp

4

DO NOT CLOSE THE CONVERTER. WE WILL USE IT AGAIN IN THE NEXT STEP.

If you select the wrong build option for your
project, you will get compiler errors later.

HIF 2131A

1-4

A

9

10

11

Font Source Path:Font Source Path:Font Source Path:Font Source Path:

C:\...FontsC:\...FontsC:\...FontsC:\...Fonts
DoulosSILR.ttfDoulosSILR.ttfDoulosSILR.ttfDoulosSILR.ttf

7

Highlight the mchpLogo and click remove. Now, we will convert the font we wish to use for this project.

Click Add Fonts Add Fonts Add Fonts Add Fonts in the converter and navigate to the DoulosSILR.ttf DoulosSILR.ttf DoulosSILR.ttf DoulosSILR.ttf file.

In the Set Font Style window, select:

1. Size set to 12
2. Weight set to NORMAL
3. Range set to (32-127)
4. Script set to Western
5. Click OK.

Rename the DoulosSILR DoulosSILR DoulosSILR DoulosSILR font to MyNewFont MyNewFont MyNewFont MyNewFont by double clicking the label field.

9

For PIC24, set the build to C30.
For PIC32, set the build to C32.

Click ConvertConvertConvertConvert.

Save file as type “Array in Internal Flash.c”Save file as type “Array in Internal Flash.c”Save file as type “Array in Internal Flash.c”Save file as type “Array in Internal Flash.c”
Save converted File to : C:\...\Lab1\NewFont.cSave converted File to : C:\...\Lab1\NewFont.cSave converted File to : C:\...\Lab1\NewFont.cSave converted File to : C:\...\Lab1\NewFont.c

Click QuitQuitQuitQuit to exit the Graphics Resource Converter tool.

If you do not remove the bitmap image,
both image and font will exist in the con-
verted file. That’s ok; however, if you
follow this lab step by step, you will get a
compiler error in step 19 because you’ll
end up with 2 image structures

If you select the wrong build option for your
project, you will get compiler errors later.

You may limit the size of your
font structure by limiting the

character range. For instance, if
you will only use lower case letters,
change the range to 97-122.

11

10

HIF 2131A

 1-5

Both our image and font source files have been successfully converted. The next step is to add the con-
verted files into the Lab 1 project. In the MPLAB® project window, add the files to the project by right
clicking source files, then select Add Files from the drop down menu. Alternatively, you may select Pro-Pro-Pro-Pro-
ject ject ject ject ���� Add Files to Project ... Add Files to Project ... Add Files to Project ... Add Files to Project ... from the menu bar.

From the Lab 1 directory, select NewFont.c, NewFont.h,NewFont.c, NewFont.h,NewFont.c, NewFont.h,NewFont.c, NewFont.h, NewIntro.c, and NewIntro.h NewIntro.c, and NewIntro.h NewIntro.c, and NewIntro.h NewIntro.c, and NewIntro.h then click open.

Selecting Project Project Project Project ► Add New File to Project ... Add New File to Project ... Add New File to Project ... Add New File to Project ... from the menu
will effectively erase the selected files. If this happens, please let
the instructor know and we will restore the library files.

Since we no longer need the Pictures.c (or Pictures32.c) file, please remove it from
the project. To do so, highlight the file then right click to select “Remove File”. Alter-
natively, once the file is highlighted, you may hit the delete key. If using PIC24, fail-
ure to remove this file will result in a linker error indicating you need the large code

HIF 2131A

1-6

A

The colors named below have been defined in the driver header file:

BLACK BRIGHTBLUE BRIGHTGREEN BRIGHTCYAN

BRIGHTMAGENTA BRIGHTRED BRIGHTYELLOW BLUE

GREEN CYAN RED MAGENTA

BROWN LIGHTGRAY DARKGRAY LIGHTBLUE

LIGHTGREEN LIGHTCYAN LIGTHRED LIGHTMAGENTA

YELLOW WHITE GRAY0 GRAY1

GRAY2 GRAY3 GRAY4 GRAY5

Reference Information

using the RGB565Convert(R,G,B) macro. You’ll need to provide values for Red, Green, and

Blue intensity levels as an 8-bit integer value with 255 being maximum intensity. For example:

#define ORANGE RGB565Convert(255, 127, 0)

will create a color with the name ORANGE.

We are now ready to begin writing our program. To keep it simple, you will simply modify the Lab 1
code as instructed in the following steps. We begin by declaring the font and bitmap structures.

On line 90, change the image name to mchpLogo

On line 95, add a declaration statement to declare MyNewFont as an extern FONT_FLASH type.

On line 276, locate the StartScreen() function. In this function we will write the necessary code to dis-
play our new splash screen. We will compile and program several times in this process.

Starting on line 289, insert code to set the screen background color to white. Note that the value
WHITE is a pre-defined color in the LCD driver header file.

SetColor Macro — Sets the current drawing color
#define SetColor(color)

ClearDevice Function — clears the screen with the current drawing color
void ClearDevice(void);

Step 17 Reference Information

// ### Your Code Here ### //### <--- Declare MyNewFont here ###

extern const FONT_FLASH GOLFontDefault; // Default GOL font.

16

extern const BITMAP_FLASH intro; //### <--- Change image name here ### 15

HIF 2131A

 1-7

Starting on line 291, change the code to replace the intro image with the mchpLogo image.
a. Comment out call to PutImage(…) API.
b. Insert code to calculate the x coordinate for the new image such that the logo will be centered hori-

zontally on the screen. HINT: (Maximum Screen Width - Image Width) / 2 will give the horizontal
center point. Store the result in x_image variable.

c. Insert code to display the image on the screen at position (x, y) = (x_image, 10) using a NORMAL
stretch factor. Where x is the left position and y is the top value. HINT: Use PutImage(…) API with
image name mchpLogo.

GetMaxX() Macro — Returns the maximum horizontal screen value
#define GetMaxX()

GetImageWidth Function — Returns the image width
SHORT GetImageWidth(void* bitmap);

PutImage Function — Displays the image starting from the left, top coordinates
void PutImage(SHORT left, SHORT top, void* bitmap, BYTE stretch);
Valid values for stretch are IMAGE_X2 and IMAGE_NORMAL.

Step 18 Reference Information

Compile the project and program the device. Verify that your image is shown in the expected location.

Build All Program

19

If all went well, you will see the following on your screen.

HIF 2131A

1-8

A

Starting on line 298, insert code required to display a pre-defined string stored in text[]. The
string should be BRIGHTRED, use MyNewFont, and positioned in the horizontal center at y=120.
a. Set the current color to BRIGHTRED (a predefined color value).
b. Set the font image to MyNewFont.
c. Insert code to calculate the x coordinate for the string such that the string will be centered horizon-

tally on the screen. HINT: (Max X—String Width) / 2 will give the horizontal center point. Store the
result in x_text variable.

d. Insert code to display text[] on the screen using coordinates x_text, 120. HINT: OutTextXY(…)

SetColor Macro — Sets the current drawing color
#define SetColor(color)

SetFont Function — Sets the current font used in OutTextXY(), OutText(), and OutChar() functions.
void SetFont(void* font);

GetMaxX() Macro — Returns the maximum horizontal screen value
#define GetMaxX() (SCREEN_HOR_SIZE—1)

GetTextWidth Function — Returns the width of the specified string using the specified font.
SHORT GetTextWidth(XCHAR* textstring, void* font);

OutTextXY Function — Displays a null terminated string of characters starting at given x,y position.
WORD OutTextXY(SHORT x, SHORT y, XCHAR* textstring);
This function uses the current active font.

Step 21 Reference Information

For non-blocking configurations, OutTextXY() may return control to the program if the dis-
play is busy. When this happens, a 0 is returned and OutTextXY(..) must be called again to
continue outputting the string. For blocking configurations, this function always returns a ‘1’.

Compile the project and program the device.
Verify that your image and strings are displayed in the expected locations.

Make Program

21

If all went well, you will see this on your screen.

HIF 2131A

 1-9

Your final task is to draw a couple of shapes on the bottom of the screen using primitive APIs. The other
shapes are already pre-coded for your reference.

Starting on Line 305 in Lab1.c, insert code to display a BRIGHTGREEN filled box at location:
left = 44, top = 155, right = 88, bottom = 199. NOTE: BRIGHTGREEN is a defined color.

Starting on Line 308 in Lab1.c, insert code to display a BRIGHTYELLOW unfilled circle at
location: x = 241, y = 177 with a radius = 22. NOTE: BRIGHTYELLOW is a defined color.

SetColor Macro — Sets the current drawing color
#define SetColor(color) _color = color //color coded in 5:6:5 RGB Format

Bar Function — Draws a bar given left, top, right, bottom corners using the current color.
void Bar(SHORT left, SHORT top, SHORT right, SHORT bottom);

Circle Macro — Draws a circle with the given center and radius using the current color.
#define Circle(x, y, radius) Bevel(x, y, x, y, radius)
NOTE: x, y, and radius are of SHORT type.

The Bar() and the Circle() APIs will return a 1 when the primitive is successfully drawn on the screen.
If the USE_NONBLOCKING_CONFIG option is enabled, the primitive functions may return even if it
has not drawn the primitive completely. To force the rendering recursively call the functions until they
return a 1. Example: while(!Bar(x1,y1,x2,y2));

Step 22-23 Reference Information

On line 278 in Lab1.c, display the other shapes by turning on the compiler switch.

Compile the project and program the device.
Verify that your splash screen matches the expected results shown on page 1-1.

Make Program

Touch the screen.
Did the surprise phrase change? If it did, you have now completed Lab 1. Great Job!

25

HIF 2131A

1-10

A

Results

You have just learned how to integrate images and fonts to your application with the Graphics Library.
Also you have learned how to implement primitive rendering functions and control the global level draw-
ing attributes such as color, line type, line size and fonts used. If you finish early, you can try out the
various other primitive functions found in the Graphics Library Help file.

Code Analysis

The simple application that you have modified implements a touch screen module and uses primitive
rendering functions to draw a simple splash screen. Each primitive function is affected by the global
drawing attributes such as line type, line size and color. For texts, the font and current color settings
affect the way the text appears on the screen.

Conclusions

Having learned how to use the Primitive Layer of the Graphics Library you are now ready to move up-
ward to the next layer and learn the Graphic Object Layer that implements the Widgets. This gets you
closer to fully integrating your application with a graphical solution. The next lab will give you a introduc-
tion to the Graphics Object Layer and use the Widgets that come with the library. Since the widgets in
the Graphics Object layer call upon the primitive layer functions, you are now armed and ready to create
your own widgets. An app note on this topic will be out soon.

HIF 2131A

2-1

Lab Exercise 2
Creating Widgets

Purpose

Requirements

 Objectives

Development Environment: MPLAB® v8.50 or newer
Software: Microchip Graphics Library v2.10
 Graphics Resource Converter
C Compiler: MPLAB

®
 C Compiler for PIC24 and dsPIC OR

 MPLAB
®
 C Compiler for PIC32

Hardware Tools: Explorer 16 with PIC24FJ128GA010 or PIC32MX360F512L PIM and
 Graphics LCD Controller PICtail™ Plus SSD1926 Board or
 PIC24FJ256DA210 Development Board
 MPLAB

®
 Real ICE or MPLAB

®
 ICD3 Debugger

Lab files on class PC: C:\...\Lab2...

Now that the splash screen is complete, we will create a simple menu for our application. In this lab you will
draw a few button and static text widgets. Our focus in this lab is exploring widget creation and drawing APIs.
As such, touchscreen and side button inputs have been disabled. The next few labs will explore integration of
user and system inputs. For your convenience, a full solution is provided in
C:\...\Lab2\Lab2 Solution\.

• Use GOLCreateScheme() API to establish 2 color schemes.

• Use the appropriate ObjCreate(…) APIs to create:

• 3 Rounded buttons. One with text and Two with an image (no text).

• 3 static texts to label the buttons. One static text with frame to label the screen.

• Use GOLDraw() API to render the widgets to the display.

Expected Results

Static text with frame

Static texts w/o frames

Button with centered
text

Rounded Buttons with bitmaps

HIF 2131A

2-2

Procedure

C:\...\Lab 2

Then, open Lab 2 by selecting from the menu:

File ���� Open Workspace… and opening the workspace file appropriate for you development board
setup located at:

If you still have a previous project open, you must first close it by selecting from the menu:

File ���� Close Workspace

Choose:
Lab1 Ex 16 PIC24 Truly 3.2.mcw for the Explorer 16 with PIC24FJ128GA010 PIM or ...
Lab1 DA210 Truly 3.2.mcw for the PIC24FJ256DA210 Development Board or...
Lab1 Ex 16 PIC32 Truly 3.2.mcw for the Explorer 16 with PIC32MX360F512L PIM

The following colors have been defined in the driver layer of the Graphics Library:

Library Files Source Directory:

 C:\...\Microchip Graphics Library v2.10\Graphics

Library Files Includes Directory:

 C:\...\Microchip Graphics Library v2.10\Include\Graphics

To use widgets in our application, we must add their source and header files to our project. In the pro-
ject window, add the following source files to the project: GOL.c, Button.c, and StaticText.c GOL.c, Button.c, and StaticText.c GOL.c, Button.c, and StaticText.c GOL.c, Button.c, and StaticText.c

Add the following header files to the project: GOL.h, Button.h, and StaticText.h GOL.h, Button.h, and StaticText.h GOL.h, Button.h, and StaticText.h GOL.h, Button.h, and StaticText.h

WARNING! Selecting Project Project Project Project ► Add New File to Project ... Add New File to Project ... Add New File to Project ... Add New File to Project ... from
the menu will effectively erase the selected files. If this happens,
please let the instructor know and we will restore the library files.

BLACK BRIGHTBLUE BRIGHTGREEN BRIGHTCYAN

BRIGHTMAGENTA BRIGHTRED BRIGHTYELLOW BLUE

GREEN CYAN RED MAGENTA

BROWN LIGHTGRAY DARKGRAY LIGHTBLUE

LIGHTGREEN LIGHTCYAN LIGHTRED LIGHTMAGENTA

YELLOW WHITE SADDLEBROWN SIENNA

If you’d like to add your own colors, you may do so using the RGB565Convert() macro.

You’ll need to supply values for Red, Green, and Blue in that order. For example:
#define ORANGE RGB565Convert(255, 127, 0)
will create the color ORANGE.

HIF 2131A

2-3

GraphicsConfig.h

 86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108

/***
* Overview: To save program memory, unused Widgets or Objects can be
* removed at compile time.
*
***/
#define USE_GOL // Enable Graphics Object Layer.
#define USE_BUTTON // Enable Button Object.
//#define USE_WINDOW // Enable Window Object.
//#define USE_CHECKBOX // Enable Checkbox Object.
//#define USE_RADIOBUTTON // Enable Radio Button Object.
//#define USE_EDITBOX // Enable Edit Box Object.
//#define USE_LISTBOX // Enable List Box Object.
//#define USE_SLIDER // Enable Slider or Scroll Bar Object.
//#define USE_PROGRESSBAR // Enable Progress Bar Object.
#define USE_STATICTEXT // Enable Static Text Object.
//#define USE_PICTURE // Enable Picture Object.
//#define USE_GROUPBOX // Enable Group Box Object.
//#define USE_ROUNDDIAL // Enable Dial Object.
//#define USE_METER // Enable Meter Object.
//#define USE_TEXTENTRY // Enable TextEntry Object.
//#define USE_GRID // Enable Grid Object.
//#define USE_CHART // Enable Chart Object
//#define USE_CUSTOM // Enable Custom Control Object

Additionally, we must enable the widgets we wish to use in the GraphicsConfig.h GraphicsConfig.h GraphicsConfig.h GraphicsConfig.h header file. To do so,
open the file and uncomment the Button and Static Text compiler switches.

Now that we have properly set up the widgets for use in our application, we need to establish the Style
Schemes they will use. The 3 buttons will initially use the library’s default style scheme defined in
GOL.hGOL.hGOL.hGOL.h. The 3 static texts used to label the buttons/icons will use a different style scheme and the static
text used for the title will be the same as the other 3 static text except for the font used.

In the main() function located in Lab2.cLab2.cLab2.cLab2.c, on line 157, add code to initialize the display, initialize

the library, and create the default style scheme. HINT: GOLInit() API will accomplish all of these

tasks; therefore, only one line of code is needed.

Style Scheme—is a structure used by the library to define the colors and font used to draw
widgets. Creating widgets with NULL assigned to the style scheme will assign the default
style scheme to the objects.

typedef struct {

 WORD EmbossDkColor; // Emboss dark color used for 3d effect.

 WORD EmbossLtColor; // Emboss light color used for 3d effect.

 WORD TextColor0; // Character color 0 used for objects that supports text.

 WORD TextColor1; // Character color 1 used for objects that supports text.

 WORD TextColorDisabled; // Character color used when object is in a disabled state.

 WORD Color0; // Color 0 usually assigned to an Object state.

 WORD Color1; // Color 1 usually assigned to an Object state.

 WORD ColorDisabled; // Color used when an Object is in a disabled state.

 WORD CommonBkColor; // Background color used to hide Objects.

 void *pFont; // Font selected for the scheme.

} GOL_SCHEME;

HIF 2131A

2-4

The Static Text widgets will use a modified style scheme, we will need to add code to define that
scheme.

In the CreateScheme() function located in Screens.c, on line 77, add two lines of codes to allo-
cate memory to the alternate scheme pointers statusbox and labelbox. Note that the two pointers
has already been defined.

GOLInit() function — initializes both the display and the library then creates a default style scheme
with default settings referenced by the global scheme pointer. This function MUST be called before
graphics object layer (GOL) functions may be used.

void GOLInit(void);

GOLCreateScheme() function — creates a new style scheme structure with parameters initialized to
default values as defined in GOL.h. Returns a GOL_SCHEME pointer to the new structure.

GOL_SCHEME *GOLCreateScheme(void);

Step 5 and 6 Reference Information

For simplicity, the choice of colors for the style scheme used for the Static Text has been predefined.
This is shown starting in line 82 of Screens.c file.
On line 82 in Screens.c, modify the style scheme by turning on the compiler switch.

With the Style Schemes defined, we are now ready to start creating our widgets. We’ll do this in 2
steps. First, we’ll create the buttons and verify their look on the display. Then, we’ll add the static texts
to label the buttons and add the title of the main menu.

Locate the CreateMenuScreen() function on line 127 in Screens.c. Starting on line 148, add code to
create three rounded buttons using the parameters given below (HINT: make 3 calls to the
BtnCreate() function).

For your convenience, the values given below are predefined macros that can be found in Screens.h.
Note that Buttons 1 and 2 uses bitmaps while Button 3 uses a text. For Button 3, the string used to la-
bel the button is already pre-defined as a static string Btn_Label.

Refer to the Graphics Library help file for the BtnCreate() API prototype.

BtnCreate() returns the address of the newly created Widget. Make sure you assign the pointer

(that is initialized to NULL) to the address of the newly created Buttons. The pointers are declared
starting in line number 131.

 // pointers to widgets on this screen

 BUTTON *pOBJ_BUTTON_POT = NULL;
 BUTTON *pOBJ_BUTTON_TEMP = NULL;
 BUTTON *pOBJ_BUTTON_LED = NULL;

Step 8 Reference Information

HIF 2131A

2-5

To render the buttons in the screen we need to call an API that takes care of the rendering of the wid-
gets in the screen.

Locate the main() in Lab2.c file. Add a line of code within the application while loop (line 185) to
enable the rendering of the widgets to the screen.

GOLDraw() function — loops through the active linked list and redraws widgets that need to be re-
drawn. Partial or full redrawing is determined by the state field in the widget structure. Returns
TRUE when drawing of all widgets is complete.

WORD GOLDraw(void);

Step 9 Reference Information

• ID = OBJ_BUTTON_CONTROL_LED

• left = LED_STARTX

• top = LED_STARTY

• right = LED_STARTX+BTN_WIDTH

• bottom= LED_STARTY+BTN_HEIGHT

• radius = BTN_RADIUS

• state = BTN_DRAW

• *pBitmap = NULL

• *pText = (XCHAR*) Btn_Label

• *pScheme = NULL

BUTTON 3
parameters

Compile the project and program the device. Verify that your buttons are in the expected loca-
tions and use the correct style scheme.

Build All Program

• ID = OBJ_BUTTON_ROTATE_POT

• left = POT_STARTX

• top = POT_STARTY

• right = POT_STARTX+BTN_WIDTH

• bottom= POT_STARTY+BTN_HEIGHT

• radius = BTN_RADIUS

• state = BTN_DRAW

• *pBitmap = (void*) &Rotate_Icon

• *pText = NULL

• *pScheme = NULL

BUTTON 1
parameters

• ID = OBJ_BUTTON_CHECK_TEMP

• left = TEMP_STARTX

• top = TEMP_STARTY

• right = TEMP_STARTX+BTN_WIDTH

• bottom= TEMP_STARTY+BTN_HEIGHT

• radius = BTN_RADIUS

• state = BTN_DRAW

• *pBitmap = (void*) &Temp_Icon

• *pText = NULL

• *pScheme = NULL

BUTTON 2
parameters

HIF 2131A

2-6

Since GOLSetSCheme() call may change the font used (font sizes can be different), it is necessary to
call the BtnSetTxt() function to force the recalculation of the width and height of the string used. This is
already added in the code. Uncomment the line to enable the code.

Now that the buttons are properly defined and positioned, let’s add the 3 static texts to label the buttons.
The style scheme of our static texts are already predefined and enabled in Step 7.

Notice that the LED button is using the default style scheme. Normally, users will not redefine the default
style scheme. Instead create an alternate style scheme just like the two static text style schemes that
was allocated memory in step 6. For simplicity the new colors and font used for the LED button has
been predefined by the pointer “flatbuttons”.

On line 111 of Screens.c, enable the “flatbuttons” style scheme for the LED button by turning on
the compiler switch.

On line 198 of Screens.c , modify the LED button style scheme to use “flatbuttons” style scheme
using the GOLSetScheme() API.

GOLSetScheme() macro — sets the style scheme to be used for the specified wiget.

#define GOLSetScheme(pObj, pScheme)

Step 12 Reference Information

9

If you forgot to enable the wid-
gets in the GraphicsConfig.h file,
the compiler will give errors re-
lated to BTN_DRAW.

If you forgot to add the widget
source and header files, you will
get linker errors.

StCreate() returns the address of the newly created Widget. Make sure you assign the pointer

(that is initialized to NULL) to the address of the newly created Static Texts. The pointers are de-
clared starting in line number 135.

 STATICTEXT *pOBJ_STATICTEXT_TITLE = NULL;
 STATICTEXT *pOBJ_STATICTEXT_POT = NULL;
 STATICTEXT *pOBJ_STATICTEXT_TEMP = NULL;
 STATICTEXT *pOBJ_STATICTEXT_LED = NULL;

Step 13 Reference Information

HIF 2131A

2-7

If you forgot to enable the wid-
gets in the GraphicsConfig.h file,
the compiler will give errors re-
lated to ST_DRAW .

If you forgot to add the widget
source and header files, you will
get linker errors.

Compile the project and program the device. Verify that your static texts are in the expected locations
and use the correct style scheme.

Build All Program

Lastly, enable the code to include the creation of the Title Static Text. Note that this static text is created
with the frame enabled (ST_FRAME state bit is set).

On line 237 in Screens.c, enable the title static text turning on the compiler switch.

13

• ID = OBJ_STATICTEXT_LED

• left = LED_STARTX

• top = LED_STARTY+BTN_HEIGHT+5,

• right = LED_STARTX+BTN_WIDTH

• bottom = LED_STARTY

 + (BTN_HEIGHT*2)+ 5

• state = ST_CENTER_ALIGN |

 ST_DRAW

• *pText = "LED\nCONTROL"

• *pScheme = labelbox

STATIC
TEXT 3
parameters

To create the static texts, we will make 3 calls to the StCreate() function. Starting on line 205 in
Screens.c file, add code to create three static text instances using the parameters given below
For your convenience, the values given below are predefined macros that can be found in GFXLab.h.
Refer to Graphics Library Help file for StCreate() prototype.

• ID = OBJ_STATICTEXT_POT

• left = POT_STARTX

• top = POT_STARTY+BTN_HEIGHT+5,

• right = POT_STARTX+BTN_WIDTH

• bottom = POT_STARTY

 + (BTN_HEIGHT*2)+ 5

• state = ST_CENTER_ALIGN |

 ST_DRAW

• *pText = "ROTATE\nPOT"

• *pScheme = labelbox

STATIC
TEXT 1
parameters

• ID = OBJ_STATICTEXT_TEMP

• left = TEMP_STARTX

• top = TEMP_STARTY+BTN_HEIGHT+5,

• right = TEMP_STARTX+BTN_WIDTH

• bottom = TEMP_STARTY

 + (BTN_HEIGHT*2)+ 5

• state = ST_CENTER_ALIGN |

 ST_DRAW

• *pText = "CHECK\nTEMP"

• *pScheme = labelbox

STATIC
TEXT 2
parameters

HIF 2131A

2-8

GOLFindObject() function — finds a widget in the active linked list using the given object ID and
returns a pointer to the widget.

OBJ_HEADER* GOLFindObject(WORD ID);

GOLSetScheme() macro — sets the style scheme to be used for the specified wiget.

#define GOLSetScheme(pObj, pScheme)
 ((OBJ_HEADER *)pObj)->pGolScheme = pScheme

GOLGetScheme() macro — finds a widget in the active linked list using the given object ID and re-
turns a pointer to the widget.

#define GOLGetScheme(pObj)
 ((OBJ_HEADER *)pObj)->pGolScheme

Bonus Step Reference Information

Bonus Procedure
Play time! In step 12 you have modified the style scheme of the LED button widget using the API GOL-
SetScheme().

For this bonus step, use the same API GOLSetScheme() function to assign the “flatbuttons” style
scheme to OBJ_STATICTEXT_LED. But instead of placing the function call in Screens.c place it in the
main function located in Lab2.c file. Place the code in line 180.

HINT: Use the API GOLGetScheme() to get the address of the style scheme and use it to set the style
scheme of the other widget.

In step 13 you have set the static text alignment to be center aligned (ST_CENTER_ALIGN). This is an
example of a state setting of a widget. Each type of widget will have its unique state settings. For the title
static text, another state setting is also enabled. This is the frame of the static text (ST_FRAME).

There are two ways to set the state settings of the widget. The first is to set it at creation. In steps 8 and
11, you have used two create functions (StCreate() and BtnCreate()). The second, is to use the state
setting API SetState(). Please refer to the Graphics Library Help file for details on this API and the re-
spective widget documentation for details on state bits.

The action and appearance of a widget are defined by it’s
state field. We can modify the state after creation using
the SetState() macro. State bits are bitwise ORd so that
changing one bit will not affect the others. The macros for
the state bits are defined in the widget header file. You
may find more information in the Graphics Library help file.

HIF 2131A

2-9

Results

You have just learned how to use the Widgets in the Graphics Library. You have learned how multiple
objects and with one single function call manage the rendering of the objects in the screen. You have
also learned how to enable available features of the Widgets using its states. You have also learned
how to modify the style schemes assigned to objects to change the appearance of the objects when
drawn.

Code Analysis

The code that you have modified created separate objects and with GOLDraw() leave the management
of rendering of objects to the library functions. Using the state bits you can modify how an object is ren-
dered. Also with the style scheme you can easily modify the color values or font to change the style
scheme assigned to the object.

Conclusions

Having learned how to use the Objects in the Graphics Library you are now ready to move upward and
learn how to modify the behavior of the objects depending on the user inputs such as touch screen.

HIF 2131A

2-10

 THIS PAGE INTENTIONALLY LEFT BLANK

HIF 2131A

3-1

Lab Exercise 3
Interfacing the User

Purpose

The purpose of this lab is to learn to implement a simple user interface by implementing widgets to control the
LEDs in the Explorer 16 board or the PIC24FJ256DA210 Development Board. In this lab, you will learn how to
provide system and widget control in response to user inputs like the touch screen interface.

Development Environment: MPLAB® v8.50 or newer
Software: Microchip Graphics Library v2.10
 Graphics Resource Converter
C Compiler: MPLAB

®
 C Compiler for PIC24 and dsPIC OR

 MPLAB
®
 C Compiler for PIC32

Hardware Tools: Explorer 16 with PIC24FJ128GA010 or PIC32MX360F512L PIM and
 Graphics LCD Controller PICtail™ Plus SSD1926 Board or
 PIC24FJ256DA210 Development Board
 MPLAB

®
 Real ICE or MPLAB

®
 ICD3 Debugger

Lab files on class PC: C:\...\Lab3...

Requirements

Objectives

1) Provide customized control for both the system and widgets via the GOLMsgCallback() function.
2) Modify behavior of one widget based on a state of another widget.
3) Modify behavior of a system resource (such as LEDs) based on a state of a widget.

Expected Results

Each Checkbox will control an LED

For Explorer 16 Board all
LEDs (D3-D10) are enabled

For PIC24FJ256DA210 Development Board
LEDs (D2 & D4) are enabled

HIF 2131A

3-2

Procedure

C:\...\Lab 3

Then, open the Lab 3 project by selecting from the menu:

File ���� Open Workspace… and opening the workspace file appropriate for you development board
setup located at:

If you still have a previous project open, you must first close it by selecting from the menu:

File ���� Close Workspace

Choose:
Lab1 Ex 16 PIC24 Truly 3.2.mcw for the Explorer 16 with PIC24FJ128GA010 PIM or ...
Lab1 DA210 Truly 3.2.mcw for the PIC24FJ256DA210 Development Board or...
Lab1 Ex 16 PIC32 Truly 3.2.mcw for the Explorer 16 with PIC32MX360F512L PIM

In this lab exercise we will use the check box and static text widgets. The widgets are already declared
and created in the function named CreateLEDScreen() in the file Screens.c. In order for the user to inter-
act with the check box widgets the resistive touch screen overlaid on the display is used.

The touch screen driver (TouchScreen.c & TouchScreen.h) implements the sampling of the user touch.
Sampling is done by the function TouchProcessTouch(). This function sets up the 2 analog signals and
2 digital signals on the touch screen and uses the A/D module to obtain the actual samples. The way the
lab code is set up, is that the Timer interrupt calls the TouchProcessTouch() to update the touch posi-
tions variable in the touch screen driver.

The application can check if there is a valid user touch by calling the TouchGetMsg() function. This

function populates the message structure GOL_MSG. That message in turn gets processed in the li-
brary by calling the GOLMsg() function. The library evaluates the message and determines which wid-

get is affected by the message. This is done by parsing through the linked list of widgets.

The message structure is used to pass event information in a prescribed format to the li-
brary’s message manager (i.e. GOLMsg() function). The format of the structure for a touch
screen inputs is:

typedef struct {

 BYTE type, // input type TYPE_TOUCHSCREEN for touch screens

 BYTE uiEvent, // EVENT_PRESS, EVENT_RELEASE,

 // EVENT_STILLPRESS, EVENT_MOVE or EVENT_INVALID

 SHORT param1, // The x position of the event

 SHORT param2 // The y position of the event

} GOL_MSG;

Another great reference on the use of messaging is explained in Application Note AN1227,
Using a Keyboard with the Microchip Graphics Library. In this case keyboard or side button
style input is used for interfaces.

The affected widget then passes a translated message on the GOLMsgCallback() function. This function
is implemented in the application and provides the opportunity for the application to interpret the mes-
sage (GOL_MSG) and the translated message. Based on that interpretation, the application can then
modify some system states, update system variables and widget states.

HIF 2131A

3-3

In this case we modify the LED’s of the system to reflect the state of the check boxes. This is done on
the first portion of lab3. In the second portion we modify other widgets based on the state of another wid-
get.

Open the Lab3.c file. On line 183, locate the main while() loop. Inside the
 if GOLDraw() { ... }

routine add the function call to retrieve the touch message from the touch screen module. Add
the code on line 187.

On line 190 add the code to invoke the library’s message manager.

What is the advantage of waiting for GOLDraw() to complete before calling the message manager?

 The GOLMsgCallback() function is a user defined function called by the library’s message

manager (GOLMsg()) after the passed message has been translated. Within this function,

the programmer may add or modify the widgets default behavior depending on the received
message.

WORD GOLMsgCallback (WORD objMsg, OBJ_HEADER* pObj, GOL_MSG* pMsg);

Input:
objMsg — this is the translated message

*pObj — pointer to the widget affected by the event

pMsg — pointer to the message structure

Return:
1 — to have the message manager complete the widget’s default actions
0 — to skip the default actions

Steps 1 and 2: Reference Information

Any user interface can provide a function that will populate a message structure. Some com-
mon examples are side buttons, keyboard, touch pads and touch screen. Application in turn
calls this function with the pointer to the message. The message is used to pass the user
event information to the library’s message manager (i.e. GOLMsg() function).

void TouchGetMsg(GOL_MSG *pMsg) — function that retrieves the touch message from the

touch screen module. A pointer to the message structure must be passed to this function.

void GOLMsg(GOL_MSG *pMsg);
Where *pMsg is a pointer to the message structure

Compile the project and program the device. Verify that the check boxes can be controlled by
the touch screen.

Build All Program

CLASS CODE

5-4

Using the check box states, we will control the illumination of the LEDs on the board. Also notice that
there is a text at the bottom of the screen that says “No Event”. This is a static text widget and we want
to use this widget to reflect the events that occur on the check boxes.

The static text string will be modified using the following conditions:

• Whenever a text box is checked, the string displayed on the static text should be “LED turned on”.

• Whenever a text box is unchecked, the string displayed on the static text should be “LED turned off”.

There are many ways to implement this. One way is to use the translated message to determine if the
check box will be checked or unchecked.

In the GOLMsgCallback()function, a switch statement is used to set the variable whichLED to in-
dicate which check box received the msg. The variable whichLED is set accordingly whenever there

is an event on the check boxes. Recall, pObj is a pointer to the widget affected by the touch event. It
isprovided everytime GOLMsgCallback() is called when there is a valid event on a widget.

Locate the function GOLMsgCallback() on Lab3.c. On lines 267 and 277, objMsg is used to determine
if the translated message is CB_MSG_CHECKED and CB_MSG_UNCHECKED.

On line 270 add the code to turn on the LED by calling SetLED() and using the variable whichLED.

On line 283 add the code to turn off the LED by calling SetLED() and using variable whichLED.

Steps 5 and 6 Reference Information

SetLED() is a predefined function in the Lab3.c that sets the LED on the Explorer 16 or
PIC24FJ256DA210 Development Board. status (LED_OFF, LED_ON) turns on or off the
LED specified by whichOne.

void SetLED(BYTE status, BYTE whichOne)

 Information regarding a widget’s default behavior is located in the Graphics Help file under
the ObjMsgDefault function description. By default, the appropriate draw bits will be set for
the widget receiving the message. NOTE: Not all widgets accept messages by default. For
instance, Static Text does not accept messages; however, we can control the widget by add-
ing code to the GOLMsgCallback()function.

Compile the project and program the device. Verify that the LEDs can be controlled by the state
of the check boxes.
Note:

• For Explorer 16 all 8 LEDs can be controlled.

• For PIC24FJ256DA210 only LEDs D2 and D4 are controlled.

Build All Program

HIF 2131A

3-5

Now implement the code to modify the static text.

On line 274 add the code to change the string displayed on the static text to “LED turned on”. On the
next line add the code that will redraw the static text.

On line 288 add the code to modify the string displayed on the static text to “LED turned off”. On the
next line add the code that will redraw the static text.

Compile the project and program the device. Verify that the static text string changes as you toggle
the state of the check boxes using the touch screen.

Build All Program

Step 8 and 9 Reference Information

StSetText() function — Sets the string displayed on the referenced static text.

void StSetText(STATICTEXT* pSt, XCHAR* text);

 SetState() macro — sets the specified state bits of a given object. The object must be re
 drawn to display the changes. It is possible to set several state bits using this macro.

 #define SetState(pObj, stateBits)

On the Explorer 16, the eight LEDs (D3-D10) are connected to PORTA of the processor. To
use the LEDs, jumper JP2 must be installed.

On the PIC24FJ256DA210 Development Board 2 LEDs (D2 and D4) are connected to
PORTE9 and PORTA7 respectively. To use the 2 LEDs, jumper JP14 must be set to RE9-S2
and jumper JP11 must be set to 1-2.

All ports used for LED are initialized for you in the InitLED() function located in Lab3.c

HINT: The pObj parameter passed in the GOLMsgCallback() function is a pointer to the
widget affected by a user input event. Recall, Static Text objects do NOT accept messages;
therefore, you will need to provide a pointer when you call any Static Text APIs.

RECALL: GOLFindObject(objID) will return a pointer to the object associated with the
objID.

EXAMPLE: StSetText((STATICTEXT*)GOLFindObject(OBJ_ST_ID), “text”) will
change the text string in the OBJ_ST_ID structure to “text”.

HIF 2131A

3-6

Results

We have created the LED control using widgets and messaging. In a real world scenario, those LEDs
can be any control signals to any external devices such as motors and lights. We have also learned how
to control widgets based on a state of another widget.

Code Analysis

In this lab you have learned how to modify the object behavior using the GOLMsgCallback() function.
Using the available API for each objects you have linked up multiple objects to function as one. By de-
termining the state change in one object, due to user actions, you have controlled how the other objects
will behave. Using the same state changes you have learned how to insert controls on external functions
such as LEDs that can represent real world modules like motors.

Conclusions

Now that you have learned how to use the GOLMsgCallback() to control object behavior you are ready
to take a look at the GOLDrawCallback() function that can also control object behavior.

HIF 2131A

3-7

 THIS PAGE INTENTIONALLY LEFT BLANK

HIF 2131A

4-1

Lab Exercise 4
Advanced control using GOLDrawCallback()

Purpose

In Lab 3, you have learned how to implement a user interface through the message callback. In this lab you will
be introduced to an advanced feature of control. This is control through the drawing callback.

Development Environment: MPLAB® v8.50 or newer
Software: Microchip Graphics Library v2.10
 Graphics Resource Converter
C Compiler: MPLAB

®
 C Compiler for PIC24 and dsPIC OR

 MPLAB
®
 C Compiler for PIC32

Hardware Tools: Explorer 16 with PIC24FJ128GA010 or PIC32MX360F512L PIM and
 Graphics LCD Controller PICtail™ Plus SSD1926 Board or
 PIC24FJ256DA210 Development Board
 MPLAB

®
 Real ICE or MPLAB

®
 ICD3 Debugger

Lab files on class PC: C:\...\Lab4...

Requirements

Objectives

1) Implement auto control based on timer events in the GOLDrawCallback() function.
2) Monitor the user action on a Potentiometer using a widget.
3) Use a Meter widget to monitor the Potentiometer value.

Expected Results

The Meter widget will display the

Potentiometer value continuously.

HIF 2131A

4-2

Procedure

C:\...\Lab 4

Then, open the Lab 4 project by selecting from the menu:

File ���� Open Workspace… and opening the workspace file appropriate for you development board
setup located at:

If you still have a previous project open, you must first close it by selecting from the menu:

File ���� Close Workspace

Choose:
Lab1 Ex 16 PIC24 Truly 3.2.mcw for the Explorer 16 with PIC24FJ128GA010 PIM or ...
Lab1 DA210 Truly 3.2.mcw for the PIC24FJ256DA210 Development Board or...
Lab1 Ex 16 PIC32 Truly 3.2.mcw for the Explorer 16 with PIC32MX360F512L PIM

TICK Timer: A tick timing routine has been in implemented in the application code. This routine
uses an interrupt from Timer 4. The timer is set up to interrupt approximately every 100 us and is
initialized using the TickInit() function (also provided in the application code). The following

variables are affected by the tick count.

tick: Global variable that holds the tick count.

prevTick: Global variable that holds the old tick count.

The sampling of the potentiometer, as well as the touch screen, is based on this tick counter. The
effective value reflected on the Meter widget is determined by the SAMPLETIME macro that has

been defined in the lab application code (see Lab4.c). The TICK is application provided, it is NOT
part of the Graphics Library.

Widget Information: The Meter Widget is created in the CreatePotentiometerScreen() func-

tion located in the Screens.c file. Meter Widget is updated in the GOLDrawCallback() function.

WIDGET DESCRIPTION OBJECT ID DEFINED POINTER

Meter Display Potentiometer Value OBJ_METER_POT pMtr

Lab 4 Reference Information

In the previous lab, you added code to the GOLMsgCallback() function to individually control LEDs on
the development board.

In steps 1-4 of this lab, you will add code in the GOLDrawCallback() that will modify the Meter to re-

flect the value of the potentiometer as the potentiometer is turned (clockwise or counter clock wise). De-
tails of the sequence of the operation of the meter are shown on the flow chart shown on the next page.

The reason we implement this functionality in the GOLDrawCallback() is that we know for certain that

the linked list has been fully parsed. In other words, we know none of the widgets are in the middle of
being rendered. How do we know this? Because GOLDraw() calls the GOLDrawCallback() function

once it has finished parsing the linked list.

HIF 2131A

4-3

GOLDrawCallback()

Redraw Meter

SetState(pMtr, MTR_DRAW_UPDATE)

Check

Elapsed Time >

SAMPLETIME
NO

Check if value

changed

YES

Set Meter Value

MtrSetVal(mtrValue)

YES

Default:

Return (1)

GOLFindObj(OBJ_METER_POT)

Get current value of

potentiometer

mtrValue = ADCGetPot()

NO

On line 240, add code to initialize the Meter handler (pMtr).

HINT: GOLDrawCallback() does not pass any parameters. The application must either

establish pointers to widgets that need to be modified.

RECALL: GOLFindObject(objID) will return a pointer to the object associated with the
objID.

EXAMPLE: To establish a pointer to a button with objID BTN_128:
BUTTON *pBtn
pBtn= GOLFindObject(BTN_128); .

HIF 2131A

4-4

Step 3 Reference Information

USE THE GRAPHICS HELP FILE TO FIND WIDGET STATEBITS AND WIDGET SPECIFIC APIs.

Start ���� Programs ���� Microchip ���� Graphics Library v2.10 ���� Graphics Library Help

Expand GOL Objects then expand the Widget you are looking for. Statebits are in the [Widget]
States section. [Widget] specific APIs are listed in the [Widget] section.

Build All Program

Compile the project and program the device to verify that steps 1-3 were successfully completed.

Use the Graphics Library Help file to locate the APIs for the METER widget. Specifically locate
MtrSetVal and MtrGetVal APIs. Starting on line 250, add the code to modify the value of the

Meter and modify the state to partially redraw the Meter.

Obtain the current value of the Potentiometer using the function ADCGetPot(). Save this value to

the predefined variable, mtrValue.

Step 2 Reference Information

ADCGetPot() will return the value for the potentiometer. No parameters are required.

EXAMPLE: To save the potentiometer value to the potValue variable:

WORD potValue;
potValue = ADCGetPot();

HIF 2131A

4-5

Bonus Procedure

Notice that the value of the Meter is always modified everytime the GOLDrawCallback() is called. What if
the potentiometer is not modified? Do we need to redraw the Meter?

On line 247, add code to skip the setting of the value and redrawing of the Meter when the value of the On line 247, add code to skip the setting of the value and redrawing of the Meter when the value of the On line 247, add code to skip the setting of the value and redrawing of the Meter when the value of the On line 247, add code to skip the setting of the value and redrawing of the Meter when the value of the
Potentiometer is not changing. (Add check to see if mtrValue = MtrGetVal(pMtr))Potentiometer is not changing. (Add check to see if mtrValue = MtrGetVal(pMtr))Potentiometer is not changing. (Add check to see if mtrValue = MtrGetVal(pMtr))Potentiometer is not changing. (Add check to see if mtrValue = MtrGetVal(pMtr))

Hint: Use MtrGetVal(METER *pMtr) to obtain the Meter value.

Compile the project and program the device to verify operation.

Build All Program

HIF 2131A

4-6

Results

This lab has introduced you to another way of modifying Object behavior based on your application in-
puts. This option can be an alternative to add to the application for a better user experience.

Code Analysis

Similar to the GOLMsgCallback() the GOLDrawCallback() can also be used to modify object behavior.
Unlike the message callback that depends on the messages, the draw callback can be used and
changes to the Objects can be implemented using system level variables.

Another additional use of the draw callback is that it provides a safe place for users to implement cus-
tomized drawings where modification of global drawing settings such as LineTypes, LineThickness, Col-
ors and Fonts is safe and drawing of Widgets is not affected by these changes.

Object behavior modification in the drawing callback can be derived by any system event such as timer
interrupt, external event, or global variables.

Conclusions

Having the knowledge on how to modify object behavior based on messages and on system level vari-
ables you are now ready to take a look at advanced management of Objects and screens. Lab5 will
show you how to manage multiple screens.

HIF 2131A

6-1

Lab Exercise 5
Putting it all together...

Purpose

The purpose of this lab is to examine the dynamic switching of screens in detail when moving between screens
in the application. In lab 1 you created a splash screen. In labs 2, 3 and 4 you created an Main Menu screen
and two more screens for your application. To save time, we have replicated the Potentiometer screen to mimic
a temperature monitoring. In this final lab, you will only use one linked list for each screen. As you move be-
tween screens, the list previous list is deleted and the new list for the next screen is dynamically created.

Development Environment: MPLAB® v8.50 or newer
Software: Microchip Graphics Library v2.10
 Graphics Resource Converter
C Compiler: MPLAB

®
 C Compiler for PIC24 and dsPIC OR

 MPLAB
®
 C Compiler for PIC32

Hardware Tools: Explorer 16 with PIC24FJ128GA010 or PIC32MX360F512L PIM and
 Graphics LCD Controller PICtail™ Plus SSD1926 Board or
 PIC24FJ256DA210 Development Board
 MPLAB

®
 Real ICE or MPLAB

®
 ICD3 Debugger

Lab files on class PC: C:\...\Lab5...

Requirements

Objectives

1) Switch from one screen to another.
2) Dynamically create one linked list for each screen.

Expected Results

SPLASH SCREEN MAIN MENU LED SCREEN

POTENTIOMETER/TEMPERATURE
 SCREEN

HIF 2131A

6-2

A

Procedure

C:\...\Lab 5

Then, open the Lab 5 project by selecting from the menu:

File ���� Open Workspace… and opening the workspace file appropriate for your development board
setup located at:

If you still have a previous project open, you must first close it by selecting from the menu:

File ���� Close Workspace

Choose:
Lab1 Ex 16 PIC24 Truly 3.2.mcw for the Explorer 16 with PIC24FJ128GA010 PIM or ...
Lab1 DA210 Truly 3.2.mcw for the PIC24FJ256DA210 Development Board or...
Lab1 Ex 16 PIC32 Truly 3.2.mcw for the Explorer 16 with PIC32MX360F512L PIM

MAIN MENU SCREEN:

Screen creation function: CreateMenuScreen()

List pointer name: default

GOLMsgCallback(): MainMenuMsgCallback()

GOLDrawCallback(): NONE

VIEW POTENTIOMETER SCREEN:

Screen creation function: CreatePotentiometerScreen()

List pointer name: default

GOLMsgCallback(): PotentiometerMsgCallback()

GOLDrawCallback(): UpdatePotentiometer()

TEMPERATURE SCREEN:

Screen creation function: CreateTemperatureScreen()

List pointer name: default

GOLMsgCallback(): TemperatureMsgCallback()

GOLDrawCallback(): UpdateTemperature()

Lab 5 Reference Information

The following chart shows the information you may need for each of the screens. Because we have
multiple screens, we implement a state machine to move us to the appropriate callback function. The
state machine variable is screenState. State movement is implemented in the appropriate GOLMsgCall-
back() because the next state is dependent on which Widget the user has touched. This implementation
of the callback functions helps with code maintainability.

HIF 2131A

6-3

LED SCREEN:

Screen creation function: CreateLEDScreen()

List pointer name: default

GOLMsgCallback(): LEDMsgCallback()

GOLDrawCallback(): NONE

Lab 5 Reference Information (continued...)

Simplified State Diagram

Lab 5 Reference Information

HIF 2131A

6-4

A

The code to create the objects is provided for you. The only things to add are the APIs that will free the
current active list of widgets every time the application moves to another screen and the switching of
states.

In steps 1-3, you will add the state transitions that will allow movement from one screen to another. In
steps 4-6 you will add the API required to free up the current active list and prepare for the creation of
new widgets for the next screen.

NOTE: In the lecture portion you have learned two possible ways to implement screen switching. This
lab will show you in detail how the dynamically created screens are implemented using states.

In Lab5.c, look for the function named MainMsgMenuCallback(). In line number 328, add the

code to switch from current state to CREATE_POTENTIOMETER state when the rotate potenti-
ometer icon (Button) with OBJ_BUTTON_ROTATE_POT ID is pressed.

The screenStates variable defines the current state of the application based on the enumerated
SCREEN_STATES.

typedef enum {
 CREATE_MAINMENU = 0,
 SHOW_MAINMENU,
 CREATE_POTENTIOMETER,
 SHOW_POTENTIOMETER,
 CREATE_TEMPERATURE,
 SHOW_TEMPERATURE,
 CREATE_LED,
 SHOW_LED,
} SCREEN_STATES;

Step 1-3: Reference Information

In line number 350, add the code to switch from current state to CREATE_TEMPERATURE state
when the check temperature icon (Button) with OBJ_BUTTON_CHECK_TEMP ID is pressed.

In line number 368, add the code to switch from current state to CREATE_LED state when the
LED control icon (Button) with OBJ_BUTTON_CONTROL_LED ID is pressed.

Build All Program

Compile the project and program the device. The application should now switch from one screen to
another.

Try switching from one screen to another until you break the program. The run time error appears
when one of the dynamically created Widgets failed to get memory. This is caused by the fact that the
active list keeps on growing as you switch from one screen to another because the create functions for
each screen creates additional widgets.

HIF 2131A

6-5

Now that the states can switch, add the code that will clear the current active list to prepare it for the new
widgets that will be dynamically created by the ObjCreate() functions.

In the file Screens.c go to line 146 in CreateMenuScreen() and add the code to clear the

current active list.

In the file Screens.c go to line 259 in CreateLEDScreen() and add the code to clear the

current active list.

Step 4-8: Reference Information

GOLFree() — This function frees all the memory used by objects in the active list and
initializes the active list pointer to NULL to start a new empty list. This function must
be called only inside the GOLDrawCallback() function when using GOLDraw()
and GOLMsg() functions. This requirement assures that primitive rendering set-

tings are not altered by the rendering state machines of the objects.

Other relevant APIs that may be used to switch screens:

GOLNewList() macro — starts a new linked list by setting the global active list pointer to
NULL. The keyboard focus pointer is also reset. If the previous list is no longer needed,
memory should by freed using GOLFree().

#define GOLNewList()

 GOLSetList() macro — sets the global active list pointer to the specified list.

 #define GOLSetList(objsList)

 GOLGetList() macro — returns the pointer to the current active list.

 #define GOLGetList()

In the file Screens.c go to line 535 in CreateTemperatureScreen() and add the code to

clear the current active list.

In the file Screens.c go to line 465 in CreatePotentiometerScreen() and add the code to

clear the current active list.

HIF 2131A

6-6

A

Build All Program

Compile the project and program the device. The application should now switch from one screen to
another with the active list initialized properly for each screen.

_pGolObjects—is the global pointer that refers to the current active list of objects. This ac-
tive list of objects is the list that will be used to render objects into the screen. Both
GOLDraw() and GOLMsg() functions parse this list to determine which widgets are af-
fected by the user messages and at the same time which widgets need to be redrawn or
removed form the screen.

_pGolObjects is retrieved using the GOLGetList() function. It is initialized to NULL using
the GOLNewList(). GOLFree() on the other hand removes all the widgets in the list and
frees the memory used by those removed objects. To assign _pGolObjects to a saved list

use GOLSetList().

HIF 2131A

6-7

Results

This lab has shown you how to manage multiple screen applications. Using the API’s available in the
Library, it is easy to implement multiple pages with multiple lists or create and destroy lists on the fly. In
the lecture portion of the class, you learned other methods for switching between screens. As home-
work, try to modify Lab 5 to switch between multiple linked lists instead.

Code Analysis

The Library has a special rule in modifying the current active list. It is very important that the current ac-
tive list should only be modified whenever GOLDraw() is not actively rendering objects in the screen.
The only safe place to do without checking if GOLDraw() is busy with the list is in GOLDrawCallback(). If
it is not possible to do this, user must make sure that the last call to GOLDraw() function has returned a
1. It is also important that GOLMsg() is not active when modifying the current active list.
Applications with multiple screens can be implemented using multiple lists or creating and destroying
lists on the fly. The advantage of using multiple lists is that it is faster to switch and render the screens
but at the cost of RAM space. If speed is not an important requirement in the application, use of on the
fly creation and destruction of lists when switching screens may be a good alternative. All Objects in-
cluded in the library have been optimized so the delay caused by the deletion of objects in memory and
calling of Create() functions for each Object can be unnoticeable.

Conclusions

Now that you have the knowledge of using the Microchip Graphics Library, from the Primitive Layer to
the Graphics Object Layer, you are now able to integrate cool Graphics to your applications easily. You
have seen how easy it is to create multiple screens and control the Objects using standard user inter-
faces such as touch screen.

HIF 2131A

6-8

A

 THIS PAGE INTENTIONALLY LEFT BLANK

HIF 2131A

6-1

Lab Exercise 6
Graphics on MDB

Purpose

To familiarize you with the Microchip Graphics library and learn how to create a graphics application and run on
Multimedia development board

Development Environment: MPLAB® v8.50 or newer
Software: Microchip Graphics Library v2.10
 Graphics Resource Converter
C Compiler: MPLAB

®
 C Compiler for PIC32

Hardware Tools: PIC32 Ethernet Starter Kit and
 Multimedia Expansion Board
 MPLAB

®
 Real ICE or MPLAB

®
 ICD3 Debugger

Lab files on class PC: C:\...\Lab6...

Requirements

Objectives

1) Switch from one screen to another.
2) Dynamically create one linked list for each screen.

Expected Results

MAIN MENU

HIF 2131A

6-2

A

Procedure

C:\...\Lab 6

Then, open the Lab 6 project by selecting from the menu:

File ���� Open Workspace… and opening the workspace file appropriate for your development board
setup located at:

If you still have a previous project open, you must first close it by selecting from the menu:

File ���� Close Workspace

Choose:

Lab6.mcw for PIC32 Ethernet Starter Kit and Multimedia Expansion Board

Lab 6 Reference Information

Overview:
Create two buttons and one progress bar on the LCD display.
Integrate the Touch Screen with the buttons and control the progress bar on button click.

Graphics Object Layer (GOL) objects:

1. Button:

The button object is rendered using the assigned style scheme. The following figure illustrates the color
assignments for the button.

TextColor() Color()

EmbossDKColor-
TextColor1

Color1

pFont

EmbossLtColor-

TextColorDisabled ColorDisabled

CommonBKColor—used to hide the button on the screen

HIF 2131A

6-3

BtnCreate Function

BUTTON *BtnCreate(

 WORD ID, // Unique user defined ID for the object instance.

 SHORT left, // Left most position of the object.

 SHORT top, // Top most position of the object.

 SHORT right, // Right most position of the object.

 SHORT bottom, // Bottom most position of the object.

 SHORT radius, // Radius of the rounded edge.

 WORD state, // Sets the initial state of the object.

 void *pBitmap, // Pointer to the bitmap used on the face of the button.

 XCHAR *pText, // Pointer to the text of the button.

 GOL_SCHEME *pScheme // Pointer to the style scheme used.

);

This function creates a BUTTON object with the parameter given. It automatically attached the new ob-

ject into a global linked list of the objects and returns the address of the object.

Example:

 GOL_SCHEME *pScheme;

 BUTTON *buttons;

 pScheme = GOLCreateScheme():

 Buttons = BtnCreate(1,20,64,50,118,0, BTN_DRAW, NULL,”ON”, pScheme);

 if (buttons[0] == NULL) // check if button 0 is created

 Return 0;

Lab 6 Reference Information (continued...)

HIF 2131A

6-4

A

2. Progress Bar

The Progress Bar Object is rendered using the assigned style scheme. The following figure illustrates
the color assignments.

PbCreate Function

PROGRESSBAR *PbCreate(
 WORD ID, // Unique user defined ID for the object instance.

 SHORT left, // Left most position of the object.
 SHORT top, // top most position of the object.
 SHORT right, // right most position of the object.
 SHORT bottom, // bottom most position of the object.
 WORD state, // Sets the initial position of the progress.
 WORD pos, // Defines the initial position of the progress.
 WORD range, // This specifies the maximum value of the progress bar at 100% position.
 GOL_SCHEME *pScheme //Pointer to the style scheme used for the object.
);

This function creates a PROGRESSBAR object with the parameters given. It automatically attaches the
ne object into a global linked list of objects and returns the address of the object.

Example:

 PROGRESSBAR *pPBar;
 Void CreateProgressBar(){
 pPBar = PbCreate(ID_PROGRESSBAR1, // ID
 50,90,270,140, // dimension
 PB_DRAW, // Draw the object
 25, // position
 50, // set the range
 NULL,); // use default GOL scheme
}

Lab 6 Reference Information (continued...)

Emba\ossDKColor

TextColor1

Color0 Color1 EmbossLtColor1

CommonBKColor - used to hide/remove the progress bar from the screen

HIF 2131A

6-5

GOL Call back Functions

3. GOLMsgCallback Function

WORD GOLMsgCallBack(

 WORD objMsg, // Message for the object or the action ID response from the object

 OBJ_HEADER *pObj, // Pointer to the object that processed the message.

 GOL_MSG *pMsg // Pointer to the GOL message from user

);

The user MUST implement this function. GOLMsg() calls this function when a valid message for an object in the

active list is received, User action for the message should be implemented here. If this function returns non-zero,

the message for the object will be processed by default. If zero is returned, GOL will not perform any action.

4. GOLDrawCallback Function

WORD GOLDrawCallback();

GOLDrawCallback() function MUST BE implemented by the user. This is called inside the GOLDraw() function

when the drawing of the objects in the active list is completed. User drawing must be done here. Drawing color,

line type, clipping region, graphic cursor position and current font will not be changed by GOL if this function re-

turns a zero. To pass drawing control to GOL this function must return a non-zero value. If GOL messaging is

not using the active link list, it is safe to modify the list here.

Example:-

WORD GOLMsgCallback(WORD objMsg, OBJ_HEADER* pObj, GOL_MSG* pMsg)

{

 if(objMsg == BTN_MSG_PRESSED) {

 if(GetObjID(pObj) == ID_BUTTON_PLAY){

 // Do some action

 }

 else if(GetObjID(pObj) == ID_BUTTON_STOP){

 // Do some action

 }

 }

 return 1;

WORD GOLDrawCallback()

{

 ProgressBarAction();

 return 1;

}

Lab 6 Reference Information (continued...)

HIF 2131A

6-6

A

 THIS PAGE INTENTIONALLY LEFT BLANK

