
Table of Contents

Lab 1 Instructions 2
Lab 2 Instructions 8
Lab 3 Instructions 12
Appendix A 20
Appendix B 21

MASTERs 2012
LAB Manual for 1674 AUD
Creating Audio and DSP applications with
16/32 bit microcontrollers

LAB Manual for 1674 AUD

Page 2

LAB 1:
Digital Filtering

Purpose:

To implement an example of digital filtering in speech and audio applications.

Overview:
This lab exercise will introduce you to digital filtering applications. You will design and
use a FIR Digital Notch filter to remove an unwanted tone from an audio signal. You
will do this on a PIC32MX 32 bit microcontroller. You are provided with a code setup
that adds a 400Hz tone to an input audio/speech signal. Your objective is to design a
FIR Digital Notch filter to suppress this tone. You will first use the Digital Filter Design
Tool to design the filter. You will then incorporate the filter into your application.

Note: While the Digital Filter Design tool is primarily intended for the Microchip‟s dsPIC
DSC devices, the FIR filters generated by this tool can easily be used with FIR filter
function in the XC32 DSP library for PIC32 devices.

Hardware:

You will use the PIC32 Audio Development Board, MPLAB REAL ICE and Head-
phones for this lab.

Procedure: Design a FIR Digital Notch Filter

1. On your PC, click on Start->All Programs->MDS->dsPICFD->dsPICFD.exe.
2. You will now see the dsPIC FD tool on your screen. Click on the FIR button in the

tool menu. See image below.

Choose FIR Filter

3. This will display a filter choice window on the screen. Choose Bandstop filter and
click Next.

4. You should now enter the parameters for this filter. The sampling rate for our appli-
cation is 16KHz. We need to suppress a tone at 400Hz. So choose the lower pass-
band frequency at 100 and upper pass-band frequency at 700. Choose the lower
stop-band frequency at 350Hz and upper stop-band frequency at 450. Set pass-
band ripple at 0.1dB and stop-band ripple at 60dB. See following figure. Click Next.

LAB Manual for 1674 AUD

Page 3

5. You will now see a dialog box for Filter Window choices. Choose Kaiser and click
Next.

6. The designed filter specification will be displayed on the screen. To generate the fil-
ter coefficient which can be added to the application, click on Codegen->Microchip-
>dsPIC30/33.

7. You will now see Code Generation Option window. Click OK. This brings up a Save
Dialog box. Name the file as filterCoeffs and save it at a known location on the

PC.
8. Close dsPIC FD.
9. Browse to the location where you saved the filter coefficient file. Open the file
filterCoeffs.s. Open this file in Notepad and review it. This file is intended for

dsPIC30F/33F assembler and needs to be modified for use in PIC32 „C‟ language
application. All assembler directives should be removed and only the filter coefficient
data should be retained in a „C‟ style array. You don't have to do this modifica-
tion for this lab. The lab already includes the modified C language compatible filter
coefficients file. Close the file and proceed to the next step.

Procedure: Integrate Digital FIR Notch Filter into the application.

1. Open MPLAB X IDE. Click on File->Open Project. Browse to the class folder. Open

the LAB 1 folder and click on LAB 1.X.

2. This will open up the LAB 1 project in MPLAB X IDE.
3. In the Project Explorer window, under Source Files, double click on main.c. You

will need to add code to this file in order to complete the lab. Look for the “TODO”

comment to know where code should be added. Every such comment has a coding
step associated with it. You can also use the MPLAB X IDE Tasks Tab to locate

LAB Manual for 1674 AUD

Page 4

Note that some coding steps require multiple lines of code to be written.

Step 1: Include the file dsplib_def.h and dsplib_dsp.h in the application. These

files provide access to the digital filtering function in MPLAB XC32 DSP library. Use <
> while including these files.

Step 2: Assign the audio sample frame size for our application. We perform process-
ing on audio blocks containing 128 stereo audio samples. Assign this value to
FRAME_SIZE.

Create an array of type STEREO_AUDIO_DATA and size FRAME_SIZE. Name it audio

and align it on a 4 byte boundary. The following code snippet shows an example of
how a variable or an array can be aligned at a 4 byte boundary.

int myArray[10] __attribute__((aligned(4))); // Example Only

Step 3: In this step you will assign values and create arrays needed for the digital filter.

1. The filter order for our application is 236. Assign this value to FILTER_ORDER.

2. The size of the audio frame which will be input to the filter is FRAME_SIZE. Assign

this value to FILTER_INPUT_SIZE.

3. Create the arrays as described in the table below.

Step 4: Write a for loop to initialize each element of the delayLine array to 0. Use

the index variable “i” to implement the for loop.

 Array Type Array Name Comments Size Alignment

short int delayLine Used for filter delay line FILTER_ORDER 4

short int filterOutput Stores filter output FILTER_INPUT_SIZE 4

short int filterInput Stores filter input FILTER_INPUT_SIZE 4

short int filterCoeffs2x Needed by XC32 DSP
Filter function

FILTER_ORDER * 2 4

extern

short int

filterCoeffs FILTER_ORDER - Holds filter coefficients.
Defined in notch.c

LAB Manual for 1674 AUD

Page 5

Step 5: Call the mips_fir16_setup() function to initialize the FIR filter. The func-

tion API is given here. The filter order is equal to FILTER_ORDER.

mips_fir16_setup(short int * filterCoeffs2x,

short int * filterCoeffs, int filterOrder);

filterCoeffs2x - pointer to a short int array of size of

(2 * filterOrder).

filterCoeffs - pointer to a short int array of size filterOrder con-

taining the filter coefficients.

filterOrder - Filter order. Should be greater than 4 and a multiple of 4.

Step 6: Call the mips_fir16() function to perform filtering operation. The function

API is given here. The filter output should be stored in filterOutput. The filter in-

put is contained in filterInput array. The number of input samples is given by

FRAME_SIZE. The filter order is equal to FILTER_ORDER. Scaling should be 0.

 mips_fir16(short int * output, short int * input,

 short int * filterCoeffs2x,

 short int * delayLine, int nSamples,

 int filterOrder, int scaling);

output — pointer to the output array

input - pointer to the input array

filterCoeffs2x - pointer to a short int array of size of

 (2 * filterOrder).

delayLine - pointer to the delay line array.

nSamples - number of input samples

filterOrder - Filter order. Should be greater than 4 and a multiple of 4.

scaling - applies a scaling factor to the filter output.

 Procedure: Running the code

1. Click on this icon to clean build the code:
2. Ensure that the MPLAB REAL ICE is connected to the PC and is selected in MPLAB

X IDE. Refer to Appendix A for more details on how to do this.
3. Ensure that Audio Development Board is powered up and connected to REAL ICE.

4. Click on this icon to program the device.
5. You will see the board display flickers and then show the introductory message

along with a filter status message. The message indicates that the filter is currently
enabled.

6. Reduce headphone volume to zero . Connect the headphone to jack J6 (labeled HP
OUT) on the board. Put on the headphones.

LAB Manual for 1674 AUD

Page 6

7. Increase the headphone volume gradually and speak into the board microphone
from a seated position. You should hear you voice on the headphone.

8. Press switch S1 on the board. This will toggle the filter activation and is indicated by
the Filter status message on the display. Toggle the filter activation and note your
observations.

Observations:

If the code is working correctly, you will hear a tone along with the speech signal when
the filter is OFF. This is a tone at 400Hz. When the filter is ON, the notch filter charac-
teristic suppresses the tone from the input signal and you do not hear it.

Review the rest of the application code.

Summary:

You designed a Digital FIR Notch filter to suppress an unwanted tone in the input au-
dio signal. You implemented the filter in an application and were able to test its per-
formance.

LAB 1 Notes:

LAB Manual for 1674 AUD

Page 7

LAB 1 Notes:

LAB Manual for 1674 AUD

Page 8

LAB 2:
Speech Compression Algorithms.

Purpose:

To use the Speex Speech Compression Algorithm for data compression/
decompression in a voice recorder application.

Overview:
In this lab exercise you will build a voice recorder application using Microchip‟s
PIC32MX 32-bit microcontroller. The application will use the PIC32 device RAM to
store the compressed speech samples. You will use the Open Source Speex Codec to
compress and decompress the speech samples. Your task will involve adding the
Speex Codec to the application. You will then evaluate the amount of memory avail-
able for storage and the duration of the speech segment stored.

The Open Source Speex algorithm has multiple Narrowband (8Khz sampling) quality
levels. You will start with quality level 3 (8kbps) and then try other quality levels.

Hardware:

You will use the PIC32 Audio Development Board, MPLAB REAL ICE and Head-
phones for this lab.

Procedure : Add Speex Codec to the application

1. Open MPLAB X IDE. If there another project open the in the IDE, close it by right-

clicking on the project root folder in the Project Explorer window and then clicking
on Close.

2. Click on File->Open Project. Browse to the class directory and open LAB 2 folder.

Double-click on LAB 2.X. This will open up the LAB 2 project in MPLAB X IDE.

3. In the Project Explorer window, double click on main.c. You will need to add

code to this file in order to complete the lab. Look for the “TODO” comment to know

where code should be added. Every such comment has a corresponding coding
step associated with it. Note that some coding steps may require multiple lines of
code to be written. You can also use the MPLAB X IDE Tasks Tab to locate “TODO”

sections. The coding steps are outlined here:

LAB Manual for 1674 AUD

Page 9

Step 1: Include the speex.h file in the application. This allows the application to ac-

cess the Speex Codec API. Add the following line to the code

#include “speex/speex.h”

Step 2: Set up the application configuration macro values to the ones shown in the ta-
ble below:

Step 3: Declare variables needed by the Speex Encoder and Decoder as shown in the
table below:

Step 4: Call the speex_encoder_init() function to create the Speex encoder.

The API for the function is shown below. The return value of this function should be
assigned to the void type encoder pointer. The mode argument should be set to

&speex_nb_mode.

void * speex_encoder_init(const SpeexMode* mode);

 mode - should be set to &speex_nb_mode for narrow band encoder

Macro Name Value Comment

SPEEX_DECODER_PERCEPTUAL_ENHANCER 1 Enables perceptual enhancer in
Speex Decoder

SPEEX_ENCODER_QUALITY 3 Speex Encoder set for 8kbps opera-
tion

MAX_ENCODED_PACKET_SIZE 100 Maximum size of encoded packet (in
bytes)

MEMORY_BUFFER_SIZE 64000 Size of compressed speech memory
buffer (in bytes)

FRAME_SIZE 160 Size of encoder input frame (in sam-
ples)

Variable Type Variable Name Comment

void * encoder Will point to the Speex encoder data
structure

void * decoder Will point to the Speex decoder data
structure

SpeexBits encoderBits Output data structure for Speex en-
coder

SpeexBits decoderBits Output data structure for the Speex
decoder.

LAB Manual for 1674 AUD

Page 10

Step 5: Call the speex_decoder_init() function to create the Speex decoder.

The API for the function is shown below. The return value of this function should be
assigned to the void type decoder pointer. The mode argument should be set to

&speex_nb_mode.

void * speex_decoder_init(const SpeexMode * mode);

 mode - should be set to &speex_nb_mode for narrow band decoder

Step 6: Call the speex_encode_int() function to encode the raw audio. The func-

tion API is shown here. Set state to encoder. Set the encoder input to rawData

and set bits to point to encoderBits. Ignore the return value.

int speex_encode_int (void * state, short int * input,

SpeexBits *bits);

 state - pointer to the initialized encoder state.

 input - pointer to raw audio data array to be encoded

 bits - pointer to the speex bits structure used for the encoder.

Step 7: Call the speex_decode_int() function to decode the encoded speex

frame. The function API is shown here. Set state to decoder. Set the bits input to

point to the decoderBits input. Set the decoder output to rawData array. Ignore

the return value.

int speex_decode_int (void * state, SpeexBits *bits,

short int * output);

 state - pointer to the initialized encoder state.

 bits - pointer to the speex bits structure used for the decoder.

 output - pointer to array raw audio data array where the decoded data will be

 stored.

Procedure: Running the code

1. Click on this icon to clean build the code:
2. Ensure that the MPLAB REAL ICE is connected to the PC and is selected in MPLAB
X IDE. Refer to Appendix A for more details on how to do this.
3. Ensure that Audio Development Board is powered up and connected to REAL ICE.

4. Click on this icon to program the device:
5. You will see the board display flicker and then show the introductory message along
with a filter status message. The message indicates that the filter is currently enabled.

LAB Manual for 1674 AUD

Page 11

6. You should have a headphone on your table. If the headphone has a volume con-
trol, reduce the volume to zero . Connect the headphone to jack J6 (labeled HP
OUT) on the board. Put on the headphones.

7. Increase the headphone volume gradually and speak into the board microphone
8. Press Switch S1 on the Audio Development Board to start recording your voice.

Speak into the microphone from a seated position. This speech will be recorded.
You will see the „REC‟ text on the display will be highlighted.

9. Press Switch S4 to start playback. The recorded voice will be played back.
10. You can press switch S1 again to repeat the record playback experiment.
11. You can now try changing the encoder quality setting

(SPEEX_ENCODER_QUALITY) in your application to 7 or 10 and note the change in

encoding quality. Note that you will have to compile, build, program and run the
code.

12. You can also try disabling perceptual enhancer and note the effect this has on the
decoding quality. This can be done by setting the
SPEEX_DECODER_PERCEPTUAL_ENHANCER to 0. Note that you will have to com-

pile, build, program and run the code.

Observations:

1. With the encoding quality set at 3, you can record up to approximately 1 minute of
speech in 64K bytes of memory. This is possible due of the compression provided by
the Speex algorithm. Record your observations for the other quality level in the table
below. Use the rating provided to rate the quality of compression.

(Rating: 1– A little noisy but intelligible, 2-Good, 3-Is this really compressed?)

2. Toll quality speech is processed at 128kbps. How much toll quality speech can you
store in 64K bytes of RAM?

3. How much compressed speech can you store in 64Kb RAM (specify in time duration
for different quality setting).

Summary:

The Speex Codec was used to compress and decompress speech and increase the
effective speech data storage capacity in a voice recorder application. The impact of
speech compression and decompression was outlined.

Quality Setting Bit Rate Input Bit Rate Compression Rating (1 to 3)

3 8 kbps 128 kbps

7 15 kbps 128 kbps

10 24.6kbps 128 kbps

LAB Manual for 1674 AUD

Page 12

LAB 3:
Audio Coding

Purpose:

To learn how to use the Open Source Helix MP3 Decoder to decode MP3 files while
using Run Time Library Loading Technique on PIC32MX Devices.

Overview:

In this lab exercise you will use the Open Source Helix MP3 Decoder to build a USB
Thumb Drive based MP3 player. You will access the Helix MP3 Decoder API through
the Run Time Library Loading (RTLL) Technique. The MP3 player you will build will not
be a full featured MP3 player. This was done to keep the lab exercise as simple as
possible.

Given the complex nature of the involved concepts, some of the coding steps in this
lab exercise are review steps. In the steps where actual coding is required, the solu-
tions have been provided.

Concepts:

The information in this section will be needed to understand some of the steps that you
will perform. In this lab, you will create two hex files. One will be for LAB 3 and the
other for the Helix MP3 Decoder Library. The LAB 3 project places its code starting
from program memory location 0x9D000000 to 0x9D06DFFF. The Helix MP3 De-

coder project places its code starting from location 0x9D06E000 to 0x9D07FFFF.

Refer to the Appendix B for linker script changes needed to implement this. Appendix
B also contains information on the application state diagram and program memory de-
sign for this lab exercise.

Hardware:

You will use the PIC32 Audio Development Board, MPLAB REAL ICE and Head-
phones for this lab.

Procedure : Build MP3 Decoder Library project and program device.

1. Open MPLAB X IDE. If a project is already open, close it by right clicking on the

project root node in the Project Explorer window and click on close.
2. Click on File->Open Project. Browse to the LAB 3\MP3 folder. Double click on

MP3.X. This will open the MP3 project in the MPLAB X IDE.

LAB Manual for 1674 AUD

Page 13

3. The project is already configured to be built. You must configure REAL ICE to pro-
gram a certain section of program memory that is relevant to the MP3 project. Go to
project properties (right click on the project root node in the project explorer window
and click on properties).

4. In the project properties, select REAL ICE. In Option categories, select “Memories to
Program”. Choose the “Manually Select memories and ranges” option and enter
data as shown in the figure below. Note that you are entering the physical (and not
virtual) memory addresses. Click apply to save changes.

5. Click on this icon to clean build the project:
6. Note that you may see a linker warning about the reset symbol not being found.

You can safely ignore this warning.
7. Ensure that the Audio Development Board is connected to the REAL ICE

8. Click on this icon to program the device:
9. When the programming is complete, close the project. (right-click on the project root

code and select Close).

Procedure: Complete MP3 player application and program.

1. Click on File->Open. Browse to the LAB 3 folder. Double click on LAB 3.X. This

will open the LAB 3 project in the MPLAB X IDE.
2. In the Project Explorer window, double click on AudioUSBTasks.c. You will need

to add code to this file in order to complete the lab. Look for the “TODO” comment to

know where code should be added. Every such comment has a corresponding cod-
ing or review step associated with it. Note that some coding steps may require multi-
ple lines of code to be written. The coding steps are outlined here:

LAB Manual for 1674 AUD

Page 14

Step 1: Assign value and declare some of the variables needed by the Helix MP3 De-
coder.

Declare a macro named READBUF_SIZE. This defines the maximum data chunk

size (in bytes) that should be read from the MP3 file. Assign a value of 1940 to it.

Declare an array of type BYTE and name it readBuf. Its size should be

READBUF_SIZE. This array will hold the MP3 data read from the MP3 file.

Declare a pointer of type BYTE and name it readPtr.

Declare an array of type INT16 and name outBuf. Its size should (1152 * 2). This

array will hold the decoded audio data. The multiply by two indicates space allocation
for stereo operation. The value 1152 holds good for operation at 44.1KHz

Step 2: Declare a void pointer and name it hMP3Decoder. This would serve as the

pointer to the Helix MP3 Decoder state data structure.

Step 3: Create a pointer to the MP3 library. Declare a void pointer and name it

hMP3DecoderLibrary. This will actually point to a data structure (called the Module

Header) which contains information about the Helix MP3 Library.

Step 4: This is a code review step. You don't have to add code in this step. As de-
scribed in Step 3, This section contains prototype declarations of the exported Helix
library functions. Each prototype declaration declares a function pointer.

Step 5: This is a coding step. Use the RTLL function, dlopen()to obtain a handle to

the MP3 decoder library. Store the return value (the library handle) in hMP3Decoder-

Library. The API description is given here. The library string for the Helix MP3 li-

brary is “Helix Library” (case-sensitive). The library module header address is

0x9D06E000. Type cast the library module header address using void * type to

avoid compiler warning. Set the data parameter to zero.

handle = dlopen(const char * libraryString,

void * libModuleHeaderAddress, void * data);

-

.
 -

The solution for this step in available on page 18

libraryString - Library identifier string contained in the library
module header

libModuleHeaderAddress - Absolute address of the library module header
in program memory.

data - Optional data as specified by the library.

LAB Manual for 1674 AUD

Page 15

Step 6: This is a coding step. Use the RTLL dlsym() function to obtain a handle to

each function exported by the library. The API description is given here. The library
handle should be set to hMP3DecoderLibrary. The function description string de-

pends on the function to which you are trying to obtain the handle.

functionHandle = dlsym(void * libraryHandle,

const char * functionDescString);

For example, the function description string for MP3InitDecoder function is
“HelixMPInitDecoder”. The coding step already has some examples of how the

handles are obtained. Use the table below to obtain handles to the rest of exported
functions.

The solution to this step is given on page 18

Step 7: This is a coding step. Call the MP3InitDecoder() function. The function

takes zero arguments and returns a handle to the initialized MP3 decoder state data
structure. Store the return value in hMP3Decoder.

Step 8: This is a coding step. Call the MP3FindSyncWord() function . The function

takes 2 arguments and returns an int type offset of the byte location where the syn-

chronization word was found in the current frame. The first argument is readPtr. The

second argument is bytesLeft. Store the return value in offset.

int MP3FindSyncWord(unsigned char *buf, int nBytes);

Return Value Variable String Description Comment

MP3FreeDecoder "HelixMP3FreeDecoder" Will free the MP3 Decoder memory

MP3Decode "HelixMP3Decode" Decodes a MP3 frame

MP3GetLastFrameInfo "HelixMP3GetLastFrameInfo" Get information about the last
frame

libraryHandle - Library handle obtained from the dlopen()

function

functionDescString - String key of the desired function (defined in
the library module header)

buf - pointer to the input frame

nBytes - size of the frame.

LAB Manual for 1674 AUD

Page 16

Step 9: This is a coding step. Call the MP3Decode() function. The function takes 5 ar-

guments and returns a int type error value. The first argument should be set to

hMP3Decoder. The second argument should be set to &readPtr. The third argument

is pointer to &bytesLeft. The fourth argument is the outBuf array where the de-

coded data will be stored. The fifth argument should be 0. Store the return value in

err.

int MP3Decode(HMP3Decoder hMP3Decoder, unsigned char **inbuf,

int *bytesLeft, short *outbuf, int useSize);

The solution for this step is given on Page 18

The code is now ready to be built. Perform the following steps to program the device:

1. You must configure REAL ICE to program a certain section of program memory that

is relevant to the LAB 3 project and not erase the program memory that contains
the MP3 library code. Go to project properties (right click on the project root node in
the project explorer window and click on properties).

2. In the project properties, select REAL ICE. In Option categories, select Memories to
Program. Choose the Manually Select memories and ranges option and enter data
and shown in the following figure. Note that you are entering the physical (and not
virtual) memory addresses. Click apply to save changes.

hMP3Decoder - pointer to the MP3 decoder state data structure
obtained by using the MP3InitDecoder()

function

inbuff - modifiable pointer to the input frame

bytesLeft - indicates the number of un-processed bytes in
the current frame

outbuf - pointer to the output raw audio buffer.

useSize - should be 0

LAB Manual for 1674 AUD

Page 17

3. Click on this icon to clean build the project:
4. Note that you may see a warning regarding MDD-FS read attribute. This can be

safely ignored.
5. Ensure that the Audio Development Board is connected to the REAL ICE

6. Click on this icon to program the code:
7. Copy the file test.mp3 from the LAB 3 folder on to your Thumb Drive. Then in-

sert the Thumb Drive onto the Host connector on the PIC32 Audio Development
Board.

8. Connect the headphone to jack J6 (labeled HP OUT) on the board. Put on the head-
phones. Increase the headphone volume gradually . You should hear the MP3 file
playback on the headphone.

Summary:

The Helix MP3 Decoder Library was integrated into the application via the RTLL frame-
work. The library API was invoked using RTLL framework. Some of the key library
function were coded and the application was tested. Microchip‟s AN1367 - “Porting the
Helix MP3 Decoder onto Microchip‟s PIC32MX 32-bit Microcontroller” provides more
details on Helix MP3 Decoder API and Run Time Library Loading Technique.

LAB Manual for 1674 AUD

Page 18

 Solutions:

The solutions for the different coding steps are given here

Step 5:

 hMP3DecoderLibrary = dlopen("Helix Library",

 (void*)HELIX_LIB_MODULE_HEADER_ADDRESS,(void *)0);

Step 6:

MP3InitDecoder = dlsym(hMP3DecoderLibrary, "HelixMP3InitDecoder");

MP3FreeDecoder = dlsym(hMP3DecoderLibrary, "HelixMP3FreeDecoder");

MP3Decode = dlsym(hMP3DecoderLibrary, "HelixMP3Decode");

MP3GetLastFrameInfo = dlsym(hMP3DecoderLibrary, "HelixMP3GetLastFrameInfo");

MP3GetNextFrameInfo = dlsym(hMP3DecoderLibrary, "HelixMP3GetNextFrameInfo");

MP3FindSyncWord = dlsym(hMP3DecoderLibrary, "HelixMP3FindSyncWord");

RegisterMalloc = dlsym(hMP3DecoderLibrary, "HelixMP3RegMalloc");

RegisterFree = dlsym(hMP3DecoderLibrary, "HelixMP3RegFree");

Step 9:

err = MP3Decode(hMP3Decoder, &readPtr, &bytesLeft, outBuf, 0);

Helix MP3 Library API Summary:

Decoder Initialization:

HMP3Decoder MP3InitDecoder(void);

This function returns a pointer to the initialized MP3 Decoder State Data Structure.

Decoder de-allocation:

void MP3FreeDecoder(HMP3Decoder hMP3Decoder);

This function de-allocates memory allocated to the hMP3Decoder state memory.

LAB Manual for 1674 AUD

Page 19

MP3 Decode:

int MP3Decode(HMP3Decoder hMP3Decoder, unsigned char **inbuf,

int *bytesLeft, short *outbuf, int useSize);

This function decodes an MP3 frame. inbuf points to the input frame and is modified

to point to the last consumed byte in the input frame. bytesLeft indicates the num-

ber of bytes left to be consumed in the input frame. outBuf will contain the decoded

audio samples. useSize should be 0. This function returns a non-zero error code.

Get Last Frame Information:

void MP3GetLastFrameInfo(HMP3Decoder hMP3Decoder, MP3FrameInfo

*mp3FrameInfo);

This function returns the MP3FrameInfo frame information data for the last decoded
frame.

Get Next Frame Information:

int MP3GetNextFrameInfo(HMP3Decoder hMP3Decoder, MP3FrameInfo

*mp3FrameInfo, unsigned char *buf);

This function returns the MP3FrameInfo frame information data for the frame pointed to
by buf.

Find MP3 Frame Synchronization word:

int MP3FindSyncWord(unsigned char *buf, int nBytes);

This function return the byte offset location of the frame synchronization word if it is
found in the current frame. Return -1 otherwise.

LAB 3 Notes:

LAB Manual for 1674 AUD

Page 20

Appendix A:

Enabling REAL ICE or ICD3 in MPLAX X IDE

This section describes the steps to be followed to enable REAL ICE or ICD3 in MPLAB
X IDE project. You need to have a open project and the REAL ICE or ICD3 should be
connected to the PC.

1. Right click on the root node of the project tree in the Project Explorer in MPLAB X
IDE and click on Properties.

2. In the Project Properties window, select the desired tool in the Hardware Tool sec-
tion by clicking on the tool serial number. For example, the figure below shows an
ICD3 with serial no JIT112941853 being selected. Note that serial number on your
REAL ICE or ICD3 will be different.

3. Click on Apply

LAB Manual for 1674 AUD

Page 21

Appendix B:

LAB3: Linker Script Changes, Program Memory Layout and Applica-
tion State Diagram

Linker Script Changes:

LAB 3 contains two projects, the Helix MP3 Decoder Project and the LAB 3 application
project. Each project uses it‟s own linker script file. The linker script files have been
modified to implement the program memory layout described in the Program Memory
Layout section.

The linker script for the Helix MP3 Decoder Project is located at \LAB 3\MP3

\MP3.X\procdefs.ld. A review of this file will show that the program memory start

location (kseg0_program_memory) has been modified to start at location

0x9D06E100. This provides approximately 73KB of program memory for the library

code and accommodates the library module header that is located at 0x9D06E000.
The data memory (kseg1_data_mem) is configured to start at location 0xA001F830.

The length of the data memory is 2000 bytes. Note that the library uses the application
heap and stack. The code snippet below show the library linker script snippet.

The linker script for the LAB 3 Application Project is located at \LAB 3\MP3\LAB

3.X\procdefs.ld. A review of this file will show that the program memory length

(kseg0_program_memory) has been modified to end 0X9D06DFFF. This accom-

modates the library header that is located at 0x9D06E000. The data memory
(kseg1_data_mem) is configured to end at 0xA001F800. This provides memory for

the library data section.

LAB Manual for 1674 AUD

Page 22

The following code snippet shows the relevant sections of the LAB3 application project
Linker script.

Program Memory Design:

The following figure show the allocation of different program sections by the LAB 3 pro-
ject and the Helix MP3 Decoder Project

LAB Manual for 1674 AUD

Page 23

Application State Diagram:

The following diagram shows the various states of the application. This state machine
is implemented in the AudioUSBTasks() function in AudioUSBTasks.c file con-

tained in the LAB 3 project.

