
TLS 2130

Getting Started with
MPLAB

®
 C

for dsPIC® and PIC24

Embedded C Programming Series

Lab Manual

Rob Ostapiuk
Microchip Technology Inc.

TLS2130

The Microchip name, logo, The Embedded Control Solutions Company, PIC, PICmicro, PICSTART, PICMASTER,
PRO MATE, MPLAB, SEEVAL, KEELOQ and the KEELOQ logo are registered trademarks, In-Circuit Serial Programming,

ICSP, microID, are trademarks of Microchip Technology Incorporated in the USA and other countries.
Windows is a registered trademark of Microsoft Corporation.

SPI is a trademark of Motorola.
I2C is a registered trademark of Philips Corporation.

Microwire is a registered trademark of National Semiconductor Corporation.
All other trademarks herein are the property of their respective companies.

 © 2011 Microchip Technology Incorporated. All rights reserved.
―Information contained in this publication regarding device applications and the like is intended through suggestion only and may be super-
seded by updates. No representation or warranty is given and no liability is assumed by Microchip Technology Inc. with respect to the accu-
racy of such information, or infringement of patents arising from any such use of otherwise. Use of Microchip‘s products as critical compo-
nents in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or

otherwise, under any intellectual property rights.‖

 TLS2130

Getting Started with MPLAB® C
for PIC24 MCUs and dsPIC DSCs

Table of Contents

Lab Exercise 1: Creating an MPLAB® C Based Project ...1-1
Lab Exercise 2: Setting PIC® Configuration Bits in Code ...2-1
Lab Exercise 3: Working With I/O Ports ...3-1
Lab Exercise 4: Interrupts ..4-1
Lab Exercise 5: Working With Peripheral Libraries ..5-1
Lab Exercise 6: Creating Custom Libraries ..6-1
Lab Exercise 7: Mixing C and Assembly ..7-1

Reference Materials

All of these documents may be found in the \docs subdirectory of your MPLAB C installation. It will typically be
located at: C:\Program Files\Microchip\MPLAB C30\docs

Electronic Documentation
Release Notes for MPLAB® C30
MPLAB® C for PIC24 and dsPIC Help File
ASM30 Help File
LINK30 Help File
16-bit Peripheral Libraries Master Index

PDF Documentation
MPLAB® C30 User‘s Guide
MPLAB ASM30, MPLAB LINK30 and Utilities User‘s Guide
16-bit Language Tool Libraries
16-bit Language Tool Quick Reference Card

TLS2130

The content of this class is applicable to the following products:

SW006012—MPLAB® C for PIC24 MCUs and dsPIC® DSCs (also called MPLAB® C30)
SW006013—MPLAB® C for dsPIC DSCs
SW006014—MPLAB® C for PIC24 MCUs

TLS2130

 1-1

Lab Exercise 1
Creating an MPLAB C Based Project

Purpose

The purpose of this lab is to illustrate the steps required to create an MPLAB® C based project within the MPLAB
Integrated Development Environment. You will learn how to select the compiler as the build tool, which files
must be included in your project, how to allocate a heap and what code must be included in your source file.

Requirements

Development Environment: MPLAB 8.60 or later
C Compiler: MPLAB C for PIC24, or MPLAB C for PIC24 and dsPIC (lite or better) v3.23b +
Hardware Tools:  Explorer16 Development Board with PIC24FJ128GA010

  MPLAB Real ICE™ or MPLAB ICD3
  Proteus Board Level Simulator

Lab files on class PC: C:\MTT\TLS2130\Lab1\...

Objective

For this first lab, the instructor will walk you through the process of creating an MPLAB® C based project and
describe the various decisions that must be made along the way. The steps are described in their entirety
throughout this section. Upon completion of this exercise, you will have a complete C project setup in MPLAB
with bare minimum required framework in place so that all you need to do is add your application code. More
advanced features such as setting configuration bits in code and interrupts will be covered later in the class.

TLS2130

1-2

Open MPLAB and start the project wizard by se-
lecting from the menu:

Project  Project Wizard…

Click to continue. Next >

Procedure

This is a follow-along lab. Follow the steps along with the instructor.

In the Device combo box, select the
PIC24FJ128GA010.

Although we will be using the
PIC24FJ128GA010 for this class,
this process applies equally to all
PIC24, dsPIC30 and dsPIC33 fam-
ily devices.

Click to continue. Next >

In the Active Toolsuite combo box, select
the MPLAB C30 Toolsuite.

The locations for the various ex-
ecutables listed under Toolsuite
Contents should be found auto-
matically unless you have a non-
standard installation.

Click to continue. Next >

Setup the Core MPLAB® Project

TLS2130

 1-3

Cl ick and navigate to:

C:\MTT\TLS2130\Lab1

Then name the file Lab1.mcp

 Browse...

Click to continue. Next >

This library file (TLS2130.a) is
not a required component of all
C projects. It was created for
this class to simplify LCD inter-
facing and switch debouncing on
the Explorer 16 Development
Board. The complete source
code for this library file is in-
cluded on the class CD.

Add files to the project:
In the left hand list box, navigate to:

C:\MTT\TLS2130\Lab1

Select the file Lab1.c

 Click

Select the file TLS2130.a

 Click Add>>

Add>>

Click to continue. Next >

Until recently, you would have been required to add a linker script to the project at this point.
As of MPLAB 8.10, the correct linker script will be automatically selected and used in the
background, eliminating the need to add it to the project tree manually. While the link step
will work in the same way as before, you will not see the linker script in the project tree.

TLS2130

1-4

Click Finish

At this point, you have a complete C30 project with the minimum configuration—including some items in
the main source file which we will discuss shortly. For many applications, we could stop here and simply
add in our source code. However, to cover a broader range of applications, we will next allocate a heap
so that we can freely use the standard C libraries which include many functions that require a heap.

A heap is simply a block of RAM where we can dynamically allocate and deallocate variables
as needed. Think of it as a scratch pad, or a temporary storage area.

Open the project build options by selecting
from the menu:

Project  Build Options…  Project

Select the MPLAB LINK30 Tab
Allocate a Heap
In the Heap Size box, enter a value of 128

bytes.

The choice of 128 bytes is somewhat arbi-
trary. It was selected as a good starting point
but may need to be altered depending on
your application. If you do not use any of the
standard C library functions (such as printf or
the string manipulation routines) or you never
use the malloc function yourself, then you
probably don‘t need a heap and may skip
this step. If your application requires a heap,
but none is declared, you will get a compile
error. If you allocate a heap that is too small,
you will likely encounter runtime errors due to
the malloc function returning null as a result
of too little space being available.

TLS2130

 1-5

(OPTIONAL)

Select the Directories Tab

If you are content with the suite defaults for
the various directory paths, you may skip this
step or click on the Suite Defaults button.

However, if you have a non-standard installa-
tion or a more complex project directory
structure, you have the ability to setup paths
for:

Output Directory

Intermediary Directory

Assembler Include Search Path

Include Search Path

Library Search Path

If you have project files in locations other
than the standard C30 installation directories
or your project directory, paths to those files
must be added here.

For this class, we will be using the suite de-
faults only.

(OPTIONAL)
Add Header Files to the Project

Right click on the Header Files node of the

project tree and select Add Files… from the
popup menu.

Right
click
here Select

Adding header files to the project
tree is completely optional. This

simply provides quick access to
them from within your project. The
compiler accesses header files via
the #include directive in source

files and ignores them in the project
tree.

Click when done. OK

We will be including three header files into
this project: the device specific header file,
the standard I/O header file, and the
TLS2130 header file for the library
TLS2130.a. Simply repeat the process
above three times—once for each of the files.

Continued on next page...

TLS2130

1-6

Add Header Files to the Project (Continued)

Device specific header files are in the directory:

C:\Program Files\Microchip\MPLAB C30\Support\h

We will be using the file: p24fj128ga010.h

This file contains definitions for register names and configura-
tion settings.

C Standard Library header files are in the directory:

C:\Program Files\Microchip\MPLAB C30\include

For Lab1 we will be using the file: stdio.h

This file contains function prototypes for the standard C library‘s
I/O functions (Standard I/O Library). We need this for the
printf() function that is used in this program.

We will also need the header file associated with the
TLS2130.a library file which is in our project directory:

C:\MTT\TLS2130\Lab1

The file we need is: TLS2130.h

This file contains function prototypes for the LCD and switch
debounce routines written for this class. This is not a part of
the standard C library or the libraries included with MPLAB
C30, but it is included on the class CD along with the source
code for the library itself.

Add the Minimum Required Code Framework

#include the required header files near the top of

your source code.

The include files need not be at the very top of your
code, but they must be declared before anything in
them is used in your code.

Header files must be included in your source code with #include. Including them in the pro-

ject tree has no effect. This is an ANSI C requirement – not an MPLAB® requirement.

#include <file>

Angle brackets indicate that a file exists within the MPLAB C30 search path (at or below the
MPLAB C30 directory). If the file is not found in the compiler‘s search path, it will result in a
compile error.

#include “file”

#include “C:\...\file”

Quotes indicate that a file exists within the project directory, unless a fully qualified path is pro-
vided. In that case, the compiler will look for the file at the specified location. If the file is not
found in the project directory or in the specified location, it will result in a compile error.

Lab1.c (Line 15-17)

#include <p24fj128ga010.h>

#include <stdio.h>

#include “TLS2130.h”

TLS2130

 1-7

Set Device Configuration Options

Using the _CONFIG1 and _CONFIG2 mac-

ros, setup the configuration bits for your ap-
plication. For this exercise, we will use the
following minimum settings to work with the
Explorer 16 Demonstration Board. Any set-
tings that are not explicitly specified are left in their default states. (See the data sheet for the default
values.) We will discuss how to use these configuration macros in detail in the next section.

Finished (with the setup)

The source code below is the program that we will run on the Explorer 16 board in just a moment:

Lab1.c

#include <p24fj128ga010.h> // Not used in this program

#include <stdio.h> // Required for printf() function

#include "TLS2130.h" // Required for LCD routines

_CONFIG1(FWDTEN_OFF & JTAGEN_OFF)

int main(void)

{

 /*--

 Setup and write text to LCD to show program is working

 --*/

 lcdInit(); // Setup PMP and initialize LCD

 lcdPutStr("Hello, world!"); // Write text string to LCD

 /*--

 "Dummy" call to printf() to show that heap was allocated correctly.

 If a heap is not declared, this will result in a compile error.

 This function will produce no output (UART is not enabled).

 --*/

 printf("Nothing to see here.");

 /*--

 Loop forever...

 --*/

 while(1);

}

There are three functions called within our main program before we go into an infinite loop. First is

lcdInit() which sets up the Parallel Master Port to communicate with the LCD module on the Ex-

plorer 16 board. Next is lcdPutStr() which will write a string of text out to the LCD module at the

current cursor position. Finally, the printf() function is called. Normally, this function would write its

argument to UART1. But, since we haven‘t configured the UART, it will not transmit any data written to
its transmit register. Its only purpose here is to generate a compile error if we haven‘t properly allocated

a heap. While printf() may be used to write data to the UART, it isn‘t the most efficient way to do

so. If you are concerned about code space and execution speed, then you are much better off using the
UART libraries or writing directly to the UART yourself.

Lab1.c (Line 19)

_CONFIG1(FWDTEN_OFF &

TLS2130

1-8

Results

The text ―Hello, world!‖ should appear on the LCD of the Explorer 16 Development Board.

Enable a debugger

If not already enabled, From the menu bar select:
 Debugger  Select Tool  7 REAL ICE or
Debugger  Select Tool  1 Proteus VSM

Click on the Build All
button.

Select Debug mode.

When programming com-
pletes, click on the Reset
button.

Click on the Run button.

Click on the Halt button.

If using hardware; Click
on the Build All button.

If using Proteus; Click on
the Start Simulation button.

TLS2130

 1-9

Conclusions

You should now know how to setup an MPLAB® C30 project within MPLAB. It may be accomplished most easily
through the use of the Project Wizard, and requires the following steps:
1. Select the device
2. Select MPLAB C30 as the active tool suite
3. Create a new project file
4. Add source files to project (if available—may be added later if they haven‘t been written yet)
5. Add any required library files to project (you might not need any libraries for your project)
6. Add linker script for the selected device—this is absolutely required.
7. Allocate a heap (if needed)
8. Setup directories (if desired)
9. Add header files to project tree (if desired)
10. #include header files in your source code (generally required)
11. Set device configuration bits in code (strongly recommended)

Once the project has been setup correctly, the Build All button will launch the LINK30 linker, which in turn runs
the MPLAB C30 compiler for each C source file in your project.

If you are coming to C30 from MPASM, there are fundamentally only two differences between setting
up a project for MPASM and for MPLAB C30:
1. The selection of MPLAB C30 as the active tool suite
2. The inclusion of a linker script
Other items are either optional, or may not be required for all projects, but should be considered if
you run into problems with your setup:
1. Inclusion of libraries
2. Allocation of a heap
3. #include header files (analogous to include files: *.inc) for any libraries you use, including stan-

dard C libraries which need not be included in the project tree.

TLS2130

1-10

TLS2130

2-1

Lab Exercise 2
Setting PIC® Configuration Bits in Code

Purpose

The purpose of this lab is to test your understanding of the use of the _CONFIG1 and _CONFIG2 macros to

setup the device configuration bits in code, based on a given set of desired configuration options.

Requirements

Development Environment: MPLAB 8.60 or later
C Compiler: MPLAB C for PIC24, or MPLAB C for PIC24 and dsPIC (lite or better) v3.23b +
Hardware Tools:  Explorer16 Development Board with PIC24FJ128GA010

  MPLAB Real ICE™ or MPLAB ICD3
Lab files on class PC: C:\MTT\TLS2130\Lab2\...

Objective

Based on what you learned in this section, setup the PIC® configuration words in code with the following set of
configuration options by using the _CONFIG1 and _CONFIG2 macros:

Oscillator = HS, Primary with PLL

OSC2/RC15 Function = OSC2

Clock Switching & Monitor = Both Disabled

JTAG = Disabled

Watchdog Timer = Disabled
A table of the macro parameter labels that you will need is provided in the Procedure section.

TLS2130

2-2

Open Lab 2 by selecting from the menu:

File  Open Workspace…
and opening the workspace file located at:

Procedure

C:\MTT\TLS2130\Lab2\Lab2.mcw

In the project tree, under the Source Files heading, double
click the file Lab2.c to open it in the editor.

Edit the lines in Lab2.c marked with the
comment ―//### Your Code Here

###‖ to initialize the configuration bits

with the settings at right. Note that the
oscillator requires two options to be
specified (e.g. Oscillator Type and Oscil-
lator Selection).

Oscillator = HS, Primary with PLL

OSC2/RC15 Function = OSC2

Clock Switching & Monitor = Both Disabled

JTAG = Disabled

Watchdog Timer = Disabled

Lab2.c

#include <p24fj128ga010.h> // Required for _CONFIGx macros

//### Your Code Here ### //### (3.1) Use _CONFIG1 macro here

//### Your Code Here ### //### (3.2) Use _CONFIG2 macro here

int main(void)

{

 while(1);

}

Step 3.1: Call the _CONFIG1 Macro

The _CONFIG1 macro is used to setup the CONFIG1 register, which controls the following features:
JTAG, Code Protection, Write Protection, Background Debug, Clip-on Emulation, ICD Pins Select, and
all Watchdog Timer options. Table 2-1 on the following page provides all of the macro‘s parameter la-
bels as defined in the PIC24FJ128GA010.h header file.

If you still have the previous project open, you must first close it by selecting from the menu:

File  Close Workspace

TLS2130

2-3

JTAG JTAGEN_OFF Disabled

 JTAGEN_ON Enabled

ICD Pins Select ICS_PGx1 EMUC/EMUD share PGC1/PGD1

 ICS_PGx2 EMUC/EMUD share PGC2/PGD2

Clip-On Emulation COE_ON Enabled

 COE_OFF Disabled

Background Debug BKBUG_ON Enabled

 BKBUG_OFF Disabled

Code Protect GCP_ON Enabled

 GCP_OFF Disabled

Write Protect GWRP_ON Enabled

 GWRP_OFF Disabled

Windowed WDT WINDIS_ON Enabled

 WINDIS_OFF Disabled

Watchdog Timer FWDTEN_OFF Disabled

 FWDTEN_ON Enabled

Watchdog Prescaler FWPSA_PR32 1:32

 FWPSA_PR128 1:128

Watchdog Postscaler WDTPS_PS1 1:1

 WDTPS_PS2 1:2

 WDTPS_PS4 1:4

 WDTPS_PS8 1:8

 WDTPS_PS16 1:16

 WDTPS_PS32 1:32

 WDTPS_PS64 1:64

 WDTPS_PS128 1:128

 WDTPS_PS256 1:256

 WDTPS_PS512 1:512

 WDTPS_PS1024 1:1024

 WDTPS_PS2048 1:2048

 WDTPS_PS4096 1:4096

 WDTPS_PS8192 1:8192

 WDTPS_PS16384 1:16384

 WDTPS_PS32768 1:32768

_CONFIGx Macro Syntax

_CONFIGx(OPTION1 & OPTION2 & … & OPTIONn)

To form the parameter list for the macros, simply bitwise AND (&) together the desired options from the
tables above. Any parameters you leave out will retain their default settings as per the data sheet.

Table 2-1: _CONFIG1(x) Macro Parameter List Options for PIC24FJ128GA010

TLS2130

2-4

Step 3.2: Call the _CONFIG2 Macro

The _CONFIG2 macro is used to setup the CONFIG2 register, which controls the following features:
Two-Speed Startup, Oscillator Selection, Oscillator Type, Clock Switching & Monitor, and the RC15
Function. Table 2-2 below provides all of the macro‘s parameter labels as defined in the
PIC24FJ128GA010.h header file.

Two Speed Startup IESO_OFF Disabled

 IESO_ON Enabled

Oscillator Type POSCMOD_EC External Clock

 POSCMOD_XT XT Oscillator

 POSCMOD_HS HS Oscillator

 POSCMOD_NONE Primary Disabled

OSC2/RC15 Function OSCIOFNC_ON RC15

 OSCIOFNC_OFF OSC2 or FOSC/2

Oscillator Selection FNOSC_FRC Fast RC Oscillator

 FNOSC_FRCPLL Fast RC Oscillator with divide and PLL

 FNOSC_PRI Primary Oscillator (XT, HS, EC)

 FNOSC_PRIPLL Primary Oscillator (XT, HS, EC) with PLL

 FNOSC_SOSC Secondary Oscillator

 FNOSC_LPRC Low Power RC Oscillator

 FNOSC_FRCDIV Fast RC Oscillator with divide

Clock Switching & FCKSM_CSECME Both Enabled

Monitor FCKSM_CSECMD Only Clock Switching Enabled

 FCKSM_CSDCMD Both Disabled

Table 2-2: _CONFIG2(x) Macro Parameter List Options for PIC24FJ128GA010

Build All

Click on the Build All button.

Check your results by opening up the Configuration Bits window. From the menu select:

Configure  Configuration Bits
If the Configuration Bits window is not visible, it may be hidden behind the source code window.

Results
After building the code, the Configuration Bits window will show the settings for the device. The settings should

match those we specified in the _CONFIG1 and _CONFIG2 macros.

Your Configuration Bits window should match the one shown on the next page.

TLS2130

2-5

Device configuration options can easily be set in code so that no matter who you send your source files to, they
will be able to replicate the correct settings when programming the part. Two macros are required to set the two

configuration registers in the 16-bit PIC® microcontrollers. _CONFIG1(x) is used to setup the 24-bit CONFIG1

register and _CONFIG2(x) is used to setup the 24-bit CONFIG2 register. The macro parameters are formed by

bitwise ANDing the desired configuration values together. The configuration values are represented by a series
of labels defined in the device specific header files (near the end of the file), along with examples and a limited
amount of documentation. A fuller description of the configuration settings is contained in the device specific
data sheets.

Conclusions

It is strongly recommended that you setup device configuration bits using the _CONFIG1(x) and

_CONFIG2(x) macros because of the many advantages they have over setting them manually in

the IDE.

TLS2130

2-6

TLS2130

3-1

Lab Exercise 3
“Hello, world!” for Microcontrollers

Purpose

The purpose of this lab is to test your understanding of the methods used to read and write I/O pins in C. Upon
completion of this lab, you should be able to set or clear an output pin and read a switch by using a switch de-
bounce function.

Requirements

Development Environment: MPLAB 8.60 or later
C Compiler: MPLAB C for PIC24, or MPLAB C for PIC24 and dsPIC (lite or better) v3.23b +
Hardware Tools:  Explorer16 Development Board with PIC24FJ128GA010

  MPLAB Real ICE™ or MPLAB ICD3
Lab files on class PC: C:\MTT\TLS2130\...

Objective

Write a short program that will turn on LED D3 (RA0) while switch S3 (RD6) is pressed. The LED should turn off
only when the switch is released.

A switch debounce function will be provided for you, and it should be used to read the switch on RD6 to prevent
the false detection of a button press or release. The full source code of this function is provided on the class
CD.

TLS2130

3-2

Open Lab 3 by selecting from the menu:

File  Open Workspace…
and opening the workspace file located at:

Procedure

C:\MTT\TLS2130\Lab3\Lab3.mcw

If you still have the previous project open, you must first close it by selecting from the menu:

File  Close Workspace

In the project tree, under the Source Files heading, double
click the file Lab3.c to open it in the editor.

Clear the RA0 output latch. At this point, all of the I/O pins are configured as inputs. However, the out-
put latches which are not presently connected to an output pin, may contain random data. Because of
this, it is desirable to set them to a known value (logic 0 in this case) so that LEDs don‘t unexpectedly
light up the moment we connect an output latch to a pin by clearing the appropriate bit in the TRIS regis-
ter for this port.

Lab2.c

#include <p24fj128ga010.h>

#include "TLS2130.h"

_CONFIG1(FWDTEN_OFF & JTAGEN_OFF)

int main(void)

{

 //### YOUR CODE HERE ### //### (3) Clear RA0 output latch

 //### YOUR CODE HERE ### //### (4) Make RA0 an output

 while(1)

 {

 //### YOUR CODE HERE //### (5) Write 0 to RA0

 while(### YOUR CODE HERE###) //### (6)Read RD0

 //### YOUR CODE HERE ### //### (7) Write 1 to RA0

 }

}

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Note: The line numbers above may be different from those in the actual source code file.

Make RA0 an output. (Hint: TRISx)

Write a 0 to RA0.

TLS2130

3-3

Read the switch on pin RD6. Because RD6 is connected to a mechanical switch as opposed to a digital
signal, a debounce routine is required to filter out the noise generated by a switch press or release to
prevent false detection of a state change. The function SwitchPressed() has been provided for this

purpose. The function takes the name of an input pin that is connected to a mechanical switch, and re-
turns the state of that switch: 1 for on (pressed), 0 for off (released). Use this function to determine the
current state of switch S3. This function is included in the archive TLS2130.a, and the source code is
provided on the class CD.

SwitchPressed() Function from TLS2130.c

unsigned char SwitchPressed(volatile unsigned int *sw, int bit)

{

 unsigned char count = COUNT;

 while ((MIN_COUNT <= count) && (count <= MAX_COUNT))

 {

 if (! (*sw & (1 << bit)))

 {

 count++;

 if (count > MAX_COUNT)

 {

 count = MAX_COUNT;

 return 1;

 }

 }

 else

 {

 count--;

 if (count < MIN_COUNT)

 {

 count = MIN_COUNT;

 return 0;

 }

 }

 }

}

Write a 1 to RA0.

Build All

Click on the Build All button.

If no errors are reported,
click on the Start Simu-

lation or Program but-

ton.

When programming com-

pletes, click on the Reset
button.

Click on the Run button.

Run Reset Program

SwitchPressed(switch)

count = K

MIN ≤ count ≤ MAX

switch

count++ count--

count ≥ MAX count ≤ MIN

Return FALSEReturn TRUE

switch = 0 (ON) switch = 1 (OFF)

No No
YesYes

MIN < K < MAX

OR

TLS2130

3-4

Press and hold down switch S3. LED D3 should illu-
minate and stay on as long as you hold down S3.

When you release S3, the LED should turn off and
stay off until you press and hold S3 again.

Results

Click on the Halt button in MPLAB when you
are finished.

Working with I/O pins in C is very straight forward as long as the appropriate device header file is included (e.g.
p24fj128ga010.h). Pin configuration is handled almost entirely by the TRISx register associated with a par-

ticular I/O port. In circumstances where an I/O pin is multiplexed with an analog input, you may need to modify
another register to have digital access to the pin since they are configured as analog by default. Reading an
input pin is accomplished when the name of the pin is used on the right side of an assignment operator or any-
where a variable value would be read. When you read an input pin, you use the PORTx.Rxn construct, or the

shorthand _Rxn macro label. When you want to read an entire port, just use the entire port name such as

PORTA. Writing to an output pin occurs when the name of the pin is on the left side of an assignment operator.

When you write an output pin, you can use either the PORTx.Rxn or _Rxn constructs, or preferably the

LATx.LATxn or _LATxn constructs. When you want to write to an entire port, just use the port name or port

latch name such as PORTA or preferably LATA. All of these pin names/labels may be used as any other variable

in C. Though, unlike an ordinary C variable, the values of the I/O ports may be changed by forces outside the
control of your program (i.e. the hardware).

Conclusions S3 D3

TLS2130

4-1

Objective

Using the Timer 1 interrupt, make LED D3 (RA0) blink at a rate determined by the internal RC oscillator's default
configuration and Timer 1's period with a 1:8 prescaler and Fosc/2 as Timer 1‘s clock source. The code that
configures Timer 1 is already written for you, and accomplishes the following:

Turns on Timer 1

Configures Timer 1‘s prescaler for a 1:8 ratio

Selects FOSC/2 as Timer 1‘s clock input

Clears Timer 1‘s interrupt flag

Enables the Timer 1 interrupt with a priority level of 7
By default, the internal RC oscillator has a frequency of 8MHz with a 1:2 postscaler which divides the frequency
down to 4MHz. This is the FOSC that should be used in any formulas.
Your task will be to write the Timer 1 interrupt service routine which will toggle the LED and clear the interrupt
flag each time the interrupt is triggered by the Timer 1 registers rolling over from 65535 (216-1) to 0.

Lab Exercise 4
Interrupts

Purpose

The purpose of this lab is to reinforce this section's lessons on how to write an interrupt service routine that will
properly handle an event generated by one of the microcontroller's internal peripherals.

Requirements

Development Environment: MPLAB 8.60 or later
C Compiler: MPLAB C for PIC24, or MPLAB C for PIC24 and dsPIC (lite or better) v3.23b +
Hardware Tools:  Explorer16 Development Board with PIC24FJ128GA010

  MPLAB Real ICE™ or MPLAB ICD3
Lab files on class PC or CD: C:\MTT\TLS2130\... or D:\TLS2130\...

TLS2130

4-2

Open Lab 4 by selecting from the menu:
File  Open Workspace…
and opening the workspace file:

Procedure

C:\MTT\TLS2130\Lab4\Lab4.mcw

If you still have the previous project open, you must first close it by selecting from the menu:
File  Close Workspace

Open Lab4.c by double clicking on its icon in the project tree. Complete the assigned tasks by adding

your code anywhere you see the comments ―//### Your Code Here ###‖. All required reference

information is included in this section or in one of the previous labs (e.g. Lab 3—Working with I/O Ports)

#include <p24fj128ga010.h>

_CONFIG1(FWDTEN_OFF & JTAGEN_OFF)

/*##

 Timer 1 Interrupt Service Routine

 Task A: Write the Timer 1 interrupt function header

 Task B: Toggle the LED on RA0 (LATA0)

 Task C: Clear the Timer 1 interrupt flag

##*/

//### Your Code Here ### //###(2.1) T1 Interrupt Function Header

{

 //### Your Code Here ### //###(2.2) Toggle LED on RA0

 //### Your Code Here ### //###(2.3) Clear Timer 1 Interrupt Flag

}

/***

 Main Function

***/

int main(void)

{

 T1CON = 0b1000000000010000; // T1 ON, 1:8 Prescale, Fosc/2 input

 IFS0bits.T1IF = 0; // Clear TMR1 interrupt flag

 IEC0bits.T1IE = 1; // Enable TMR1 interrupt

 IPC0bits.T1IP = 7; // Set interrupt priority

 _LATA0 = 1;

 _TRISA0 = 0;

 while(1);

}

Lab4.c

TLS2130

4-3

void __attribute__((interrupt)) ISRName(void)

{

 <ISR Code Here>
}

Task A Reference Information

Section 7.3.2 of MPLAB C30 User’s Guide DS51284E

IFS0: Interrupt Flag Status Register 0

Table 6-2 and Register 6-5 of PIC24FJ128GA010 Family Data Sheet DS39747D

- - AD1IF U1TXIF U1RXIF SPI1IF SPF1IF T3IF

T2IF OC2IF IC2IF - T1IF OC1IF IC1IF INT0IF

U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

R/W-0 R/W-0 R/W-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0

bit 15

bit 7

bit 8

bit 0

T1IF: Timer1 Interrupt Flag Status bit
1 = Interrupt request has occurred

0 = Interrupt request has not occurred

bit 3

Task 2.1: Write the Timer 1 Interrupt Function Header

_T1Interrupt Table 7-3 of MPLAB C30 User’s Guide DS51284E

Task 2.2: Toggle the LED on RA0 (LATA0)

There are several ways this may be done. The most common method of toggling a bit is to use the ex-

clusive or (XOR) operator (^). Any bit that is exclusive or‘ed with the value 1 will yield the complement

of that bit. In other words: X ^ 1  ~X. Consider using the compound assignment operator ^=. This

isn‘t the most efficient way to toggle a bit, but it works—we‘ll cover an optimization trick later in the class.

Write the first line (header) of the interrupt function. Remember that interrupt functions cannot take any
parameters nor can they return any data. Also, remember to use the pre-defined function name and that
you must tag the interrupt with the appropriate attribute, otherwise it will not be handled properly by the
compiler.

Interrupt Attribute Syntax

Timer 1 Interrupt Function Name

Task 2.3: Clear the Timer 1 Interrupt Flag (T1IF)

Simply write a value of zero to the appropriate interrupt flag bit.

Task C Reference Information

TLS2130

4-4

LED D3 should be blinking at a rate of approximately twice per
second.

By default, the oscillator selection is the internal RC oscillator with
a 1:2 postscaler, so the final value of the clock oscillator is given
by:
FOSC = FRC / CLKDIV = 8MHz / 2 = 4MHz

By default, Timer 1‘s clock source is the instruction cycle clock (FOSC / 2) with a 1:8 prescaler. So, one tick of
Timer 1 is given by:
TickT1 = (FOSC / 2)-1  8 = (4MHz / 2)-1  8 = 4μs

Since Timer 1 is a 16 bit timer, with a max count of 65536 (216), its timeout period is given by:
TT1 = 216  TickT1 = 65536  4μs = 0.52s

Results

Conclusions

Once you have added your three lines of code, build the project by clicking on the Build All
button. Fix any errors that are reported before you continue.

Build All Run Halt Reset

If no errors are reported, click on the Reset button.

Click on the run button.

When you are done, click on the halt button.

D3

Aside from setting up the interrupts (which varies slightly from one peripheral to another), there are three things
you need to do to handle interrupts:
1. Use the pre-defined interrupt name for the interrupt function identifier.
2. Tag the interrupt function with the interrupt attribute.
3. Clear the interrupt flag inside the interrupt function before you return.

There are many other things you can do with the interrupt attribute, such as doing a context save of variables
you specify. For more details on how to take advantage of these additional features, see the compiler‘s user‘s
guide for more information on the interrupt attribute.

TLS2130

5-1

Objective

In the previous lab, Timer 1 was configured for you and you had to write the interrupt function. This time, the
interrupt function is already written, and you have to configure Timer 1 with a given set of parameters using the
configuration functions included in the 16-bit peripherals library that comes with the compiler. The end result
should be the same as in the previous lab.
The OpenTimer1() function will be used to setup the following options:

Turn on Timer 1

Continue in Idle Mode

Gate Off

External Sync Off

1:8 Prescaler

Clock source is FOSC/2 (instruction cycle clock)

Lab Exercise 5
Working with Peripheral Libraries

Purpose

The purpose of this lab is to reinforce this section's lessons on how to configure a peripheral with a given set of
parameters by using the peripheral library functions included with MPLAB® C.

Requirements

Development Environment: MPLAB 8.60 or later
C Compiler: MPLAB C for PIC24, or MPLAB C for PIC24 and dsPIC (lite or better) v3.23b +
Hardware Tools:  Explorer16 Development Board with PIC24FJ128GA010

  MPLAB Real ICE™ or MPLAB ICD3
Lab files on class PC or CD: C:\MTT\TLS2130\... or D:\TLS2130\...

TLS2130

5-2

Open Lab 5 by selecting from the menu:
File  Open Workspace…
and opening the workspace file:

Procedure

C:\MTT\TLS2130\Lab5\Lab5.mcw

If you still have the previous project open, you must first close it by selecting from the menu:
File  Close Workspace

Open Lab5.c by double clicking on its icon in the project tree. Complete the assigned tasks by adding

your code anywhere you see the comments ―//### Your Code Here ###‖. All required reference

information is included in this section or in one of the previous labs. Note that the timer.h header file

has already been included for you.

Lab5.c

#include <p24fj128ga010.h>

#include <timer.h>

_CONFIG1(FWDTEN_OFF & JTAGEN_OFF)

void __attribute__((interrupt)) _T1Interrupt(void)

{

 __builtin_btg(&LATA, 0);

 IFS0bits.T1IF = 0;

}

int main(void)

{

 /*##

 Using the OpenTimer1() and ConfigIntTimer1() functions, setup

 Timer 1 to operate with the settings outlined in the lab manual.

 ##*/

 //### Your Code Here ### // ### Task (2.1) Setup Timer 1

 //### Your Code Here ### // ### Task (2.2) Configure Interrupts

 _LATA0 = 1;

 _TRISA0 = 0;

 while(1);

}

TLS2130

5-3

Task 1 Reference Information

C:\Program Files\Microchip\MPLAB C30\docs\periph_lib\PIC24F TIMER Library Help File.htm

Task 1: Configure and Enable Timer 1

Use the OpenTimer1() and function to setup Timer 1 with the following features / parameters:

void OpenTimer1(unsigned int config, unsigned int period);

OpenTimer1() Function Prototype

OpenTimer1() config Parameter Options

Bitwise AND (&) the labels for the desired options to form the config parameter value:

Timer Module On/Off
T1_ON

T1_OFF

Timer Module Idle mode On/Off
T1_IDLE_CON

T1_IDLE_STOP

Timer Gate time accumulation enable
T1_GATE_ON

T1_GATE_OFF

Timer prescaler
T1_PS_1_1 T1_PS_1_64

T1_PS_1_8 T1_PS_1_128

Timer Synchronous clock enable
T1_SYNC_EXT_ON

T1_SYNC_EXT_OFF

Timer clock source
T1_SOURCE_EXT

T1_SOURCE_INT

OpenTimer1(T1_ON & T1_IDLE_CON & T1_GATE_OFF & T1_PS_1_8 &

 T1_SYNC_EXT_OFF & T1_SOURCE_INT, 0xFFFF);

Example:

OpenTimer1() period Parameter

The period parameter determines the value that will be loaded into the PR1 register.

IFS0bits.T1IF

period

RESET

Equal

TMR1

Comparator

PR1

OpenTimer1(T1_ON & T1_IDLE_CON & T1_GATE_OFF & T1_PS_1_8 &

 T1_SYNC_EXT_OFF & T1_SOURCE_INT, 0xFFFF);

Example:

Timer 1 = ON

Timer 1 Idle = Continue in Idle Mode

Timer 1 Gate = OFF

Timer 1 Prescale = 1:8

Timer 1 Synchronization = External OFF

Timer 1 Clock Source = Internal

Timer 1 Period = 0xFFFF

file:///C:/Program Files/Microchip/MPLAB C30/docs/periph_lib/PIC24F TIMER Library Help File.htm

TLS2130

5-4

void ConfigIntTimer1(unsigned int config);

ConfigIntTimer1() Function Prototype

ConfigIntTimer1() config Parameter Options

Bitwise AND (&) the labels for the desired options to form the config parameter value:

Timer 1 Interrupt On/Off
T1_INT_ON

T1_INT_OFF

Timer 1 Interrupt Priority
T1_INT_PRIOR_7

T1_INT_PRIOR_6

T1_INT_PRIOR_5

T1_INT_PRIOR_4

T1_INT_PRIOR_3

T1_INT_PRIOR_2

T1_INT_PRIOR_1

T1_INT_PRIOR_0

ConfigIntTimer1(T1_INT_ON & T1_INT_PRIOR_4);

Example:

Task 2 Reference Information

While the information above and on the previous page should be sufficient to complete the exercise,
pages 5-5 through 5-11 contain the full documentation for the timer library routines. This text came from
an html file included with the C compiler, and is installed in the following directory by default (along with
documentation for all the other peripheral library routines):

C:\Program Files\Microchip\MPLAB C30\docs\periph_lib\

Task 2: Configure and Enable Timer 1 Interrupt

Use the ConfigIntTimer1() and function to setup the Timer 1 interrupt with the following features / pa-
rameters:

Timer 1 Interrupt = Enabled

Timer 1 Interrupt Priority Level = 7

Link to: Peripheral Libraries Master Index (HTML)

TLS2130

5-5

PIC24F
TIMER Peripheral Module Library Help

C:\Program Files\Microchip\MPLAB C30\docs\periph_lib\PIC24F TIMER Library Help File.htm

Table Of Contents

1 Library Features ... 5-5
2 Using Library Functions in Your Code .. 5-5
3 Functions .. 5-6

3.1 CloseTimerX (X = 1 … 5) ... 5-6

3.2 ConfigIntTimerX (X = 1 … 5) ... 5-6

3.3 OpenTimerX (X = 1 … 5) .. 5-7

3.4 ReadTimerX (X = 1 … 5) .. 5-8

3.5 WriteTimerX (X = 1 … 5) ... 5-8

3.6 CloseTimer23 , CloseTimer45 .. 5-9

3.7 ConfigIntTimer23 , ConfigIntTimer45 .. 5-9

3.8 OpenTimer23 , OpenTimer45 ... 5-9

3.9 ReadTimer23 , ReadTimer45 ... 5-10

3.23b WriteTimer23 , WriteTimer45 ... 5-10

4 Macros .. 5-11
4.1 EnableIntTX (X = 1 to 5) ... 5-11

4.2 DisableIntTX (X = 1 to 5) ... 5-11

4.3 SetPriorityIntTX (X = 1 to 5)(priority) ... 5-11

1 Library Features

For this peripheral library module:

The Timer1 module is a 16-bit timer , Timer2/3 and Timer4/5 modules are 32-bit timers, which can also

be configured as four independent 16-bit timers with selectable operating modes.

Timer 1 operates in CPU Idle modes and Sleep modes.

Individually, Timer2/3 and Timer4/5 of the 16-bit timers can function as synchronous timers or counters.

ADC Event Trigger is implemented only with Timer5.

2 Using Library Functions in Your Code

Library routine parameters can be constructed using either AND based mask or AND_OR based mask set-
ting. For more information on these masks, see 16-bit Peripheral Libraries.

Examples of use for both the methods are below.

Example of Use (AND mask)

 OpenTimer1((T1_ON & T1_IDLE_CON & T1_GATE_ON & T1_PS_1_8 &

 T1_SYNC_EXT_ON & T1_SOURCE_INT), PR1_VALUE);

Example of Use (AND_OR mask)

Function Call:

#define USE_AND_OR /* To enable AND_OR mask setting */

#include<timer.h>

This is the method
you should use for
Lab Exercise 5

file:///C:/Program Files/Microchip/MPLAB C30/docs/periph_lib/PIC24F TIMER Library Help File.htm
../16-bit%20Peripheral%20Libraries.htm

TLS2130

5-6

 /*

 …

 User code

 …

 */

 OpenTimer1((T1_ON | T1_IDLE_CON | T1_GATE_ON | T1_PS_1_8 |

 T1_SYNC_EXT_ON | T1_SOURCE_INT), PR1_VALUE);

 /*

 …

 User code

 …

 */

3 Functions

3.1 CloseTimerX (X = 1 … 5)

3.2 ConfigIntTimerX (X = 1 … 5)

Function Prototype void CloseTimer1(void);

void CloseTimer2(void);

void CloseTimer3(void);

void CloseTimer4(void);

void CloseTimer5(void);

Include timer.h

Description This function turns off the 16-bit timer module.

Arguments None

Return Value None

Remarks: This function first disables the 16-bit timer interrupt and then turns off the timer
module. The Interrupt Flag bit (TxIF) is also cleared.

Source File: CloseTimer1.c
CloseTimer2.c
CloseTimer3.c
CloseTimer4.c
CloseTimer5.c

Function Prototype void ConfigIntTimer1(unsigned int config);

void ConfigIntTimer2(unsigned int config);

void ConfigIntTimer3(unsigned int config);

void ConfigIntTimer4(unsigned int config);

void ConfigIntTimer5(unsigned int config);

Include timer.h

Description This function configures the 16-bit timer interrupt.

TLS2130

5-7

3.3 OpenTimerX (X = 1 … 5)

Arguments config - Timer interrupt priority and enable/disable information as defined below:
 Tx_INT_PRIOR_7

 Tx_INT_PRIOR_6

 Tx_INT_PRIOR_5

 Tx_INT_PRIOR_4

 Tx_INT_PRIOR_3

 Tx_INT_PRIOR_2

 Tx_INT_PRIOR_1

 Tx_INT_PRIOR_0

 Tx_INT_ON

 Tx_INT_OFF

Return Value None

Remarks: This function clears the 16-bit Interrupt Flag (TxIF) bit and then sets the inter-
rupt priority and enables/disables the interrupt.

Source File: ConfigIntTimer1.c
ConfigIntTimer2.c
ConfigIntTimer3.c
ConfigIntTimer4.c
ConfigIntTimer5.c

Function Prototype void OpenTimer1(unsigned int config, unsigned int period);

void OpenTimer2(unsigned int config, unsigned int period);

void OpenTimer3(unsigned int config, unsigned int period);

void OpenTimer4(unsigned int config, unsigned int period);

void OpenTimer5(unsigned int config, unsigned int period);

Include timer.h

Description This function configures the 16-bit timer module.

Arguments config - The parameters to be configured in the TxCON register as defined be-
low:
Timer Module On/Off
 Tx_ON

 Tx_OFF

Timer Module Idle mode On/Off
 Tx_IDLE_CON

 Tx_IDLE_STOP

Timer Gate time accumulation enable
 Tx_GATE_ON

 Tx_GATE_OFF

Timer prescaler
 Tx_PS_1_1

 Tx_PS_1_8

 Tx_PS_1_64

 Tx_PS_1_128

Timer Synchronous clock enable
 Tx_SYNC_EXT_ON

 Tx_SYNC_EXT_OFF

Timer clock source
 Tx_SOURCE_EXT

 Tx_SOURCE_INT

period - The period match value to be stored into the PR register

TLS2130

5-8

3.4 ReadTimerX (X = 1 … 5)

3.5 WriteTimerX (X = 1 … 5)

Return Value None

Remarks: This function configures the 16-bit Timer Control register and sets the period
match value into the PR register.

Source File: OpenTimer1.c
OpenTimer2.c
OpenTimer3.c
OpenTimer4.c
OpenTimer5.c

Function Prototype unsigned int ReadTimer1(void);

unsigned int ReadTimer2(void);

unsigned int ReadTimer3(void);

unsigned int ReadTimer4(void);

unsigned int ReadTimer5(void);

Include timer.h

Description This function reads the contents of the 16-bit Timer register.

Arguments None

Return Value None

Remarks: This function returns the contents of the 16-bit TMR register.

Source File: ReadTimer1.c
ReadTimer2.c
ReadTimer3.c
ReadTimer4.c
ReadTimer5.c

Function Prototype void WriteTimer1(unsigned int timer);

void WriteTimer2(unsigned int timer);

void WriteTimer3(unsigned int timer);

void WriteTimer4(unsigned int timer);

void WriteTimer5(unsigned int timer);

Include timer.h

Description This function writes the 16-bit value into the Timer register.

Arguments timer - The 16-bit value to be stored into TMR register.

Return Value None

Remarks: None

Source File: WriteTimer1.c
WriteTimer2.c
WriteTimer3.c
WriteTimer4.c
WriteTimer5.c

TLS2130

5-9

3.6 CloseTimer23 , CloseTimer45

3.7 ConfigIntTimer23 , ConfigIntTimer45

3.8 OpenTimer23 , OpenTimer45

Function Prototype void CloseTimer23 (void);

void CloseTimer45 (void);

Include timer.h

Description This function turns off the 32-bit timer module.

Arguments None

Return Value None

Remarks: This function disables the 32-bit timer interrupt and then turns off the timer
module.The Interrupt Flag bit (TxIF) is also cleared.
CloseTimer23 turns off Timer2 and disables Timer3 Interrupt.
CloseTimer45 turns off Timer4 and disables Timer5 Interrupt.

Source File: CloseTimer23.c
CloseTimer45.c

Function Prototype void ConfigIntTimer23(unsigned int config);

void ConfigIntTimer45(unsigned int config);

Include timer.h
Description This function configures the 32-bit timer interrupt.
Arguments config - Timer interrupt priority and enable/disable information as defined

below:
 Tx_INT_PRIOR_7

 Tx_INT_PRIOR_6

 Tx_INT_PRIOR_5

 Tx_INT_PRIOR_4

 Tx_INT_PRIOR_3

 Tx_INT_PRIOR_2

 Tx_INT_PRIOR_1

 Tx_INT_PRIOR_0

 Tx_INT_ON

 Tx_INT_OFF

Return Value None
Remarks: This function clears the 32-bit Interrupt Flag (TxIF) bit and then sets the

interrupt priority and enables/disables the interrupt.
Source File: ConfigIntTimer23.c

ConfigIntTimer45.c

Function Prototype void OpenTimer23(unsigned int config,

 unsigned long period);

void OpenTimer45(unsigned int config,

 unsigned long period);

Include timer.h

Description This function configures the 32-bit timer interrupt.

TLS2130

5-10

3.9 ReadTimer23 , ReadTimer45

3.23b WriteTimer23 , WriteTimer45

Arguments config - This contains the parameters to be configured in the TxCON register as
defined below:
Timer module On/Off
 Tx_ON

 Tx_OFF

Timer Module Idle mode On/Off
 Tx_IDLE_CON

 Tx_IDLE_STOP

Timer Gate time accumulation enable
 Tx_GATE_ON

 Tx_GATE_OFF

Timer prescaler
 Tx_PS_1_1

 Tx_PS_1_8

 Tx_PS_1_64

 Tx_PS_1_128

Timer Synchronous clock enable
 Tx_SYNC_EXT_ON

 Tx_SYNC_EXT_OFF

Timer clock source
 Tx_SOURCE_EXT

 Tx_SOURCE_INT

period - This contains the period match value to be stored into the 32-bit PR
register.

Return Value None

Remarks: This function configures the 32-bit Timer Control register and sets the period
match value into the PR register.

Source File: OpenTimer23.c
OpenTimer45.c

Function Prototype unsigned long ReadTimer23(void);

unsigned long ReadTimer45(void);

Include timer.h

Description This function reads the contents of the 32-bit Timer register.

Arguments None

Return Value None

Remarks: This function returns the contents of the 32-bit TMR register.

Source File: ReadTimer23.c
ReadTimer45.c

Function Prototype void WriteTimer23(unsigned long timer);

void WriteTimer45(unsigned long timer);

Include timer.h

Description This function writes the 32-bit value into the Timer register.

TLS2130

5-11

4 Macros

4.1 EnableIntTX (X = 1 to 5)

4.2 DisableIntTX (X = 1 to 5)

4.3 SetPriorityIntTX (X = 1 to 5)(priority)

Arguments timer - The 32-bit value to be stored into TMR register.

Return Value None

Remarks: This function returns the contents of the 32-bit TMR register.

Source File: ReadTimer23.c
ReadTimer45.c

Macro EnableIntT1

EnableIntT2

EnableIntT3

EnableIntT4

EnableIntT5

Include uart.h

Description This macro enables the timer interrupt.

Arguments None

Remarks This macro sets Timer Interrupt Enable bit of Interrupt Enable Control register.

Macro DisableIntT1

DisableIntT2

DisableIntT3

DisableIntT4

DisableIntT5

Include uart.h

Description This macro disables the timer interrupt.

Arguments None

Remarks This macro clears Timer Interrupt Enable bit of Interrupt Enable Control register.

Macro SetPriorityIntT1

SetPriorityIntT2

SetPriorityIntT3

SetPriorityIntT4

SetPriorityIntT5

Include uart.h

Description This macro sets priority for timer interrupt.

Arguments priority

Remarks This macro sets Timer Interrupt Priority bits of Interrupt Priority Control register.

TLS2130

5-12

Results

Conclusions

Once you have added your two lines of code, build the project by clicking on the Build All
button. Fix any errors that are reported before you continue.

Build All Run Halt Reset

If no errors are reported, click on the Reset button.

Click on the run button.

When you are done, click on the halt button.

LED D3 should be blinking at a rate of approximately twice per
second.

By default, the oscillator selection is the internal RC oscillator with
a 1:2 postscaler, so the final value of the clock oscillator is given
by:
FOSC = FRC / CLKDIV = 8MHz / 2 = 4MHz

By default, Timer 1‘s clock source is the instruction cycle clock (FOSC / 2) with a 1:8 prescaler. So, one tick of
Timer 1 is given by:
TickT1 = (FOSC / 2)-1  8 = (4MHz / 2)-1  8 = 4μs

Since Timer 1 is a 16 bit timer, with a max count of 65536 (216), its timeout period is given by:
TT1 = 216  TickT1 = 65536  4μs = 0.52μs

D3

Using the peripheral libraries included with the compiler make peripheral configuration and use in C much eas-
ier. Many of the function parameters are formed by bitwise ANDing constants together to form the value(s) that
ultimately will be loaded into the appropriate register(s). In order to use the libraries, all you need to do is in-
clude the appropriate header file associated with the peripheral of interest at the top of any file in your project
that will make use of the library routines. The library / archive file is automatically included in all projects by the
linker, so there is no need for you to manually add it to the project tree.

TLS2130

6-1

Objective

Build a library (archive) file from two simple C source files that contain a single function each. Then, use those
functions in a separate project that includes the newly created library file in its project tree.

Lab Exercise 6
Creating Custom Libraries

Purpose

The purpose of this lab is to illustrate the steps required to create a custom library for use in your projects. You
will learn how to open up multiple projects simultaneously in MPLAB to facilitate the coding and testing of cus-
tom library modules, and how to configure the compiler to build a library, rather than an ordinary hex file.

Requirements

Development Environment: MPLAB 8.60 or later
C Compiler: MPLAB C for PIC24, or MPLAB C for PIC24 and dsPIC (lite or better) v3.23b +
Hardware Tools:  Explorer16 Development Board with PIC24FJ128GA010

  MPLAB Real ICE™ or MPLAB ICD3
Lab files on class PC or CD: C:\MTT\TLS2130\... or D:\TLS2130\...

TLS2130

6-2

Open the MPLAB Settings by selecting from the menu:
Configure  Settings…

Procedure

If you still have the previous project open, you must first close it by selecting from the menu:
File  Close Workspace

Configure MPLAB® so that multiple projects may be opened within one workspace

Deselect One-to-One Project-
Workspace Model
Uncheck the last checkbox

Select the Project Settings
On the tabs, select: Projects

Click when done OK

Create the Library Source Project

Create a new project by selecting from the menu:
Project  New…

TLS2130

6-3

Name the Project
In the Project Name box, enter: MyLib

Select the Project Directory

Click and select Browse…

C:\MTT\TLS2130\Lab6

Click when done OK

The name you give the project (―MyLib‖), will be the name of the library / archive file that will be
created (―MyLib.a‖).

Add the library source code to the project

Add Source File to Project

In the project tree, right click on Source Files and select from the popup
menu: Add Files...

Select the Library Source File

In the add file dialog box, select the library source files from the lab 6 di-
rectory (the library code has already been written for you):

C:\MTT\TLS2130\Lab6\addition.c

addition.c and subtraction.c should appear in the project tree
under Source Files.

A Look at the Library Source Code and the Associated Header File

addition.c

int add(int a, int b)

{

 return (a + b);

}

MyLib.h

int add(int a, int b);

int sub(int a, int b);

An ordinary C function... An ordinary function prototype...

C:\MTT\TLS2130\Lab6\subtraction.c

TLS2130

6-4

#include "TLS2130.h"

#include "MyLib.h"

int sum, difference;

int main(void)

{

 lcdInit();

 sum = add(5, 2);

 difference = sub(7, 2);

 lcdPutInt(c, DEC);

 lcdPutCur(1, 0);

 lcdPutInt(d, DEC);

 while(1);

}

Open or Create a Test Project

Open Test Project

From the menu bar select:
 Project  Open...

If doing this on your own, at this point you may create a new C30 based project following the
steps from Lab 1. Include the library file just created into the new project.

Select the Lab6 Project

In the Open Project dialog box, select:

C:\MTT\TLS2130\Lab6\Lab6.mcp

A Look at the Lab6 Test Project

L
a

b
6

 T
e

s
t

P
ro

je
c

t
M

y
L

ib
 P

ro
je

c
t

MyLib.c Lab6.c

MyLib.h

Created by you, to provide
access to functions in library
(already written for this lab)

MyLib.a

Generated in Step 12

TLS2130

6-5

Enable Your Debug Tool

Enable MPLAB® REAL ICE™

If not already enabled, From the menu bar select:
 Debugger  Select Tool  5 REAL ICE

Build and Run the Program

Click on the Build All
button.

Select Debug mode. When programming com-
pletes, click on the Reset
button.

Click on the Run button.

Click on the Halt button.

Results

The number 7 should appear in the first position of
the first line of the LCD and 5 should appear on the
second line.

If no errors are reported,
click on the Start Simu-

lation or Program but-

ton.

OR

TLS2130

6-6

Conclusions

Library / Archive files can be created easily within MPLAB. As a general rule, nothing special needs to be done
with the source code or the associated header file of a library file. The main concern is when you choose to
build a generic library, you must be careful not to use features that are specific to a particular device. So, ge-
neric libraries are best suited for general algorithms and code that is not hardware specific.
Once the library code is written, simply build the project with a library target as the selected output. Once the *.a
file is generated, it may be used in another project, assuming you have a header file with the appropriate func-
tion prototypes or extern declarations for variables that exist in the library file.

OPTIONAL—Continue Library Development

Make Library Project Active

Right click on the MyLib project and select:
Set Active

Add to or modify library source code
(and its associated header)

Rebuild Library as in Step 12

Make Test Project Active

Right click on the Lab6 project and select:
Set Active

Rebuild and Run Lab6 as in Step 17 through 21

TLS2130

6-7

TLS2130

6-8

Configure the Project Build Options

Open the Project Build Options
Dialog Box
From the menu bar select:
 Project  Build Options…  Project

Setup Tool Suite Options

From the tabs select: ASM30 / C30 Suite

Set the Target Type

In the Target Type box select:
Build library target (invoke LIB30)
and check:
Build generic library

Click when done OK

Build the Library

Build the Library

From the tool bar, click on the build all button

This step will generate the
library / archive file MyLib.a
which may be used in any
PIC24 based project.

TLS2130

7-1

Purpose

The purpose of this lab is to illustrate how C and assembly files may be used in the same project, how C code
can call assembly functions, and how parameters may be passed between them.

Objective

Given a project that contains an assembly language source file with two subroutines (AddFunction and MostSig-
nificant1), and a C source file with a main function, add the necessary elements in the C source file to make the
assembly subroutines callable from C.

Lab Exercise 7
Mixing C and Assembly

Requirements

Development Environment: MPLAB 8.60 or later
C Compiler: MPLAB C for PIC24, or MPLAB C for PIC24 and dsPIC (lite or better) v3.23b +
Hardware Tools:  Explorer16 Development Board with PIC24FJ128GA010

  MPLAB Real ICE™ or MPLAB ICD3
Lab files on class PC or CD: C:\MTT\TLS2130\... or D:\TLS2130\...

TLS2130

7-2

A Look at the Assembly Language File

Lab7_asm.s

 .include "p24fj128ga010.inc"

 .global _AddFunction

 .global _MostSignificant1

 .text

_AddFunction:

 add w0,w1,w0 ; Add two integers and return the result

 return

_MostSignificant1:

 ff1l [w0], w0 ; Find first 1 from left (result is counted

 ; from left starting with 1)

 subr w0, #16, w0 ; Adjust to give traditional bit position

 ; number from right starting from 0

 return

 .end

The assembly language file Lab7_asm.s include two complete subroutines plus all of the interface elements re-
quired to make them callable from C, assuming the appropriate things are done in the C file itself, which will be
the focus of this lab. There are several elements of this file that deserve a detailed explanation.

The name of the file includes the ―_asm‖ because you cannot have both a C file and Assembly file in a pro-
ject with the same name (not including the file extensions .c and .s). This is due to the fact that the com-
piler will generate an object file with the same name as the source file. For example, the file Lab7.c will be
compiled into a file called Lab7.o, so we cannot use the name Lab7.s for our own assembly source file in
this project because it too will be compiled into a file called Lab7.o. If we were to use the name Lab7.s, the
project would compile, but would fail at the link step, producing an error reporting multiple definitions of our
assembly subroutines.

The second and third lines that contain the .global directives make the subroutine labels available to any

file in the project. Without these directives, the assembly subroutines would be strictly local to this file.

The subroutine names must start with an underscore ‗_‘ character to make them ―visible‖ from the C code.
Without the underscore, an assembly label may not be referenced from a C program.

Procedure

If you still have the previous project open, you must first close it by selecting from the menu:
File  Close Workspace

Open Lab 4 by selecting from the menu:
File  Open Workspace…
and opening the workspace file:

C:\MTT\TLS2130\Lab7\Lab7.mcw

TLS2130

7-3

The _AddFunction subroutine works in conjunction with the compiler‘s parameter passing methodology.

Since C functions that take two integer parameters pass them in the W0 and W1 registers, the first instruc-
tion of _AddFunction uses W0 and W1 as its two source operands. Similarly, C will return a single inte-

ger value from a function in the W0 register. So, the first instruction of _AddFunction uses W0 as its des-

tination operand (add source1, source2, destination). The return statement corresponds to the closing

bracket of a C function, so this will return the program to the place from where the function was called.

The _MostSignificant1 subroutine also works in conjunction with the compiler‘s parameter passing

methodology and will retrieve its first and only parameter from the W0 register. However, note that in the
assembly code, the register name is enclosed in square brackets: [W0] . This means that the value in W0

is being used as an address for indirect addressing—what is known as a pointer in C. Therefore, the func-
tion header that you will define shortly should ideally have its parameter defined as a pointer, since the

function expects you to pass an address to it. (e.g. foo(int *p);)

Since the return value of this function is also an integer, it will be returned in the W0 register, just like was

done for _AddFunction .

Open Lab7.c by double clicking on its icon in the project tree. Complete the assigned tasks by adding

your code anywhere you see the comments ―//### Your Code Here ###‖. All required reference

information is included in this section or in one of the previous labs.

#include <p24fj128ga010.h>

#include "TLS2130.h"

int a, b;

int c;

//### Your Code Here ### // ### Task (2.1): Function prototype for

 // _AddFunction (two int parameters)

//### Your Code Here ### // ### Task (2.2): Function prototype for

 // _MostSignificant1 (pointer parameter)

int main(void)

{

 lcdInit();

 a = 5;

 b = 3;

 //### Your Code Here ### // ### Task (2.3): Call _AddFunction.

 // Pass it a & b, store result in c

 lcdPutInt(c, DEC); // Display value of c on first line of LCD

 lcdPutCur(1,0); // Move cursor to second line of LCD

 //### Your Code Here ### // ### Task (2.4): Call _MostSignificant1.

 // Pass it the address of the variable a

 // and store the result in c

 lcdPutInt(c, DEC); // Display value of c on second line of LCD

 while (1);

}

Lab7.c

TLS2130

7-4

Task 2.1: Write the _AddFunction C Prototype

Write a function prototype for the assembly subroutine _AddFunction. Because the assembly routine

takes its inputs from the W0 and W1 registers, we can simply pass two integer parameters to

_AddFunction since the compiler will use W0 and W1 for that purpose. The names of the parameters

are irrelevant since they will not be used in the assembly function itself. Also, remember that the func-
tion name in C should NOT have the underscore in front of it as the assembly name does. The assem-
bly function stores the results of the operation in the W0 register (16-bit value), which the compiler uses
to pass return values back to the calling program in C.

Task 2.2: Write the _MostSignificant1 C Prototype

Write a function prototype for the assembly subroutine _MostSignificant1. Because the assembly

function uses the value in W0 in an indirect addressing operation, it would be best if we define this func-

tions sole parameter as a pointer to integer (e.g. int *p). That way, when we call the function, we will

pass an address to it, which can readily be used in assembly language for indirect addressing. Like

_AddFunction, _MostSignificant1 also returns a single 16-bit integer in the W0 register.

_AddFunction:

 add w0,w1,w0

 return

First C Function Parameter Second C Function Parameter

Return Value w0 + w1  w0

Operation Performed by add :

Function Prototype Refresher
Function prototypes are syntactically the same as a function header (1st line) with a semicolon at the
end:
type functionName(type param1, type param2, … type paramN);

_MostSignificant1:

 ff1l [w0], w0

 subr w0, #16, w0

 return

First C Function Parameter

Return Value

ff1l will find the first ‗1‘ from the left in the register pointed to by w0. The bit position (starting from

1 on the left) is stored in w0. To convert this to a more conventional bit number (counting from 0 on

the right), the second line subtracts the first result from 16 and that value is returned to the calling
function in C.

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14

12 0

ff1l Counts from 1 on the left until it finds a 1 in the register and returns the count.

16 - value returned by ff1l = bit number counted from right

16 - w0  w0

Operation Performed by subr :

TLS2130

7-5

Task 2.3: Call _AddFunction

Based on the function prototype you wrote for Task A, call the assembly routine _AddFunction, and

pass the variables a and b as its parameters.

Task 2.4: Call _MostSignificant1

Based on the function prototype you wrote for Task B, call the assembly routine _MostSignificant1,

and pass the address of variable a as its parameter.

Build and Run the Program

Click on the Build All
button.

Select Debug mode. When programming com-
pletes, click on the Reset
button.

Click on the Run button.

Click on the Halt button.

Results

The number 8 should appear in the first position of the
first line of the LCD and the number 2 should appear
in the first position of the second line.

If no errors are reported,
click on the Start Simu-

lation or Program but-

ton.

OR

TLS2130

7-6

Conclusions

Assembly language routines may be easily integrated into a C based project. There are a few straight forward
requirements:
1. Assembly language subroutine labels must start with an underscore ‘_‘.

2. Assembly language subroutine names must be made global with the .global directive.

3. A C function prototype with the same name of the assembly routine (without the underscore) must be written
along with the parameters you wish to pass to the assembly routine via w0 through w7 (and possibly the
stack if not enough space is available in the working registers).

4. Parameters are passed from left to right from C to the assembly routine in the lowest numbered, properly
aligned working register from w0 to w7. Any data that doesn‘t fit will be pushed onto the stack. The order of
the parameters may be rearranged based on their sizes and alignments.

5. Data is returned from assembly to C via the working registers, using as many as required from w0-w7 to
hold the return value. (i.e. char or int in w0, long or float in w0 and w1, etc.)

6. The assembly routines should not modify any working registers from w8 to w15 without restoring them be-
fore returning to the C code.

Also, it is important that no two files in a project share the same name, not including the file type extension. In
other words, it is not permissible to have MyFile.c and MyFile.s in the same project since the compiler will at-
tempt to compile both of them into MyFile.o.

For more details, and additional cautions, please consult the MPLAB-C30 User‘s Manual.

