@)

N

MICROCHIP

TLS 2130

Getting Started with MPLAB® C
for dsPIC® and PIC24

= C In an Embedded Environment
= Very Short Review of 16-bit Architecture

= MPLAB® C30 Compiler Toolset Overview
= Lab 1: Creating C30 Projects in MPLAB

= How to Set Configuration Bits in Code
m Lab 2: Setting Configuration Bits in Code

= HOw to Read and
= HOw to Read and

m Lab 3: "Hello, wor

Write Registers

Write I/O Pins
d" for Microcontrollers

M MICROCHIP

= C Runtime Environment
= Memory Models
= Attributes

= Interrupts
m Lab 4: Writing Interrupt Service Routines

= Working with Libraries
m Lab 5: Using Peripheral Libraries
m Lab 6: Creating Custom Libraries

M MICROCHIP

= Mixing C and Assembly
= Lab 7: Calling Assembly Functions from C

= Optimization Techniques
m Compiler Optimization
m Coding Tips for Generating Optimal Code
= Built-in Functions

M MICROCHIP

N

MICROCHIP

16-bit Architecture

A Brief Overview

Simplified Block Diagram

16-bit PIC® Architecture

Program
Space

PSV Window
and
Table Access

Program

Flash Program
Bus 16-bit X
16-bit CPU }-4
16-bit Y

Data
Space

Data RAM

Peripherals

/O Ports

m The Y data bus is only available on the dsPIC30 and dsPIC33 families.

M MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved.

Data Memory Map

16-bit PIC® Architecture

SFR Space
2KB

SRAM Space

Dual Port
DMA RAM
2KB

Optional window

into Program

Memory using PSV

32KB

M MICROCHIP

MSB

Address
0x0001

OxO7FF
0x0801

1

OX1FFF
{ 0x2001
7 0x8001

<

\ OXFFFF

LSB

Y Data RAM

Dual Port RAM

Unimplemented

Address

0x0000 ~

O0x07FE
0x0800

Ox1FFE
0x2000

0x8000

OxFFFE

© 2011 Microchip Technology Incorporated. All Rights Reserved.

NEAR
Data Memory
8KB

DIRECTLY 1
ADDRESSIBLE

POINTERS ‘
REQUIRED

NOTE: PIC24
devices don't
differentiate
between X and
Y data RAM

Slide 7

Program Memory Map

16-bit PIC® Architecture

MSW 24-bits w———— | S\
Address MSW LSW Address
0x000001 0x000000
Reset Vector
0x0000FF Vector Table 0x0000FE
ernate Interrupt
Vector Table
0x000201 0x000200
Program Counter
User Flash Increments by 2
(program word
address is always
even)
Data EEPROM (dsPIC30F)
OX7FFFFF Flash Configuration Words OX7FFFFE
guration Registers
OXFFFFFF YIS OXFFFFFE j

M MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved.

Program Space Visibility Window

16-bit PIC® Architecture

16-bit Data Memory
(RAM)

Store constant
data here

OX8000 8- — = - = = = = = = — -

PSV Window: Any 32kB
Read data in segment of
flash as if it “ flash program
were in RAM memOry
| (only lower 16-bits)
OxFFFF

24-bit Program Memory

Read constant (Flash)

data here

M MicRocHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 9

Programmer's Model

16-bit PIC® Architecture

W Registers:
General Purpose
Data Registers or
Address Pointers

M MICROCHIP

{

WO
W1
w2
W3
W4
W5
W6
W7
w8
w9
W10
W11
W12
W13
w14
W15

SPLIM

15

Divide Quotient

Divide Remainder

X Address Pointer

X Address Pointer

Y Address Pointer

Y Address Pointer

MAC Pre-fetch Offset

MAC Write Back Pointer

Frame Pointer

Stack Pointer

| Stack Pointer Limit

WREG in File Register Operations

DSP Operand Registers

DSP Address Registers

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 10

N

MICROCHIP

MPLAB®.C for dsPIC® and PIC24

Toolset Overview

MPLAB® C for dsPIC® and PIC24

Overview

= ANSI x3.1989 compliant

= Optimizing compiler

= Includes language extensions for
Microchip’s 16-bit architectures

= Ported from GCC (GNU) compiler from the
Free Software Foundation

= Works as a component of MPLAB® IDE

m MPLAB® C30 Student Edition is available for free
from the Microchip web site.

M MICROCHIP

Development Tools Data Flow

C Compiler

(and Preprocessor)

C Source Files C Header Files

Compiler
Driver
Program

Assembly Source Files

9

&

Assembly Source Files Assembler Assembly Include Files
Archiver Object
(Librarian) Files Executable
Object File Libraries W
(Archives) Linker

MPLAB IDE
- - Debug Tool
Linker Script COFF Debug File

M MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 13

MPLAB® C for dsPIC® and PIC24

Header Files

¢ My Computer Header files are included as part of the

< Local Disk (C:) MPLAB C30 installation and are located in

) Program Files the following directory:

I Microchip
3 MPLAB C30 C:\Program Files\Microchip\MPLAB C30\Support\PIC24F\h

_) suppart
e B p24FJ128GA010.h

= One header file per device:
= Provides access to registers as C variables
= Defines labels for bit manipulation

= Defines macros to utilize instructions not
normally accessible from C

Slide 14

N MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved.

MPLAB® C for dsPIC® and PIC24

Linker Scripts

B ¢ My Computer Linker Script files are included as part of the
% Local Disk (L) MPLAB C30 installation and are located in

) Program Files the following directory:
I Microchip
3 MPLAB C30 C:\Program Files\Microchip\MPLAB C30\Support\PIC24F\gid

_) suppart
I PIC24F

= @ p24FJ128GA010.gld

= One linker script file per device:
= Defines memory sections and boundaries
= Associates ISR names with interrupt vectors
= Equates register variables with addresses

N MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 15

MPLAB® C for dsPIC® and PIC24

Startup and Initialization

Program Memory

&= Reset Vector (Address 0x000000)
Populated automatically by LINK30 Linker
Calls runtime environment setup code in

Interrupt Vectors crt0.0 (_ reset label)

goto reset

< @ crt0.0 or crtl.o (from libpic30.a)

C Runtime Environment Setup Code
Inserted automatically by LINK30 Linker
(Source files: crt0.s and crtl.s)

«a main.c

Your C code's main () routine.

Included by you in your project and
placed in memory by LINK30 Linker

Slide 16

M MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved.

MPLAB® C for dsPIC® and PIC24

Data Representation

= Multibyte quantities are stored in "little
endian"” format:

m |_SB Is stored at lowest address

m LSb Is stored at lowest numbered bit position
How the value 0x87654321 is stored

In Working Registers W4 & W5 In Data Memory (RAM) @ 0x100
15 0
OxXOFF OxOFE
W4 4321
0x101 43 21 0x100
W5 8765
0x103 87 65 0x102
0x105 0x104

N MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 17

MPLAB® C for dsPIC® and PIC24

Integer Data Types

char, signed char

unsigned char

short, signed short
unsigned short

int, signed int

unsigned int

long, signed long

unsigned long

long long, signed long long

unsigned long long

M MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 18

MPLAB® C for dsPIC® and PIC24

Floating Point Data Types

Bits E Min E Max N Min N Max

float 32 -126 127 i
double * 32 -126 127 21420
long double 64 -1022 1023 2°1022

E = Exponent
N = Normalized (approximate)
* double is equivalent to long double if -fno-shortt-double command line option is used

float 32 1.175494 x 10-38 3.40282346 x 1038
double * 32 1.175494 x 10-38 3.40282346 x 1038

long double 64 2.22507385x 10308 1.79769313 x 10308

N MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 19

MPLAB® C for dsPIC® and PIC24

Pointers

= All pointers are 16-bits in size, regardless
of whether they are data pointers or
program pointers

= Constants in flash viewed via PSV

= Jump tables sometimes used for program
pointers (handles)

M MICROCHIP

Labcenter Proteus VSM

= Virtual Prototyping
for all PIC MCU
families

= Simulate complete
embedded systems

= Develop and debug
your firmware on
virtual hardware

= Test and verify
before ordering your
prototype

Schematic
simulation of
Microchip

www.labcenter.com evaluation board

PROTELS

The Complete Bectroncs Design System

M MicRocHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 21

N

MICROCHIP

Cab “Exercise 1l

Creating an MPLAB® C Based Project
with MPLAB IDE Step-by-step

Lab Exercise 1

Creating an MPLAB® C Based Project

Purpose
The purpose of this lab is to illustrate the steps required to create an

MPLAB® C30 based project within the MPLAB Integrated Development
Environment. You will learn how to select the compiler as the build tool,
which files must be included in your project, how to allocate a heap and

what code must be included in your source file.

m Procedure

Open MPLAB and start the project [ERAZVAV:
wizard by selecting from the menu:

Project P Project Wizard...

After the Project Wizard opens,

Click Next > to continue...

N MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 23

Lab Exercise 1

Creating an MPLAB® C Based Project

e In the Device combo box, select:
PIC24FJ128GAQ010

Project Wizard

Step One:
Select a device

Device:

PIC24FJ 1 28GADTD v

| <Back | Met> | [Cancel | [Hep

Click Next > to continue...

M MicRocHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 24

Lab Exercise 1

Creating an MPLAB® C Based Project

9 In the Active Toolsuite combo box, select:
Microchip C30 Toolsuite

Project Wizard

Step Two:
Select a language toolsuite

Active Toolsuike: Microchip C30 Toolsuste w]

T oolzuite Contents

MPLAB 30 C Compler (pic30-gcc.exe)

MPLAB LINK30 Object Linket (pic30-ld exe)
IR Armbissar (i Whse avsl

Location

Browse. ..

|_ Help! My Suite [sn't Listed! j] Show all installed toolsuites

[<Back [Met> | [cancel | [Hep

Click Next > to continue...

M MicRocHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 25

Lab Exercise 1

Creating an MPLAB® C Based Project

G Click | Browse... | and navigate to:

C:\MTT\TLS2130\Lab1 [Feewes
Rep&er:x:new project, or reconfigure the active project?

@ Create Mew Project File ‘3

CAMTTATLGZ130 abT\abT []

(- \f""Fi;l;ll-"lnfigurE Active F'r1e|:t
@ Create N ew PrOJeCt F| Ie Make changgs'ﬂvithnut saving

Save c;,haﬁges b existing project file

Then name the file Lab1.mcp

ngféxchanges to anaother project file

C:\MTT\TLS2130\Lab1\Lab1

Browze. .

[<Back || Ned> || Camcel | | Hep

Click Next > to continue...

M MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 26

Lab Exercise 1

Creating an MPLAB® C Based Project

9 Add source files to the project. In
the left hand list box, navigate to:

C:\MTT\TLS2130\Lab1

rF'rG-_iECt Wizard | 2 |
- Step Four: L
Select the file Lab1.c AN = 7
Click | Add >> ﬁ
o1 TLS2130 R | A CAMTTATLS 21300 abThLab]
=1 Labd 1':”'”':'” | A CAMTTATLS21300Lab 1L TLE 213
P e Labl.c
. i - TL52130.2 B
G Add library file to the LR T2k |
L -] Lab2 r
project: -7 Lab3 T
-] Labd
-] Labs
Select the file TLS2130.a o
- Librany 57
C“Ck Add >S 1 [1] 3 4 1] 3
<Back || Ned> || Cancel | | Hep

Click Next > to continue...

M MicRocHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 27

Lab Exercise 1

Creating an MPLAB® C Based Project

If the project tree isn't visible,
0 Click Finish select from the menu:

View P Project

. Summary

Lab 1 Project Tree

Labl.mocw

Click "Finizh' ta create/confiqure the project with these = D La bl.mcp
parameters.

Project Parameters = 3 Surn:e Files

Device: PIC24FH 28GA00 Labl.c

Toalsuite: Microchip C30 Tooksuite |_7] Header Files
2] Object Files

=l 3 Library Files

TLS2130.a

3 Linker Script
] Other Files

File: C:AMTTATLS 21300 ab1 M abT . mep

A new workspace will be created, and the new project added
to that work zpace.

2+ Symbals |

< Back Finish Cancel | | Help

M MicRocHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 28

Lab Exercise 1

Creating an MPLAB® C Based Project

0 Open the project build options by selecting from the menu:
Project » Build Options... » Project

Debugger Programmer Teoeols Configure Window Help

Project Wizard... E]er & B =
MNew...

Open...

\ Close g

f Set Active Project 4

i Quickbuild (no .asm file)

| Package in .zip
Clean

Locate Headers

Export Makefile
Build All Ctrl+F10
Make F10
Build Configuration k
i Build Options... k Project

N MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 29

Lab Exercise 1

Creating an MPLAB® C Based Project
0 Select the MPLAB LINK3(0 [ansd

. Directories Custom Buid TECE ——— kbl
tab at the top of the window. MPLAB ASM30 MPLAB C30 MPLAB LINK30
. Categories: | General ot
In the Heap SlIZe box, enter a Generate Command Line
value of 128 bytes. wt> (ezp sce 12 Tbytes | [kow cvedapped sciions
Mirn Stack Size: bytes

Symbial Definitions

The value of 128 bytes is
somewhat arbitrary. Your
application may require a ' [[Remove st |
larger or smaller heap, or

possibly no heap at all.

~heap=128 Map="$BINDIR_[${TARGE TBASE) map" ~report-mem -o"§(BIN

[]Usze Alemate Seltings

Click OK

| ok [conce || ooy || Hep |

M MicRocHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 30

Lab Exercise 1

Creating an MPLAB® C Based Project

@ Add the minimum required framework to your soruce code in Labl.c.
In the project tree, double click on the file Lab1.c

#include the header files required by your application.

m Device specific header file (required to access device features)
= Standard C and Microchip library header files (if used)
= Header files for your own libraries (if used)

o e

15 #include <p24£f7128ga0l10.h>

16 #include <stdio.h>
17 #include "TLS2130.h"

N MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 31

Lab Exercise 1

Creating an MPLAB® C Based Project

m Add the minimum required framework to your soruce code in Labl.c.

Setup device configuration bits in code
= Use CONFIG1l and CONFIG2 macros (defined in header file)

= Bitwise AND list of option constants (defined in header file)

= Unspecified options will use their default settings

@ Labl.c

19 CONFIG1 (FWDTEN OFF & JTAGEN OFF)

This is the minimum required configuration for the Explorer 16 Demo Board.

N MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 32

Lab Exercise 1

Creating an MPLAB® C Based Project

@ Enable MPLAB® REAL ICE by selecting from the menu:
Debugger » Select Tool » Proteus VSM

Programmer Tools {nnfigur: Window Help

Select Tool b MNone
Clear Memory » | v 1 Proteus VSM
o e 2 MPLAB ICD 2
LN -
" = 3 PICkit 3
Anlmate

4N AB ICE 4000
Halt s MPLAB ICE 4000
Step Into F7 > MPLAB SIM
< == 6 MPLAB ICE 2000
Step Over F8
Step Out 7REALICE
Reset . 8 PICkit 2

9 MPLAB ICD 3
Breakpoints... F2 10 PIC32 Starter Kit
Start Simulation F12 11 Starter Kits

M MicRocHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 33

Lab Exercise 1

Creating an MPLAB® C Based Proiect

Iy Lab1 - MPLAB IDE v8.50

File Edit VYiew Project Debugger Programmer Tools

| D@ | i mE [SABAR ?

Configure Window Help

| [Debug ~o B H B @@ ® EE
@ Deb 4o |Dcbus ¥ When programming =
Select Debug mode. %’se— @ completes,click Reset %}

button.
@ Click Build All button.

m Click Run button. |> \
If no errors reported, .
@ Click Start Simulation @ Click Halt button. |:| D\

button.

M MicRocHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 34

Lab Exercise 1

Creating an MPLAB® C Based Project

Results

Explorer 16.05M - Proteus VSM MPLAB Viewer (Animating)

& B E ?|[+aaa@ b ® F

L1

Helloa world!

RRFHRLITE —2 | R
#BE 2. acgmasss

i ki =
- YR Ll 11 §iiideid

oED buoon

. us
fodes of Operstion RilFHFHGACRE [in [F
L] FZ?” P | [= ReT B S0 S-S PR] B Rgu;mﬁ:nol\: = :'D o 2
s RO S—8 5 | C% FOXDT
Whar aiplinie g bbb bl P g
RZ=

SRR A AR TR o R,

Whar b Tarparam ol o mod i
BN Y T B, TYOY PR T T

= e S ol nedd BN DR T or B S e
- e ik Rl Thea ik

W I Pk Thead Cloxc b o 2

[REmhs =M Gl E AR nch RO B i R
= Sl Poremus) b dee dHieg M BHR g CoPgEnAL

- B er S vl TR e dda] CuTeRl e OB

S EmEor S P Pl s dPcd b a1 el Cor iR,

B E T e e R FLYLI P Y P Y T P,
RediTHa REIMCK RedmacLi REdgalit Re=iTul R Rt RET
s (L] 1] DT DE (-] D010
R3S A3 = = LX) R4l R
TeR TR =TeR TER TeR aTER TeR

PROTELS Explorer 16 Yirtual Evaluation Board @MIEHDEHIF
The Complete Blectronics Deskpn System Interactive Elements

M MICROCHIP

© 2011 Microchip Technology Incorporated. All Rights Reserved.

Slide 35

Lab Exercise 1

Creating an MPLAB® C Based Project

Conclusions

= Minimum steps to setup a C based project:
= Follow standard MPLAB® project setup steps
= Select C30 as build tool
= Add linker script for your device to project
m #include device header file In source code
m #include library header files (if required)
= Add configuration bits setup in code
m Allocate a heap (if required)

M MICROCHIP

N

MICROCHIP

How to Set:PIC® Configuration Bits

Using the. CONFIG1 () and CONFIG2 () Macros

What are Configuration Bits?

= Used to setup device 24-bit Program Memory
featu Fes. . Reset Vector
rimary Interrupt
= Code Protect vector Table
- Watchdog Timer g
= JTAG

User Flash

= Oscillator Options
- Debug Options Data EEPROM (dsPIC30F)

| M() re Flash Configuration Words
CONFIG1 and CONFIG2 Located in

program memory space, outside ==l Configurations Registers
range of executable code space

Device ID

N MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 38

Flash Configuration Word 1
CONFIG1

CONFIG1 (PIC24FJ128GA010)

Upper Third:
U-1

bit 23

Middle Third:
r-0 R/PO-1 R/PO-1

r JTAGEN GCP

bit 15

Lower Third:
R/PO-1 R/PO-1

R/PO-1

R/PO-1

R/PO-1

R/PO-1

FWDTEN WINDIS

WDTPS3

WDTPS2

WDTPS1

WDTPSO

bit 7

M MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved.

bit O

Slide 39

Flash Configuration Word 1

_CONFIG1 (x) Macro

__CONFIGL1 (x) Macro Definition

#define CONFIG1 (x) P
__attribute ((section(" CONFIGl.sec,code")))
int CONFIGl = (x);

= Defined In device specific header files

= x IS formed by anding together constants
representing configuration bit values

m Omitted bits retain their default value

Example

_CONFIG1 (FWDTEN OFF & JTAGEN OFF)

N MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 40

_ CONFIG1 (x)

Parameter List Options

_CONFIG1(x) Macro Parameter List Options for PIC24FJ128GA010 (Part 1)

JTAG

Code Protect

Write Protect

Background Debug

Clip-On Emulation

ICD Pins Select

Watchdog Timer

Windowed WDT

M MICROCHIP

JTAGEN OFF Disabled
JTAGEN ON Enabled

GCP_ON Enabled
GCP_OFF Disabled

GWRP_ON Enabled
GWRP_OFF Disabled

BKBUG ON Enabled
BKBUG OFF Disabled

COE_ON Enabled
COE_OFF Disabled

ICS PGxl EMUC/EMUD share PGC1/PGD1
ICS PGx2 EMUC/EMUD share PGC2/PGD2

FWDTEN OFF Disabled
FWDTEN ON Enabled

WINDIS ON Enabled
WINDIS OFF Disabled

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 41

- CONFIG1 (x)

Parameter List Options Continued...

_CONFIG1(x) Macro Parameter List Options for PIC24FJ128GA010 (Part 2)

Watchdog Prescaler FWPSA PR32 1:32
FWPSA PR128 1:128

Watchdog Postscaler WDTPS PS1 1:1
WDTPS PS2 1:2
WDTPS PS4 1:4
WDTPS PS8 1:8
WDTPS PS16 1:16
WDTPS PS32 1:32
WDTPS PS64 1:64
WDTPS PS128 1:128
WDTPS PS256 1:256
WDTPS PS512 1:512
WDTPS PS1024 1:1024
WDTPS PS2048 1:2048
WDTPS PS4096 1:4096
WDTPS PS8192 1:8192
WDTPS PS16384 1:16384
WDTPS PS32768 1:32768

N MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 42

Flash Configuration Word 2
CONFIG2

CONFIG2 (PIC24FJ128GA010)

Upper Third:
U-1

bit 23

Middle Third:
R/PO-1

R/PO-1

R/PO-1

R/PO-1

IESO

FNOSC2

FNOSC1

FNOSCO

bit 15

Lower Third:

R/PO-1

R/PO-1

R/PO-1

R/PO-1

bit 8

R/PO-1

FCKSM1

FCKSMO

OSCIOFCN

POSCMD1

POSCMDO

bit 7

M MICROCHIP

© 2011 Microchip Technology Incorporated. All Rights Reserved.

bit O

Slide 43

Flash Configuration Word 2

_CONFIG2 (x) Macro

__CONFIG2 (x) Macro Definition

#define CONFIG2 (x) P
__attribute ((section(" CONFIG2.sec,code")))
int CONFIG2 = (x);

= Defined In device specific header files

= x IS formed by anding together constants
representing configuration bit values

m Omitted bits retain their default value

Example

_ CONFIG2 (FNOSC PRIPLL & POSCMOD HS & OSCIOFNC OFF)

N MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 44

_ CONFIG2 (x)

Parameter List Options

_CONFIG2(x) Macro Parameter List Options for PIC24FJ128GAO010

Two Speed Startup

Oscillator Selection

Clock Switching & Monitor

OSC2/RC15 Function

Oscillator Type

M MICROCHIP

IESO_OFF
IESO ON

FNOSC_FRC
FNOSC_FRCPLL
FNOSC PRI
FNOSC_PRIPLL
FNOSC_SOSC
FNOSC LPRC
FNOSC_FRCDIV

FCKSM CSECME
FCKSM CSECMD
FCKSM CSDCMD

OSCIOFNC ON
OSCIOFNC OFF

POSCMOD EC
POSCMOD XT
POSCMOD HS
POSCMOD NONE

Disabled
Enabled

Fast RC Oscillator

Fast RC Oscillator with divide and PLL
Primary Oscillator (XT, HS, EC)

Primary Oscillator (XT, HS, EC) with PLL
Secondary Oscillator

Low Power RC Oscillator

Fast RC Oscillator with divide

Both Enabled
Only Clock Switching Enabled
Both Disabled

RC15
OSCO or Fyg/2

External Clock
XT Oscillator

HS Oscillator
Primary Disabled

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 45

How to Set PIC® Configuration Bits

= CONFIGn (x) macros must be used
anywhere after the #include for the

device specific header file

Example

/**

* PROGRAM: main.c

* AUTHOR: Clem Finch
**/
#include <p24£j128gal0l0.h>

#include "TLS2130.h"

_ CONFIG1 (FWDTEN OFF & JTAGEN OFF) ;
_ CONFIG2 (FNOSC PRIPLL & POSCMOD HS & OSCIOFNC OFF) ;

Slide 46

M MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved.

Where i1s all th

IS stuff defined?

= Parameter labels for CONFIGn(X) macros:
= At the end of the device specific header files

(e.g. p24f)128ga010.h)

= CONFIGn Register Descriptions:

= |In the data sheet under "
the "Configuration Bits"

s CONFIG Bits Functiona
m |n the data sheet under t

Special Features" In
subsection

Descriptions:
ne relevant section

(e.g. WDT under "Specia

Features" section In

"Watchdog Timer" subsection)

M MICROCHIP

N

MICROCHIP

Lab “Exercise?2

Setting PIC® Configuration Bits in Code

Lab Exercise 2

Setting PIC® Configuration Bits in Code

@ Objective

Use the CONFIGn() macros to setup the configuration
registers and view the results in the Configuration Bits
window inside the MPLAB® IDE

Setup the configuration registers with the
following options:

e Oscillator = HS, Primary with PLL
OSC2/RC15 Function = OSC2
Clock Switching & Monitor = Both Disabled

JTAG = Disabled
Watchdog Timer = Disabled

N MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 49

Lab Exercise 2

Setting PIC® Configuration Bits in Code

Procedure
Follow the directions in the lab manual starting on page 2-1.

.On the lab PC...

If you currently have a project or workspace open,
close it now by selecting from the menu:
File » Close Workspace

Open the lab workspace by selecting from the menu:
File » Open Workspace...

and select the file:

C:\MTT\TLS2130\Lab2\Lab2.mcw

N MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 50

Lab Exercise 2

Setting PIC® Configuration Bits in Code

Conclusions

Configuration Bits:

= Should be set in code using the CONFIG1 (x) and
_CONFIG2 (x) macros

= Parameters consist of a series of option labels
bitwise ANDed together

= Option labels are defined in the device specific
header file

= Unspecified options retain their default settings
(as per the data sheet)

N MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 51

Lab

Exercise 2

Setting PIC® Configuration Bits in Code

Results

From the menu, open the configuration bits window:
Configure » Configuration Bits...

B Configuration Bits

Configuration Bits zet in code.

hddress

VYalue

Category

Secting

15TFC

FEBE

Primary Oscillator Select

Primary Oscillator Output Function
Clock Switching and Monitor
Oscillator Select

Internal External Switch Owver Mode
Watchdog Timer Postscaler

WDT Prescaler

Watchdog Timer Window

Watchdog Timer Enable

Comm Channel Select

Set Clip On Emmlation Mode

General Code Segment Write Protect
General Code Segment Code Protect
JITAG Port Enable

HS Oscillator Enabled

OSCO pin has clock out function
Sw Di=zabled, Mon Disabled
Primary Oscillator with PLL module
Enabled

1:32,768

1:128

Hon-Window mode

Di=able

EMUCZ /EMUDZ shared with PCG2/PGD2
Reset Into Operational Mode
Di=zabled

Dizabled

Di=zabled

(HSPLL, ECPFLL)

M MICROCHIP

© 2011 Microchip Technology Incorporated. All Rights Reserved.

Slide 52

N

MICROCHIP

How to Read and Write Registers

Word and Bit Access

How to Read and Write Registers

Full 16-bit Word

Syntax

REGNAME

Use the name of the register as you would an
ordinary int type variable

Variables defined in device specific header file
with register name as shown in datasheet

Examples

PORTA = OxFE31;

AtoD Result = ADCI1BUFO;
TX1REG = 'a';

Write OxXxFE31 to PORTA
Read A/D Result

Send 'a' out UART

If received char is 'x!
While char is not '\O0'

if (RX1REG == 'x') { ..
while (RX1REG) { .. }

N MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 54

Register Variable Declaration
Example for PIC24FJ128GA010

PORTA Variable Declaration from p24fj128ga010.h Header File

extern volatile unsigned int PORTA attribute ((

= extern: PORTA is actually defined in linker

Script...

m volatile: This variable may be altered by
something other than the code (i.e. the hardware
or an interrupt routine)

= attribute ((sfr)):Tagtoindicate
that this is a special function hardware register
(more about attributes later)

Slide 55

M MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved.

How to Read and Write Registers

Individual Bits and Bit Fields

Syntax

REGNAMEbits.BITNAME

m Use the name of the register with the word 'bits’
In lower case attached to it

= Use the name of the bit or bit field as specified In
the data sheet

Examples

LATAbits.LATAS5 = 1; // Set bit 5 of PORTA
Flag = PORTAbits.RA5; // Read bit 5 of PORTA

while (!AD1CONbits.DONE) { .. } // While A/D converting

AD1CONbits.SSRC = 5; // Set 3-bit field = 5
//3-bits in bitfield: SSRC2 = 1, SSRC1l = 0, SSRCO =1

Slide 56

M MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved.

Bit Field Variable Declaration
Example for PIC24FJ128GA010

AD1CONbits Variable Declaration from p24fj128ga010.h Header File

__extension _ typedef struct tagAD1CcoN1BITS { == Bit Field Structure Definition

union {
struct {)
unsigned DONE:1;
unsigned SAMP:1;
unsigned ASAM:1;
unsigned :2;

unsigned SSRC:3; <@mmmm 3-bit wide field . .
unsigned FORMO:1; } Primary Bit Names

unsigned FORM1l:1;
unsigned :3;
unsigned ADSIDL:1;
unsigned :1;
unsigned ADON:1;
e
struct {
unsigned :5;
unsigned SSRCO:1; .
unsigned SSRC1:1; Secondary Bit Names
unsigned SSRC2:1;
unsigned FORM:2;

Bit Field

} AD1CON1BITS; Variable
extern volatile ADICON1BITS AD1CONlbits attribute ((sfr)); h DGClaration

N MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 57

Register and Bit Field Variables

Definition in Linker Script

= Both REGNAME and REGNAMEDits
defined in linker script

m Both are allocated at the same address

Excerpt from P24FJ128GA010.gld Linker Script File

TRISA
_TRISA
_TRISAbits

PORTA
_PORTA
_PORTAbits

LATA
_LATA
_LATAbits

; == Assembly Label

f >C Labels

Eliminates need for aunion in
header file

M MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved.

How to Read and Write Registers

Individual Bits and Bit Fields — Shorthand Syntax

Shorthand Syntax

_ BITNAME

= Use the bit name preceded by an underscore

m Defined as a macro in the header file

= May be used instead of structure syntax

Examples

_LATAS = 1; // Set bit 5 of PORTA
Flag = RA5; // Read bit 5 of PORTA

while (! DONE) { .. } // While A/D converting
_SSRC = 5; // Set 3-bit field =
//3-bits in bit field: SSRC2 = 1, SSRC1 = 0, SSRCO =1

N MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 59

Register Variable Declaration

Example for PIC24FJ128GA010

= For every bit in the device, there is a
#define In the device specific header file

INn the form of:

Bit Access Shorthand Macro Definition

#define BITNAME REGNAMEbits.BITNAME;

= Only works if header file Is included
= Allows access to all bits by bit name only

M MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved.

N

MICROCHIP

Data Input and Output

Working with I/O Ports

Data Input and Output

TRIS, PORT and LAT Registers

Internal Data Bus

Write
PORTX Read
or LATx PORTX

LATX

0/1/0/1/0/0/1]1
{

PORTX él él |§|
(|/O PinS) éém é Pins are all inputs by
default (TRIS = OXFFFF)

Data Direction
TRISx (0.0 1 1 010 0Ji=-N0-=o0um

N MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 62

Data Input and Output

TRIS, PORT and LAT Registers
= Steps for working with PIC® 1/O ports

Initialize Output Write to: LATX =

Latches to Known LAT LATXbits.LATXN =
State _LATXNn = 0;

Configure Data Write to: TRISX = 0x0023;

Direction of Pins TRIS TRISXbits.TRISXN =
_TRISXN = 1;

@ Write to outputs Writeto: LATX = 0x00FO0;

_LATXN = 0;

@ Read from inputs Read from: myVar = PORTX;
PORT myVar = PORTXbits.RXN;

myVar = RXN;

N MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 63

How to Read Input Pins
Switch Debouncing

t

= Switch inputs must be debounced to
prevent multiple false detections while
switch contact settles

= Debounce routine provided in TLS2130.a
= Function prototype provided in TLS2130. h

M MICROCHIP

How to Read Input Pins

Switch Debouncing

SwitchPressed(switch)

T coun W
<>

> <D

Yes Yes
Return TRUE Return FALSE

M MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 65

How to Read Input Pins
Switch Debouncing

Function Prototype

unsigned char SwitchPressed(volatile unsigned *sw, int bit);

= Written especially for this class

= Takes port pin variable as parameter

= Returns TRUE if switch Is pressed

= Returns FALSE if switch is not pressed

Example

if (SwitchPressed (&PORTD, 6))

{
}

N MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 66

// Do something if switch is pressed

N

MICROCHIP

Lab Exercise 3
Working with I/O Ports

Lab Exercise 3
Working with 1/O Ports

Objective

Use the SwitchPressed() function to read S3. As long as S3
IS pressed, LED D3 should be on. When S3 is released, LED
D3 should be off.

= Use the provided function SwitchPressed()
to read and debounce S3 which is
connected to bit 6 of PORTD

= While S3 pressed, turn on LED on RAO
= While S3 not pressed, turn off LED on RAO

M MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved.

Lab Exercise 3
Working with 1/O Ports

Procedure
Follow the directions in the lab manual starting on page 3-1.

.On the lab PC...

M MICROCHIP

m If you currently have a project or workspace open,

close it now by selecting from the menu:
File » Close Workspace

Open the lab workspace by selecting from the menu:
File » Open Workspace...

and select the file:

C:\MTT\TLS2130\Lab3\Lab3.mcw

© 2011 Microchip Technology Incorporated. All Rights Reserved.

Slide 69

Lab Exercise 3
Working with 1/O Pins

Results

Read RDG6 via provided function: SwitchPressed (&PORTD, 6)

Write to RAO using LATA: LATAbits.LATAO0 = 1 OR LATAO0 = 1

ov

R39
LR

)
---ﬂ;) B
)
§om b oAz Ry rpol (=1L} [=1].] Rar
0% Ot
Ra7 R3g
By Lhe

P oyrck
04
Fi36
e iR

N MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 70

Lab Exercise 3
Working with 1/O Pins

Lab3.c — One possible solution...

#include <p24£j128gal0l0.h>
#include "TLS2130.h"

CONFIGL (FWDTEN OFF & JTAGEN OFF)

int main(void)

{

_TRISAO = 0; <= Make bit 0 of PORTA an output

while (1))
Jurn off LED on bit O of PORTA
{ &~

_LATAO = 0; Read switch
while (SwitchPressed (&PORTD, 6)) <= On DIt 6 Of

_LATAD =2/ PORTD
Turn on LED on bit O of PORTA

N MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 71

Lab Exercise 3
Working with 1/O Pins

Conclusions

= TRIS registers determine I/O pin direction
= LAT registers used to write outputs

= PORT registers used to read inputs
= Switch inputs must be debounced

= Header files make it possible to work with an
entire register (REGNAME) or individual bits

(REGNAMEbits.BITNAME Of BITNAME)

N MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved.

N

MICROCHIP

The C Runtime Environment

A Foundation for C Programs

Program Memory (Flash)

The Compiler’s Viewpoint

+————— 24-bits —

Vectors Vectors

000000

= Fixed locations In
hardware

= Reset Vector

= [raps

= Alternate Traps
= [nterrupt Vectors

= Alternate Interrupt
Vectors

7FFFFF

M MicRocHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 74

Program Memory (Flash)

The Compiler’s Viewpoint

+————— 24-bits —

000000
Far Code Handles

hhandle = Function Pointers

= Allows use of 16-bit
pointers in RAM to
access 24-bit
program memory
addresses

= Implements table of
GOTO Instructions

7FFFFF

N MlCROCHlp © 2011 Microchip Technology Incorporated. All Rights Reserved.

Program Memory (Flash)

The Compiler’s Viewpoint

+————— 24-bits —

000000
General Program Storage

= User Code

m All executable code is
text placed here

= Initialization code

placed here under the
section name .init

7FFFFF

M MicRocHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 76

Program Memory (Flash)

The Compiler’s Viewpoint

+————— 24-bits —

000000 o
Data Memory Initializers

m Constants used to
Initialize:
= |[nitialized Variables
(e.g.int x = 10;)

dinit = Constants in RAM

= Values copied into
RAM by startup code

7FFFFF

N MlCROCHlp © 2011 Microchip Technology Incorporated. All Rights Reserved.

Program Memory (Flash)

The Compiler’s Viewpoint

+————— 24-bits —

000000 _
Constants In Flash

= Constants accessed
via 32kB PSV window
In RAM

m Constants declared
with const keyword

= Managed via auto PSV
feature

.const

7FFFFF

M MICROCHIP

Data Memory (RAM)

The Compiler’s Viewpoint

0000
5 SFR Special Function Registers
LL .
Z m Hardware Registers
2000 .
m Fixed Addresses
e
<
LL
8000 @

FFFF

M MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 79

Data Memory (RAM)

The Compiler’s Viewpoint

0000 T .
o Uninitialized Variables
<
LL| .nbss ; .
> HEe.J. 1nt x;

2000 B .nbss IN near space

bss .
B .bss In far space

o
<
LL

8000 @

FFFF

M MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 80

Data Memory (RAM)

The Compiler’s Viewpoint

0000 C e .)
Initialized Variables

ad
< .
o .ndata meg. int x = 10;
2000 m .ndata In near space
data :

B .dataIn far space
> m Initial values copied
- from .dinit in flash

by startup code
8000
FFFF

N MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 81

Data Memory (RAM)

The Compiler’s Viewpoint

0000))
Persistent Variables

ad
<
n m Data unaffected by
2000 pbss reset
m Not modified by
' startup code
< .
L m Located In near
@ memory
8000
FFFF

M MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 82

Data Memory (RAM)

The Compiler’s Viewpoint

PoR0 Constants in RAM

m .ndconst IN near If small
.ndconst model used

m .dconst in far if large
.dconst model used

m Created If -mconst-in-
code switch not used

m Values copied
from .dinit Iin flash by

startup code

NEAR

2000

FAR

8000

FFFF

M MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 83

Data Memory (RAM)

The Compiler’s Viewpoint

0000

Heap

m Allocated If a heap
2000 declared in MPLAB®

m Size determined by
user

NEAR

FAR

heap

Build Options For Project "Lab3.mcp”

Directories Trace ASMINACI0 Suite
MFLAE ASM3D MFLAE C30 MPLAE LINK30
Categories: | Beneral b
8000 Generate Command Line
| Heap size: 128 bytes [] &llows overlapped sections
kin Stack Size: bytes

FFFF

M MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 84

Data Memory (RAM)

The Compiler’s Viewpoint

PoR0 Stack

m Automatically
2000 allocated by linker

m Occupies all
unallocated RAM
(by default)

stack 1 m Grows toward higher
8000 addresses

NEAR

FAR

FFFF

M MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 85

Data Memory (RAM)

The Compiler’s Viewpoint

OO0 Constants In Code

m 32kB PSV window
2000 used to read

constants
from .const In flash

as If they were in RAM

@ B No RAM exists above
8000 address 8000h

.const

NEAR

FAR

FFFF

M MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved.

Data Memory (RAM) for DSP

The Compiler’s Viewpoint

2000 X and Y Memory

ad
é xbss, xdata m Used by MAC Class
2000 4 .ybss, .ydata Instructions
® Non-DSP instructions
o initialized see all memory as X
& J m Size and address
XSS, xdata range of Y memory
8000 UninItiaIized varies from one
device to another
FFFF

N MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 87

Startup and Initialization

Program Memory

&= Reset Vector (Address 0x000000)
Populated automatically by LINK30 Linker
Calls runtime environment setup code in

Interrupt Vectors crt0.0 (_ reset label)

goto reset

__reset: < @ crt0.0 or crtl.o (from libpic30.a)

C Runtime Environment Setup Code
st ottt Inserted automatically by LINK30 Linker
call main (Source files: crt0.s and crtl.s)

«a main.c

Your C code's main () routine.

Included by you in your project and
placed in memory by LINK30 Linker

Slide 88

M MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved.

Startup and Initialization

Tasks Performed by Default Startup Module

= [nitialize Stack Pointer (W15)
= |[nitialize Stack Pointer Limit Reqg. (SPLIM)
= Setup PSV window to view .const In flash

= Clear uninitialized data sections

= Copy datafrom .dinit In flash to
Initialized data sections in RAM

= Call items like user init
m Call main () with no parameters
= [f main () returns, reset processor

M MICROCHIP

Startup and Initialization

Tasks Performed by Alternate Startup Module

= Performs all steps taken by crt0.o except:
= Does NOT clear uninitialized data sections

= Does NOT load initialized data sections with
values from .dinit

= Alternate startup module is much smaller

= Can be selected to conserve program
memory If data initialization is not required

N MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved.

Startup and Initialization
How to Select the Alternate Startup Module

Selecting the Alternate Startup Module crtl.o

Build Options For Project "Labl.mcp™ Ii‘_z—hj

. 0 Open Project Settings

Directories | CustomBuld | Trace ASM30/C30 Sute |

MPLABASM30 | MPLABC30 | MPLABLINK3O From the menu bar, select:
Cateqgonies: |General '| % | PrOject } BUiId Options... } PrOjeCt

Generate Command Line

@\ 9 Select Linker Options

bytes | Don't initialize data sections

Symbals Don't pack data template F ro m th e tabS ! Se I eCt:
@ Keep all Don't create handles M P LAB LI N K30

Strip debugging info Don't create default 1SR

Strip all symbol info Remove unuzed sections
Output Filename Root [ho leading directories, no extenzion) e Se | eCt Sy m b O | S &. O u t p u t
From the Categories combo box select:
Inherit global settings Restore Defaults G e n e ra I

~heap=128 -Map="$[BINDIF_]$TARGETBASE).map" -repart-mem --no-data

Disable data initialization

~heap=128 Map="$(BINDIR_J${TARGETBASE] map” ~report-mem o $(BINI In the Output check box group, check:
Don't initialize data sections

ok) [Comeel) [oob] [0

N MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 91

Startup and Initialization

Modifying the Startup Module

m Startup modules may be modified If needed

= Source code (assembly) provided In:
C:\Program Files\Microchip\MPLAB C30\src\pic30\crt*.s

= [f main () needs to be called with parameters,
a conditional assembly directive may be
switched to provide this support

= Custom code may be run before startup code

M MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved.

N

MICROCHIP

Memory Models

Object Allocation Schemes

Memory Models

Overview

Memory Definition Description

Small Data Up to 8 KB of data memory. Permits use of direct addressing for
-msmall-data This is the default. accessing data memory.

Small Scalar Up to 8 KB of data memory. Permits use of direct addressing for
-msmall-scalar This is the default. accessing scalars in data memory.

Large Data Greater than 8KB of data memory. Uses indirection for data references.
-mlarge-data

Small Code Upto 32 Kw of program memory. No jump table for function pointers.
-msmall-code This is the default. Function calls use RCALL instruction.

Large Code Greater than 32 Kw of program Function pointers might use jump table.
-mlarge-code memory. Function calls use CALL instruction.

Constants Constants located in data memory. Values copied from program memory by
in Data startup code.

-mconst-in-data

Constants Constants located in program Values are accessed via Program Space
in Code memory. This is the default. Visibilty (PSV) data window.

-mconst-in-code

N MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 94

Memory Models

Small Data
Data Memory (RAM) = Default Model
0x0000

NEAR 8kB oxo000 ™ All data fits in first 8kB

= Direct Addressing Used
(no pointers required)

= Fastest data access

0x8000 m Smallest code to
access data

FAR

PSV Window

OXFFFF

M MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 95

Memory Models

Small Scalar Data

Data Memory (RAM) = Scalar data in first 8kB
0X0000

02000 ™ Direct addressing used
with scalar data

NEAR 8kB

Non-Scalar (no pointers required)
Data Goes Here
= Non-scalar data (arrays,
0%8000 structures) in far space

FAR = Indirect addressing

(pointers) used with
PSV Window non-scalar data

OXFFFF

N MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 96

Memory Models

Large Data

Data Memory (RAM) = All data cannot fit in
0x0000

NEAR 8kB first 8kB

0x2000 o
= All data treated as If It
IS In far space

= All data accessed
indirectly (pointers)

0x8000
FAR

PSV Window

OXFFFF

M MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 97

Memory Models

Small Code
s Default Model

Program Memory (Flash)

0x000000 _
= All calls may jump
only £32k words

32k = No jump table for

r function pointers
You 32K = Function calls use
are rcall instruction

here
Ox7FFFFF

M MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 98

Memory Models

Large Code

Program Memory (Flash)

0%000000 ™ Calls are not within

+32k words

= Jump table may be
used for function
pointers

= Function calls use
call instruction

OX7FFFFF

M MicRocHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 99

Memory Models
How to Select the Memory Model

C30 Project Creation — Build Optoins

Debugger Prograrmmer Tools Configure Window Help

Project Wizard...

Mew...
Open...
Close

Set Active Project
Quickbuild (no .asm file)

Package in .zip
Clean

Locate Headers
Export Makefile
Build All

Make

Build Configuration
Build Options...

M MICROCHIP

oo G Open Project Build Options

» From the menu bar, select:
Project » Build Options... » Project

Ctrl+F10
F10
*

> Project
r

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 100

Memory Models
How to Select the Memory Model

C30 Project Creation — Build Options

Build Options For Project "Lab5.mcp”

Dreciore — ASBUC30 ke 9 Go to Memory Models

MPLAE ASM3D MPLAE C30 MPLAB LINK30
Categories: temary Madel \ > SeleCt the M P LAB C30 tab

Gienerate Command Line \ Directaries Trace A5MIDACED Suite

Code Model Location of Constarts MPLAE ASM30 MPLAB C30 MPLAE LINK20
(%) Default (%) Default
() Large code model {7) Constants in data space

) Small code model (") Constants in code space > Select the Memory MOdeI Category

Data Model Scalar Model]
(®) Default (®) Default EEItEngIES:
() Large data model () Large zcalar model
() Small data model) Small zcalar model

Reztare Defaults

-g -w/all

[]Usze Alternate 5 ettings

N MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 101

Memory Models
How to Select the Memory Model

C30 Project Creation — Build Options

Build Options For Project "Lab5.mcp”

———— e Select Desired Models

MPLAB ASM30 MPLAE C30 MPLAB LINK30

Categories: |l

Code kMadel Lacation of Constants

Generate Command Line

Code Maodel Lozation of Congtants {E} Crefault (Sma") E} Default (COde)
(%) Default (%) Default

() Large code model {7) Constants in data space
O $mall code madel © Constants in code space () Small code model () Constants in code space

() Large code model () Constants in data space

Data Model Scalar Model

(®) Default (®) Default
() Large data model () Large scalar model Drata Model Scalar Model

() Small data model) Small zcalar model .::,E} D E-'l:EIL-Ilt (Smal I) {:.E} Ciefault (Smal I)

() Large data model () Large zcalar model

Restare D efaults
() Small data maodel () Small scalar model

-g -w/all

[]Usze Alternate 5 ettings

N MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 102

Memory Models

Tips & Tricks

= [nappropriate model for your program can
cause compile or link errors

= AS your program grows, you may need to
change the memory model

= [f desired, you have full control over where
objects are placed in memory

m Use small model, but force some objects into
far memory

= Compile different modules with different
models

M MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 103

Memory Models

Tips & Tricks

= Compiler can often generate more
compact code if variables in near data

Small Data

Small Scalar

Small Data or
Small Scalar

Large Data

M MICROCHIP

Tips for Optimal Memory Use

Use if all variables for the application can fit within 8KB

Use if all scalar type variables (no arrays or structures) for
the application can fit within 8KB

If all data doesn't fit in near space, tag some variables with
the far attribute so others have space to fit in near data.

1. Compile some individual modules using the Small Data or
Small Scalar option. Then include their compiled object

modules in the Large Data project.
2. Tag individual variables with the near attribute

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 104

Memory Models

Tips & Tricks

= Functions that are near (within 32k radius)
may call each other more efficiently

Tips for Optimal Memory Use

Small Code 1. Use if all functions are within 32kw of each other.
2. Compile some modules using Small Code and include
their object files in a Large Code project.
3. If not all functions are within 32kw of each other, tag some
functions with the far attribute.

1. Tag some functions with the near attribute. An error will

be generated if the function cannot be reached by one of its
callers using the more efficient form of the function call.

Large Code

N MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 105

N

MICROCHIP

Attributes

GCC’s Replacement for #pragma

Attributes

Definition

Attributes are used to tell the compiler about certain

behaviors or features of a variable, a function or a type.
Attributes are specified using the keyword attribute

followed by a list of attributes within double parentheses.

= Used to describe variables or functions
= Help compiler to generate optimized code
= Help compiler to optimize memory use

= Establish rules for how particular variables
or functions are to be handled with respect
to the C runtime environment

N MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 107

Attributes

Why attributes are used instead of ISO C's

= According to the GCC developers:

m |t IS Impossible to generate #pragma
commands from a macro

m"Thereis no telling what the same #pragma
might mean in another compiler”

m [N short, attributes are much more
versatile than the traditional #pragma

M MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved.

Slide 108

Variable Attributes

How to Declare a Variable with Attributes

Syntax

type identifier attribute ((attribute-list));

m Multiple attributes are separated by commas
within the double parentheses

m Attributes may be before or after identifier

m Note: There are two underscores before and
after the keyword attribute

Examples

int a[l10] @ attribute ((section(".xdata"))):
int attribute ((aligned(16))) b[10];

int x attribute ((near));

N MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 109

Variable Attributes

Supported Attributes for Variables

m address m persistent
m aligned m reverse
= deprecated = section
|
= far sfr
m space
m secure .
@ transparent union
= near —
= unordered
" noload = unused
m packed = weak

and many more...

Attributes may be specified with a leading and trailing
double underscore to distinguish them from other entities

In your code with the same name (e.g. @ aligned).

N MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 110

Function Attributes

How to Declare a Function with Attributes

type identifier() attribute ((attribute-list)) {..}

m Multiple attributes are separated by commas
within the double parentheses

m Attributes may be before or after identifier

m Note: There are two underscores before and
after the keyword attribute

Examples

int foo(void) attribute ((address(0x100))) { ..

int attribute ((address(0x500))) bar(void) { ..

N MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 111

Function Attributes

Supported Attributes for Functions

m address = near

m alias " no instrument function
= const = noload

m deprecated = noreturn

m far m section

m format = shadow

= format arg = unused

m interrupt = weak

and many more...

Attributes may be specified with a leading and trailing
double underscore to distinguish them from other entities

In your code with the same name (e.g. = address).

N MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 112

N

MICROCHIP

How to Override the
Default Characteristics of

Variables and Functions
Using Attributes

Locating Objects in Memory

How to place an object in near memory

near Attribute Syntax

___attribute ((near))

Specifies that a function or variable should
be located in near memory

Treats a function or variable as if one of the
small memory models were being used

Should be accessed more efficiently

Examples

int x attribute ((near));

int foo(void) attribute ((near)) { .. }

N MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 114

Locating Objects in Memory

Manually Optimizing Data Memory Use
Data Memory (RAM)

= Use large data model

0x0000
NEARL 8B I .00 = Tag frequently
accessed variables
With near attribute
0x8000
FAR
PSV Window
OXFFFF

M MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 115

Locating Objects in Memory
How to place an object in far memory

near Attribute Syntax

__attribute ((far))

Specifies that a function or variable should
be located in far memory

Treats a function or variable as if one of the
large memory models were being used

Might require extra overhead

Examples

int x attribute ((far));

int foo(void) attribute ((far)) { .. }

N MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 116

Locating Objects in Memory

Manually Optimizing Data Memory Use

Data Memorv (RAM
Y () m Use small data model
0x0000

02000 ™ Letlinker place most
variables in near space
(up to 8kB)

= Tag infrequently
0%8000 a(_:cessed varlables
FAR with £ar attribute

= Makes room In near
PSV Window space for frequently
accessed variables

= Allows more than 8kB of
OXEEEF data with small model

NEAR 8kB

N MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 117

Locating Objects in Memory
How to place a variable in X or Y data memory

space Attribute Syntax

__attribute_ ((space(space)))

Specifies that a variable should be located Iin
X (xmemory) or Y (ymemory) data memory

For dsPIC® devices only

Useful for variables operated on by MAC
class instructions

Examples

int coefficient[101] attribute ((space(xmemory))):;

int input[255] @ attribute ((space(ymemory))):;

N MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 118

Locating Objects in Memory
How to place a variable iIn EEPROM data memory

space Attribute Syntax

__attribute__ ((space(eedata)))

Specifies that a variable should be located Iin
EEPROM data memory

For dsPIC30 devices only

Examples

int coefficient[101] attribute ((space(eedata))):;

int x attribute ((space(eedata)));

N MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 119

Locating Objects in Memory
How to place a variable in DMA memory

space Attribute Syntax

__attribute_((space(dma)))

Specifies that a variable should be located Iin
DMA data memory

For some PIC24 and dsPIC33 devices only

Many peripherals may read/write DMA
memory without intervention by program

Examples

volatile int x attribute ((space(dma)));

volatile int input[16] @ attribute ((space(dma))):;

N MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 120

Locating Objects in Memory
How to align an object on a byte/word boundary

aligned Attribute Syntax

__attribute ((aligned(alignment)))

= Specifies the minimum alignment for the variable,
measured in bytes

= Useful on dsPIC®in conjunction with assembly
operations that require aligned operands

= Can improve the efficiency of some asm operations

Align x on a 16-byte boundary:
int x attribute ((aligned(16))):;

m aligned can only increase the alignment. To reduce it, use packed instead.

Slide 121

M MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved.

Locating Objects in Memory

How to align an object on a byte/word boundary

= Some operations require specific data
alignment

= Modulo Addressing (circular buffers)

What does it mean to align an address on a byte boundary?

int attribute ((aligned(128))) x[50];

128 chosen because it is the smallest power of 2 that can hold 100 bytes (50 words)

Qo
©° & Q4 Lo D A%
/\ \‘:(gb %\9 S Q»‘ Qq’ <o\' ‘0@

\,@b‘%“/\f’ R N

Possible addresses are of the form:
OxXNNOO or OXNN80 where N is any Hexadecimal Digit

N MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 122

Locating Objects in Memory
How to place an object at a specific address

address Attribute Syntax

__attribute ((address(address)))

Specifies the address where a function or
variable should be located

Use sparingly — program will be harder to
optimize by linker

Examples

int x _ attribute_ ((address(0x1840)));

int foo(void) attribute ((address(0x3000))) { .. }

N MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 123

Overriding Default Behavior
How to make a variable persistent across resets

address Attribute Syntax

__attribute ((persistent))

Prevents a variable from being overwritten
upon device reset

Places variable in the .pbss section which is
unaffected by the runtime startup code

Examples

int x attribute ((persistent));

int x PERSISTENT; //Shorthand macro defined in *.h

N MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 124

Overriding Default Behavior
Pre-defined Macros —P1C24 Devices

Memory Allocation Macros (PI1C24)

#define BSS(N) attribute ((aligned(N)))
#define DATA(N) attribute ((aligned(N)))
#define PERSISTENT attribute ((persistent))
#define NEAR attribute ((near))

m Defined In the header files

= Simplifies the task of identifying where
you want to place an object in memory

m MPLAB® C30 Compiler User's Guide (Rev E): Section 6.6.3, Page 83

M MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved.

Slide 125

Overriding Default Behavior
Pre-defined Macros — dsPIC® Devices

Memory Allocation Macros (dsPIC®)

#define XBSS(N) attribute ((space(xmemory), aligned(N)))
#define XDATA(N) attribute ((space(xmemory), aligned(N)))
#define YBSS(N) attribute ((space(ymemory), aligned(N)))
#define YDATA(N) attribute ((space(ymemory), aligned(N)))
#define EEDATA(N) attribute ((space(eedata), aligned(N)))
#define PERSISTENT _ attribute ((persistent))

#define NEAR attribute ((near))

= Same as PIC24 macros but...
= Provides separate macros for X and Y space

= Provides macro for EEPROM Data Memory
(dsPIC30 only)

m MPLAB® C30 Compiler User's Guide (Rev E): Section 6.6.3, Page 83]

N MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 126

N

MICROCHIP

Interrupts

Interrupts

Definition

Interrupts are events that cause your program to stop what
It is doing in order to run an Interrupt Service Routine which
will handle the event by taking whatever action is required
before finally returning control to your main program.

m PIC24 / dsPIC interrupts are vectored
= |[nterrupts require special functions to
service the events that cause them:

= |ISRS must not have any parameters

= ISRs must not be called by the main code
= |ISRs should not call other functions

M MICROCHIP

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 128

Interrupts
How to Declare an Interrupt Service Routine

Interrupt Attribute Basic Syntax
void attribute ((interrupt)) ISRName (void)

{ .. Function Code Here =

= No parameters and void return type (required)

= Use pre-defined name (required)
= Do NOT call from main line code (required)
= Do not call other functions (recommended)

Example Interrupt Service Routine

void attribute ((interrupt)) INTOInterrupt (void)

{
}

N MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 129

//0rdinary C code goes here to handle interrupt

Interrupts

Interrupt Function Names

= [nterrupt Function names may be found In:
= Device's Linker Script (e.g. p24fj128ga010.gld)
= MPLAB® C30 User's Guide (Section 7.4)
= MPLAB® C30 Online Help

= Used by LINK30 to associate interrupt
function with the appropriate location in
the interrupt vector table

= Linker puts the address of the interrupt
function in the appropriate location in the
Interrupt vector table

M MICROCHIP © farnci AR . Slide 130

Interrupt Functions
Partial List of Interrupt Function Names

IRQ # Primary Name Alternate Name

_ReservedTrap0 _AltReservedTrapO0
_OscillatorFail _AltOscillatorFail
_AddressError _AltAddressError
_StackError _AltStackError
_MathError _AltMathError
_ReservedTrap5 _AltReservedTrap5
_ReservedTrap6 _AltReservedTrap6
_ReservedTrap7 _AltReservedTrap?
_INTOInterrupt _AIltINTOInterrupt
_IClInterrupt _AltIClInterrupt
_OClInterrupt _AltOCllInterrupt
_T1lInterrupt _AltT1lInterrupt

N MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 131

Interrupt Functions
Partial List of Interrupt Function Names

IRQ # Primary Name Alternate Name

_1C2Interrupt _AltIC2Interrupt
_OC2Interrupt _Alt OC2Interrupt
_T2Interrupt _AltT2Interrupt
_T3Interrupt _AltT3Interrupt
_SPIlinterrupt _AltSPllInterrupt
_U1RXInterrupt _AltU1RXInterrupt
_UlTXInterrupt _AltU1TXInterrupt
_ADClInterrupt _AltADClinterrupt
_NVMinterrupt _AltNVMInterrupt
_SI2ClInterrupt _AltSI2CInterrupt
_MiI2Cinterrupt _AltMI2ClInterrupt
_CNiInterrupt _AltCNInterrupt

N MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 132

Interrupts

What happens when an interrupt occurs?

Stack Before Interrupt o Compiler managed

09F2 resources are automatically
o pushed onto the stack
09EC when an interrupt occurs
09EA (if they are modified by the
O9ES8 -

Interrupt
O9EG6 p) _
09E4 = YOou are responsible for
09E2 managing other resources
09EO . :
09DE I you use them in your
09DC Interrupt service routine
09DA

09D6
09D4

N MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 133

Interrupts

What happens when an interrupt occurs?

4B

Stack After Interrupt

09F2

09FO0 Previous FP (W14) ‘\ _ _

O9EE PSVPAG \ Previous Frame Pointer Value

09EC WREGY) PSVPAG is saved by default unless
09EA WREG6 no auto psv attribute is applied to
09E8 WREGS interrupt function:

09E6 WREGA4 __attribute ((interrupt, no auto psv))
09E4 WREG3

09E2 WREG2 WO through W15

09EOQ WREG1 f (Only those used in ISR)

09DE WREGO0

09DC RCOUNT <= Repeat Count Register

09DA SRL PCU Program Counter and low byte of
09D8 PCH PCL Status Register (MCU Status)

09D6
09D4

N MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 134

Interrupts
What happens when an interrupt occurs?

Example: Disassembly Listing of an ISR — Context Save

void attribute ((interrupt)) INTOInterrupt (void)
{ Code generated for opening brace '{' of ISR function:

F80036 push.w 0x0036 Save RCOUNT
BE9F80 mov.d 0x0000, [0x001le++] Save WO, W1l
BE9F82 mov.d 0x0004, [0x001le++] SaveWw2, W3 \ Push to
BE9F84 mov.d 0x0008, [0x00le++] Save w4, W5 Top of Stack
BE9F86 mov.d 0x000c, [0x00le++] SaveWws, W7
F80034 push.w 0x0034 Save PSVPAG
B3C000 mov.b #0x0,0x0000
8801A0 mov.w 0x0000,0x0034

FA0000 1nk #0x0 Allocate stack frame of 0 bytes
(Saves W14 onto stack)

Set PSVPAG

-- Your ISR Code Here --
0x001le is W15 (Stack Pointer)

- This code is only present if the no _auto psv attribute is not specified.

N MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 135

Interrupts
What happens when an interrupt occurs?

Example: Disassembly Listing of an ISR — Context Restore

M MICROCHIP

-- Your ISR Code Here --

}

FA8000
F90034
BEO34F
BEQ24F
BEQO1l4F
BEQOO4F
F90036
064000

ulnk

pPop . W
mov.d
mov.d
mov.d
mov.d
pPop .W
retfie

0x0034

[--0x001le] ,0x000c
[--0x001le] ,0x0008
[--0x001le] ,0x0004
[--0x001le] ,0x0000

0x0036

Code generated for closing brace '} of ISR function:

Deallocate stack frame
Restore PSVPAG
Restore W6, W7
Restore W4, W5
Restore W2, W3
Restore WO, W1
Restore RCOUNT

Return From Interrupt

Pop from
Top of Stack

— This code is only present if no _auto psv attribute is not specified.

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 136

Interrupts
Using Shadow Registers for Context Save/Restore

Syntax

void attribute ((interrupt, shadow)) ISRname(void)

= The PUSH.S and POP.S instructions will be used to
save and restore using the shadow registers:
= WO - W3
x C,Z, 0V, N, and DC bits in the SRH:SRL (STATUS) register

Example

void attribute ((interrupt, shadow)):>
_INTOInterrupt (void)

{
}

N MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 137

/* ISR Code Here */

Interrupts
Using Shadow Registers for Context Save/Restore

Example: Disassembly Listing of an ISR Using Shadow

M MICROCHIP

void attribute ((interrupt, shadow)) INTOInterrupt (void)
Code generated for opening brace '{' of ISR function:

{

FEAQ000
F80036
BE9F84
BEO9F86
F80034
B3C000
8801A0
FAQ0000

push.s

push.w 0x0036

Save W0 — W3, status bits C, Z, OV, N, DC
Save RCOUNT

mov.d 0x0008, [0x001le++] save W4, W5
mov.d 0x000c, [0x001le++] savews W7

T Save PSVPAG

push.w
mov.b
mov.w
1nk

0x0034
#0x0, 0x0000

0x0000,0x0034

#0x0

-- Your ISR Code Here --

Set PSVPAG

Allocate stack frame of 0 bytes

|

0x001le is W15 (Stack Pointer)

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 138

Interrupts
Using Shadow Registers for Context Save/Restore

Example: Disassembly Listing of an ISR Using Shadow

M MICROCHIP

-- Your ISR Code Here --

}

FA8000
F90034
BEO34F
BEO24F
F90036
FE8000
064000

Code generated for closing brace '} of ISR function:

ulnk

pop . W
mov.d
mov.d
pop . W
pop. s

retfie

0x0034

[--0x001le] ,0x000c
[--0x001le] ,0x0008

0x0036

© 2011 Microchip Technology Incorporated. All Rights Reserved.

Deallocate stack frame
Restore PSVPAG
Restore W6, W7

Restore W4, W5

Restore RCOUNT
Restore W0 — W3, status bits C, Z, OV, N, DC
Return From Interrupt

Slide 139

Interrupts

Using Shadow Registers for Context Save/Restore

= Shadow registers must be used with care
= Shadow registers are only one level deep

= Contents can be lost If two Interrupts use
shadow registers and one is higher
priority than the other

SRH SRL
Working Registers ~ A ~ A ~
WO ﬂ IPL |RA|N OV|Z CI
W1
W2 Status Register
W3

M MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 140

Interrupts
How to Save Variables Not Managed by the Compiler

Syntax

void attribute ((interrupt(save(list))) ISRname(void)

= Any variables listed in the save list will be pushed

onto the stack along with the compiler managed
resources

Example

void attribute ((interrupt (save (x, y)))):>
_INTOInterrupt (void)

{
}

N MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 141

/* ISR Code Here */

Interrupts
Macros for Simplified ISR Syntax

Built-in ISR Macro Definitions

#define ISR attribute ((interrupt))

#define ISRFAST attribute ((interrupt, shadow))

= The macros may be used when the interrupt being

defined doesn't require any special attributes
beyond interrupt and shadow

Example

void ISR INTOInterrupt (void)

{
}

M MICROCHIP

/* ISR Code Here */

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 142

Interrupts

Firmware Engineer's Responsibilities

= YOU must clear the interrupt flag manually
= Example: IFSnbits.FlagName = 0O;
= YOU must save any registers/variables you

access in the ISR's code if they are not
handled automatically by the compiler

= Add a save list to the interrupt attribute
= Save them manually in your ISR code

= Variables modified by an interrupt should
be tagged with the volatile keyword

M MICROCHIP © icrachi orated. All Ri) Slide 143

N

MICROCHIP

Cab“Exercise4

Interrupts

Lab Exercise 4

Interrupts

Objective

Using the Timer 1 interrupt, blink LED D3 (RAO) at a rate
determined by the internal RC oscillator's default frequency
and Timer 1's period with a 1:8 prescaler and Fosc/2 as its

clock source.

= Timer 1 has been configured for you to
interrupt approximately twice per second

= YOU need to write the interrupt service
routine to toggle the LED and clear the

interrupt flag

Slide 145

N MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved.

Lab Exercise 4

Interrupts

Procedure
Follow the directions in the lab manual starting on page 4-1.

.On the lab PC...

If you currently have a project or workspace open,
close it now by selecting from the menu:
File » Close Workspace

Open the lab workspace by selecting from the menu:
File » Open Workspace...

and select the file:

C:\MTT\TLS2130\Lab4\Lab4.mcw

N MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 146

Lab Exercise 4

Interrupts

Results

___attribute ((interrupt)) TlInterrupt (void)

LATAbits.LATAO0 "= 1; //Toggle LED
IFSObits.T1IF = 0; //Clear interrupt flag

ov u}s ul] oo

R3a R39 R40 R4l R4z
]] LmE iR LR

N MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 147

| ab Exercise 4
Interrupts

Results

Timing Calculations

M MICROCHIP

Fosc =Fgrc/CLKDIV = 8MHz/2 = 4 MHz

Tl.,, =Fosc/2 = 4MHz/2 = 2 MHz

Tl =(1/T1CLK)*PRESCALE = (1/2MH2)*8=4 us
Tlpeiog = Ty *21°=4 s * 65536 = 0.26s

Blink Period =2 *T1,,,q =2*0.265s =0.52s

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 148

Lab Exercise 4
Interrupts

Conclusions

= Interrupt functions need to be tagged with the
Interrupt attribute: __attribute ((interrupt))

= Interrupts should use the names Microchip
provides in the linker script:

C:\Program Files\Microchip\MPLAB C30\Support\PIC24F\p24FJ128GA010.gld

= You must clear the interrupt flag

N MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 149

N

MICROCHIP

Working with Libraries

Working With Libraries

_AB® C30 includes several libraries:
= [Ibc.a = Standard C Library

= [iIbm.a = Math Library

= [iIbdsp.a = DSP Library

= [ibg.a = Fixed Point Math Library

= [Ibg-dsp.a = FP Math Library (DSP Engine)
= [IbDDEVICENUM.a = Peripheral Libraries

libpPIC24FxxXx.a

M MICROCHIP © farnci AR . Slide 151

Working With Libraries

= To use the peripheral libraries:
= #include the appropriate header file (timer.h)
= Call the functions as documented in the
library user's guide
= Only the object files you use from a library
will be compiled into the final hex file

= Libraries shipped with MPLAB C will be
automatically linked into your project
when they are used

M MICROCHIP © icrochi AR . Slide 152

Working With Libraries

= Library Header Files

adc.h
comparator.h
crc.h
Generic.h
12c.h

incap.h
outcompare.h
PIC24 periph_features.h
pmp.h

ports.h
PwrMgnt.h
rtcc.h

spi.h

timer.h

uart.h

wdt.h

M MICROCHIP

A/D Converter

Analog Comparator
Cyclic Redundancy Check
Generally useful stuff

12C Interface

Input Capture

Output Compare
Peripheral Pin Select
Parallel Master Port

/O Ports

Power Management
Real-Time Clock Calendar
SPI Interface

Timers

UART

Watchdog Timer

© 2011 Microchip Technology Incorporated. All Rights Reserved.

Slide 153

OpenTimerl ()

Example Library Function

Function Prototype

void OpenTimerl (unsigned int config, unsigned int period) ;

config Parameter (OR these values together for desired configuration)

Timer Module On/Off Timer prescaler

Tl ON Tl PS 1 1 Tl PS 1 64

Tl OFF TL PS 1 8 Tl PS 1 128
Timer Module Idle mode On/Off Timer Synchronous clock enable
Tl IDLE CON Tl SYNC EXT ON

Tl IDLE STOP Tl SYNC EXT OFF

Timer Gate time accumulation enable Timer clock source

Tl GATE ON Tl SOURCE EXT

Tl GATE OFF Tl SOURCE INT

Example:

OpenTimerl (Tl ON & T1 IDLE CON & Tl GATE OFF & T1 PS 1 8 &
Tl SYNC EXT OFF & Tl SOURCE INT, OxFFFF) ;

N MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 154

OpenTimerl ()

Example Library Function

Function Prototype

void OpenTimerl (unsigned int config, unsigned int period) ;

period Parameter

L = TMR1 |
L 2

| Comparator IEquaI IFSObits.T1IF

period ==pl PR1 |

Example:

OpenTimerl (Tl ON & T1 IDLE CON & Tl GATE OFF & T1 PS 1 8 &
Tl SYNC EXT OFF & Tl SOURCE INT, OxFFFF) ;

N MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 155

ConfigIntTimerl ()

Example Library Function

Function Prototype

void ConfigIntTimerl (unsigned int config) ;

config Parameter (OR these values together for desired configuration)

Interrupt Enable Interrupt Priority
Tl INT ON Tl INT PRIOR 7
Tl INT OFF Tl INT PRIOR 6
Tl INT PRIOR 5
Tl INT PRIOR 4
Tl INT PRIOR 3
Tl INT PRIOR 2
Tl INT PRIOR 1
Tl INT PRIOR 0

Example:
ConfigIntTimerl (Tl INT ON & Tl INT PRIOR 7);

N MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 156

N

MICROCHIP

Cab“Exercise’s

Working with Peripheral Libraries

Lab Exercise 5
Working with Peripheral Libraries

Objective
Using the Timer 1 interrupt, blink LED D3 (RAO) at a rate
determined by the internal RC oscillator's default frequency
and Timer 1's period with a 1:8 prescaler and Fosc/2 as its
clock source.

= The objective is the same as lab 4...

= This time, the Timer 1 interrupt is already
written for you

= You need to initialize Timer 1 using the PIC24F
peripheral libraries using the parameters
given in the lab manual

N MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 158

Lab Exercise 5
Working with Peripheral Libraries

Procedure
Follow the directions in the lab manual starting on page 5-1.

.On the lab PC..

If you currently have a project or workspace open,
close it now by selecting from the menu:
File » Close Workspace

Open the lab workspace by selecting from the
menu: File » Open Workspace...
and select the file:

C:\MTT\TLS2130\Lab5\Lab5.mcw

N MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 159

Lab Exercise 5
Working with Peripheral Libraries

Results

OpenTimerl (T1 ON & Tl IDLE CON & Tl GATE OFF &
Tl PS 1 8 & Tl SYNC EXT OFF &
Tl SOURCE INT, OxFFFF);

ConfigIntTimerl (Tl INT PRIOR 7 & T1 INT ON) ;

r)
)3

N MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 160

Lab Exercise 5
Working with Peripheral Libraries

Conclusions

= Peripheral libraries can simplify the task of
configuring on chip peripherals

m To use the peripheral libraries, you must
= Include the appropriate header file in your source

= And together choices from all options when you
call the functions — do not rely on defaults

N MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 161

N

MICROCHIP

Cab“EXxercise™6

Creating Custom Libraries

Lab Exercise 6
Creating Custom Libraries

Objective

Build a library (archive) file from a simple C source file that
contains a single function. Then, use that function in a
separate project that includes the newly created library file in
Its project tree.

= Follow along with the Iinstructor to create a
custom library and a project to test it

= The library will consist of two source files,
each containing a single function

= The code is already written for you

Slide 163

M MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved.

Lab Exercise 6

Creating Custom Libraries

Procedure
Follow the directions in the lab manual starting on page 6-1,

or follow along with the instructor and the slides as we walk
through this project together.

If you currently have a project or workspace open, close it

now by selecting from the menu:
File » Close Workspace

o Open the MPLAB Settings

From the menu bar, select:
Configure » Settings...

ger Programmer Tools

& 7

Select Device...
Configuration Bits...

Window Help

© 2011 Microchip Technology Incorporated. All Rights Reserved.

M MICROCHIP

Slide 164

Lab Exercise 6

Creating Custom Libraries

m Configure MPLAB so that multiple projects may be opened within one workspace

9 Select the Project Settings

On the tabs, select: Projects

Workspace Debuager Program Loading Hot Keys
Extemal Editor | Cther Projects
Settings M1‘

Workspace Debugger i Hot

Deselect one-to-one project- N
p J Close open source files on project close
Clear output window before build

WO r kS p aC e m O d eI Save project before build

Save files before build

Uncheck the last check box: @ves ONo © Pomm

ID ze one-to-one project-warkzpace model

I [ok || Cancel || fppy || Hep |
Click OK when done 2!

M MicRocHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 165

Lab Exercise 6

Creating Custom Libraries

m Create the Library Source Project

a Create New Project Debugger Programmer Tools
From the menu bar, select: Project Wizard...
Project » New... New..
9 Name the Project o e - X
In the Project Name boXx, enter: ey,
MyLib

Project Directary

Browse. ..

G Select Project Directory —_— —

Click on| Browse... | and select:

C:\MTT\TLS2130\Lab6
m The name of this project
will be the name of the
Click OK when done library file (e.g. MyLib.a)

N MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 166

Lab Exercise 6

Creating Custom Libraries

0 Add Source File to Project

In the project tree, right click on Source Files
and select: Add Files...

0 Select Library Source Files

In the add file dialog box, select the library source
files from the lab 6 directory (the library code has
already been written for you):

C:\MTT\TLS2130\Lab6\addition.c
C:\MTT\TLS2130\Lab6\subtraction.c

addition.c and subtraction.c should appear in
the project tree under Source Files.

Untitled Waorkspace

EI|:| MLib.mcp* ” ‘

[0 —
Add Files...

Create Subfolder...
Filter...

Untitled Waorkspace

=1 MLib.mcp*
|_:_|[:| Source Files
..... addition.c
subtraction.c

(L] Header Files

([Object Files

[Library Files

[Linker Script

([oOther Files

(2] Files | ¥ Symbols

Slide 167

M MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved.

Lab Exercise 6

Creating Custom Libraries

A look at the library source code and Iﬁ addition.c
its associated header file

int add(int a, int b)

Library source code contains {
functions written in the usual }
way. Nothing special needs to
be done just because this will
be included in a library.

return (a + b);

ﬁ subtraction.c

int sub(int a, int b)

{
}

return (a - b);

The header file contains
function prototypes for all the [r] MyLib.h
functions in the library file.
This will be required to use the
library in other projects.

int add(int a, int b);
int sub(int a, int b);

N MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 168

Lab Exercise 6

Creating Custom Libraries

m Configure the project build options

9 Open the Project Build Options Dialog Box

From the menu bar’ Select Debugger Programmer Tools Configure Window Help

Project » Build Options... » Project =~ ™™ MEE RN
Open...
Close *
Set Active Project 2

Quickbuild (no .asm file)

Package in .zip

Clean

Locate Headers

Export Makefile

Build All Ctrl+F10
Make F10

Build Configuration *
Build Options... 2 subtraction.c

Save Project addition.c

Save Project As... Project

e ool _

N MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 169

Lab Exercise 6

Creating Custom Libraries

m Configure the project build options

@ Setup Tool Suite Options

From the tabs, select:
ASM30/C30 Suite

MPLABE ASM30 MPLAE C30

Build Options For Project "MLib.mcp‘

SR)

MPLAB ASM30

MPLAE C30

MPLAE LINK30

Directories |

Custom Build Trace

Generate Comg

MPLAB LINK30

Directores | Custom Build | Trace

ASM30/C30 Suite

m Set the Target Type
In the Target Type box, sel

Build library target (invoke LIB30)

and check:
Build generic library

Click OK when done

M MICROCHIP

h

build-library

Categaories:

= 2

Output-File Farmat
@ COFF
(00 ELF/DwWaRF

Target Type
(70 Build normal target [invoke LINE30)

@ Build library target firseake LIE30)
[Build generic library

ASM30/C30 Suite

Fieztore Defaults

[

OK

| [Concel J[ooy ||

Help

l

© 2011 Microchip Technology Incorporated. All Rights Reserved.

Slide 170

Lab Exercise 6

Creating Custom Libraries

I Build the library

@ Compile (Build All)
File Edit View Project Debugger Programmer Tools Configure Window Help

O = b % || |Release ~ | & @ & = © 4 & [udh ‘

@ Build the Libarary

From the tool bar, click on the Build All button.

This step will generate a library file called MyLib.a that may
now be used in any project for a 16-bit PIC®

When building a library, no linker script is required
because the code being generated will not be placed in a
device's memory map until it is part of a normal project.

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 171

M MICROCHIP

Lab Exercise 6

Creating Custom Libraries

Library Build Process
addition.c @»[
subtraction.c

Including an archive (*.a) into a addition.s
project, is the same as including subtraction.s

all of the individual object files

(*.0) that it contains...

C Compller

(and Preprocessor)

Assembler

A | Archiver @ "
a Contents of MyLib.a e addition.o
d (Librarian) subtraction.o

a @ MyLib.a Linker

addition.o subtraction.o

Slide 172

M MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved.

Lab Exercise 6

Creating Custom Libraries

m Open (or create) a test project

@ Open TeSt PrOJ eCt File Edit ‘u‘iew Debugger Programmer Tools Configur

O = Project Wizard...
From the menu bar, select:
Project » Open...

Untitled Workspa LI

Open...

If doing this on your own, at this
point you may create a new C30

based project following the steps £ Open Prject . . e
from Lab 1. Include the library file B e i
just created into the new project. s 05208905 A icrchp LS.
@ Select the Lab6 Project
From the open project dialog box select:
C\MTT\TLS2130\Lab6\Lab6.mcp ‘ A
File name:
Fles of type: | MPLAB IDE Project Files (“mcp) ~| [cance |
L Jumpte: [CAMTTATLSZ130MLab1% -] | J

Slide 173

M MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved.

Lab Exercise 6

Creating Custom Libraries

A look at the Lab6 test project...

223 Lab&.mcp
- [Source Files
Labé.c
5. [_1 Header Files
MyLib.h
TL52130.h
(L1 object Files
5. E3 Library Files
MyLib.a
TL52130.3
[Linker Script
([other Files
523 MyLib.mcp
5.3 Source Files
addition.c
subtraction.c
[Header Files
(L1 Object Files
&3 Library Files
(3 Linker Script
(L1 other Files

Lab6 Test Project

MyLib Project

(2] Files | ¢ Symbals

M MICROCHIP

Lab6.c

MyLib.h

Created by you, to
provide access to
functions in library

MyLib.a
Generated in Step 12

#include "TLS2130.h"
#include "MyLib.h"
int sum, difference;

int main (void)

{

lcdInit () ;
sum = add (5, 2);
difference = sub (7, 2);

lcdPutInt (c, DEC) ;

© 2011 Microchip Technology Incorporated. All Rights Reserved.

Slide 174

Lab Exercise 6

Creating Custom Libraries

m Enable your debug tool

™ a Labé - MPLAB IDE v8.00
@ E n ab I e P r Ote u S File Edit WView Project BeEa0sf= 8 Programmer Tools Configure Window He
If not already enabled, from the None

Clear Memaory » 1MPLAE ICD 2

tool bar select: — =
Debugger » Select Tool » Animate
PI’OteUS VSM Step Into F7

Step Owver F3

3 MPLAE 5IM

v SREAL ICE

M MicRocHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 175

Lab Exercise 6

Creating Custom Libraries

m Build and run the program

@®Debug/Release {{hCompile (Build All)) Start
Simulatiorl

File Edit View Project Debugger Programmer Tod Configure Window Help

O = r: 7

el le® S HaB ol ee|

Debug ¥

@ Select Debug mode. ‘HEIEHSE

(D) Click on the Build All button.

If no errors are reported,
Click on the Start Simulation button. .

M MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 176

Lab Exercise 6

Creating Custom Libraries

m Build and run the program

dORun €PHalt @?eset

File Edit WYiew Project Debugger Programmer Tools Configure Window Help \ I

O|[e 2| bebus I EHBRO SHEAB B FCRO| 00
When programming completes, -
Click on the Reset button.

@ Click on the Run button. |:>

@ Click on the Halt button.

M MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 177

Lab Exercise

6

M MICROCHIP

Creating Custom Libraries

X Explorer 16.D5N - Proteus V5M MPLAE Viewer (Animating)

& [& 7

51 u uf w| uf m
I:I‘ o RE o
& = j ‘-"\\m.'\l.'\;—|}m'
=]
o R34
—o o J_ Wm
S = LRI
L ‘-"\\m.-\l.-\.—[‘;:-m
&5
o e N
[y
54
o = S
wm
. *
s . R4
ELN mur |W [= PR Ars

L P I L S—
FF 4PRPISILERN. O—] 10
FF 1aurs o——— RrE
FamErs o— - ers

ML EA MY Explorer 16 Virtual Evaluation Board
The Complete Electronics Dasign System Interactive Elements

ﬁ'\ MICROCHIP

© 2011 Microchip Technology Incorporated. All Rights Reserved.

Slide 178

Lab Exercise 6

Creating Custom Libraries

0 Make Library Project Active

= [Lab&.mcp

= Dur;ehzﬂfs Right click on the MyLib project and select:
=l [:I%ader Fliles Set ACtIVG
MyLib.h] .
o Dszion Add to or modify library source
B o e code (and its associated header)
[£] TL52130.]]]
B e s 9 Rebuild Library as in Step 12
Cither Files
o e
= 5 . .
 Cem Make Test Project Active
= xport Makefile . . .
Build Al Right click on the Lab6 project and select:
Make .
|——— Set Active
Build Options...
9 Rebuild and Run Lab6 as in Step 17
itljdsiiles... thrOugh 21

M MicRocHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 179

N

MICROCHIP

Mixing C and Assembly

Inline Assembly Solutions

Inline Assembly
Simple Form -Single Line

Syntax

asm ("instruction")

= Only a single string can be passed

= Generally used for instructions that take no
operands or take immediate operands

= For ANSI complianceuse asm Instead of
asin

Examples

("nop") ; // One Cycle Delay
("clrwdt") ; // Clear Watchdog Timer

("pwrsav #0") ; // Sleep mode
("pwrsav #1") ; // Idle mode

N MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 181

Inline Assembly
Simple Form — Multiple Lines

asm ("instruction 1"
"instruction 2"

"instruction n")

= Only one "asm" keyword iIs required
= Include each instruction within double quotes

= Put each instruction on a separate line for better
readability

= One set of parentheses encloses the entire list
of instructions within the asm statement

N MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 182

Inline Assembly
Extended Form

asm ("template"

[: ["constraint" (output operand) |,
: ["constraint" (input operand) [,
: ["clobbers" [, .. 1 1 1
) ;

Works with optimizer better
More specific about which resources are used
Simplifies interaction between C and assembly

Example

asm ("mov %0, wO" : : "g" (myVar) : "wWO");

N MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 183

Inline Assembly
Passing C Variables

Example

int x = 5, y = 2;
int foo(void)

{ Before Operation:
int result;

asm("add %1, %2, %0" result: 0000

"=r" (result)
npn (X), npn (Y)

)’ After Operation:

result: 0007
return result;

N MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 184

Inline Assembly
Constraint Letters

Constraint Letters Supported by MPLAB® C30

Claims WREG

Divide support register W1

Multiply support register W2

General purpose data registers W1-W14

Non-divide support registers W2-W14

Any register, memory or immediate integer operand is allowed (except non-general registers)
Any immediate integer operand (constant value) is allowed. Includes symbolic constants.
A register operand is allowed provided that it is in a general register.

AWB register W13

Accumulator register A - B

X pre-fetch registers W8-W9

y pre-fetch registers W10-W11

MAC pre-fetch registers W4-W7

An operand that matches the specified operand number is allowed.

A near or far data operand.

A near data operand.

a
b
C
d
e
g
i
r
Y
W
X
y
z
0
T

c

N MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 185

Inline Assembly Macros

Inline Assembly Macro Definitions

#define Nop () { asm volatile ("nop"); }
#define ClrWdt() { asm volatile ("clrwdt");}
#define Sleep() { asm volatile ("pwrsav #0");}
#define Idle () { asm volatile ("pwrsav #1");}

Provide an easy way to execute specific
assembly language instructions that have
no C equivalent (builtins are even better...)

Examples

Nop () ; // Insert nop instruction
Clrwdt () ; // Clear the watchdog timer

Sleep () ; // Enter SLEEP mode
Idle () ; // Enter IDLE mode

N MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 186

N

MICROCHIP

Mixing C and Assembly

Multi-File Project Solutions

Development Tools Data Flow
C Compiler]ﬁ C Header Files
(and Preprocessor)

Compiler
Assembly Source Files Driver
Program

Assembler]ﬁ Assembly Include Files

Object
Files Executable

Linker

MPLAB IDE
_ _ Debug Tool
Linker Script COFF Debug File

C Source Files

Assembly Source Files

Archiver
(Librarian)

Object File Libraries
(Archives)

M MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 188

Using a C Variable in Assembly

In the C file...

m Declare a global or static variable in the usual
way (This won't work with non-static variables)

C File.c

#include "p24£j128ga010.h"

unsigned int x = 0; +— p global variable has a permanent address in
unsigned int fool() ; RAM and may be accessed as a register (or
sequential series of registers) in assembly

int main (void) ENELEg

{

foo () ;
while (1) ;

N MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 189

Using a C Variable in Assembly

In the Assembly file...

m Declare the variable name as . extern
m Add an underscore in front of the variable name

ASM File.s

.include "p24£fj128gal0l0.inc"
.global foo

.extern _X <«—— performs same function as extern keyword in C.

Note that the C variable name must be preceded
by an underscore here in the assembly file.

inc x

return Any identifier that will be
used in both C and
assembly must have an
underscore in front of it in
the assembly code but not
in the C code.

.end

N MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 190

Calling an Assembly Function

Function Call Conventions

= For non-interrupt functions

Function Call Conventions

Parameters returned from function in W0-W4
(depending on size of return type)

Parameters passed to function in WO-W7
(Caller Saved)
Function may overwrite these

W8-W13 Must be saved/restored if used
by the function (Callee Saved)

Frame Pointer* W14-W15 Must be saved/restored if used
Stack Pointer by the function (Callee Saved)

N MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 191

Calling an Assembly Function

In the C File...

nclude function prototype for assembly function
= Function name is same as ASM subroutine name
= Function is called like an ordinary C function

#include "p24£j128ga0l10.h"

unsigned int x = 0;
extern unsigned int AddNumbers (unsigned int a,
unsigned int b) ;

int main(void)

{

= AddNumbers (5, 3);
while (1) ;

N MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 192

Calling an Assembly Function

In the Assembly File...

Declare the subroutine name as .global

Add an underscore' 'to the front of the name
Parameters usually passed in W registers...

ASM_File.s

.include "p24£fj128gal0l0.inc"
.global AddNumbers

_AddNumbers:
add WO, W1, WO
return

.end

N MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 193

Calling an Assembly Function

Parameter Passing

= Parameters are processed from left to right

= Parameters are passed in the first available W
register with the proper alignment

#include "p24£j128ga0l10.h"

void foo(char a, int b, char ¢, long 4, int e);

int main(void)

{

foo(0x1ll, 0x2222, 0x33, 0x44445555, 0x6666) ;
while (1) ;

N MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 194

Calling an Assembly Function
Parameter Passing

Parameter Passing Example

Function Prototype: void foo(char a, int b, char ¢, long d, int e);
Function Call: foo(0x1ll, 0x2222, 0x33, 0x44445555, 0x6666) ;

WO char a
W1 int b
W2 char c
W3 int e
W4
W5
W6
W7

Notice that d starts in W4 and

long d > that eis in W3

Two word (32-bit) variables must start in an even numbered W register
Four word (64-bit) variables must start in WO or W4
If all variables don't fit, then the stack is used for the overflow.

N MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 195

Calling an Assembly Function

Passing Non-Scalar Parameters

= Non-Scalar parameters such as arrays and
structures will usually be passed as a pointer In
one of the W registers (data pointers are 16-bits)

Example

#include "p24£j128ga0l10.h"

char *num

void foo(char al[4]);
char num[4] = {0, 1, 2, 3};

int main(void)

{

foo (num)
while (1) ;

N MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 196

Calling an Assembly Function
Additional Parameters Passed via Stack

Example: Additional Parameters Passed via Software Stack

Function Prototype: void foo(long a, long b, long c,
long 4, long e, long f);

Stack
Address NAAANNNANNAM Pointer Positions

n+16
n+14
n+10 RETURN

n+8 ADDRESS

n+6

Working
Registers

n+4 long e

n+2

nis an even . 1 = EP (W14)
address ong

n-2 [Calling Function's Data I

|V V.V VVVVVV

N MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 197

N

MICROCHIP

Lab “Exercise™”
Mixing C and Assembly

Lab Exercise 7
Mixing C and Assembly

Objective

From the file Lab7.c, call the functions:

int AddFunction(int, int);

int MostSignificantl (int) ;

which are written In assembly language in the file
Lab7 asm.s. Display the output of the functions on the
Explorer 16's LCD.

= Assembly code is already written for you

= Add in the necessary hooks in the C
source file so that you can call the
assembly functions

N MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 199

Lab Exercise 7
Mixing C and Assembly

Procedure
Follow the directions in the lab manual starting on page 7-1.

.On the lab PC..

If you currently have a project or workspace open,
close it now by selecting from the menu:
File » Close Workspace

Open the lab workspace by selecting from the
menu: File » Open Workspace...
and select the file:

C:\MTT\TLS2130\Lab7\Lab7.mcw

N MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 200

Lab Exercise 7

Mixing C and Assembly

| Explorer 16.D5N - Proteus VSM MPLAB Viewer (Animating) o=
2y BE| 7

3| u | (ST PoT T TF - - — .
] -'E\.Sl\.'\.—[;:-m FF 12BN O———— RPE
R v -
Fil‘ FF ISR [a——
53
| R34
e T L
s L ;
—a . Rz
o i\-m'\-'\-—[}m L5
. Ra7 Sameasos 2 3{m
J LIt ' ' R [EL T — R
o " oz o—— 'l p
5 _=|_‘ o RES =h==
= o FoIg
um
) +
L= . R,
g o

01 oo
POVIER
R2fi Rz
H =) LR

PR“TEUE Explorer 16 Virtual Evaluation Board @ MICROCHIP
The Gomplete Electronics Design System Interactive Elements

N MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 201

Lab Exercise 7
Mixing C and Assembly

.include "p24£128ga0l10.inc" 0 HEELGE SRl Sl
names visible as functions in C

.global AddFunction 4_0
.global MostSignificantl 9 Parameters passed via WO-W7
(Only WO and W1 used here)

.text :
. * 9 Return value passed in WO
_AddFunction:

add wO,wl, w0 ; Add two integers
return ; Return result in WO

_MostSignificantl:

f£11 [wO], wO ; Find first 1 from left
(result counted from left)
Adjust to give traditional bit

subr w0, #16, w0
é ; position number from right

return Return result in WO

.end

N MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 202

Lab Exercise 7
Mixing C and Assembly

A
é Lab7.c — One Possible Solution...

a, b, c;

AddFunction(int x, int y);
MostSignificantl (int *x);

main (void)
ledInit () ;
a = 5;
b = 3;

c AddFunction(a, b); // ¢ = a + b (in assembly file)

lcdPutInt (¢, DEC) ; // Display value of ¢ on first line of LCD
lcdPutCur(1,0); // Move cursor to second line of LCD

= MostSignificantl (&a); // Find bit position of most significant 1

lcdPutInt (¢, DEC) ; // Display value of ¢ on second line of LCD
while (1);

N MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 203

Lab Exercise 7
Mixing C and Assembly

Conclusions

= Functions written in assembly can easily be
Integrated into a C based project

m From C's perspective, assembly function is
no different from a C function

= From assembly perspective, you must use
caution so as to not break the C code

N MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 204

N

MICROCHIP

Optimization Techniques

Generating More Efficient Code

Optimization Techniques

= Compilers perform two kinds of optimization:
= Speed — Get more performance out of your code
= Size — Get more code into your microcontroller

= Several techniques are used behind the scenes
to create optimized code

= Usually, there is a tradeoff between size and
speed (occasionally you get both)

= Additional optimization may be achieved
manually, by using built-in functions to take
advantage of architectural features that are not
easily accessed with ordinary C code

N MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 206

Compiler Optimizations

How to Enable MPLAB® C30 Compiler Optimizations

F

Build Options For Project "Lab7.mcp

R

Directories I

Custom Build

Trace

ASM30/C30 Suite

MPLAB ASM30 |

MPLAE C30

| MPLAB LINK30

Categonds, [O ptirization

Generate Command Line

Optimization Level

spaed

code size

Inkerit global zettings

- A all

[] Use Alemate Settings

- A all

Pre-Optimization Inst. Scheduling:

Specific 0ptimizations
[T Urrall lnops
[] Dmit frame painter

[Procedural abstraction

[[Default for Optimization Lewvel] -]

Post-0ptimization Inst. Scheduling: [[Default far Qptirization Lewel] v]

Feztare Defaulk:

M MICROCHIP

9 From the menu, select:
Project » Build Options... » Project

Project | Debugger Programmer Tools Configure Window Help

Project Wizard... 3&5}‘ 20 5w
Mew...

Open...

Close 3

Set Active Project 3

Quickbuild (no .asm file)

Package in .zip
Clean

Locate Headers

Export Makefile

Build All Ctrl+F10

Make F10

Build Configuration 3

Build Options... 3 Project

© select the MPLAB C30 Tab

e From the Categories combo box,
select Optimization

@ Choose an Optimization Level
above O

Slide 207

© 2011 Microchip Technology Incorporated. All Rights Reserved.

Compiler Optimizations
-00 (Level 0) — Do Not Optimize

Optimization Level 0

Enabled Optimizations:
e NONE

code size

s Fastest Compilation Time
= Easiest for Debugging
= Code not rearranged

s Code behaves as expected when variable values
changed at break point

M MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 208

Compiler Optimizations
-0 or -01 (Level 1) — Optimize

Optimization Level 1

Enabled Optimizations:

e -fthread-jumps
o -fdefer-pop
e -fomit-frame-pointer

code size

= Compilation takes a bit longer
= Compilation requires much more memory on PC

= Compiler tries to reduce both code size and
execution time

Slide 209

M MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved.

Compiler Optimizations
-02 (Level 2) — Optimize Even More

Optimization Level 2

Enabled Optimizations:

All optimizations EXCEPT:
e -funroll-loops

e -finline-functions

Also enables:
o -fforce-mem
code size e -fomit-frame-pointer

= Performs nearly all optimizations that do not
Involve a space versus speed trade-off

N MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 210

Compiler Optimizations
-03 (Level 3) — Optimize Yet More

Optimization Level 2

Enabled Optimizations:

All optimizations plus:
e -finline-functions

code size

Turns on all optimizations in level 2 (-02)

N MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 211

Compiler Optimizations
-Os (Level S) — Optimize For Size

Optimization Level 2

Enabled Optimizations:

All Level 2 optimizations that do
not increase code size

code size

= Turns on all optimizations in level 2 (-02) that do
not typically increase code size

= Performs further optimizations to reduce code
size

N MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 212

MPLAB® C30's Built-ln Functions

= Functions built into the compiler itself to
Implement architecture specific tasks that
cannot be implemented directly in ANSI
standard C
= No libraries need to be added
= Just call like an ordinary function

M MICROCHIP © icrochi AR . Slide 213

MPLAB® C30's Built-ln Functions

Built-In Function Prototypes (See MPLAB® C30 Help File for Details) — Part 1
int builtin addab (void) ;

int builtin add(int wvalue, const int shift);

void builtin btg(unsigned int *, unsigned int Oxn);
int builtin clr(void);

int builtin clr prefetch(int **xptr, int *xval, int xincr,
int **yptr, int *yval, int yincr, int *AWB);

signed int builtin divmodsd(signed long dividend, signed int divisor,
signed int *remainder) ;

unsigned int builtin divmodud (unsigned long dividend,
unsigned int divisor,
unsigned int *remainder) ;

int builtin divsd(const long num, const int den);

unsigned int builtin divud(const unsigned
long num, const unsigned int den) ;

N MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 214

MPLAB® C30's Built-ln Functions

Built-In Function Prototypes (See MPLAB® C30 Help File for Details) — Part 2

unsigned int builtin dmaoffset(const wvoid *p);

int builtin ed(int sqgr, int **xptr, int xincr,
int **yptr, int yincr, int *distance);

int builtin edac(int sqr, int **xptr, int xincr,
int **yptr, int yincr, int *distance);

int builtin fbcl (int value);
int builtin lac(int value, int shift);

int builtin mac(int a, int b,
int **xptr, int *xval, int xincr,
int **yptr, int *yval, int yincr, int *AWB);

signed int builtin modsd(signed long dividend,
signed int divisor) ;

int builtin movsac(int **xptr, int *xval, int xincr,
int **yptr, int *yval, int yincr, int *AWB);

N MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 215

MPLAB® C30's Built-ln Functions

Built-In Function Prototypes (See MPLAB® C30 Help File for Details) — Part 3

int builtin mpy(int
int
int

a, int b,
**xptr, int
**yptr, int

int builtin mpyn(int a, int b,

int **xptr,
int **yptr,

int builtin msc(int
int
int

a, int b,
**xptr, int
**yptr, int

signed long builtin mulss (const

signed long Dbuiltin mulsu(const

const

signed long builtin mulus (const

const

*xval, int xincr,
*yval, int yincr);

int *xval, int xincr,
int *yval, int yincr);

*xval, int xincr,
*yval, int yincr, int *AWB);

signed int p0, const signed int pl);

signed int poO,
unsigned int pl);

unsigned int p0,
signed int pl);

unsigned long builtin muluu(const unsigned int pO,
const unsigned int pl);

void builtin nop(void);

M MICROCHIP

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 216

MPLAB® C30's Built-ln Functions

Built-In Function Prototypes (See MPLAB® C30 Help File for Details) — Part 4
unsigned int builtin psvpage(const void *p);
unsigned int builtin psvoffset (const wvoid *p);
unsigned int builtin readsfr (const wvoid *p);

int builtin return address (const int level);

int builtin sac(int value, int shift);

int builtin sacr(int value, int shift);

int builtin sftac(int shift);

int builtin subab (void) ;

unsigned int builtin tblpage(const void *p);
unsigned int builtin tbloffset(const wvoid *p);
unsigned int builtin tblrdh(unsigned int offset);

unsigned int builtin tblrdl (unsigned int offset);

void builtin tblwth(unsigned int offset unsigned int data);

N MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 217

MPLAB® C30's Built-ln Functions

Built-In Function Prototypes (See MPLAB® C30 Help File for Details) — Part 5

void builtin tblwtl (unsigned int offset unsigned int data);
void builtin write NVM(void) ;

void builtin write OSCCONL (unsigned char value);

void builtin write OSCCONH (unsigned char wvalue) ;

Built-In Function Prototypes (Undocumented as of Revision F of MPLAB® C30 User's Guide)

void builtin disi(unsigned int cycles);

N MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 218

Multiplication Code
Using C's Multiply Operator — No Typecast

Assembly output when using C's multiply operator *

.) This code will not yield the
#include <p24£j128ga0l1l0.h> correct results if the value of

the result requires more than

int a = 250, b = 250; 16-bits

long c;

_b,wWl
_a,wWo
W1l,WO0,WO0
WO, #15,W1
W0, c

while (1) ; Wl. c42

int main (void)

a * b;

6 Instructions / 6 Cycles

N MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 219

Multiplication Code
Using C's Multiply Operator

Assembly output when using C's multiply operator *

#include <p24£f3128ga0l10.h>

a,Wo
int a = 250, b = 250; WO, #1, W8
long c; b,W0
WO, #1,W2
int main (void) W8 ,W2,W6
{ W8, W3, W0
= (long)a * b; W7 ,W4
W4, W0, W4
while (1) ; W2,W9,WO0
W4 ,W0,W4
W4 , W7

13 Instructions / 13 Cycles W7,_c+2

N MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 220

Multiplication Code

Using _ builtin_mulss()

Assembly output when using C30's built-in mulss function

#include <p24£f3128ga0l10.h>

int a = 250, b = 250;
long c;

int main (void)
{

c = builtin mulss(a, b);

while (1) ;

5 Instructions / 5 Cycles

mov .w
mov .w
mul.ss
mov .w
mov .w

_b,wWl
_a,wWo
WO, W1l,WO0
W0, c

Wl, c+2

M MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved.

Slide 221

Multiplication Code

Why Doesn't the Compiler Do This Automatically?

= Because it wouldn't be a C compiler

= The ANSI C language requires that
multiplication be handled a certain way

= Changing that way creates a new C-like
language that will behave in a dramatically
different way from ANSI C

= C code would not behave the way an
experienced C programmer would expect

= [t would create non-portable code from
standard C syntax

= Blame K&R — not Microchip ©

M MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved.

Slide 222

Toggle Code

Using C's #= Operator with Bit Field Member

Assembly output when using C's A= operator to toggle a bit field

#include <p24£f3128ga0l10.h>
LATA, WO
int main(void) WO, #1, WO
{ WO, #0
_LATAO0 "= 1; WO, #1,WO0
} WO, #1,W2
#0x2c4, W1
[W1l] , W1
#0xfe,WO
W1l,WO0,WO
WO, W2,WO0
W0, 0x02c4

11 Instructions / 11 Cycles

N MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 223

Toggle Code

Using __ builtin_btg()

Assembly output when using __ builtin_btg()

#include <p24£f3128ga0l10.h>

mov.w # LATA,WO
int main (void) btg [WO] , #0

{
}

__builtin btg (&LATA, 0);

2 Instructions / 2 Cycles

N MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 224

Toggle Code

Using Inline Assembly

Assembly output when using inline assembly

\ . This code will only work with
#include <p24£f3128ga0l10.h> registers in near data space.

All SFRs are in near space.
int main (void)

{
}

asm("btg LATA, #0");

[btg.b _LATA, #0

1 Instruction / 1 Cycle

N MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 225

Toggle Code

Using C's ~= Operator with Variable

Assembly output when using xor with a shifted 1

#include <p24£f3128ga0l10.h>

int main (void)

{

LATA *= (1 << 0); [btg.b _ LATA, #0)

I Optimization must be enabled, otherwise 3

_ instructions will be generated.
Bit to Toggle

1 Instruction / 1 Cycle

N MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 226

Optimization Techniques

Data Types

= Use int for array index variables
= Use int for local auto variables

= [f you aren't trying to save memory, use an
int because not all instructions support

byte access (.b instruction suffix In
assembly)

M MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 227

Optimization Techniques
Bit Fields

= More readable but can be less efficient

= Good:

= Assigning literals to bit fields
(REGbits.bit = 1)

m Testing bit fields (REGbits.bit == 1)
= Bad:

= Toggling bits (REGbits.bit "= 1)

= Assigning a variable value to a bit field

= Arithmetic on a bit field

M MICROCHIP © icrochi orated. Al Ri . Slide 228

Optimization Techniques

Modifying SFRs

= With volatile variables / registers, a sequence
of bit field modifications cannot be optimized to
a single write:

T1CON, WO

WO, #TCKPSO
WO, #TCKPS1
WO, T1CON
T1CON, #TGATE
T1CON, #TSIDL
T1CON, #TON

T1CONbits.
T1CONbits.
T1CONbits.
T1CONbits.

[| I I ||

= Write a full integer to the entire register instead:

mov .w #0xa020, WO
T1CON = 0xA020; ‘ mov.w WO, T1CON

N MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 229

Optimization Techniques
Miscellaneous

= Ensure that function prototypes match
arguments (especially signed-ness)

= Use local/auto variables in preference to
global/static variables — the compiler can
put them into W registers

= DO not use char for auto variables

M MICROCHIP © icrochi AR . Slide 230

Optimization Techniques

Data Memory Models

= Use Large Data and Small Scalar Models

=]

B ild Options For Project "Lab7.mcp”

o Entlre data memory Directores | CustomBuld | Tmce | ASM30/C30 Sute

. . MPLAE ASM30 | MPLAB C30 | MPLAB LINK30
map Is available T -
. Genera te: Commar d Line
B P u tS S C al ar Varl ab I eS Code Model Location of Constants

in near memory Sumonn Ot
= Puts non-scalars in o o

far memory (arrays, e

structures, unions)

-g 4w/ all -mlarge-data -memall-zcalar

[T] Use Alemate Settings
-g wfall

OK || Cancel || pply || Hep

orporated. All Rights Reserved. Slide 231

M MICROCHIP © 2011 Microchip Technology Inc

Inline Functions

inline returnType identifier (parameterList)

{
}

= [ntegrates function's code into code for its
callers

s Usually faster due to lower overhead
= Code size may be smaller or larger

= May only be used if function definition is visible
In file where used (not just the function's

prototype)
= Inline Functions may be placed in header files

//Function code here

N MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 232

Inline Functions

m Best used with short functions where overhead
IS an Issue

Must enable optimizations or use the -finline
command line switch

Similar to macros but without the preprocessor
s Aware of C syntax and constructs
= May be further optimized by compiler

Example

inline int square(int a)

{

return builtin mulss(a, a);

}

N MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 233

Memory Models

X and Y Data Space (dsPIC® Only)

= Compiler does not directly support
separating variables into X and Y data

= Section attribute may be used to explicitly
locate variables in X and Y spaces

Example

float buffer[32] attribute ((section (".ydata")));

float coeff[l6] @ attribute ((section (".xdata"))):;

N MICROCHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 234

N

MICROCHIP

References

Suggested Reading

Programming 16-bit Microcontrollers in C

by Lucio Di Jasio
ISBN-10: 0750682922
ISBN-13: 978-0750682923

Programming 16-bit
Microcontrollers in C
Learning to Fly the PIC 24

http://www.flyingpic24.com

M MicRocHIP © 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 236

N

MICROCHIP

Thank You!

