
Getting Started with MPLAB® C
for dsPIC® and PIC24

Getting Started with MPLAB® C
for dsPIC® and PIC24

Author: Rob Ostapiuk
Microchip Technology Inc.

TLS 2130TLS 2130

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 2

Agenda

C in an Embedded Environment
Very Short Review of 16-bit Architecture
MPLAB® C30 Compiler Toolset Overview

Lab 1: Creating C30 Projects in MPLAB
How to Set Configuration Bits in Code

Lab 2: Setting Configuration Bits in Code
How to Read and Write Registers
How to Read and Write I/O Pins

Lab 3: "Hello, world" for Microcontrollers

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 3

Agenda

C Runtime Environment
Memory Models
Attributes
Interrupts

Lab 4: Writing Interrupt Service Routines
Working with Libraries

Lab 5: Using Peripheral Libraries
Lab 6: Creating Custom Libraries

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 4

Agenda

Mixing C and Assembly
Lab 7: Calling Assembly Functions from C

Optimization Techniques
Compiler Optimization
Coding Tips for Generating Optimal Code
Built-in Functions

16-bit Architecture16-bit Architecture
A Brief OverviewA Brief Overview

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 6

Simplified Block Diagram
16-bit PIC® Architecture

Data RAM

Peripherals

I/O Ports

Data
Space

Program
Flash

Program
Space

16-bit CPU24-bit
16-bit Y

Program
Bus

Data
Buses

PSV Window
and

Table Access
16-bit16-bit

16-bit X

The Y data bus is only available on the dsPIC30 and dsPIC33 families.

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 7

SFR Space

X Data RAM

Unimplemented

Data Memory Map
16-bit PIC® Architecture

0x0801

Y Data RAM

Dual Port RAM

MSB LSB
16-bits LSB

Address
MSB

Address

0x00000x0001

0x07FE
0x0800

0x07FF

0x1FFE

0x80000x8001

0xFFFE0xFFFF

NEAR
Data Memory
8KB

SFR Space
2KB

SRAM Space

Dual Port
DMA RAM

2KB

Optional window
into Program

Memory using PSV
32KB

NOTE: PIC24
devices don't
differentiate
between X and
Y data RAM

DIRECTLY
ADDRESSIBLE

POINTERS
REQUIRED

0x1FFF

0x20000x2001

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 8

Program Memory Map
16-bit PIC® Architecture

Reset Vector
Primary Interrupt

Vector Table

Alternate Interrupt
Vector Table

User Flash

Data EEPROM (dsPIC30F)
Flash Configuration Words

Configuration Registers

Device ID

24-bits

0x000000

0x000004

0x000200

0x7FFFFE

MSW LSW
0x000001

0x000005

0x000201

0x7FFFFF

0xFFFFFE0xFFFFFF

0x0000FE0x0000FF

LSW
Address

MSW
Address

Program Counter
Increments by 2
(program word
address is always
even)

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 9

Program Space Visibility Window
16-bit PIC® Architecture

0x8000

0xFFFF

Any 32kB
segment of
flash program
memory

Store constant
data here

PSV Window:
Read data in
flash as if it

were in RAM
(only lower 16-bits)

Read constant
data here

24-bit Program Memory
(Flash)

16-bit Data Memory
(RAM)

9FD3
9FD3

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 10

Programmer's Model
16-bit PIC® Architecture

Divide Quotient
Divide Remainder

X Address Pointer
X Address Pointer
Y Address Pointer
Y Address Pointer

MAC Pre-fetch Offset
MAC Write Back Pointer

Frame Pointer
Stack Pointer

15 0
W0
W1
W2
W3
W4
W5
W6
W7
W8
W9

W10
W11
W12
W13
W14
W15

W Registers:
General Purpose

Data Registers or
Address Pointers

WREG in File Register Operations

DSP Operand Registers

DSP Address Registers

Stack Pointer LimitSPLIM

MPLAB® C for dsPIC® and PIC24 MPLAB® C for dsPIC® and PIC24
Toolset OverviewToolset Overview

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 12

MPLAB® C for dsPIC® and PIC24
Overview

ANSI x3.1989 compliant
Optimizing compiler
Includes language extensions for
Microchip’s 16-bit architectures
Ported from GCC (GNU) compiler from the
Free Software Foundation
Works as a component of MPLAB® IDE

MPLABMPLAB®® C30 Student Edition is available for free C30 Student Edition is available for free
from the Microchip web site.from the Microchip web site.

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 13

.a Linker

.o

Development Tools Data Flow

C Compiler
(and Preprocessor)

Archiver
(Librarian)

MPLAB IDE
Debug Tool

C Source Files

Assembly Source Files

Assembly Source Files

Object
Files

Object File Libraries
(Archives)

Linker Script COFF Debug File

Executable

Compiler
Driver
Program

Assembler

.h
C Header Files

.inc Assembly Include Files

.gld

.hex

.cof

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 14

MPLAB® C for dsPIC® and PIC24
Header Files

One header file per device:
Provides access to registers as C variables
Defines labels for bit manipulation
Defines macros to utilize instructions not
normally accessible from C

p24FJ128GA010.h

C:\Program Files\Microchip\MPLAB C30\Support\PIC24F\h

Header files are included as part of the
MPLAB C30 installation and are located in
the following directory:

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 15

MPLAB® C for dsPIC® and PIC24
Linker Scripts

One linker script file per device:
Defines memory sections and boundaries
Associates ISR names with interrupt vectors
Equates register variables with addresses

p24FJ128GA010.gld

C:\Program Files\Microchip\MPLAB C30\Support\PIC24F\gld

Linker Script files are included as part of the
MPLAB C30 installation and are located in
the following directory:

.gld

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 16

MPLAB® C for dsPIC® and PIC24
Startup and Initialization

goto __reset

Interrupt Vectors

__reset:
... ...
... ...
call _main

_main:
... ...
... ...
... ...

.c

.o crt0.o or crt1.o (from libpic30.a)

main.c

Program Memory

C Runtime Environment Setup Code
Inserted automatically by LINK30 Linker
(Source files: crt0.s and crt1.s)

Your C code's main() routine.
Included by you in your project and
placed in memory by LINK30 Linker

Reset Vector (Address 0x000000)
Populated automatically by LINK30 Linker
Calls runtime environment setup code in
crt0.o (__reset label)

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 17

MPLAB® C for dsPIC® and PIC24
Data Representation

Multibyte quantities are stored in "little
endian" format:

LSB is stored at lowest address
LSb is stored at lowest numbered bit position

015

43214321

87658765

How the value 0x87654321 is stored
In Data Memory (RAM) @ 0x100In Working Registers W4 & W5

0x0FE

0x100

0x102

0x104

0x0FF

0x101

0x103

0x105

W4
W5 4343 2121

8787 6565

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 18

MPLAB® C for dsPIC® and PIC24
Integer Data Types

Type Bits Min Max

charchar, signed , signed charchar 88 --128128 127127
unsignedunsigned charchar 88 00 255255
shortshort, signed , signed shortshort 1616 --3276832768 3276732767
unsignedunsigned shortshort 1616 00 6553565535
intint, signed , signed intint 1616 --3276832768 3276732767
unsignedunsigned intint

long, signed long, signed longlong

unsignedunsigned longlong

long longlong long, signed , signed long longlong long

unsignedunsigned long longlong long

1616 00 6553565535

3232 --223131 223131 -- 11

3232 00 223232 -- 11

6464 --226363 226363 -- 11

6464 00 226464 -- 11

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 19

MPLAB® C for dsPIC® and PIC24
Floating Point Data Types

Type Bits E Min E Max N Min N Max

floatfloat

double double **
long doublelong double

3232

3232

6464

--126126

--126126

--10221022

127127

127127

10231023

22--126126

22--126126

22--10221022

22127127

22127127

2210231023

Type Bits |Min| |Max|

floatfloat

double double **

long doublelong double

3232
3232

6464

1.175494 1.175494 ×× 1010--3838

1.175494 1.175494 ×× 1010--3838

2.22507385 2.22507385 ×× 1010--308308

3.40282346 3.40282346 ×× 10103838

3.40282346 3.40282346 ×× 10103838

1.79769313 1.79769313 ×× 1010308308

E = Exponent
N = Normalized (approximate)
* double is equivalent to long double if –fno-shortt-double command line option is used

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 20

MPLAB® C for dsPIC® and PIC24
Pointers

All pointers are 16-bits in size, regardless
of whether they are data pointers or
program pointers
Constants in flash viewed via PSV
Jump tables sometimes used for program
pointers (handles)

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 21

Labcenter Proteus VSM
Virtual Prototyping
for all PIC MCU
families
Simulate complete
embedded systems
Develop and debug
your firmware on
virtual hardware
Test and verify
before ordering your
prototype

www.labcenter.com

Schematic
simulation of
Microchip
evaluation board

Lab Exercise 1Lab Exercise 1
Creating an MPLAB® C Based Project

with MPLAB IDE Step-by-step
Creating an MPLAB® C Based Project

with MPLAB IDE Step-by-step

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 23

Lab Exercise 1
Creating an MPLAB® C Based Project

Purpose
The purpose of this lab is to illustrate the steps required to create an
MPLAB® C30 based project within the MPLAB Integrated Development
Environment. You will learn how to select the compiler as the build tool,
which files must be included in your project, how to allocate a heap and
what code must be included in your source file.

Procedure

Open MPLAB and start the project
wizard by selecting from the menu:
Project Project Wizard…

Click to continue…Next >

After the Project Wizard opens,

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 24

Lab Exercise 1
Creating an MPLAB® C Based Project

In the Device combo box, select:
PIC24FJ128GA010

Click to continue…Next >

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 25

Lab Exercise 1
Creating an MPLAB® C Based Project

In the Active Toolsuite combo box, select:
Microchip C30 Toolsuite

Click to continue…Next >

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 26

Lab Exercise 1
Creating an MPLAB® C Based Project

Click and navigate to:Browse…

C:\MTT\TLS2130\Lab1

Then name the file Lab1.mcp

C:\MTT\TLS2130\Lab1\Lab1

Create New Project File

Click to continue…Next >

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 27

Lab Exercise 1
Creating an MPLAB® C Based Project

C:\MTT\TLS2130\Lab1

Add source files to the project. In
the left hand list box, navigate to:

Select the file Lab1.c

Click Add >>

Select the file TLS2130.a

Click Add >>

Add library file to the
project:

Click to continue…Next >

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 28

Lab Exercise 1
Creating an MPLAB® C Based Project

Click Finish

Lab 1 Project Tree

View Project

If the project tree isn't visible,
select from the menu:

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 29

Lab Exercise 1
Creating an MPLAB® C Based Project

Open the project build options by selecting from the menu:
Project Build Options… Project

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 30

Lab Exercise 1
Creating an MPLAB® C Based Project

Select the MPLAB LINK30
tab at the top of the window.

In the Heap size box, enter a
value of 128 bytes.

The value of 128 bytes is
somewhat arbitrary. Your
application may require a
larger or smaller heap, or
possibly no heap at all.

Click OK

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 31

Lab Exercise 1
Creating an MPLAB® C Based Project

Device specific header file (required to access device features)
Standard C and Microchip library header files (if used)
Header files for your own libraries (if used)

Add the minimum required framework to your soruce code in Lab1.c.
In the project tree, double click on the file Lab1.c

Lab1.c

15
16
17

#include the header files required by your application.

#include <p24fj128ga010.h>
#include <stdio.h>
#include "TLS2130.h"

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 32

_CONFIG1(FWDTEN_OFF & JTAGEN_OFF)

Lab Exercise 1
Creating an MPLAB® C Based Project

Use _CONFIG1 and _CONFIG2 macros (defined in header file)

Bitwise AND list of option constants (defined in header file)
Unspecified options will use their default settings

Add the minimum required framework to your soruce code in Lab1.c.

Lab1.c

19

Setup device configuration bits in code

This is the minimum required configuration for the Explorer 16 Demo Board.

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 33

Lab Exercise 1
Creating an MPLAB® C Based Project

Enable MPLAB® REAL ICE by selecting from the menu:
Debugger Select Tool Proteus VSM

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 34

Lab Exercise 1
Creating an MPLAB® C Based Project

Select Debug mode.

Click Build All button.

If no errors reported,
Click Start Simulation
button.

When programming
completes,click Reset
button.

Click Run button.

Click Halt button.

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 35

Lab Exercise 1
Creating an MPLAB® C Based Project

Results

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 36

Lab Exercise 1
Creating an MPLAB® C Based Project

Minimum steps to setup a C based project:
Follow standard MPLAB® project setup steps
Select C30 as build tool
Add linker script for your device to project
#include device header file in source code
#include library header files (if required)
Add configuration bits setup in code
Allocate a heap (if required)

Conclusions

How to Set PIC® Configuration BitsHow to Set PIC® Configuration Bits
Using the _CONFIG1() and _CONFIG2() MacrosUsing the _CONFIG1() and _CONFIG2() Macros

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 38

What are Configuration Bits?

Used to setup device
features:

Code Protect
Watchdog Timer
JTAG
Oscillator Options
Debug Options
More…

Reset Vector
Primary Interrupt

Vector Table

Alternate Interrupt
Vector Table

User Flash

Data EEPROM (dsPIC30F)
Flash Configuration Words

Configurations Registers

Device ID

24-bit Program Memory

CONFIG1 and CONFIG2 Located in
program memory space, outside
range of executable code space

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 39

Flash Configuration Word 1
CONFIG1

CONFIG1 (PIC24FJ128GA010)

bit 23 bit 16

U-1

- - - - - - - -
U-1 U-1 U-1 U-1 U-1 U-1 U-1

Upper Third:

bit 15 bit 8

r-0

r JTAGEN GCP GWRP DEBUG COE - ICS
R/PO-1 R/PO-1 R/PO-1 R/PO-1 R/PO-1 U-1 R/PO-1

Middle Third:

bit 7 bit 0

R/PO-1

FWDTEN WINDIS - FWPSA WDTPS3 WDTPS2 WDTPS1 WDTPS0
R/PO-1 U-1 R/PO-1 R/PO-1 R/PO-1 R/PO-1 R/PO-1

Lower Third:

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 40

Flash Configuration Word 1
_CONFIG1(x) Macro

Defined in device specific header files
x is formed by anding together constants
representing configuration bit values
Omitted bits retain their default value

_CONFIG1(x) Macro Definition

#define _CONFIG1(x)
__attribute__((section("__CONFIG1.sec,code")))
int _CONFIG1 = (x);

Example

_CONFIG1(FWDTEN_OFF & JTAGEN_OFF)

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 41

_CONFIG1(x)
Parameter List Options

JTAG JTAGEN_OFF Disabled
JTAGEN_ON Enabled

ICD Pins Select ICS_PGx1 EMUC/EMUD share PGC1/PGD1
ICS_PGx2 EMUC/EMUD share PGC2/PGD2

Clip-On Emulation COE_ON Enabled
COE_OFF Disabled

Background Debug BKBUG_ON Enabled
BKBUG_OFF Disabled

Code Protect GCP_ON Enabled
GCP_OFF Disabled

Write Protect GWRP_ON Enabled
GWRP_OFF Disabled

Windowed WDT WINDIS_ON Enabled
WINDIS_OFF Disabled

Watchdog Timer FWDTEN_OFF Disabled
FWDTEN_ON Enabled

_CONFIG1(x) Macro Parameter List Options for PIC24FJ128GA010 (Part 1)

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 42

_CONFIG1(x)
Parameter List Options Continued…

Watchdog Prescaler FWPSA_PR32 1:32
FWPSA_PR128 1:128

Watchdog Postscaler WDTPS_PS1 1:1
WDTPS_PS2 1:2
WDTPS_PS4 1:4
WDTPS_PS8 1:8
WDTPS_PS16 1:16
WDTPS_PS32 1:32
WDTPS_PS64 1:64
WDTPS_PS128 1:128
WDTPS_PS256 1:256
WDTPS_PS512 1:512
WDTPS_PS1024 1:1024
WDTPS_PS2048 1:2048
WDTPS_PS4096 1:4096
WDTPS_PS8192 1:8192
WDTPS_PS16384 1:16384
WDTPS_PS32768 1:32768

_CONFIG1(x) Macro Parameter List Options for PIC24FJ128GA010 (Part 2)

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 43

Flash Configuration Word 2
CONFIG2

CONFIG2 (PIC24FJ128GA010)

bit 23 bit 16

U-1

- - - - - - - -
U-1 U-1 U-1 U-1 U-1 U-1 U-1

Upper Third:

bit 15 bit 8

R/PO-1

IESO - - - - FNOSC2 FNOSC1 FNOSC0
U-1 U-1 U-1 U-1 R/PO-1 R/PO-1 R/PO-1

Middle Third:

bit 7 bit 0

R/PO-1

FCKSM1 FCKSM0 OSCIOFCN - - - POSCMD1 POSCMD0
R/PO-1 R/PO-1 U-1 U-1 U-1 R/PO-1 R/PO-1

Lower Third:

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 44

Flash Configuration Word 2
_CONFIG2(x) Macro

Defined in device specific header files
x is formed by anding together constants
representing configuration bit values
Omitted bits retain their default value

_CONFIG2(x) Macro Definition

#define _CONFIG2(x)
__attribute__((section("__CONFIG2.sec,code")))
int _CONFIG2 = (x);

Example

_CONFIG2(FNOSC_PRIPLL & POSCMOD_HS & OSCIOFNC_OFF)

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 45

_CONFIG2(x)
Parameter List Options

Two Speed Startup IESO_OFF Disabled
IESO_ON Enabled

Oscillator Type POSCMOD_EC External Clock
POSCMOD_XT XT Oscillator
POSCMOD_HS HS Oscillator
POSCMOD_NONE Primary Disabled

OSC2/RC15 Function OSCIOFNC_ON RC15
OSCIOFNC_OFF OSCO or FOSC/2

Oscillator Selection FNOSC_FRC Fast RC Oscillator
FNOSC_FRCPLL Fast RC Oscillator with divide and PLL
FNOSC_PRI Primary Oscillator (XT, HS, EC)
FNOSC_PRIPLL Primary Oscillator (XT, HS, EC) with PLL
FNOSC_SOSC Secondary Oscillator
FNOSC_LPRC Low Power RC Oscillator
FNOSC_FRCDIV Fast RC Oscillator with divide

Clock Switching & Monitor FCKSM_CSECME Both Enabled
FCKSM_CSECMD Only Clock Switching Enabled
FCKSM_CSDCMD Both Disabled

_CONFIG2(x) Macro Parameter List Options for PIC24FJ128GA010

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 46

How to Set PIC® Configuration Bits

_CONFIGn(x) macros must be used
anywhere after the #include for the
device specific header file

Example

/**
* PROGRAM: main.c
* AUTHOR: Clem Finch
**/
#include <p24fj128ga010.h>
#include "TLS2130.h"

_CONFIG1(FWDTEN_OFF & JTAGEN_OFF);
_CONFIG2(FNOSC_PRIPLL & POSCMOD_HS & OSCIOFNC_OFF);

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 47

Where is all this stuff defined?

Parameter labels for _CONFIGn(x) macros:
At the end of the device specific header files
(e.g. p24fj128ga010.h)

CONFIGn Register Descriptions:
In the data sheet under "Special Features" in
the "Configuration Bits" subsection

CONFIG Bits Functional Descriptions:
In the data sheet under the relevant section
(e.g. WDT under "Special Features" section in
"Watchdog Timer" subsection)

Lab Exercise 2Lab Exercise 2
Setting PIC® Configuration Bits in CodeSetting PIC® Configuration Bits in Code

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 49

Lab Exercise 2
Setting PIC® Configuration Bits in Code

Setup the configuration registers with the
following options:

Objective
Use the _CONFIGn() macros to setup the configuration
registers and view the results in the Configuration Bits
window inside the MPLAB® IDE

• Oscillator = HS, Primary with PLL
• OSC2/RC15 Function = OSC2
• Clock Switching & Monitor = Both Disabled
• JTAG = Disabled
• Watchdog Timer = Disabled

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 50

Lab Exercise 2
Setting PIC® Configuration Bits in Code

Procedure
Follow the directions in the lab manual starting on page 2-1.

On the lab PC…

Open the lab workspace by selecting from the menu:
File Open Workspace…
and select the file:
C:\MTT\TLS2130\Lab2\Lab2.mcw

If you currently have a project or workspace open,
close it now by selecting from the menu:
File Close Workspace

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 51

Lab Exercise 2
Setting PIC® Configuration Bits in Code

Configuration Bits:
Should be set in code using the _CONFIG1(x) and
_CONFIG2(x) macros
Parameters consist of a series of option labels
bitwise ANDed together
Option labels are defined in the device specific
header file
Unspecified options retain their default settings
(as per the data sheet)

Conclusions

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 52

Lab Exercise 2
Setting PIC® Configuration Bits in Code

From the menu, open the configuration bits window:
Configure Configuration Bits…

Results

How to Read and Write RegistersHow to Read and Write Registers
Word and Bit AccessWord and Bit Access

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 54

Examples

How to Read and Write Registers
Full 16-bit Word

Use the name of the register as you would an
ordinary int type variable
Variables defined in device specific header file
with register name as shown in datasheet

Syntax

REGNAME

PORTA = 0xFE31; // Write 0xFE31 to PORTA
AtoD_Result = ADC1BUF0; // Read A/D Result
TX1REG = 'a'; // Send 'a' out UART
if (RX1REG == 'x') { … } // If received char is 'x'
while (RX1REG) { … } // While char is not '\0'

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 55

Register Variable Declaration
Example for PIC24FJ128GA010

extern: PORTA is actually defined in linker
script…
volatile: This variable may be altered by
something other than the code (i.e. the hardware
or an interrupt routine)
__attribute__((__sfr__)): Tag to indicate
that this is a special function hardware register
(more about attributes later)

PORTA Variable Declaration from p24fj128ga010.h Header File

extern volatile unsigned int PORTA __attribute__((__sfr__));

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 56

Examples

How to Read and Write Registers
Individual Bits and Bit Fields

Use the name of the register with the word 'bits'
in lower case attached to it
Use the name of the bit or bit field as specified in
the data sheet

Syntax

REGNAMEbits.BITNAME

LATAbits.LATA5 = 1; // Set bit 5 of PORTA
Flag = PORTAbits.RA5; // Read bit 5 of PORTA
while (!AD1CONbits.DONE) { … } // While A/D converting
AD1CONbits.SSRC = 5; // Set 3-bit field = 5
//3-bits in bitfield: SSRC2 = 1, SSRC1 = 0, SSRC0 = 1

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 57

AD1CONbits Variable Declaration from p24fj128ga010.h Header File

Bit Field Variable Declaration
Example for PIC24FJ128GA010

__extension__ typedef struct tagAD1CON1BITS {
union {

struct {
unsigned DONE:1;
unsigned SAMP:1;
unsigned ASAM:1;
unsigned :2;
unsigned SSRC:3;
unsigned FORM0:1;
unsigned FORM1:1;
unsigned :3;
unsigned ADSIDL:1;
unsigned :1;
unsigned ADON:1;

};
struct {

unsigned :5;
unsigned SSRC0:1;
unsigned SSRC1:1;
unsigned SSRC2:1;
unsigned FORM:2;

};
};

} AD1CON1BITS;
extern volatile AD1CON1BITS AD1CON1bits __attribute__((__sfr__));

3-bit wide field Primary Bit Names

Secondary Bit Names

Bit Field
Variable
Declaration

Bit Field Structure Definition

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 58

Excerpt from P24FJ128GA010.gld Linker Script File

Register and Bit Field Variables
Definition in Linker Script

Both REGNAME and REGNAMEbits
defined in linker script
Both are allocated at the same address

TRISA = 0x2C0;
_TRISA = 0x2C0;
_TRISAbits = 0x2C0;
PORTA = 0x2C2;

_PORTA = 0x2C2;
_PORTAbits = 0x2C2;
LATA = 0x2C4;

_LATA = 0x2C4;
_LATAbits = 0x2C4;

Assembly Label

C Labels

Eliminates need for a union in
header file

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 59

Examples

How to Read and Write Registers
Individual Bits and Bit Fields – Shorthand Syntax

Use the bit name preceded by an underscore
Defined as a macro in the header file
May be used instead of structure syntax

Shorthand Syntax

_BITNAME

_LATA5 = 1; // Set bit 5 of PORTA
Flag = _RA5; // Read bit 5 of PORTA
while (!_DONE) { … } // While A/D converting
_SSRC = 5; // Set 3-bit field = 5
//3-bits in bit field: SSRC2 = 1, SSRC1 = 0, SSRC0 = 1

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 60

For every bit in the device, there is a
#define in the device specific header file
in the form of:

Only works if header file is included
Allows access to all bits by bit name only

Register Variable Declaration
Example for PIC24FJ128GA010

Bit Access Shorthand Macro Definition

#define _BITNAME REGNAMEbits.BITNAME;

Data Input and OutputData Input and Output
Working with I/O PortsWorking with I/O Ports

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 62

Data Input and Output
TRIS, PORT and LAT Registers

0 1 0 1 0 0 1 1

0 0 1 1 0 1 0 0TRISx

LATx

Read
PORTx

Read
LATx

Write
PORTx

or LATx

Internal Data Bus

PORTx
(I/O Pins)

Data Direction
(1 = IN, 0 = OUT)

Pins are all inputs by
default (TRIS = 0xFFFF)

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 63

Data Input and Output
TRIS, PORT and LAT Registers

Steps for working with PIC® I/O ports
1 Initialize Output

Latches to Known
State

Write to: LATx = 0;
LATxbits.LATxn = 0;
_LATxn = 0;

2 Configure Data
Direction of Pins

Write to: TRISx = 0x0023;
TRISxbits.TRISxn = 1;
_TRISxn = 1;

3a Write to outputs Write to: LATx = 0x00F0;
LATxbits.LATxn = 0;
_LATxn = 0;

3b Read from inputs Read from:myVar = PORTx;
myVar = PORTxbits.Rxn;
myVar = _Rxn;

LAT

LAT

TRIS

PORT

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 64

How to Read Input Pins
Switch Debouncing

Switch inputs must be debounced to
prevent multiple false detections while
switch contact settles
Debounce routine provided in TLS2130.a
Function prototype provided in TLS2130.h

t

v(t)
3.3V

0V

vih

vil

Switch Open

Switch Closed

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 65

How to Read Input Pins
Switch Debouncing

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 66

How to Read Input Pins
Switch Debouncing

Written especially for this class
Takes port pin variable as parameter
Returns TRUE if switch is pressed
Returns FALSE if switch is not pressed

Function Prototype

Example

unsigned char SwitchPressed(volatile unsigned *sw, int bit);

if (SwitchPressed(&PORTD, 6))
{

// Do something if switch is pressed
}

Lab Exercise 3Lab Exercise 3
Working with I/O PortsWorking with I/O Ports

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 68

Lab Exercise 3
Working with I/O Ports

Use the provided function SwitchPressed()
to read and debounce S3 which is
connected to bit 6 of PORTD
While S3 pressed, turn on LED on RA0
While S3 not pressed, turn off LED on RA0

Objective
Use the SwitchPressed() function to read S3. As long as S3
is pressed, LED D3 should be on. When S3 is released, LED
D3 should be off.

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 69

Lab Exercise 3
Working with I/O Ports

Procedure
Follow the directions in the lab manual starting on page 3-1.

On the lab PC…

Open the lab workspace by selecting from the menu:
File Open Workspace…
and select the file:
C:\MTT\TLS2130\Lab3\Lab3.mcw

If you currently have a project or workspace open,
close it now by selecting from the menu:
File Close Workspace

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 70

Lab Exercise 3
Working with I/O Pins

Results

D3D3

LATAbits.LATA0 = 1 OR _LATA0 = 1

SwitchPressed(&PORTD, 6)Read RD6 via provided function:

Write to RA0 using LATA:

S3S3

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 71

Lab3.c – One possible solution…

#include <p24fj128ga010.h>
#include "TLS2130.h"

_CONFIG1(FWDTEN_OFF & JTAGEN_OFF)

int main(void)
{

_TRISA0 = 0;
while(1)
{

_LATA0 = 0;
while(SwitchPressed(&PORTD, 6))

_LATA0 = 1;
}

}

Lab Exercise 3
Working with I/O Pins

Make bit 0 of PORTA an output
Turn off LED on bit 0 of PORTA

Turn on LED on bit 0 of PORTA

Read switch
on bit 6 of
PORTD

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 72

Conclusions

Lab Exercise 3
Working with I/O Pins

TRIS registers determine I/O pin direction
LAT registers used to write outputs
PORT registers used to read inputs
Switch inputs must be debounced
Header files make it possible to work with an
entire register (REGNAME) or individual bits
(REGNAMEbits.BITNAME or _BITNAME)

The C Runtime EnvironmentThe C Runtime Environment
A Foundation for C ProgramsA Foundation for C Programs

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 74

Program Memory (Flash)
The Compiler’s Viewpoint

Fixed locations in
hardware

Reset Vector
Traps
Alternate Traps
Interrupt Vectors
Alternate Interrupt
Vectors

Vectors

.handle

.text

.dinit

.const

000000

7FFFFF

Vectors
24-bits

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 75

Program Memory (Flash)
The Compiler’s Viewpoint

Function Pointers
Allows use of 16-bit
pointers in RAM to
access 24-bit
program memory
addresses
Implements table of
GOTO instructions

Vectors

.handle

.text

.dinit

.const

000000

7FFFFF

Far Code Handles
24-bits

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 76

Program Memory (Flash)
The Compiler’s Viewpoint

User Code
All executable code is
placed here

Initialization code
placed here under the
section name .init

Vectors

.handle

.text

.dinit

.const

000000

7FFFFF

General Program Storage
24-bits

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 77

Program Memory (Flash)
The Compiler’s Viewpoint

Constants used to
initialize:

Initialized Variables
(e.g. int x = 10;)
Constants in RAM

Values copied into
RAM by startup code

Vectors

.handle

.text

.dinit

.const

000000

7FFFFF

Data Memory Initializers
24-bits

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 78

Program Memory (Flash)
The Compiler’s Viewpoint

Constants accessed
via 32kB PSV window
in RAM
Constants declared
with const keyword
Managed via auto PSV
feature

Vectors

.handle

.text

.dinit

.const

000000

7FFFFF

Constants in Flash
24-bits

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 79

Data Memory (RAM)
The Compiler’s Viewpoint

SFR
.nbss, .ndata,

.pbss, .ndconst

.bss, .data,
.dconst

heap

.const

stack

0000

2000

FFFF

N
EA

R
FA

R

8000

Special Function Registers
Hardware Registers
Fixed Addresses

16-bits

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 80

Data Memory (RAM)
The Compiler’s Viewpoint

SFR
.nbss, .ndata,

.pbss, .ndconst

.bss, .data,
.dconst

heap

.const

stack

0000

2000

FFFF

N
EA

R
FA

R

8000

Uninitialized Variables
e.g. int x;

.nbss in near space

.bss in far space

16-bits

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 81

Data Memory (RAM)
The Compiler’s Viewpoint

SFR
.nbss, .ndata,

.pbss, .ndconst

.bss, .data,
.dconst

heap

.const

stack

0000

2000

FFFF

N
EA

R
FA

R

8000

Initialized Variables
e.g. int x = 10;

.ndata in near space

.data in far space
Initial values copied
from .dinit in flash
by startup code

16-bits

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 82

Data Memory (RAM)
The Compiler’s Viewpoint

SFR
.nbss, .ndata,

.pbss, .ndconst

.bss, .data,
.dconst

heap

.const

stack

0000

2000

FFFF

N
EA

R
FA

R

8000

Persistent Variables
Data unaffected by
reset
Not modified by
startup code
Located in near
memory

16-bits

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 83

Data Memory (RAM)
The Compiler’s Viewpoint

SFR
.nbss, .ndata,

.pbss, .ndconst

.bss, .data,
.dconst

heap

.const

stack

0000

2000

FFFF

N
EA

R
FA

R

8000

Constants in RAM
.ndconst in near if small
model used
.dconst in far if large
model used
Created if -mconst-in-
code switch not used
Values copied
from .dinit in flash by
startup code

16-bits

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 84

Data Memory (RAM)
The Compiler’s Viewpoint

SFR
.nbss, .ndata,

.pbss, .ndconst

.bss, .data,
.dconst

heap

.const

stack

0000

2000

FFFF

N
EA

R
FA

R

8000

Heap
Allocated if a heap
declared in MPLAB®

Size determined by
user

16-bits

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 85

Data Memory (RAM)
The Compiler’s Viewpoint

SFR
.nbss, .ndata,

.pbss, .ndconst

.bss, .data,
.dconst

heap

.const

stack

0000

2000

FFFF

N
EA

R
FA

R

8000

Stack
Automatically
allocated by linker
Occupies all
unallocated RAM
(by default)
Grows toward higher
addresses

16-bits

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 86

Data Memory (RAM)
The Compiler’s Viewpoint

SFR
.nbss, .ndata,

.pbss, .ndconst

.bss, .data,
.dconst

heap

.const

stack

0000

2000

FFFF

N
EA

R
FA

R

8000

Constants in Code
32kB PSV window
used to read
constants
from .const in flash
as if they were in RAM
No RAM exists above
address 8000h

16-bits

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 87

Data Memory (RAM) for DSP
The Compiler’s Viewpoint

.xbss, .xdata

.ybss, .ydata

0000

2000

FFFF

N
EA

R
FA

R

8000

X and Y Memory
Used by MAC Class
Instructions
Non-DSP instructions
see all memory as X
Size and address
range of Y memory
varies from one
device to another

.xbss, .xdata

Uninitialized

Initialized

16-bits

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 88

Startup and Initialization

goto __reset

Interrupt Vectors

__reset:
... ...
... ...
call _main

_main:
... ...
... ...
... ...

.c

.o crt0.o or crt1.o (from libpic30.a)

main.c

Program Memory

C Runtime Environment Setup Code
Inserted automatically by LINK30 Linker
(Source files: crt0.s and crt1.s)

Your C code's main() routine.
Included by you in your project and
placed in memory by LINK30 Linker

Reset Vector (Address 0x000000)
Populated automatically by LINK30 Linker
Calls runtime environment setup code in
crt0.o (__reset label)

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 89

Startup and Initialization
Tasks Performed by Default Startup Module crt0.o

Initialize Stack Pointer (W15)
Initialize Stack Pointer Limit Reg. (SPLIM)
Setup PSV window to view .const in flash
Clear uninitialized data sections
Copy data from .dinit in flash to
initialized data sections in RAM
Call items like user_init
Call main() with no parameters
If main() returns, reset processor

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 90

Startup and Initialization
Tasks Performed by Alternate Startup Module crt1.o

Performs all steps taken by crt0.o except:
Does NOT clear uninitialized data sections
Does NOT load initialized data sections with
values from .dinit

Alternate startup module is much smaller
Can be selected to conserve program
memory if data initialization is not required

The persistent data section The persistent data section .pbss.pbss is never is never
cleared or initialized by either startup module.cleared or initialized by either startup module.

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 91

Selecting the Alternate Startup Module crt1.o

Startup and Initialization
How to Select the Alternate Startup Module crt1.o

1 Open Project Settings
From the menu bar, select:
Project Build Options… Project

2 Select Linker Options
From the tabs, select:
MPLAB LINK30

3 Select Symbols & Output
From the Categories combo box select:
General

4 Disable data initialization
In the Output check box group, check:
Don't initialize data sections

2

4

3

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 92

Startup modules may be modified if needed
Source code (assembly) provided in:
C:\Program Files\Microchip\MPLAB C30\src\pic30\crt*.s

If main() needs to be called with parameters,
a conditional assembly directive may be
switched to provide this support

Custom code may be run before startup code

Startup and Initialization
Modifying the Startup Module

Memory ModelsMemory Models
Object Allocation SchemesObject Allocation Schemes

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 94

Memory Models
Overview

Option Memory Definition Description

Small DataSmall Data
--msmallmsmall--datadata

Small ScalarSmall Scalar
--msmallmsmall--scalarscalar

Large DataLarge Data
--mlargemlarge--datadata

Small CodeSmall Code
--msmallmsmall--codecode

Large CodeLarge Code
--mlargemlarge--codecode

ConstantsConstants
in Datain Data

--mconstmconst--inin--datadata

ConstantsConstants
in Codein Code

--mconstmconst--inin--codecode

Up to 8 KB of data memory.Up to 8 KB of data memory.
This is the default.This is the default.

Permits use of direct addressing for Permits use of direct addressing for
accessing data memory.accessing data memory.

Up to 8 KB of data memory.Up to 8 KB of data memory.
This is the default.This is the default.

Permits use of direct addressing for Permits use of direct addressing for
accessing scalars in data memory.accessing scalars in data memory.

Greater than 8KB of data memory.Greater than 8KB of data memory.

Up to 32 Kw of program memory.Up to 32 Kw of program memory.
This is the default.This is the default.
Greater than 32 Kw of program Greater than 32 Kw of program
memory.memory.
Constants located in data memory.Constants located in data memory.

Constants located in program Constants located in program
memory. memory. This is the default.This is the default.

Uses indirection for data references.Uses indirection for data references.

No jump table for function pointers.No jump table for function pointers.
Function calls use RCALL instruction.Function calls use RCALL instruction.

Function pointers might use jump table.Function pointers might use jump table.
Function calls use CALL instruction.Function calls use CALL instruction.

Values copied from program memory by Values copied from program memory by
startup code.startup code.

Values are accessed via Program Space Values are accessed via Program Space
Visibility (PSV) data window.Visibility (PSV) data window.

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 95

8kB

Memory Models
Small Data

Default Model
All data fits in first 8kB
Direct Addressing Used
(no pointers required)
Fastest data access
Smallest code to
access data

Data Memory (RAM)
0x0000
0x2000

NEAR

FAR

0xFFFF

0x8000

PSV Window

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 96

Non-Scalar
Data Goes Here

8kB

Memory Models
Small Scalar Data

Scalar data in first 8kB
Direct addressing used
with scalar data
(no pointers required)

Non-scalar data (arrays,
structures) in far space
Indirect addressing
(pointers) used with
non-scalar data

Data Memory (RAM)
0x0000
0x2000

NEAR

FAR

0xFFFF

0x8000

PSV Window

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 97

8kB

Memory Models
Large Data

All data cannot fit in
first 8kB
All data treated as if it
is in far space
All data accessed
indirectly (pointers)

Data Memory (RAM)
0x0000
0x2000

NEAR

FAR

0xFFFF

0x8000

PSV Window

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 98

Memory Models
Small Code

Default Model
All calls may jump
only ±32k words
No jump table for
function pointers
Function calls use
rcall instruction

Program Memory (Flash)
0x000000

0x7FFFFF

32k

32k

You
are

here

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 99

Memory Models
Large Code

Calls are not within
±32k words
Jump table may be
used for function
pointers
Function calls use
call instruction

Program Memory (Flash)
0x000000

0x7FFFFF

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 100

C30 Project Creation – Build Optoins

Memory Models
How to Select the Memory Model

1 Open Project Build Options
From the menu bar, select:
Project Build Options… Project

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 101

C30 Project Creation – Build Options

Memory Models
How to Select the Memory Model

2 Go to Memory Models
Select the MPLAB C30 tab

Select the Memory Model category

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 102

C30 Project Creation – Build Options

Memory Models
How to Select the Memory Model

3 Select Desired Models

(small) (code)

(small) (small)

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 103

Memory Models
Tips & Tricks

Inappropriate model for your program can
cause compile or link errors
As your program grows, you may need to
change the memory model
If desired, you have full control over where
objects are placed in memory

Use small model, but force some objects into
far memory
Compile different modules with different
models

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 104

Memory Models
Tips & Tricks

Compiler can often generate more
compact code if variables in near data

Option Tips for Optimal Memory Use

Use if all variables for the application can fit within 8KBUse if all variables for the application can fit within 8KBSmall DataSmall Data

Use if all scalar type variables (no arrays or structures) for Use if all scalar type variables (no arrays or structures) for
the application can fit within 8KBthe application can fit within 8KBSmall ScalarSmall Scalar

Large DataLarge Data
1. Compile some individual modules using the Small Data or 1. Compile some individual modules using the Small Data or
Small Scalar option. Then include their compiled object Small Scalar option. Then include their compiled object
modules in the Large Data project.modules in the Large Data project.
2. Tag individual variables with the 2. Tag individual variables with the nearnear attributeattribute

Small Data orSmall Data or
Small ScalarSmall Scalar

If all data doesnIf all data doesn’’t fit in near space, tag some variables with t fit in near space, tag some variables with
the the farfar attributeattribute so others have space to fit in near data.so others have space to fit in near data.

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 105

Memory Models
Tips & Tricks

Functions that are near (within 32k radius)
may call each other more efficiently

1. Use if all functions are within 32kw of each other.1. Use if all functions are within 32kw of each other.
2. Compile some modules using Small Code and include 2. Compile some modules using Small Code and include
their object files in a Large Code project.their object files in a Large Code project.
3. If not all functions are within 32kw of each other, tag some 3. If not all functions are within 32kw of each other, tag some
functions with the functions with the farfar attributeattribute..

Small CodeSmall Code

Option Tips for Optimal Memory Use

Large CodeLarge Code 1. Tag some functions with the 1. Tag some functions with the nearnear attributeattribute. An error will . An error will
be generated if the function cannot be reached by one of its be generated if the function cannot be reached by one of its
callers using the more efficient form of the function call.callers using the more efficient form of the function call.

AttributesAttributes
GCC’s Replacement for #pragmaGCC’s Replacement for #pragma

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 107

Definition

Attributes

Used to describe variables or functions
Help compiler to generate optimized code
Help compiler to optimize memory use
Establish rules for how particular variables
or functions are to be handled with respect
to the C runtime environment

AttributesAttributes are used to tell the compiler about certain are used to tell the compiler about certain
behaviors or features of a variable, a function or a type. behaviors or features of a variable, a function or a type.
Attributes are specified using the keyword Attributes are specified using the keyword __attribute____attribute__
followed by a list of attributes within double parentheses.followed by a list of attributes within double parentheses.

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 108

Attributes
Why attributes are used instead of ISO C's #pragma

According to the GCC developers:
It is impossible to generate #pragma
commands from a macro
"There is no telling what the same #pragma
might mean in another compiler"

In short, attributes are much more
versatile than the traditional #pragma

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 109

Examples

Syntax

typetype identifier identifier __attribute__((__attribute__((attributeattribute--listlist))));;

Variable Attributes
How to Declare a Variable with Attributes

Multiple attributes are separated by commas
within the double parentheses
Attributes may be before or after identifier
Note: There are two underscores before and
after the keyword __attribute__

intint a[10] __attribute__((section(".xdata")))a[10] __attribute__((section(".xdata")));;
intint __attribute__((aligned(16))) b[10]__attribute__((aligned(16))) b[10]; ;
intint x __attribute__((near))x __attribute__((near)); ;

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 110

Variable Attributes
Supported Attributes for Variables

address

aligned

deprecated

far

secure

near

noload

packed

persistent
reverse
section
sfr
space
transparent_union
unordered
unused
weak

Attributes may be specified with a leading and trailing Attributes may be specified with a leading and trailing
double underscore to distinguish them from other entities double underscore to distinguish them from other entities
in your code with the same name (e.g. in your code with the same name (e.g. __aligned____aligned__).).

and many more…

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 111

Examples

Syntax

typetype identifieridentifier()() __attribute__((__attribute__((attributeattribute--listlist)))) {{……}}

Function Attributes
How to Declare a Function with Attributes

Multiple attributes are separated by commas
within the double parentheses
Attributes may be before or after identifier
Note: There are two underscores before and
after the keyword __attribute__

intint foo(void) __attribute__((address(0x100)))foo(void) __attribute__((address(0x100))) { { …… }}

intint __attribute__((address(0x500)))__attribute__((address(0x500))) bar(void) bar(void) { { …… }}

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 112

Function Attributes
Supported Attributes for Functions

address

alias

const

deprecated

far

format

format_arg

interrupt

near

no_instrument_function

noload

noreturn

section

shadow

unused

weak

Attributes may be specified with a leading and trailing Attributes may be specified with a leading and trailing
double underscore to distinguish them from other entities double underscore to distinguish them from other entities
in your code with the same name (e.g. in your code with the same name (e.g. __address____address__).).

and many more…

How to Override the
Default Characteristics of

Variables and Functions

How to Override the
Default Characteristics of

Variables and Functions
Using AttributesUsing Attributes

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 114

Examples

near Attribute Syntax

Locating Objects in Memory
How to place an object in near memory

Specifies that a function or variable should
be located in near memory
Treats a function or variable as if one of the
small memory models were being used
Should be accessed more efficiently

__attribute__((near))__attribute__((near))

intint x __attribute__((near))x __attribute__((near));;

intint foofoo((voidvoid)) __attribute__((near))__attribute__((near)) { { …… }}

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 115

8kB

Locating Objects in Memory
Manually Optimizing Data Memory Use

Use large data model
Tag frequently
accessed variables
with near attribute

Data Memory (RAM)
0x0000
0x2000

NEAR

FAR

0xFFFF

0x8000

PSV Window

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 116

Examples

near Attribute Syntax

Locating Objects in Memory
How to place an object in far memory

Specifies that a function or variable should
be located in far memory
Treats a function or variable as if one of the
large memory models were being used
Might require extra overhead

__attribute__((far))__attribute__((far))

intint x __attribute__((far))x __attribute__((far));;

intint foofoo((voidvoid)) __attribute__((far))__attribute__((far)) { { …… }}

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 117

8kB

Locating Objects in Memory
Manually Optimizing Data Memory Use

Use small data model
Let linker place most
variables in near space
(up to 8kB)
Tag infrequently
accessed variables
with far attribute

Makes room in near
space for frequently
accessed variables
Allows more than 8kB of
data with small model

Data Memory (RAM)
0x0000
0x2000

NEAR

FAR

0xFFFF

0x8000

PSV Window

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 118

Examples

space Attribute Syntax

Locating Objects in Memory
How to place a variable in X or Y data memory

Specifies that a variable should be located in
X (xmemory) or Y (ymemory) data memory
For dsPIC® devices only
Useful for variables operated on by MAC
class instructions

__attribute__((space(__attribute__((space(spacespace))))))

intint coefficient[101] __attribute__((space(xmemory)))coefficient[101] __attribute__((space(xmemory)));;

intint input[255] __attribute__((space(ymemory)))input[255] __attribute__((space(ymemory)));;

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 119

Examples

space Attribute Syntax

Locating Objects in Memory
How to place a variable in EEPROM data memory

Specifies that a variable should be located in
EEPROM data memory
For dsPIC30 devices only

__attribute__((space(eedata)))__attribute__((space(eedata)))

intint coefficient[101] __attribute__((space(eedata)))coefficient[101] __attribute__((space(eedata)));;

intint x __attribute__((space(eedata)))x __attribute__((space(eedata)));;

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 120

Examples

space Attribute Syntax

Locating Objects in Memory
How to place a variable in DMA memory

Specifies that a variable should be located in
DMA data memory
For some PIC24 and dsPIC33 devices only
Many peripherals may read/write DMA
memory without intervention by program

__attribute__((space(dma)))__attribute__((space(dma)))

volatile intvolatile int x __attribute__((space(dma)))x __attribute__((space(dma)));;

volatile intvolatile int input[16] __attribute__((space(dma)))input[16] __attribute__((space(dma)));;

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 121

aligned Attribute Syntax

Locating Objects in Memory
How to align an object on a byte/word boundary

Specifies the minimum alignment for the variable,
measured in bytes
Useful on dsPIC® in conjunction with assembly
operations that require aligned operands
Can improve the efficiency of some asm operations

__attribute__((aligned(__attribute__((aligned(alignmentalignment))))))

Example

intint x __attribute__((aligned(16)))x __attribute__((aligned(16)));;

Align Align xx on a 16on a 16--byte boundary:byte boundary:

alignedaligned can only increase the alignment. To reduce it, use can only increase the alignment. To reduce it, use packedpacked instead.instead.

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 122

What does it mean to align an address on a byte boundary?

Locating Objects in Memory
How to align an object on a byte/word boundary

Some operations require specific data
alignment

Modulo Addressing (circular buffers)

X X X X X X X X X 0 0 0 0 0 0 0

2 14816326412
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

Possible addresses are of the form:
0xNN00 or 0xNN80 where N is any Hexadecimal Digit

int __attribute__((aligned(128))) x[50];

128 chosen because it is the smallest power of 2 that can hold 100 bytes (50 words)

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 123

Examples

address Attribute Syntax

Locating Objects in Memory
How to place an object at a specific address

Specifies the address where a function or
variable should be located
Use sparingly – program will be harder to
optimize by linker

__attribute__((address(__attribute__((address(addressaddress))))))

intint x __attribute__((address(0x1840)))x __attribute__((address(0x1840)));;

intint foofoo((voidvoid)) __attribute__((address(0x3000)))__attribute__((address(0x3000))) { { …… }}

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 124

Examples

address Attribute Syntax

Overriding Default Behavior
How to make a variable persistent across resets

Prevents a variable from being overwritten
upon device reset
Places variable in the .pbss section which is
unaffected by the runtime startup code

__attribute__((persistent))__attribute__((persistent))

intint x __attribute__((persistent))x __attribute__((persistent));;
intint x _PERSISTENTx _PERSISTENT; ; //Shorthand macro defined in *.h//Shorthand macro defined in *.h

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 125

Memory Allocation Macros (PIC24)

Overriding Default Behavior
Pre-defined Macros –PIC24 Devices

Defined in the header files
Simplifies the task of identifying where
you want to place an object in memory

#define _BSS(N) __attribute__((aligned(N)))
#define _DATA(N) __attribute__((aligned(N)))
#define _PERSISTENT __attribute__((persistent))
#define _NEAR __attribute__((near))

MPLAB® C30 Compiler User's Guide (Rev E): Section 6.6.3, Page 83MPLAB® C30 Compiler User's Guide (Rev E): Section 6.6.3, Page 83

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 126

Memory Allocation Macros (dsPIC®)

Overriding Default Behavior
Pre-defined Macros – dsPIC® Devices

Same as PIC24 macros but…
Provides separate macros for X and Y space
Provides macro for EEPROM Data Memory
(dsPIC30 only)

#define _XBSS(N) __attribute__((space(xmemory), aligned(N)))
#define _XDATA(N) __attribute__((space(xmemory), aligned(N)))
#define _YBSS(N) __attribute__((space(ymemory), aligned(N)))
#define _YDATA(N) __attribute__((space(ymemory), aligned(N)))
#define _EEDATA(N) __attribute__((space(eedata), aligned(N)))
#define _PERSISTENT __attribute__((persistent))
#define _NEAR __attribute__((near))

MPLAB® C30 Compiler User's Guide (Rev E): Section 6.6.3, Page 83MPLAB® C30 Compiler User's Guide (Rev E): Section 6.6.3, Page 83

InterruptsInterrupts

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 128

Definition

Interrupts

PIC24 / dsPIC interrupts are vectored
Interrupts require special functions to
service the events that cause them:

ISRs must not have any parameters
ISRs must not be called by the main code
ISRs should not call other functions

InterruptsInterrupts are events that cause your program to stop what are events that cause your program to stop what
it is doing in order to run an Interrupt Service Routine which it is doing in order to run an Interrupt Service Routine which
will handle the event by taking whatever action is required will handle the event by taking whatever action is required
before finally returning control to your main program.before finally returning control to your main program.

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 129

Interrupts
How to Declare an Interrupt Service Routine

No parameters and void return type (required)
Use pre-defined name (required)
Do NOT call from main line code (required)
Do not call other functions (recommended)

Interrupt Attribute Basic Syntax

void __attribute__((interrupt)) _ISRName(void)

{ … … }Function Code Here

Example Interrupt Service Routine

void __attribute__((interrupt)) _INT0Interrupt(void)
{

//Ordinary C code goes here to handle interrupt
}

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 130

Interrupts
Interrupt Function Names

Interrupt Function names may be found in:
Device's Linker Script (e.g. p24fj128ga010.gld)
MPLAB® C30 User's Guide (Section 7.4)
MPLAB® C30 Online Help

Used by LINK30 to associate interrupt
function with the appropriate location in
the interrupt vector table
Linker puts the address of the interrupt
function in the appropriate location in the
interrupt vector table

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 131

Interrupt Functions
Partial List of Interrupt Function Names

IRQ # Alternate Name

N/AN/A
N/AN/A
N/AN/A
N/AN/A
N/AN/A
N/AN/A
N/AN/A
N/AN/A
00
11
22
33

Primary Name

_ReservedTrap0_ReservedTrap0
_OscillatorFail_OscillatorFail
_AddressError_AddressError
_StackError_StackError
_MathError_MathError
_ReservedTrap5_ReservedTrap5
_ReservedTrap6_ReservedTrap6
_ReservedTrap7_ReservedTrap7
_INT0Interrupt_INT0Interrupt
_IC1Interrupt_IC1Interrupt
_OC1Interrupt_OC1Interrupt
_T1Interrupt_T1Interrupt

_AltReservedTrap0_AltReservedTrap0
_AltOscillatorFail_AltOscillatorFail
_AltAddressError_AltAddressError
_AltStackError_AltStackError
_AltMathError_AltMathError
_AltReservedTrap5_AltReservedTrap5
_AltReservedTrap6_AltReservedTrap6
_AltReservedTrap7_AltReservedTrap7
_AltINT0Interrupt_AltINT0Interrupt
_AltIC1Interrupt_AltIC1Interrupt
_AltOC1Interrupt_AltOC1Interrupt
_AltT1Interrupt_AltT1Interrupt

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 132

Interrupt Functions
Partial List of Interrupt Function Names

IRQ # Alternate Name

44
55
66
77
88
99
1010
1111
1212
1313
1414
1515

Primary Name

_IC2Interrupt_IC2Interrupt
_OC2Interrupt_OC2Interrupt
_T2Interrupt_T2Interrupt
_T3Interrupt_T3Interrupt
_SPI1Interrupt_SPI1Interrupt
_U1RXInterrupt_U1RXInterrupt
_U1TXInterrupt_U1TXInterrupt
_ADCInterrupt_ADCInterrupt
_NVMInterrupt_NVMInterrupt
_SI2CInterrupt_SI2CInterrupt
_MI2CInterrupt_MI2CInterrupt
_CNInterrupt_CNInterrupt

_AltIC2Interrupt_AltIC2Interrupt
_Alt OC2Interrupt_Alt OC2Interrupt
_AltT2Interrupt_AltT2Interrupt
_AltT3Interrupt_AltT3Interrupt
_AltSPI1Interrupt_AltSPI1Interrupt
_AltU1RXInterrupt_AltU1RXInterrupt
_AltU1TXInterrupt_AltU1TXInterrupt
_AltADCInterrupt_AltADCInterrupt
_AltNVMInterrupt_AltNVMInterrupt
_AltSI2CInterrupt_AltSI2CInterrupt
_AltMI2CInterrupt_AltMI2CInterrupt
_AltCNInterrupt_AltCNInterrupt

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 133

Interrupts
What happens when an interrupt occurs?

Compiler managed
resources are automatically
pushed onto the stack
when an interrupt occurs
(if they are modified by the
interrupt)
You are responsible for
managing other resources
if you use them in your
interrupt service routine

Stack Before Interrupt

SP09D8
09DA
09DC
09DE
09E0
09E2
09E4
09E6
09E8
09EA
09EC
09EE
09F0
09F2

09D4
09D6

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 134

WREG7
PSVPAG

Previous FP (W14)

PCH PCL

RCOUNT
WREG0
WREG1
WREG2
WREG3
WREG4
WREG5
WREG6

Interrupts
What happens when an interrupt occurs?

Stack After Interrupt
SP

09D8
09DA
09DC
09DE
09E0
09E2
09E4
09E6
09E8
09EA
09EC
09EE
09F0
09F2

09D4
09D6

SRL PCU

FP

PSVPAG is saved by default unless
no_auto_psv attribute is applied to
interrupt function:

Program Counter and low byte of
Status Register (MCU Status)

Repeat Count Register

W0 through W15
(Only those used in ISR)

Previous Frame Pointer Value

__attribute__((interrupt, no_auto_psv))

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 135

Example: Disassembly Listing of an ISR – Context Save

4: 4: voidvoid __attribute____attribute__((((interruptinterrupt)))) _INT0Interrupt_INT0Interrupt((voidvoid))
5: 5: {{
011B2 F80036 011B2 F80036 push.wpush.w 0x0036 0x0036
011B4 BE9F80 mov.d 0x0000,[011B4 BE9F80 mov.d 0x0000,[0x001e++0x001e++]]
011B6 BE9F82 mov.d 0x0004,[011B6 BE9F82 mov.d 0x0004,[0x001e++0x001e++]]
011B8 BE9F84 mov.d 0x0008,[011B8 BE9F84 mov.d 0x0008,[0x001e++0x001e++]]
011BA BE9F86 mov.d 0x000c,[011BA BE9F86 mov.d 0x000c,[0x001e++0x001e++]]
011BC F80034011BC F80034 push.w 0x0034push.w 0x0034
011BE B3C000 mov.b #0x0,0x0000011BE B3C000 mov.b #0x0,0x0000
011C0 8801A0 mov.w 0x0000,0x0034011C0 8801A0 mov.w 0x0000,0x0034
011C2 FA0000 lnk #0x0011C2 FA0000 lnk #0x0

Interrupts
What happens when an interrupt occurs?

---- Your ISR Code Here Your ISR Code Here ----

Code generated for opening brace 'Code generated for opening brace '{{' of ISR function:' of ISR function:
Save RCOUNTSave RCOUNT

Save W4, W5Save W4, W5
Save W6, W7Save W6, W7
Save PSVPAGSave PSVPAG

0x001e0x001e is W15 (Stack Pointer)is W15 (Stack Pointer)

Save W2, W3Save W2, W3
Save W0, W1Save W0, W1

Push toPush to
Top of StackTop of Stack

Set PSVPAGSet PSVPAG

Allocate stack frame of 0 bytesAllocate stack frame of 0 bytes
(Saves W14 onto stack)(Saves W14 onto stack)

This code is only present if the no_auto_psv attribute is not specified.

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 136

Example: Disassembly Listing of an ISR – Context Restore

12: 12: }}
011D0 FA8000 ulnk 011D0 FA8000 ulnk
011D2 F90034 pop.w 0x0034011D2 F90034 pop.w 0x0034
011D4 BE034F mov.d [011D4 BE034F mov.d [----0x001e0x001e],0x000c],0x000c
011D6 BE024F mov.d [011D6 BE024F mov.d [----0x001e0x001e],0x0008],0x0008
011D8 BE014F mov.d [011D8 BE014F mov.d [----0x001e0x001e],0x0004],0x0004
011DA BE004F mov.d [011DA BE004F mov.d [----0x001e0x001e],0x0000],0x0000
011DC F90036 011DC F90036 pop.wpop.w 0x0036 0x0036
011DE 064000 retfie011DE 064000 retfie

Interrupts
What happens when an interrupt occurs?

---- Your ISR Code Here Your ISR Code Here ----
Code generated for closing brace 'Code generated for closing brace '}}' of ISR function:' of ISR function:

Restore RCOUNTRestore RCOUNT

Restore W4, W5Restore W4, W5
Restore W6, W7Restore W6, W7

Deallocate stack frameDeallocate stack frame

Return From InterruptReturn From Interrupt

Restore W2, W3Restore W2, W3
Restore W0, W1Restore W0, W1

Pop from Pop from
Top of StackTop of Stack

Restore PSVPAGRestore PSVPAG

This code is only present if no_auto_psv attribute is not specified.

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 137

Interrupts
Using Shadow Registers for Context Save/Restore

The PUSH.S and POP.S instructions will be used to
save and restore using the shadow registers:

W0 – W3
C, Z, OV, N, and DC bits in the SRH:SRL (STATUS) register

Syntax

voidvoid __attribute__((interrupt, shadow)) __attribute__((interrupt, shadow)) ISRnameISRname((voidvoid))

Example

voidvoid __attribute__((interrupt, shadow)) __attribute__((interrupt, shadow))

_INT0Interrupt_INT0Interrupt((voidvoid))

{{

/* ISR Code Here *//* ISR Code Here */

}}

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 138

Interrupts
Using Shadow Registers for Context Save/Restore

Example: Disassembly Listing of an ISR Using Shadow

---- Your ISR Code Here Your ISR Code Here ----

4: 4: voidvoid __attribute____attribute__((((interruptinterrupt,, shadowshadow)))) _INT0Interrupt_INT0Interrupt((voidvoid))
5: 5: {{
011B2 FEA000 011B2 FEA000 push.spush.s
011B4 F80036 push.w 0x0036 011B4 F80036 push.w 0x0036
011B6 BE9F84 mov.d 0x0008,[011B6 BE9F84 mov.d 0x0008,[0x001e++0x001e++]]
011B8 BE9F86 mov.d 0x000c,[011B8 BE9F86 mov.d 0x000c,[0x001e++0x001e++]]
011BA F80034011BA F80034 push.w 0x0034push.w 0x0034
011BB B3C000 mov.b #0x0,0x0000011BB B3C000 mov.b #0x0,0x0000
011CC 8801A0 mov.w 0x0000,0x0034011CC 8801A0 mov.w 0x0000,0x0034
011CE FA0000 lnk #0x0011CE FA0000 lnk #0x0

Code generated for opening brace 'Code generated for opening brace '{{' of ISR function:' of ISR function:

Save RCOUNTSave RCOUNT
Save W4, W5Save W4, W5
Save W6, W7Save W6, W7

Save W0 Save W0 –– W3, status bits C, Z, OV, N, DCW3, status bits C, Z, OV, N, DC

Save PSVPAGSave PSVPAG

0x001e0x001e is W15 (Stack Pointer)is W15 (Stack Pointer)

Set PSVPAGSet PSVPAG

Allocate stack frame of 0 bytesAllocate stack frame of 0 bytes

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 139

Example: Disassembly Listing of an ISR Using Shadow

12: 12: }}
011CE FA8000 ulnk 011CE FA8000 ulnk
011D0 F90034 pop.w 0x0034011D0 F90034 pop.w 0x0034
011D0 BE034F mov.d [011D0 BE034F mov.d [----0x001e0x001e],0x000c],0x000c
011D2 BE024F mov.d [011D2 BE024F mov.d [----0x001e0x001e],0x0008],0x0008
011D4 F90036 pop.w 0x0036 011D4 F90036 pop.w 0x0036
011D6 FE8000 011D6 FE8000 pop.spop.s
011D8 064000 retfie011D8 064000 retfie

Interrupts
Using Shadow Registers for Context Save/Restore

---- Your ISR Code Here Your ISR Code Here ----

Code generated for closing brace 'Code generated for closing brace '}}' of ISR function:' of ISR function:

Restore RCOUNTRestore RCOUNT
Restore W4, W5Restore W4, W5

Restore W6, W7Restore W6, W7

Restore W0 Restore W0 –– W3, status bits W3, status bits C, Z, OV, N, DCC, Z, OV, N, DC

Deallocate stack frameDeallocate stack frame

Return From InterruptReturn From Interrupt

Restore PSVPAGRestore PSVPAG

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 140

Interrupts
Using Shadow Registers for Context Save/Restore

Shadow registers must be used with care
Shadow registers are only one level deep
Contents can be lost if two interrupts use
shadow registers and one is higher
priority than the other

W0W0
W1W1
W2W2

W0W0
W1W1
W2W2
W3W3

CCZZOVOVNNRARAIPLIPLDCDC

Working Registers
SRH SRL

Status Register

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 141

Interrupts
How to Save Variables Not Managed by the Compiler

Any variables listed in the save list will be pushed
onto the stack along with the compiler managed
resources

Syntax

voidvoid __attribute__((interrupt(save(__attribute__((interrupt(save(listlist))) _))) _ISRnameISRname((voidvoid))

Example

voidvoid __attribute__((interrupt(save(x, y))))__attribute__((interrupt(save(x, y))))

_INT0Interrupt_INT0Interrupt((voidvoid))

{{

/* ISR Code Here *//* ISR Code Here */

}}

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 142

Example

Built-in ISR Macro Definitions

Interrupts
Macros for Simplified ISR Syntax

The macros may be used when the interrupt being
defined doesn't require any special attributes
beyond interrupt and shadow

#define#define _ISR __attribute__((interrupt))_ISR __attribute__((interrupt))

#define#define _ISRFAST __attribute__((interrupt, shadow))_ISRFAST __attribute__((interrupt, shadow))

voidvoid _ISR _INT0Interrupt_ISR _INT0Interrupt((voidvoid))
{{

/* ISR Code Here *//* ISR Code Here */
}}

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 143

Interrupts
Firmware Engineer's Responsibilities

You must clear the interrupt flag manually
Example: IFSnbits.FlagName = 0;

You must save any registers/variables you
access in the ISR's code if they are not
handled automatically by the compiler

Add a save list to the interrupt attribute
Save them manually in your ISR code

Variables modified by an interrupt should
be tagged with the volatile keyword

Lab Exercise 4Lab Exercise 4
InterruptsInterrupts

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 145

Lab Exercise 4
Interrupts

Timer 1 has been configured for you to
interrupt approximately twice per second
You need to write the interrupt service
routine to toggle the LED and clear the
interrupt flag

Objective
Using the Timer 1 interrupt, blink LED D3 (RA0) at a rate
determined by the internal RC oscillator's default frequency
and Timer 1's period with a 1:8 prescaler and Fosc/2 as its
clock source.

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 146

Lab Exercise 4
Interrupts

Procedure
Follow the directions in the lab manual starting on page 4-1.

On the lab PC…

Open the lab workspace by selecting from the menu:
File Open Workspace…
and select the file:
C:\MTT\TLS2130\Lab4\Lab4.mcw

If you currently have a project or workspace open,
close it now by selecting from the menu:
File Close Workspace

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 147

Lab Exercise 4
Interrupts

Results

D3D3

void __attribute__((interrupt)) _T1Interrupt(void)
{

LATAbits.LATA0 ^= 1; //Toggle LED
IFS0bits.T1IF = 0; //Clear interrupt flag

}

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 148

Lab Exercise 4
Interrupts

Results

FOSC = FRC / CLKDIV = 8 MHz / 2 = 4 MHz
T1CLK = Fosc / 2 = 4 MHz / 2 = 2 MHz
T1TICK = (1 / T1CLK) * PRESCALE = (1 / 2 MHz) * 8 = 4 μs
T1Period = T1TICK * 216 = 4 μs * 65536 = 0.26s

Blink Period = 2 * T1Period = 2 * 0.26 s = 0.52 s

Timing Calculations

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 149

Conclusions

Lab Exercise 4
Interrupts

Interrupt functions need to be tagged with the
interrupt attribute:
Interrupts should use the names Microchip
provides in the linker script:

You must clear the interrupt flag
C:\Program Files\Microchip\MPLAB C30\Support\PIC24F\p24FJ128GA010.gld

__attribute__((interrupt))

Working with LibrariesWorking with Libraries

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 151

Working With Libraries

MPLAB® C30 includes several libraries:
libc.a = Standard C Library
libm.a = Math Library
libdsp.a = DSP Library
libq.a = Fixed Point Math Library
libq-dsp.a = FP Math Library (DSP Engine)
libDEVICENUM.a = Peripheral Libraries

libpPIC24Fxxx.a

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 152

Working With Libraries

To use the peripheral libraries:
#include the appropriate header file (timer.h)
Call the functions as documented in the
library user's guide

Only the object files you use from a library
will be compiled into the final hex file
Libraries shipped with MPLAB C will be
automatically linked into your project
when they are used

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 153

Working With Libraries

Library Header Files
adc.h A/D Converter
comparator.h Analog Comparator
crc.h Cyclic Redundancy Check
Generic.h Generally useful stuff
i2c.h I2C Interface
incap.h Input Capture
outcompare.h Output Compare
PIC24_periph_features.h Peripheral Pin Select
pmp.h Parallel Master Port
ports.h I/O Ports
PwrMgnt.h Power Management
rtcc.h Real-Time Clock Calendar
spi.h SPI Interface
timer.h Timers
uart.h UART
wdt.h Watchdog Timer

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 154

config Parameter (OR these values together for desired configuration)

Function Prototype

OpenTimer1()
Example Library Function

Timer Module On/Off
T1_ON
T1_OFF
Timer Module Idle mode On/Off
T1_IDLE_CON
T1_IDLE_STOP
Timer Gate time accumulation enable
T1_GATE_ON
T1_GATE_OFF

Timer prescaler
T1_PS_1_1 T1_PS_1_64
T1_PS_1_8 T1_PS_1_128
Timer Synchronous clock enable
T1_SYNC_EXT_ON
T1_SYNC_EXT_OFF
Timer clock source
T1_SOURCE_EXT
T1_SOURCE_INT

void OpenTimer1(unsigned int config, unsigned int period);

Example:
OpenTimer1(T1_ON & T1_IDLE_CON & T1_GATE_OFF & T1_PS_1_8 &

T1_SYNC_EXT_OFF & T1_SOURCE_INT, 0xFFFF);

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 155

period Parameter

Function Prototype

OpenTimer1()
Example Library Function

void OpenTimer1(unsigned int config, unsigned int period);

Example:

OpenTimer1(T1_ON & T1_IDLE_CON & T1_GATE_OFF & T1_PS_1_8 &
T1_SYNC_EXT_OFF & T1_SOURCE_INT, 0xFFFF);

IFS0bits.T1IF

period

RESET

Equal

TMR1

Comparator

PR1

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 156

config Parameter (OR these values together for desired configuration)

Function Prototype

ConfigIntTimer1()
Example Library Function

Interrupt Priority
T1_INT_PRIOR_7
T1_INT_PRIOR_6
T1_INT_PRIOR_5
T1_INT_PRIOR_4
T1_INT_PRIOR_3
T1_INT_PRIOR_2
T1_INT_PRIOR_1
T1_INT_PRIOR_0

Interrupt Enable
T1_INT_ON
T1_INT_OFF

void ConfigIntTimer1(unsigned int config);

Example:
ConfigIntTimer1(T1_INT_ON & T1_INT_PRIOR_7);

Lab Exercise 5Lab Exercise 5
Working with Peripheral LibrariesWorking with Peripheral Libraries

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 158

Lab Exercise 5
Working with Peripheral Libraries

The objective is the same as lab 4…
This time, the Timer 1 interrupt is already
written for you
You need to initialize Timer 1 using the PIC24F
peripheral libraries using the parameters
given in the lab manual

Objective
Using the Timer 1 interrupt, blink LED D3 (RA0) at a rate
determined by the internal RC oscillator's default frequency
and Timer 1's period with a 1:8 prescaler and Fosc/2 as its
clock source.

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 159

Lab Exercise 5
Working with Peripheral Libraries

Procedure
Follow the directions in the lab manual starting on page 5-1.

On the lab PC…

C:\MTT\TLS2130\Lab5\Lab5.mcw

Open the lab workspace by selecting from the
menu: File Open Workspace…
and select the file:

If you currently have a project or workspace open,
close it now by selecting from the menu:
File Close Workspace

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 160

Lab Exercise 5
Working with Peripheral Libraries

Results
OpenTimer1(T1_ON & T1_IDLE_CON & T1_GATE_OFF &

T1_PS_1_8 & T1_SYNC_EXT_OFF &
T1_SOURCE_INT, 0xFFFF);

ConfigIntTimer1(T1_INT_PRIOR_7 & T1_INT_ON);

D3D3

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 161

Conclusions

Lab Exercise 5
Working with Peripheral Libraries

Peripheral libraries can simplify the task of
configuring on chip peripherals
To use the peripheral libraries, you must

Include the appropriate header file in your source
And together choices from all options when you
call the functions – do not rely on defaults

Lab Exercise 6Lab Exercise 6
Creating Custom LibrariesCreating Custom Libraries

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 163

Lab Exercise 6
Creating Custom Libraries

Follow along with the instructor to create a
custom library and a project to test it
The library will consist of two source files,
each containing a single function
The code is already written for you

Objective
Build a library (archive) file from a simple C source file that
contains a single function. Then, use that function in a
separate project that includes the newly created library file in
its project tree.

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 164

Lab Exercise 6
Creating Custom Libraries

Open the MPLAB Settings
From the menu bar, select:
Configure Settings…

Procedure
Follow the directions in the lab manual starting on page 6-1,
or follow along with the instructor and the slides as we walk
through this project together.

If you currently have a project or workspace open, close it
now by selecting from the menu:
File Close Workspace

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 165

Lab Exercise 6
Creating Custom Libraries

Select the Project Settings
On the tabs, select: Projects

Deselect one-to-one project-
workspace model
Uncheck the last check box:

Configure MPLAB so that multiple projects may be opened within one workspace

Click when doneOK

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 166

Click on and select:

C:\MTT\TLS2130\Lab6

In the Project Name box, enter:
MyLib

Lab Exercise 6
Creating Custom Libraries

Create the Library Source Project

Create New Project
From the menu bar, select:
Project New…

Name the Project

Select Project Directory
Browse…

The name of this project
will be the name of the
library file (e.g. MyLib.a)Click when doneOK

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 167

C:\MTT\TLS2130\Lab6\addition.c

Lab Exercise 6
Creating Custom Libraries

Add the library source code to the project

Add Source File to Project
In the project tree, right click on Source Files
and select: Add Files…

Select Library Source Files
In the add file dialog box, select the library source
files from the lab 6 directory (the library code has
already been written for you):

addition.c and subtraction.c should appear in
the project tree under Source Files.

C:\MTT\TLS2130\Lab6\subtraction.c

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 168

Lab Exercise 6
Creating Custom Libraries

addition.c

MyLib.h

int add(int a, int b)
{

return (a + b);
}

int add(int a, int b);
int sub(int a, int b);

The header file contains
function prototypes for all the
functions in the library file.
This will be required to use the
library in other projects.

A look at the library source code and
its associated header file

subtraction.c

int sub(int a, int b)
{

return (a - b);
}

Library source code contains
functions written in the usual
way. Nothing special needs to
be done just because this will
be included in a library.

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 169

Lab Exercise 6
Creating Custom Libraries

Configure the project build options

Open the Project Build Options Dialog Box
From the menu bar, select:
Project Build Options… Project

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 170

Lab Exercise 6
Creating Custom Libraries

Configure the project build options

Setup Tool Suite Options
From the tabs, select:
ASM30/C30 Suite

Set the Target Type
In the Target Type box, select:
Build library target (invoke LIB30)
and check:
Build generic library

Click when doneOK

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 171

Lab Exercise 6
Creating Custom Libraries

Build the library

Compile (Build All)Compile (Build All)

Build the Libarary
From the tool bar, click on the Build All button.

When building a library, no linker script is required
because the code being generated will not be placed in a
device's memory map until it is part of a normal project.

This step will generate a library file called MyLib.a that may
now be used in any project for a 16-bit PIC®

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 172

Lab Exercise 6
Creating Custom Libraries

Library Build Process

Linker

C Compiler
(and Preprocessor)

Archiver
(Librarian)

addition.c
subtraction.c

addition.s
subtraction.s

addition.o
subtraction.o

MyLib.a

Assembler

Contents of MyLib.a

addition.o subtraction.o

Including an archive (*.a) into a
project, is the same as including
all of the individual object files
(*.o) that it contains...

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 173

C:\MTT\TLS2130\Lab6\Lab6.mcp
From the open project dialog box select:

Lab Exercise 6
Creating Custom Libraries

Open (or create) a test project

Open Test Project
From the menu bar, select:
Project Open…

If doing this on your own, at this
point you may create a new C30
based project following the steps
from Lab 1. Include the library file
just created into the new project.

Select the Lab6 Project

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 174

#include "TLS2130.h"
#include "MyLib.h"
int sum, difference;

int main(void)
{

lcdInit();
sum = add(5, 2);
difference = sub(7, 2);

lcdPutInt(c, DEC);

Lab Exercise 6
Creating Custom Libraries

A look at the Lab6 test project…

MyLib.h

MyLib.a
Generated in Step 12

Created by you, to
provide access to
functions in library

Lab6.c MyLib.c

La
b6

 T
es

t P
ro

je
ct

M
yL

ib
 P

ro
je

ct

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 175

Lab Exercise 6
Creating Custom Libraries

Enable your debug tool

Enable Proteus™
If not already enabled, from the
tool bar select:
Debugger Select Tool
Proteus VSM

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 176

Lab Exercise 6
Creating Custom Libraries

Click on the Click on the Build AllBuild All button.button.

Compile (Build All)Compile (Build All) Start Start
SimulationSimulation

Select Select DebugDebug mode.mode.

Debug/ReleaseDebug/Release

If no errors are reported,If no errors are reported,
Click on the Click on the Start SimulationStart Simulation button.button.

Build and run the program

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 177

Lab Exercise 6
Creating Custom Libraries

HaltHalt ResetResetRunRun

When programming completes,When programming completes,
Click on the Click on the ResetReset button.button.

Click on the Click on the RunRun button.button.

Click on the Click on the HaltHalt button.button.

Build and run the program

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 178

Lab Exercise 6
Creating Custom Libraries

Results

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 179

Lab Exercise 6
Creating Custom Libraries

Make Library Project Active
Right click on the MyLib project and select:
Set Active

Add to or modify library source
code (and its associated header)

Rebuild Library as in Step 12

Make Test Project Active
Right click on the Lab6 project and select:
Set Active

Rebuild and Run Lab6 as in Step 17
through 21

OPTIONAL – Continue Library Development

Mixing C and AssemblyMixing C and Assembly
Inline Assembly SolutionsInline Assembly Solutions

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 181

Inline Assembly
Simple Form –Single Line

Only a single string can be passed
Generally used for instructions that take no
operands or take immediate operands
For ANSI compliance use __asm__ instead of
asm

Syntax

asm ("instruction")

Examples

asm ("nop"); // One Cycle Delay
asm ("clrwdt"); // Clear Watchdog Timer
asm ("pwrsav #0"); // Sleep mode
asm ("pwrsav #1"); // Idle mode

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 182

Inline Assembly
Simple Form – Multiple Lines

Only one "asm" keyword is required
Include each instruction within double quotes
Put each instruction on a separate line for better
readability
One set of parentheses encloses the entire list
of instructions within the asm statement

Syntax

asm ("instruction_1"
"instruction_2"
…
"instruction_n")

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 183

Example

Syntax

Inline Assembly
Extended Form

Works with optimizer better
More specific about which resources are used
Simplifies interaction between C and assembly

asm ("template"
[:["constraint"(output_operand) [, …]]
:["constraint"(input_operand) [, …]]
:["clobbers" [, …]]]
);

asm ("mov %0, w0" : : "g" (myVar) : "W0");

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 184

Example

int x = 5, y = 2;
int foo(void)
{

int result;
asm("add %1, %2, %0"

: "=r" (result)
: "r" (x), "r" (y)
);

return result;
}

Inline Assembly
Passing C Variables

Before Operation:

0000

After Operation:

0007result:

result:

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 185

a Claims WREG
b Divide support register W1
c Multiply support register W2
d General purpose data registers W1-W14
e Non-divide support registers W2-W14
g Any register, memory or immediate integer operand is allowed (except non-general registers)
i Any immediate integer operand (constant value) is allowed. Includes symbolic constants.
r A register operand is allowed provided that it is in a general register.
v AWB register W13
w Accumulator register A - B
x x pre-fetch registers W8-W9
y y pre-fetch registers W10-W11
z MAC pre-fetch registers W4-W7
0,1,…9 An operand that matches the specified operand number is allowed.
T A near or far data operand.
U A near data operand.

Inline Assembly
Constraint Letters

Constraint Letters Supported by MPLAB® C30

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 186

Inline Assembly Macros

Provide an easy way to execute specific
assembly language instructions that have
no C equivalent (builtins are even better…)

Inline Assembly Macro Definitions

#define Nop() {__asm__ volatile ("nop");}
#define ClrWdt() {__asm__ volatile ("clrwdt");}
#define Sleep() {__asm__ volatile ("pwrsav #0");}
#define Idle() {__asm__ volatile ("pwrsav #1");}

Examples

Nop(); // Insert nop instruction
ClrWdt(); // Clear the watchdog timer
Sleep(); // Enter SLEEP mode
Idle(); // Enter IDLE mode

Mixing C and AssemblyMixing C and Assembly
Multi-File Project SolutionsMulti-File Project Solutions

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 188

.a Linker

.o

Development Tools Data Flow

C Compiler
(and Preprocessor)

Archiver
(Librarian)

MPLAB IDE
Debug Tool

C Source Files

Assembly Source Files

Assembly Source Files

Object
Files

Object File Libraries
(Archives)

Linker Script COFF Debug File

Executable

Compiler
Driver
Program

Assembler

.h
C Header Files

.inc Assembly Include Files

.gld

.hex

.cof

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 189

C_File.c

#include "p24fj128ga010.h"

unsigned int x = 0;
unsigned int foo();

int main(void)
{

foo();
while(1);

}

Using a C Variable in Assembly
In the C file…

Declare a global or static variable in the usual
way (This won't work with non-static variables)

A global variable has a permanent address in
RAM and may be accessed as a register (or
sequential series of registers) in assembly
language.

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 190

ASM_File.s

.include "p24fj128ga010.inc"

.global _foo

.extern _x

_foo:
inc _x
return

.end

Using a C Variable in Assembly
In the Assembly file…

Declare the variable name as .extern
Add an underscore in front of the variable name

Performs same function as extern keyword in C.
Note that the C variable name must be preceded
by an underscore here in the assembly file.

Any identifier that will be
used in both C and
assembly must have an
underscore in front of it in
the assembly code but not
in the C code.

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 191

Calling an Assembly Function
Function Call Conventions

For non-interrupt functions
Function Call Conventions

Frame Pointer*
Stack Pointer

15 0
W0
W1
W2
W3
W4
W5
W6
W7
W8
W9

W10
W11
W12
W13
W14
W15

Parameters passed to function in W0-W7
(Caller Saved)
Function may overwrite these

Parameters returned from function in W0-W4
(depending on size of return type)

W8-W13 Must be saved/restored if used
by the function (Callee Saved)

W14-W15 Must be saved/restored if used
by the function (Callee Saved)

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 192

C_File.c

#include "p24fj128ga010.h"

unsigned int x = 0;
extern unsigned int AddNumbers(unsigned int a,

unsigned int b);
int main(void)
{

x = AddNumbers(5, 3);
while(1);

}

Calling an Assembly Function
In the C File…

Include function prototype for assembly function
Function name is same as ASM subroutine name
Function is called like an ordinary C function

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 193

Calling an Assembly Function
In the Assembly File…

Declare the subroutine name as .global
Add an underscore '_' to the front of the name
Parameters usually passed in W registers…

ASM_File.s

.include "p24fj128ga010.inc"

.global _AddNumbers

_AddNumbers:
add W0, W1, W0
return

.end

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 194

Calling an Assembly Function
Parameter Passing

Parameters are processed from left to right
Parameters are passed in the first available W
register with the proper alignment

C_File.c

#include "p24fj128ga010.h"

void foo(char a, int b, char c, long d, int e);

int main(void)
{

foo(0x11, 0x2222, 0x33, 0x44445555, 0x6666);
while(1);

}

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 195

Function Prototype: void foo(char a, int b, char c, long d, int e);

Function Call: foo(0x11, 0x2222, 0x33, 0x44445555, 0x6666);

Calling an Assembly Function
Parameter Passing

Parameter Passing Example

0011

2222

0033

6666

5555

4444

W0
W1
W2
W3
W4
W5
W6
W7

char a

int b

char c

int e

long d

Notice that d starts in W4 and
that e is in W3

Two word (32-bit) variables must start in an even numbered W register
Four word (64-bit) variables must start in W0 or W4
If all variables don't fit, then the stack is used for the overflow.

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 196

Calling an Assembly Function
Passing Non-Scalar Parameters

Non-Scalar parameters such as arrays and
structures will usually be passed as a pointer in
one of the W registers (data pointers are 16-bits)

Example

#include "p24fj128ga010.h"

void foo(char a[4]);
char num[4] = {0, 1, 2, 3};

int main(void)
{

foo(num);
while(1);

}

0804W0
W1
W2
W3
W4
W5
W6
W7

char *num

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 197

Example: Additional Parameters Passed via Software Stack

Function Prototype: void foo(long a, long b, long c,
long d, long e, long f);

Calling an Assembly Function
Additional Parameters Passed via Stack

W0
W1
W2
W3
W4
W5
W6
W7

long a

long b

long c

long d

RETURN
ADDRESS

Calling Function's Data

n
n+2
n+4
n+6
n+8

n+10
n+12
n+14

Address Pointer Positions

long f

long e

n+16

n-2

Working
Registers

Stack

n is an even
address

SP (W15)SP (W15)

FP (W14)FP (W14)

Lab Exercise 7Lab Exercise 7
Mixing C and AssemblyMixing C and Assembly

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 199

Lab Exercise 7
Mixing C and Assembly

Assembly code is already written for you
Add in the necessary hooks in the C
source file so that you can call the
assembly functions

Objective
From the file Lab7.c, call the functions:
int AddFunction(int, int);
int MostSignificant1(int);
which are written in assembly language in the file
Lab7_asm.s. Display the output of the functions on the
Explorer 16's LCD.

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 200

Lab Exercise 7
Mixing C and Assembly

Procedure
Follow the directions in the lab manual starting on page 7-1.

On the lab PC…

C:\MTT\TLS2130\Lab7\Lab7.mcw

Open the lab workspace by selecting from the
menu: File Open Workspace…
and select the file:

If you currently have a project or workspace open,
close it now by selecting from the menu:
File Close Workspace

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 201

Lab Exercise 7
Mixing C and Assembly

Results

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 202

Lab Exercise 7
Mixing C and Assembly

.include "p24fj128ga010.inc"

.global _AddFunction

.global _MostSignificant1

.text
_AddFunction:

add w0,w1,w0 ; Add two integers
return ; Return result in W0

_MostSignificant1:
ff1l [w0], w0 ; Find first 1 from left

;(result counted from left)
subr w0, #16, w0 ; Adjust to give traditional bit

; position number from right
return ; Return result in W0

.end

Lab7_asm.s

Make assembly subroutine
names visible as functions in C

Parameters passed via W0-W7
(Only W0 and W1 used here)

Return value passed in W0

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 203

Lab Exercise 7
Mixing C and Assembly

Lab7.c – One Possible Solution…

int a, b, c;

int AddFunction(int x, int y);
int MostSignificant1(int *x);

int main(void)
{

lcdInit();
a = 5;
b = 3;

c = AddFunction(a, b); // c = a + b (in assembly file)

lcdPutInt(c, DEC); // Display value of c on first line of LCD
lcdPutCur(1,0); // Move cursor to second line of LCD

c = MostSignificant1(&a); // Find bit position of most significant 1

lcdPutInt(c, DEC); // Display value of c on second line of LCD
while (1);

}

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 204

Conclusions

Lab Exercise 7
Mixing C and Assembly

Functions written in assembly can easily be
integrated into a C based project
From C's perspective, assembly function is
no different from a C function
From assembly perspective, you must use
caution so as to not break the C code

Optimization TechniquesOptimization Techniques
Generating More Efficient CodeGenerating More Efficient Code

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 206

Optimization Techniques

Compilers perform two kinds of optimization:
Speed – Get more performance out of your code
Size – Get more code into your microcontroller

Several techniques are used behind the scenes
to create optimized code
Usually, there is a tradeoff between size and
speed (occasionally you get both)
Additional optimization may be achieved
manually, by using built-in functions to take
advantage of architectural features that are not
easily accessed with ordinary C code

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 207

Compiler Optimizations
How to Enable MPLAB® C30 Compiler Optimizations

1 From the menu, select:
Project Build Options… Project

2 Select the MPLAB C30 Tab

3 From the Categories combo box,
select Optimization

4 Choose an Optimization Level
above 0

2

3

4

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 208

Optimization Level 0

Compiler Optimizations
-O0 (Level 0) – Do Not Optimize

Fastest Compilation Time
Easiest for Debugging
Code not rearranged
Code behaves as expected when variable values
changed at break point

code size

sp
ee

d

1

0

2
s

3 Enabled Optimizations:
• NONE

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 209

Optimization Level 1

code size

sp
ee

d

1

0

2
s

3

Compiler Optimizations
-O or -O1 (Level 1) – Optimize

Compilation takes a bit longer
Compilation requires much more memory on PC
Compiler tries to reduce both code size and
execution time

Enabled Optimizations:
• -fthread-jumps
• -fdefer-pop
• -fomit-frame-pointer

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 210

Optimization Level 2

code size

sp
ee

d

1

0

2
s

3

Compiler Optimizations
-O2 (Level 2) – Optimize Even More

Performs nearly all optimizations that do not
involve a space versus speed trade-off

Enabled Optimizations:

• -funroll-loops
• -finline-functions

All optimizations EXCEPT:

Also enables:
• -fforce-mem
• -fomit-frame-pointer

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 211

Optimization Level 2

code size

sp
ee

d

1

0

2
s

3

Compiler Optimizations
-O3 (Level 3) – Optimize Yet More

Turns on all optimizations in level 2 (-O2)

Enabled Optimizations:

• -finline-functions
All optimizations plus:

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 212

Optimization Level 2

code size

sp
ee

d

1

0

2
s

3

Compiler Optimizations
-Os (Level S) – Optimize For Size

Turns on all optimizations in level 2 (-O2) that do
not typically increase code size
Performs further optimizations to reduce code
size

Enabled Optimizations:
All Level 2 optimizations that do
not increase code size

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 213

MPLAB® C30's Built-In Functions

Functions built into the compiler itself to
implement architecture specific tasks that
cannot be implemented directly in ANSI
standard C

No libraries need to be added
Just call like an ordinary function

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 214

int __builtin_addab(void);

int __builtin_add(int value, const int shift);

void __builtin_btg(unsigned int *, unsigned int 0xn);

int __builtin_clr(void);

int __builtin_clr_prefetch(int **xptr, int *xval, int xincr,
int **yptr, int *yval, int yincr, int *AWB);

signed int __builtin_divmodsd(signed long dividend, signed int divisor,
signed int *remainder);

unsigned int __builtin_divmodud(unsigned long dividend,
unsigned int divisor,
unsigned int *remainder);

int __builtin_divsd(const long num, const int den);

unsigned int __builtin_divud(const unsigned
long num, const unsigned int den);

MPLAB® C30's Built-In Functions
Built-In Function Prototypes (See MPLAB® C30 Help File for Details) – Part 1

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 215

MPLAB® C30's Built-In Functions

unsigned int __builtin_dmaoffset(const void *p);

int __builtin_mac(int a, int b,
int **xptr, int *xval, int xincr,
int **yptr, int *yval, int yincr, int *AWB);

int __builtin_lac(int value, int shift);

int __builtin_fbcl(int value);

int __builtin_ed(int sqr, int **xptr, int xincr,
int **yptr, int yincr, int *distance);

int __builtin_edac(int sqr, int **xptr, int xincr,
int **yptr, int yincr, int *distance);

int __builtin_movsac(int **xptr, int *xval, int xincr,
int **yptr, int *yval, int yincr, int *AWB);

signed int __builtin_modsd(signed long dividend,
signed int divisor);

Built-In Function Prototypes (See MPLAB® C30 Help File for Details) – Part 2

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 216

int __builtin_mpyn(int a, int b,
int **xptr, int *xval, int xincr,
int **yptr, int *yval, int yincr);

MPLAB® C30's Built-In Functions

signed long __builtin_mulsu(const signed int p0,
const unsigned int p1);

signed long __builtin_mulus(const unsigned int p0,
const signed int p1);

unsigned long __builtin_muluu(const unsigned int p0,
const unsigned int p1);

signed long __builtin_mulss(const signed int p0, const signed int p1);

int __builtin_msc(int a, int b,
int **xptr, int *xval, int xincr,
int **yptr, int *yval, int yincr, int *AWB);

int __builtin_mpy(int a, int b,
int **xptr, int *xval, int xincr,
int **yptr, int *yval, int yincr);

void __builtin_nop(void);

Built-In Function Prototypes (See MPLAB® C30 Help File for Details) – Part 3

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 217

unsigned int __builtin_tblrdl(unsigned int offset);

void __builtin_tblwth(unsigned int offset unsigned int data);

unsigned int __builtin_tbloffset(const void *p);

unsigned int __builtin_tblrdh(unsigned int offset);

unsigned int __builtin_psvpage(const void *p);

unsigned int __builtin_psvoffset(const void *p);

unsigned int __builtin_readsfr(const void *p);

int __builtin_return_address (const int level);

int __builtin_sac(int value, int shift);

int __builtin_sacr(int value, int shift);

int __builtin_sftac(int shift);

int __builtin_subab(void);

unsigned int __builtin_tblpage(const void *p);

MPLAB® C30's Built-In Functions
Built-In Function Prototypes (See MPLAB® C30 Help File for Details) – Part 4

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 218

void __builtin_disi(unsigned int cycles);

void __builtin_tblwtl(unsigned int offset unsigned int data);

void __builtin_write_NVM(void);

void __builtin_write_OSCCONL(unsigned char value);

void __builtin_write_OSCCONH(unsigned char value);

MPLAB® C30's Built-In Functions
Built-In Function Prototypes (See MPLAB® C30 Help File for Details) – Part 5

Built-In Function Prototypes (Undocumented as of Revision F of MPLAB® C30 User's Guide)

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 219

Assembly output when using C's multiply operator *

#include <p24fj128ga010.h>

int a = 250, b = 250;
long c;

int main(void)
{

c = a * b;

while(1);
}

Multiplication Code
Using C's Multiply Operator – No Typecast

mov.w _b,W1
mov.w _a,W0
mul.ss W1,W0,W0
asr W0,#15,W1
mov.w W0,_c
mov.w W1,_c+2

6 Instructions / 6 Cycles

This code will not yield the
correct results if the value of
the result requires more than
16-bits

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 220

Multiplication Code
Using C's Multiply Operator

Assembly output when using C's multiply operator *

#include <p24fj128ga010.h>

int a = 250, b = 250;
long c;

int main(void)
{

c = (long)a * b;

while(1);
}

mov.w _a,W0
mul.su W0,#1,W8
mov.w _b,W0
mul.su W0,#1,W2
mul.uu W8,W2,W6
mul.ss W8,W3,W0
mov.w W7,W4
add.w W4,W0,W4
mul.ss W2,W9,W0
add.w W4,W0,W4
mov.w W4,W7
mov.w W6,_c
mov.w W7,_c+213 Instructions / 13 Cycles

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 221

Assembly output when using C30's built-in mulss function

#include <p24fj128ga010.h>

int a = 250, b = 250;
long c;

int main(void)
{

c = __builtin_mulss(a, b);

while(1);
}

Multiplication Code
Using __builtin_mulss()

mov.w _b,W1
mov.w _a,W0
mul.ss W0,W1,W0
mov.w W0,_c
mov.w W1,_c+2

5 Instructions / 5 Cycles

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 222

Multiplication Code
Why Doesn't the Compiler Do This Automatically?

Because it wouldn't be a C compiler
The ANSI C language requires that
multiplication be handled a certain way
Changing that way creates a new C-like
language that will behave in a dramatically
different way from ANSI C
C code would not behave the way an
experienced C programmer would expect
It would create non-portable code from
standard C syntax

Blame K&R – not Microchip ☺

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 223

Toggle Code
Using C's ^= Operator with Bit Field Member

Assembly output when using C's ^= operator to toggle a bit field

#include <p24fj128ga010.h>

int main(void)
{

_LATA0 ^= 1;
}

mov.b _LATA,W0
and.b W0,#1,W0
btg W0,#0
and.b W0,#1,W0
and.b W0,#1,W2
mov.w #0x2c4,W1
mov.b [W1],W1
mov.b #0xfe,W0
and.b W1,W0,W0
ior.b W0,W2,W0
mov.b W0,0x02c4

11 Instructions / 11 Cycles

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 224

Assembly output when using __builtin_btg()

#include <p24fj128ga010.h>

int main(void)
{

__builtin_btg(&LATA, 0);
}

Toggle Code
Using __builtin_btg()

mov.w #_LATA,W0
btg [W0],#0

2 Instructions / 2 Cycles

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 225

Assembly output when using inline assembly

#include <p24fj128ga010.h>

int main(void)
{

asm("btg LATA, #0");
}

Toggle Code
Using Inline Assembly

btg.b _LATA,#0

1 Instruction / 1 Cycle

This code will only work with
registers in near data space.
All SFRs are in near space.

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 226

Assembly output when using xor with a shifted 1

#include <p24fj128ga010.h>

int main(void)
{

LATA ^= (1 << 0);
}

Toggle Code
Using C's ^= Operator with int Variable

btg.b _LATA,#0

1 Instruction / 1 Cycle

Optimization must be enabled, otherwise 3
instructions will be generated.

Bit to Toggle

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 227

Optimization Techniques
Data Types

Use int for array index variables
Use int for local auto variables
If you aren't trying to save memory, use an
int because not all instructions support
byte access (.b instruction suffix in
assembly)

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 228

Optimization Techniques
Bit Fields

More readable but can be less efficient
Good:

Assigning literals to bit fields
(REGbits.bit = 1)
Testing bit fields (REGbits.bit == 1)

Bad:
Toggling bits (REGbits.bit ^= 1)
Assigning a variable value to a bit field
Arithmetic on a bit field

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 229

Optimization Techniques
Modifying SFRs

With volatile variables / registers, a sequence
of bit field modifications cannot be optimized to
a single write:

Write a full integer to the entire register instead:

T1CONbits.TCKPS = 2;
T1CONbits.TGATE = 0;
T1CONbits.TSIDL = 1;
T1CONbits.TON = 1;

mov.b T1CON,W0
bclr W0,#TCKPS0
bset W0,#TCKPS1
mov.b W0,T1CON
bclr T1CON,#TGATE
bset T1CON,#TSIDL
bset T1CON,#TON

T1CON = 0xA020;
mov.w #0xa020,W0
mov.w W0,T1CON

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 230

Optimization Techniques
Miscellaneous

Ensure that function prototypes match
arguments (especially signed-ness)
Use local/auto variables in preference to
global/static variables – the compiler can
put them into W registers
Do not use char for auto variables

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 231

Optimization Techniques
Data Memory Models

Use Large Data and Small Scalar Models
Entire data memory
map is available
Puts scalar variables
in near memory
Puts non-scalars in
far memory (arrays,
structures, unions)

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 232

Syntax

Inline Functions

Integrates function's code into code for its
callers
Usually faster due to lower overhead
Code size may be smaller or larger
May only be used if function definition is visible
in file where used (not just the function's
prototype)
inline Functions may be placed in header files

inline returnType identifier(parameterList)
{

//Function code here
}

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 233

Example

Inline Functions

Best used with short functions where overhead
is an issue
Must enable optimizations or use the -finline
command line switch
Similar to macros but without the preprocessor

Aware of C syntax and constructs
May be further optimized by compiler

inline int square(int a)
{

return __builtin_mulss(a, a);
}

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 234

Example

Memory Models
X and Y Data Space (dsPIC® Only)

Compiler does not directly support
separating variables into X and Y data
Section attribute may be used to explicitly
locate variables in X and Y spaces

floatfloat buffer[32] __attribute__((__section__(".ydata")))buffer[32] __attribute__((__section__(".ydata")));;

floatfloat coeff[16] __attribute__((__section__(".xdata")))coeff[16] __attribute__((__section__(".xdata")));;

ReferencesReferences

© 2011 Microchip Technology Incorporated. All Rights Reserved. Slide 236

Suggested Reading
Programming 16-bit Microcontrollers in C
by Lucio Di Jasio
ISBN-10: 0750682922
ISBN-13: 978-0750682923

http://www.flyingpic24.com

Thank You!Thank You!

