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Overview (continued)Overview Overview (continued)(continued)

BLDC Motor Algorithms:
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Commutating a BLDC with no position feedback

Six Step Control (120° Conduction)
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Six Step Sensored Algorithm
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Overview (continued)Overview Overview (continued)(continued)
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Overview (continued)Overview Overview (continued)(continued)
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MicrochipMicrochipMicrochip

Leading semiconductor manufacturer: 
of high-performance, field-programmable, 
8-bit & 16-bit RISC Microcontrollers 
of Analog & Interface products
of related Memory products 
for high-volume embedded control applications

$850M in product sales
More than 4,200 employees
Headquartered near
Phoenix in Chandler, AZ
“The Silicon Desert”

Leading semiconductor manufacturer: 
of high-performance, field-programmable, 
8-bit & 16-bit RISC Microcontrollers 
of Analog & Interface products
of related Memory products 
for high-volume embedded control applications

$850M in product sales
More than 4,200 employees
Headquartered near
Phoenix in Chandler, AZ
“The Silicon Desert”



© 2005 Microchip Technology Incorporated Slide 11 Digital Signal Controller

Where Are We Today?Where Are We Today?Where Are We Today?
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dsPIC® DSC OverviewdsPICdsPIC®® DSC OverviewDSC Overview
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The DSP Space

8-bit MCU
1 - 10 MIPS

16-bit MCU
5 - 15 MIPS

32-bit MCU
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Digital Signal Control
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++
Digital Signal ProcessingDigital Signal Processing

dsPICdsPIC®® DSCDSC
The 16The 16--bit MCU with bit MCU with 

the power of DSPthe power of DSP

dsPIC30FdsPIC30F

dsPIC33FdsPIC33F
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dsPIC® DSC Family: 
Architected from Scratch
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Seamlessly integrates a DSP 
and an MCU
MCU look and feel, easy to use
Competitive DSP performance
Optimized for C compiler
Fast, deterministic, flexible 
interrupts
Excellent RTOS support
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dsPIC® DSC Highly Optimized C compiler
Control Centric Benchmarks

dsPIC® DSC Highly Optimized C compiler
Control Centric Benchmarks

16-bit Applications
(~ 40KB code)

32-bit Applications
(~ 50KB code)
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dsPIC30F ProductsdsPIC30F Products
Power Conversion & Motor Control FamilyPower Conversion & Motor Control Family

Brushless DC Motor Control
AC Induction Motor Control
Switch Reluctance Motor Control
UPS, Inverters and Power Supplies
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Appliances
Power Tools
Automotive
Industrial

Appliances
Power Tools
Automotive
Industrial

2122Yes16 ch88854096819214480dsPIC30F6010

1121Yes16 ch8445102420486680dsPIC30F5016

1121Yes16 ch8445102420486664dsPIC30F5015

1112Yes9 ch6445102420484840dsPIC30F4011

-112Yes9 ch6445102410242440dsPIC30F3011
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dsPIC33F ProductsdsPIC33F Products

Product PINS
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dsPIC33FJ64MC506 64 64 6 2 9 8 8 8 1 ADC, 16 Ch 2 2 1 1

dsPIC33FJ64MC508 80 64 6 2 9 8 8 8 1 ADC, 18 Ch 2 2 1 1

dsPIC33FJ64MC510 100 64 6 2 9 8 8 8 1 ADC, 24 Ch 2 2 1 1

dsPIC33FJ64MC706 64 64 14 2 9 8 8 8 2 ADC, 16 ch 2 2 2 1

dsPIC33FJ64MC710 100 64 14 2 9 8 8 8 2 ADC, 24 ch 2 2 2 2

dsPIC33FJ128MC506 64 128 6 2 9 8 8 8 1 ADC, 16 Ch 2 2 2 1

dsPIC33FJ128MC510 100 128 6 2 9 8 8 8 1 ADC, 24 Ch 2 2 2 1

dsPIC33FJ128MC706 64 128 14 2 9 8 8 8 2 ADC, 16 ch 2 2 2 1

dsPIC33FJ128MC708 80 128 14 2 9 8 8 8 2 ADC, 18 Ch 2 2 2 1

dsPIC33FJ128MC710 100 128 14 2 9 8 8 8 2 ADC, 24 ch 2 2 2 2

dsPIC33FJ256MC510 100 256 14 2 9 8 8 8 1 ADC, 16 ch 2 2 2 1

dsPIC33FJ256MC710 100 256 28 2 9 8 8 8 2 ADC, 24 ch 2 2 2 2
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dsPIC® DSC Architecture 
Summary
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dsPIC® DSC ArchitecturedsPICdsPIC®® DSC ArchitectureDSC Architecture

Main Features
Single core integrating an MCU & a DSP
Modified Harvard Architecture
Data is 16-bit wide
Instruction is 24-bit wide
Linear program memory up to 12 MB
Linear data (RAM) up to 64 kB
True DSP capability
Many integrated peripherals
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dsPIC® DSC ArchitecturedsPICdsPIC®® DSC ArchitectureDSC Architecture
Main Features (continued)

16 x 16-bit working register array
Software stack
Fast, deterministic interrupt response
Three operand instructions: C = A + B
Extensive addressing modes
DMAC w/ dual port SRAM - 8 channels 
for peripherals
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for peripherals
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dsPIC® DSC Operating 
Parameters

dsPICdsPIC®® DSC Operating DSC Operating 
ParametersParameters

Feature dsPIC30F dsPIC33F
Operating Speed: DC to 30 MIPS DC to 40 MIPS
VDD:(VDC) 2.5 to 5.5 3.0 to 3.6
Temp: -40°C to +125°C -40°C to +85°C
Program Memory: Flash Flash
Data Memory: SRAM, EEPROM SRAM, Self-write Flash

Package sizes
18-pin SO & SP 
28-pin SO, SP and QFN
40-pin SP; 44-pin TQFP, QFN
64-, 80- and 100- pin TQFP

Feature dsPIC30F dsPIC33F
Operating Speed: DC to 30 MIPS DC to 40 MIPS
VDD:(VDC) 2.5 to 5.5 3.0 to 3.6
Temp: -40°C to +125°C -40°C to +85°C
Program Memory: Flash Flash
Data Memory: SRAM, EEPROM SRAM, Self-write Flash

Package sizes
18-pin SO & SP 
28-pin SO, SP and QFN
40-pin SP; 44-pin TQFP, QFN
64-, 80- and 100- pin TQFP

D
S

28 lead QFN: 6 x 6 x 0.9 mm28 lead QFN: 6 x 6 x 0.9 mm
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dsPIC® Architecture Block 
Diagram

dsPICdsPIC®® Architecture Block Architecture Block 
DiagramDiagram
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dsPIC® DSC Peripherals 
Overview
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dsPIC PeripheralsdsPIC PeripheralsdsPIC Peripherals
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A/D ConverterA/D ConverterA/D Converter
10-bit High Speed A/D

10 bit resolution with ± 1 LSB accuracy
1 Msps conversion rate
Up to 16 input channels, 4 S/H Amplifiers
Synchronization to the MCPWM time 
base

12-bit A/D
12 bit resolution with ± 1 LSB accuracy
200 ksps conversion rate
Up to 16 input channels, single S/H 
amplifier

10-bit High Speed A/D
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Synchronization to the MCPWM time 
base

12-bit A/D
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Up to 16 input channels, single S/H 
amplifier
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Quadrature Encoder InterfaceQuadrature Encoder InterfaceQuadrature Encoder Interface

QEI Module senses motor 
speed and position
Three Input Quadrature 
Encoder 

Phase A
Phase B
INDEX signals

16-bit position counter
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+1 +1+1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1COUNT

PHASE A

PHASE B

State machine determines relative 
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phase at each edge

Quadrature Timing 
Diagram

Quadrature Timing Quadrature Timing 
DiagramDiagram
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QEI Block DiagramQEI Block DiagramQEI Block Diagram
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Pulse Width ModulationPulse Width ModulationPulse Width Modulation

Allows fixed DC Input, 
AC output.
Output voltage is PWM
Motor integrates PWM 
voltage and produces 
sinusoidal current with 
small ripple at carrier 
frequency
Minimal power loss in 
power transistors

Allows fixed DC Input, 
AC output.
Output voltage is PWM
Motor integrates PWM 
voltage and produces 
sinusoidal current with 
small ripple at carrier 
frequency
Minimal power loss in 
power transistors

2% 50% 98%

50%
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Motor Control PWM 
Module

Motor Control PWM Motor Control PWM 
ModuleModule

PWM Module drives motor
Up to Four PWM 
generators
Several options allow 
PWM to drive many circuit 
types

AC Motors
DC motors
Power supplies

High frequency @ more 
bits = better control of 
motor operation
Fault detection for safe 
operation
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High Frequency Carrier
Duty Cycle Varied Over Time to Generate 
a Lower Frequency Signal

High Frequency Carrier
Duty Cycle Varied Over Time to Generate 
a Lower Frequency Signal
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Motor Control PWM Block 
Diagram

Motor Control PWM Block Motor Control PWM Block 
DiagramDiagram

Four PWM output Four PWM output 
pairs with output pairs with output 
polarity controlpolarity control

Duty CycleDuty Cycle

Generator #3Generator #3

Duty CycleDuty Cycle

Generator #2Generator #2

Duty CycleDuty Cycle

Generator #1Generator #1

Duty CycleDuty Cycle

Generator #4Generator #4

PWM Override PWM Override 
LogicLogic

Dead Time UnitDead Time Unit

Dead Time UnitDead Time Unit

Dead Time UnitDead Time Unit

Dead Time UnitDead Time Unit

Fault AFault A

Fault BFault B

PWM4HPWM4H

PWM1LPWM1L

PWM1HPWM1H

PWM2LPWM2L

PWM2HPWM2H

PWM3LPWM3L

PWM3HPWM3H

PWM4LPWM4L

Two fault pins w/ Two fault pins w/ 
programmable fault programmable fault 

statesstates

1616--bit Timebit Time--basebase

A/D Conversion A/D Conversion 
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Dead Time ADead Time A

Dead Time BDead Time B
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Motor Control PWMMotor Control PWMMotor Control PWM

Dead Time Insertion Example
Shoot Through is Prevented 
Automatically

Dead Time Insertion Example
Shoot Through is Prevented 
Automatically
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Dead Time
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MCPWM A/D 
Synchronization

MCPWM A/D MCPWM A/D 
SynchronizationSynchronization

SEVTCMP register sets A/D 
conversion start time in PWM cycle
Ensure A/D properly captures 
shunt current
Can also use to minimize control 
loop update delay

SEVTCMP register sets A/D 
conversion start time in PWM cycle
Ensure A/D properly captures 
shunt current
Can also use to minimize control 
loop update delay
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MCPWM Fault InputsMCPWM Fault InputsMCPWM Fault Inputs
Automatic or latched fault protection
Fault condition overrides all other pin control
Automatic or latched fault protection
Fault condition overrides all other pin control

Current
Limit

PWM1LPWM1L

PWM1HPWM1H
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Motor
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MCPWM Override ControlMCPWM Override ControlMCPWM Override Control

OVDCON (override control) register
Used for motor commutation
I/O pin can be PWM, active, or inactive
POVD =0, I/O pin is controlled manually
POUT bits set pin state for manual control
If Program is halted, PWM pins are turned 
OFF

OVDCON (override control) register
Used for motor commutation
I/O pin can be PWM, active, or inactive
POVD =0, I/O pin is controlled manually
POUT bits set pin state for manual control
If Program is halted, PWM pins are turned 
OFF

POUT1L
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

bit7 6 5 4 3 2 1 bit0
POUT1HPOUT2LPOUT2HPOUT3LPOUT3HPOUT4LPOUT4H

POVD1L
R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1

bit15 14 13 12 11 10 9 bit8
POVD1HPOVD2LPOVD2HPOVD3LPOVD3HPOVD4LPOVD4H
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MCPWM Override ControlMCPWM Override ControlMCPWM Override Control

POUT1L
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

bit7 6 5 4 3 2 1 bit0
POUT1HPOUT2LPOUT2HPOUT3LPOUT3HPOUT4LPOUT4H

POVD1L
R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1

bit15 14 13 12 11 10 9 bit8
POVD1HPOVD2LPOVD2HPOVD3LPOVD3HPOVD4LPOVD4H
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Outpu
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Lab 1. Programming a 
dsPIC® DSC Using the 

PICDEM™ MCLV Board

Lab 1. Programming a Lab 1. Programming a 
dsPICdsPIC®® DSC Using the DSC Using the 

PICDEMPICDEM™™ MCLV BoardMCLV Board
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Objectives of Lab1Objectives of Lab1Objectives of Lab1

Getting to know the hardware in 
front of you
Where are the Labs located?

C:\WIB\Lab1\Lab1.mcw
How to load the lab projects
Programming the dsPIC® DSC 
devices
Running the program on dsPIC DSC

Getting to know the hardware in 
front of you
Where are the Labs located?

C:\WIB\Lab1\Lab1.mcw
How to load the lab projects
Programming the dsPIC® DSC 
devices
Running the program on dsPIC DSC
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You should have….You should haveYou should have……..
1) MPLAB® IDE V7.20 or higher installed
2) Complete MPLAB ICD 2 setup. R20 or Latest 

Rev. 
3) PICDEM™ MCLV board
4) 24V power supply for the board
5) Hurst (NTDynamo®) BLDC motor with

Power cable (4 wires with white square connector) 
and
Hall sensor cable (5 wires with 8-pin inline black 
connector)

1) MPLAB® IDE V7.20 or higher installed
2) Complete MPLAB ICD 2 setup. R20 or Latest 

Rev. 
3) PICDEM™ MCLV board
4) 24V power supply for the board
5) Hurst (NTDynamo®) BLDC motor with

Power cable (4 wires with white square connector) 
and
Hall sensor cable (5 wires with 8-pin inline black 
connector)
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LAB 1 LAB 1 LAB 1 
What we will do:

Configure board hardware 
connections
Open a workspace in MPLAB® IDE
Compile or build a simple first project 
in MPLAB IDE
Follow a procedure to program the 
dsPIC using MPLAB ICD 2
Follow a procedure to run the program 
using MPLAB ICD 2 

What we will do:
Configure board hardware 
connections
Open a workspace in MPLAB® IDE
Compile or build a simple first project 
in MPLAB IDE
Follow a procedure to program the 
dsPIC using MPLAB ICD 2
Follow a procedure to run the program 
using MPLAB ICD 2 
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Training board Training board Training board 

Power

Reset

Pot
S2

DIP Switch

Serial connector MPLAB® ICD 2
connector

Motor 
connector

28-pin MC dsPIC30F

Jumpers
J7, J8, J11, J12, J13, J14

3-Phase
Inverter
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Default Jumper SettingsDefault Jumper SettingsDefault Jumper Settings

The Jumper settings are printed on 
the under side of the PICDEM™
MCLV board
Turn board over to view and set 
Jumper settings.
Use “dsPIC® DSC Sensored” setting 
for Lab 1 
Keep Potentiometer REF(R14) and 
R60 in center position

The Jumper settings are printed on 
the under side of the PICDEM™
MCLV board
Turn board over to view and set 
Jumper settings.
Use “dsPIC® DSC Sensored” setting 
for Lab 1 
Keep Potentiometer REF(R14) and 
R60 in center position
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dsPIC® DSC Sensored SettingsdsPICdsPIC®® DSC Sensored SettingsDSC Sensored Settings

1-2J19

1-2J17

1-2J16

NCJ10

NCJ15

NCJ14

NCJ13

NCJ12

NCJ11

NCJ8

NCJ7

PositionJumper
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Debug / Program DIP SwitchDebug / Program DIP SwitchDebug / Program DIP Switch

PGC
PGD

EMUC2
EMUD2

ds
PI

C
30

F3
01

0

DEBUGOpen

PRGMClosed

FunctionS2 
Position

UART Rx
UART Tx
ICD 2 Clock
ICD 2 Data
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Lab1Lab1Lab1
Instructions for Lab1:

On PICDEM™ MCLV board, move DIP 
switch to “PRGM” position 
Connect power to PICDEM MCLV board
Open MPLAB® IDE by double clicking on 
icon
In MPLAB, select “File -> Open Workspace”
Browse to “C:\WIB\Lab1\Lab1.mcw”
Select “Lab1.mcw” and open workspace

Continued...

Instructions for Lab1:
On PICDEM™ MCLV board, move DIP 
switch to “PRGM” position 
Connect power to PICDEM MCLV board
Open MPLAB® IDE by double clicking on 
icon
In MPLAB, select “File -> Open Workspace”
Browse to “C:\WIB\Lab1\Lab1.mcw”
Select “Lab1.mcw” and open workspace

Continued...
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Lab1 (contd.)Lab1 (contd.)Lab1 (contd.)
Instructions for Lab1:

In MPLAB® IDE, Select “Project -> Build 
All”
IF NO errors then ...
In MPLAB IDE, Select “Debugger -> 
Program” to program dsPIC® DSC
On MCLV board, move DIP switch to 
“DEBUG” position
In MPLAB IDE, Select “Debugger -> Run”
Press S2 on PICDEM™ MCLV board and 
PWM LEDs will be blinking

Instructions for Lab1:
In MPLAB® IDE, Select “Project -> Build 
All”
IF NO errors then ...
In MPLAB IDE, Select “Debugger -> 
Program” to program dsPIC® DSC
On MCLV board, move DIP switch to 
“DEBUG” position
In MPLAB IDE, Select “Debugger -> Run”
Press S2 on PICDEM™ MCLV board and 
PWM LEDs will be blinking
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Lab1 ResultsLab1 ResultsLab1 Results
Follow Lab1 for programming and running 
software:

Before programming dsPIC® DSC, move DIP 
to “PRGM” position 
Before running, move DIP to “DEBUG”
position

Each lab has a already created workspace in 
the appropriate folder
Use the created workspace for each lab

Follow Lab1 for programming and running 
software:

Before programming dsPIC® DSC, move DIP 
to “PRGM” position 
Before running, move DIP to “DEBUG”
position

Each lab has a already created workspace in 
the appropriate folder
Use the created workspace for each lab
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BLDC Motor IntroductionBLDC Motor IntroductionBLDC Motor Introduction
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I. Basic Motor TheoryI.I. Basic Motor TheoryBasic Motor Theory

What is a Motor?What is a Motor?

How?How?

A Motor Converts Electrical Energy to MechanicalA Motor Converts Electrical Energy to Mechanical

Force is developed when charge moves through a 
magnetic field
Force is developed when charge moves through a 
magnetic field

F = I x BF = I x B
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Left Hand RuleLeft Hand RuleLeft Hand Rule

I

B

F

I

B

F = I x B

N

S
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Motor TorqueMotor TorqueMotor Torque

B B
SN

I

B
F

T=F x D

D

F

F



© 2005 Microchip Technology Incorporated Slide 54 Digital Signal Controller

DC Motor TorqueDC Motor TorqueDC Motor Torque

Summary
Torque = Force * Distance

F = I x B
T = ( I x B ) * D
When B and D are constant T = Κ * Ι A

When field is wound B = K * Ι F

In wound DC motors Torque and Flux 
B can be controlled independently

Summary
Torque = Force * Distance

F = I x B
T = ( I x B ) * D
When B and D are constant T = Κ * Ι A

When field is wound B = K * Ι F

In wound DC motors Torque and Flux 
B can be controlled independently
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DC MotorDC MotorDC Motor

Red is North Polarization
Blue is South Polarization
Opposite Polarities attract
Rotor will rotate until North is 
aligned with South
Just before alignment, 
commutator contacts and 
energize next winding
Spark is generated when the 
commutator change windings

Red is North Polarization
Blue is South Polarization
Opposite Polarities attract
Rotor will rotate until North is 
aligned with South
Just before alignment, 
commutator contacts and 
energize next winding
Spark is generated when the 
commutator change windings
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The Brushless DC Motor 
(BLDC)

The Brushless DC Motor The Brushless DC Motor 
(BLDC)(BLDC)

An inside out brushed DC motor with 
electronic commutation
A modern, much improved, version 
of the traditional brushed DC motor
Field, which has relatively low loss, 
is generated on the rotor using 
permanent magnets
Armature, which causes the majority 
of the loss, is on the stator which 
has good cooling

An inside out brushed DC motor with 
electronic commutation
A modern, much improved, version 
of the traditional brushed DC motor
Field, which has relatively low loss, 
is generated on the rotor using 
permanent magnets
Armature, which causes the majority 
of the loss, is on the stator which 
has good cooling
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Brushed & Brushless DC 
Motor Construction

Brushed & Brushless DC Brushed & Brushless DC 
Motor ConstructionMotor Construction

PERMANENT MAGNET BRUSHED DC 
MOTOR

PERMANENT MAGNET BRUSHLESS
DC MOTORPermanent

Magnet
Permanent

Magnet

Windings

Stator Brushes

Rotor RotorWindings

Stator
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Brushless DC Motor 
Energization

Brushless DC Motor Brushless DC Motor 
EnergizationEnergization

100

N

S

R

B

r

r

g
g

b

b
G
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com

com

110

010

011

101

001

R

GB
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BLDC Advantages Over 
Bushed DC Motor

BLDC Advantages Over BLDC Advantages Over 
Bushed DC MotorBushed DC Motor

High Efficiency
More Reliable – No Brushes to Maintain
Higher Speeds
Higher Power/Size Ratio
Heat is Generated in Stator – Easy to 
Remove
Lower Inertia – No commutator 
Higher Acceleration Rates
No Arcing on Commutator

High Efficiency
More Reliable – No Brushes to Maintain
Higher Speeds
Higher Power/Size Ratio
Heat is Generated in Stator – Easy to 
Remove
Lower Inertia – No commutator 
Higher Acceleration Rates
No Arcing on Commutator
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BLDC ControlBLDC ControlBLDC Control

Mechanical commutator replaced by 
electronic switching
BLDC is a synchronous motor
Meaning that switching must be 
synchronized to rotor position

Mechanical commutator replaced by 
electronic switching
BLDC is a synchronous motor
Meaning that switching must be 
synchronized to rotor position
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Lab 2. Running a BLDC 
Motor with Forced 

Commutation

Lab 2. Running a BLDC Lab 2. Running a BLDC 
Motor with Forced Motor with Forced 

CommutationCommutation
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Running a BLDC Motor 
with Forced Commutation

Running a BLDC Motor Running a BLDC Motor 
with Forced Commutationwith Forced Commutation

Consider sector 5
Blue Winding = 24V
Green Winding = 0V
Red Winding = OFF
Delay for a short time
Repeat process for all 
6 sectors.
Revolving Electrical 
field will cause rotor to 
rotate

Consider sector 5
Blue Winding = 24V
Green Winding = 0V
Red Winding = OFF
Delay for a short time
Repeat process for all 
6 sectors.
Revolving Electrical 
field will cause rotor to 
rotate

60o

Sector
5 0 1 2 3 4 5 0 1

Blue Winding

Green Winding

Red Winding
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Six-Step Commutation with 
Inverter

SixSix--Step Commutation with Step Commutation with 
InverterInverter

+V

PWM1H

PWM1L

3 Phase
BLDC

PWM2H

PWM2L

PWM3H

PWM3L

Sector 5 0 1 2 3 4 5 0 1
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Six-Step Commutation with 
Inverter

SixSix--Step Commutation with Step Commutation with 
InverterInverter

+V

PWM1H

PWM1L

3 Phase
BLDC

PWM2H

PWM2L

PWM3H

PWM3L

Sector 5 0 1 2 3 4 5 0 1
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Six-Step Commutation with 
Inverter

SixSix--Step Commutation with Step Commutation with 
InverterInverter

+V

PWM1H

PWM1L

3 Phase
BLDC

PWM2H

PWM2L

PWM3H

PWM3L

Sector 5 0 1 2 3 4 5 0 1
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Six-Step Commutation with 
Inverter

SixSix--Step Commutation with Step Commutation with 
InverterInverter

+V

PWM1H

PWM1L

3 Phase
BLDC

PWM2H

PWM2L

PWM3H

PWM3L

Sector 5 0 1 2 3 4 5 0 1
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1 Electrical Revolution

Motor Control PWMMotor Control PWMMotor Control PWM

Using OVDCON for 6-Step 
Commutation
Using OVDCON for 6-Step 
Commutation

POVD<7:0> POUT<7:0>

0 00000000 00100001

1 00000000 00100100

2 00000000 00000110

3 00000000 00010010

4 00000000 00011000

5 00000000 00001001

OVDCON Value
Sector

3 4 5 0 12

PWM1H

PWM1L

PWM2H

PWM2L

PWM3H

PWM3L

Sector
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Running a BLDC Motor 
with Forced Commutation

Running a BLDC Motor Running a BLDC Motor 
with Forced Commutationwith Forced Commutation

3-Phase
Inverter BLDCMain State 

Machine

Start /
Stop

3-Phase 
Voltages

Periodic
ISR

6-Step 
Generation

dsPIC30F

G
PI

O

G
PI

O

Peripheral Block

Software Block
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Lab2 – Running a BLDC Motor 
with Forced Commutation

Lab2 Lab2 –– Running a BLDC Motor Running a BLDC Motor 
with Forced Commutationwith Forced Commutation

Instructions for Lab2:
Use workspace 
“C:\WIB\Lab2\Lab2.mcw”
Follow Lab 1 instructions to:

Compile code
Program dsPIC® DSC 
Run code

Continued...

Instructions for Lab2:
Use workspace 
“C:\WIB\Lab2\Lab2.mcw”
Follow Lab 1 instructions to:

Compile code
Program dsPIC® DSC 
Run code

Continued...
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Lab2 – Running a BLDC Motor 
with Forced Commutation

Lab2 Lab2 –– Running a BLDC Motor Running a BLDC Motor 
with Forced Commutationwith Forced Commutation

Press S2 to start motor
Notice that the motor is running 
rough and loud (almost screeching)
Notice that the motor is getting warm.
WHY?
Press S2 to Stop the motor

Press S2 to start motor
Notice that the motor is running 
rough and loud (almost screeching)
Notice that the motor is getting warm.
WHY?
Press S2 to Stop the motor
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4 Amps Peak

Fixed Speed
1000 RPM

Lab2 – Running a BLDC Motor 
with Forced Commutation

Lab2 Lab2 –– Running a BLDC Motor Running a BLDC Motor 
with Forced Commutationwith Forced Commutation
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Details of ProgramDetails of ProgramDetails of Program

Use MPLAB® IDE to go thru sections 
of the code
Use MPLAB® IDE to go thru sections 
of the code
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Lab2 ResultsLab2 ResultsLab2 Results

First experience with a BLDC motor
Understand “Six-Step Commutation”
using the Override Feature of the dsPIC®

DSC
Spinning a BLDC motor without position 
sensing
Very inefficient with high currents (up to 
4 amps with no load)
Understanding the need of position 
feedback

First experience with a BLDC motor
Understand “Six-Step Commutation”
using the Override Feature of the dsPIC®

DSC
Spinning a BLDC motor without position 
sensing
Very inefficient with high currents (up to 
4 amps with no load)
Understanding the need of position 
feedback
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Sensing Position of a 
BLDC

Sensing Position of a Sensing Position of a 
BLDCBLDC

Resolver
Higher Resolution. 
(i.e. 1024 Different 
States per Rev)
A/D Module + 
Processing Power
Resolver Externally 
Mounted (More 
Expensive)
Provides Absolute 
position feedback

Resolver
Higher Resolution. 
(i.e. 1024 Different 
States per Rev)
A/D Module + 
Processing Power
Resolver Externally 
Mounted (More 
Expensive)
Provides Absolute 
position feedback

Cosine

Sine

Resolver Output

Rotor Angular Position

0º

180º

360º
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Sensing Position of a 
BLDC

Sensing Position of a Sensing Position of a 
BLDCBLDC

Optical Encoder
High Resolution. (i.e. 
500 Interrupts per 
Rev)
Special QEI Module 
+ Some Math
Optical Encoder 
Externally Mounted 
(Expensive)
Useful for servo 
applications due to 
resolution

Optical Encoder
High Resolution. (i.e. 
500 Interrupts per 
Rev)
Special QEI Module 
+ Some Math
Optical Encoder 
Externally Mounted 
(Expensive)
Useful for servo 
applications due to 
resolution

INDEX

QEB

QEA

0º

180º

360º

Optical Encoder Output

Rotor Angular Position
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Sensing Position of a 
BLDC

Sensing Position of a Sensing Position of a 
BLDCBLDC

Hall Effect
Low Resolution 
(i.e. 30 Interrupts 
per Rev)
Simple External 
Interrupt I/Os
1 to 3 Hall effect 
sensors (Less 
Expensive)
Standard 
position sensing 
for low-cost 
applications

Hall Effect
Low Resolution 
(i.e. 30 Interrupts 
per Rev)
Simple External 
Interrupt I/Os
1 to 3 Hall effect 
sensors (Less 
Expensive)
Standard 
position sensing 
for low-cost 
applications

Hall A

0º

180º

360º

Hall B

Hall C

Hall Effect Sensors

Rotor Angular Position
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Standard BLDC Position 
Sensing

Standard BLDC Position Standard BLDC Position 
SensingSensing

A sensing disk is attached to the rotor which 
provides a ≈50% duty pattern aligned to the 
rotor magnets; the repetition rate of the pattern 
will follow the number of rotor poles
The disk is monitored by three optical or hall 
sensors, displaced by the equivalent of 120°, 
located on the stator
In the case of hall sensors, the rotor magnets 
themselves may be sensed directly

A sensing disk is attached to the rotor which 
provides a ≈50% duty pattern aligned to the 
rotor magnets; the repetition rate of the pattern 
will follow the number of rotor poles
The disk is monitored by three optical or hall 
sensors, displaced by the equivalent of 120°, 
located on the stator
In the case of hall sensors, the rotor magnets 
themselves may be sensed directly
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BLDC Motor ConstructionBLDC Motor ConstructionBLDC Motor Construction

Hall sensors

Stator winding
Rotor magnets
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Six Step BLDC ControlSix Step BLDC ControlSix Step BLDC Control

+TORQUE FIRING

BR G

Q1 Q3Q2

Q4 Q6Q5
Green Winding

Q1,Q5 Q1,Q6 Q2,Q6 Q2,Q4 Q3,Q4 Q3,Q5

60o

HALL A

HALL B

HALL C

Q1,Q5 Q1,Q6Q3,Q5

Sector 5

Hall States
0 1 2

5 4 6 2

3

3
4

1

5
5

0
4

1
6

Blue Winding

Red Winding
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Typical Manufacturer’s 
Table

Typical ManufacturerTypical Manufacturer’’s s 
TableTable
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Lab 3. Running Sensored 
BLDC Motor with 

OVDCON

Lab 3. Running Sensored Lab 3. Running Sensored 
BLDC Motor with BLDC Motor with 

OVDCONOVDCON
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Six Step Sensored BLDC 
Control

Six Step Sensored BLDC Six Step Sensored BLDC 
ControlControl

The 3 logic signals are decoded to determine 
which windings should be energized
There are 6 valid states and 2 states that should 
never be seen (000, 111)
Use Lookup table to drive the 3 windings, high 
or low or no-drive
The 6 different valid states directly translate to 
the 6 different 60° electrical cycle sectors
The states should only transition by one at a 
time. Missing transitions or invalid states 
should be detected for robust operation

The 3 logic signals are decoded to determine 
which windings should be energized
There are 6 valid states and 2 states that should 
never be seen (000, 111)
Use Lookup table to drive the 3 windings, high 
or low or no-drive
The 6 different valid states directly translate to 
the 6 different 60° electrical cycle sectors
The states should only transition by one at a 
time. Missing transitions or invalid states 
should be detected for robust operation
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Lab 3 Jumper settingsLab 3 Jumper settingsLab 3 Jumper settings
Turn MCLV board over and refer to 
the jumper settings for “dsPIC® DSC 
Sensored”
Keep Potentiometer REF(R14) and 
R60 in center position
Connect Hall Sensors to the Motor 
(Black Connector)
Connect Motor Windings (White 
Connector) to Motor

Turn MCLV board over and refer to 
the jumper settings for “dsPIC® DSC 
Sensored”
Keep Potentiometer REF(R14) and 
R60 in center position
Connect Hall Sensors to the Motor 
(Black Connector)
Connect Motor Windings (White 
Connector) to Motor
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Running Sensored BLDC 
Motor with OVDCON

Running Sensored BLDC Running Sensored BLDC 
Motor with OVDCONMotor with OVDCON

3-Phase
Inverter BLDC6-Step 

Generation
Main State 
Machine

Start /
Stop

3-Phase 
Voltages

Hall 
Sensors

Angular 
Position

dsPIC30F

G
PI

O

G
PI

O
O

VD
C

O
N
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Running Sensored BLDC 
Motor with OVDCON

Running Sensored BLDC Running Sensored BLDC 
Motor with OVDCONMotor with OVDCON

Control 
Technique:

Control 
Technique:

Remember motor is running at full speed, 
no PWM is used.
Remember motor is running at full speed, 
no PWM is used.

New Commutation

Read Hall Port

Start
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Lab3 – Running Sensored 
BLDC Motor with OVDCON
Lab3 Lab3 –– Running Sensored Running Sensored 
BLDC Motor with OVDCONBLDC Motor with OVDCON

Instructions for Lab3:
Use workspace 
“C:\WIB\Lab3\Lab3.mcw”
Follow Lab 1 instructions to:

Compile code
Program dsPIC 
Run code

Continued...

Instructions for Lab3:
Use workspace 
“C:\WIB\Lab3\Lab3.mcw”
Follow Lab 1 instructions to:

Compile code
Program dsPIC 
Run code

Continued...
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Lab 3 - Running Sensored 
BLDC Motor with OVDCON
Lab 3 Lab 3 -- Running Sensored Running Sensored 
BLDC Motor with OVDCONBLDC Motor with OVDCON

Press S2 to start motor
Notice that the motor is running very 
smoothly
Notice that the motor does not get 
warm
WHY?
Press S2 to stop the motor

Press S2 to start motor
Notice that the motor is running very 
smoothly
Notice that the motor does not get 
warm
WHY?
Press S2 to stop the motor
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Lab 3 - Running Sensored 
BLDC Motor with OVDCON
Lab 3 Lab 3 -- Running Sensored Running Sensored 
BLDC Motor with OVDCONBLDC Motor with OVDCON
Motor doesn’t run?

Hall sensors wires might be loose
Check jumper settings: “dsPIC® DSC 
Sensored”
Make sure that after programming the 
device you changed the DIP Switch 
from PRGM to DEBUG before hitting S2
Make sure program is not halted in 
MPLAB® IDE
Did you press S2?

Motor doesn’t run?
Hall sensors wires might be loose
Check jumper settings: “dsPIC® DSC 
Sensored”
Make sure that after programming the 
device you changed the DIP Switch 
from PRGM to DEBUG before hitting S2
Make sure program is not halted in 
MPLAB® IDE
Did you press S2?
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Lab 3 - Running Sensored 
BLDC Motor with OVDCON
Lab 3 Lab 3 -- Running Sensored Running Sensored 
BLDC Motor with OVDCONBLDC Motor with OVDCON

200 mA Peak

Maximum Speed
3800 RPM
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Details of ProgramDetails of ProgramDetails of Program

Use MPLAB® IDE to go thru sections 
of the code
Use MPLAB® IDE to go thru sections 
of the code
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Lab3 ResultsLab3 ResultsLab3 Results

Spinning a Sensored BLDC motor at full 
speed.
Understanding how sensors position and 
BLDC motor efficiency are related.
OVDCON will shut off the outputs if 
program execution is Halted, protecting 
the system HW
With no PWM we have fixed motor speed.

Spinning a Sensored BLDC motor at full 
speed.
Understanding how sensors position and 
BLDC motor efficiency are related.
OVDCON will shut off the outputs if 
program execution is Halted, protecting 
the system HW
With no PWM we have fixed motor speed.
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Lab 4. Running Sensored 
BLDC Motor with MCPWM
Lab 4. Running Sensored Lab 4. Running Sensored 
BLDC Motor with MCPWMBLDC Motor with MCPWM
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Change Notification (CN)Change Notification (CN)Change Notification (CN)

dsPIC® DSC has Change Notification 
inputs:

Detect digital changes on a specific 
input pin and generates an interrupt
Hall sensors A, B and C are connected 
to RB3, 4 and 5 or CN4, 5 and 6 
respectively.
When CNxInterrupt occurs, all 3 Hall 
inputs are read and a lookup table is 
used to control the BLDC motor 

dsPIC® DSC has Change Notification 
inputs:

Detect digital changes on a specific 
input pin and generates an interrupt
Hall sensors A, B and C are connected 
to RB3, 4 and 5 or CN4, 5 and 6 
respectively.
When CNxInterrupt occurs, all 3 Hall 
inputs are read and a lookup table is 
used to control the BLDC motor 
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Hall Sensors ConnectionHall Sensors ConnectionHall Sensors Connection
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B

r
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b
G
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CN or IC
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1 Electrical Revolution

Motor Control PWMMotor Control PWMMotor Control PWM
Using OVDCON for PWM 6-Step 
commutation
Using OVDCON for PWM 6-Step 
commutation

3 4 5 0 12

PWM1H

PWM1L

PWM2H

PWM2L

PWM3H

PWM3L

POVD<7:0> POUT<7:0>

00000000

00010000

00001000

00010000

00001000

00100000

00000001

00000100

OVDCON ValueHalls
C|B|A

Sector

000 00000000

001 00000001

010

011

100

101

110

111

00000010

00100000 00000100

00000010

0000000000000000

110 010 011 001 101100
Halls 
C|B|A
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Running Sensored BLDC 
Motor with MCPWM

Running Sensored BLDC Running Sensored BLDC 
Motor with MCPWMMotor with MCPWM

3-Phase
Inverter BLDC6-Step 

Generation

Main State 
Machine

Start /
Stop

3-Phase 
Voltages

Hall 
Sensors

Angular 
Position

dsPIC30F
+5V
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Running Sensored BLDC 
Motor with MCPWM

Running Sensored BLDC Running Sensored BLDC 
Motor with MCPWMMotor with MCPWM

Control 
Technique:

Control 
Technique:

Hall Change ISR

Duty Cycle = ADC Value

Read new Hall values

New Commutation

Return
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Lab4 – Running BLDC Motor 
with MCPWM

Lab4 Lab4 –– Running BLDC Motor Running BLDC Motor 
with MCPWMwith MCPWM

Instructions for Lab4:
Use workspace 
“C:\WIB\Lab4\Lab4.mcw”
Follow Lab 1 instructions to:

Compile code
Program dsPIC® DSC
Run code

Continued…

Instructions for Lab4:
Use workspace 
“C:\WIB\Lab4\Lab4.mcw”
Follow Lab 1 instructions to:

Compile code
Program dsPIC® DSC
Run code

Continued…
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Lab4 – Running BLDC 
Motor with MCPWM

Lab4 Lab4 –– Running BLDC Running BLDC 
Motor with MCPWMMotor with MCPWM

Press S2 to start motor
Use Pot to set the voltage of the 
motor
Notice that the current consumption 
is very low and the motor does not 
get warm
WHY?
Press S2 to stop the motor

Press S2 to start motor
Use Pot to set the voltage of the 
motor
Notice that the current consumption 
is very low and the motor does not 
get warm
WHY?
Press S2 to stop the motor
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Lab4 – Running BLDC 
Motor with MCPWM

Lab4 Lab4 –– Running BLDC Running BLDC 
Motor with MCPWMMotor with MCPWM

Press S2 to STOP the motor
Disconnect Phases Cable from Motor
Move the Motor with your hands
You can actually see the combination 
table looking at the LEDs from the 
board
The intensity of the LEDs will depend 
on the POT value.

Press S2 to STOP the motor
Disconnect Phases Cable from Motor
Move the Motor with your hands
You can actually see the combination 
table looking at the LEDs from the 
board
The intensity of the LEDs will depend 
on the POT value.
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PWM1H

Hall Effect
Sensors

PWM1L

Lab4 – Running BLDC 
Motor with MCPWM

Lab4 Lab4 –– Running BLDC Running BLDC 
Motor with MCPWMMotor with MCPWM
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Variable voltage using MCPWM module
Maximum speed of 3600 RPM approx.
BLDC Motor Speed will change if the 
Load Changes

Variable voltage using MCPWM module
Maximum speed of 3600 RPM approx.
BLDC Motor Speed will change if the 
Load Changes

Lab4 ResultsLab4 ResultsLab4 Results
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Lab 5. Running Closed-
Loop BLDC Motor

Lab 5. Running ClosedLab 5. Running Closed--
Loop BLDC MotorLoop BLDC Motor
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PI(D) LoopPI(D) LoopPI(D) Loop

Proportional-Integral-Differential

Set Point - Process Variable = 
Error

Control Variable = Output

CV = Pe + I ∫e dt + D de/dt

Proportional-Integral-Differential

Set Point - Process Variable = 
Error

Control Variable = Output

CV = Pe + I ∫e dt + D de/dt
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Closed LoopClosed LoopClosed Loop

PID Motor+ -
Desired Speed

Measured 
Speed

Speed Error Voltage

Speed
Calculation

Hall Sensor
Period
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Digital PIDDigital PIDDigital PID

+ -
Desired Speed

Measured Speed

Error Voltage

Kp * Error

+ 
+

Up

Ui

Ki * ∫Error dt

Kd *
dError

dt

+

Ud
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Digital PIDDigital PIDDigital PID

Up(T) = Kp * Error(T)

Ui(T) = Ki * Error(T) + Ui(T-1)

Ud(T) = Kd * (Error(T) – Error(T-1))

Voltage(T) = Up(T) + Ui(T) + Ud(T)

Up(T) = Kp * Error(T)

Ui(T) = Ki * Error(T) + Ui(T-1)

Ud(T) = Kd * (Error(T) – Error(T-1))

Voltage(T) = Up(T) + Ui(T) + Ud(T)

Kp * Error

Ki * ∫Error dt

Kd *
dError

dt
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Optional Digital PIDOptional Digital PIDOptional Digital PID

Kp * Error

Ki * ∫Error dt

Kd
dError

dt

Kp * Error

Kd * (1 – Z ) * Error
-1

Ki

1 - Z
-1 * Error + 

+

+
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Optional Digital PIDOptional Digital PIDOptional Digital PID

Kp * Error

Kd * (1 – Z ) * Error
-1

Ki

1 - Z
-1 * Error + 

+

+
Error * Kp +

Ki

1 - Z
-1 + Kd (1 – Z )

-1
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Optional Digital PIDOptional Digital PIDOptional Digital PID

Error * Kp +
Ki

1 - Z
-1 + Kd (1 – Z )

-1
= Controller Output

Error *
1 - Z

-1 = Controller Output
Kp (1 – Z )-1 + Ki + Kd (1 – Z )-1

2

Error *
1 - Z

-1 = Controller Output
(Kp + Ki + Kd) + (-Kp - 2*Kd) Z + Kd*Z

-1 -2
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Optional Digital PIDOptional Digital PIDOptional Digital PID

Error *
1 - Z

-1 = Controller Output
(Kp + Ki + Kd) + (-Kp - 2*Kd) Z + Kd*Z

-1 -2

Error = Error (T)

Error * Z = Error (T-1)

Error * Z = Error (T-2)
-2

-1

Most Recent Error

Least Recent Error
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Optional Digital PIDOptional Digital PIDOptional Digital PID

Controller Output (T) = Controller Output (T – 1)
+ Error (T) * K1 
+ Error (T-1) * K2 
+ Error (T-2) * K3

Where:
K1 = Kp + Ki + Kd
K2 = -Kp -2Kd
K3 = Kd

Controller Output (T) = Controller Output (T – 1)
+ Error (T) * K1 
+ Error (T-1) * K2 
+ Error (T-2) * K3

Where:
K1 = Kp + Ki + Kd
K2 = -Kp -2Kd
K3 = Kd

Error *
1 - Z

-1 = Controller Output
(Kp + Ki + Kd) + (-Kp - 2*Kd) Z + Kd*Z

-1 -2

MAC Operation 
can be used!!!



© 2005 Microchip Technology Incorporated Slide 113 Digital Signal Controller

MAC Class of DSP InstructionsMAC Class of DSP InstructionsMAC Class of DSP Instructions

Sample Instruction
MAC    W4*W5, A, [W8]+=2, W4, [W10]-=6, W5, W13]

Sample Instruction
MAC    W4*W5, A, [W8]+=2, W4, [W10]-=6, W5, W13]

Source 
operand 
registers

X X 
prefetch prefetch 
sourcesource

Y Y 
prefetch prefetch 
sourcesource

X X 
prefetch prefetch 

destinationdestination

Y Y 
prefetch prefetch 

destinationdestinationDestination 
accumulator

Optional Arguments

Other Acc.
Write-back
destination

Basic Syntax
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DSP Engine Block DiagramDSP Engine Block DiagramDSP Engine Block Diagram
40-bit Accumulator A

40-bit Accumulator B

Adder

Saturate

Negate

Sign Extend

17-bit 
Multiplier/Scaler

Operand Pre-Processing
Ze

ro
- b
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k f

ill
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a  
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To W Array

16 16
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ADC does support directly 
Fractional data format

ADC does support directly ADC does support directly 
Fractional data formatFractional data format

Scaling everything to -1….0…+1 makes
the control-loop much easier to 
handle.

Scaling everything to -1….0…+1 makes
the control-loop much easier to 
handle.

Word
Value

Integer
Value

Fractional
Value

0x8000 -32768 -1.0
0xA000 -24576 -0.75
0xC000 -16384 -0.5
0xE000 -8192 -0.25
0x0000 0 0.0
0x2000 8192 +0.25
0x4000 16384 +0.5
0x6000 24576 +0.75
0x7FFF 32767 +0.999969
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Measuring Motor Speed with 
Input Capture (IC)

Measuring Motor Speed with Measuring Motor Speed with 
Input Capture (IC)Input Capture (IC)

dsPIC® DSC has Input Capture inputs:
The period from the IC Channel is used to 
measure the actual motor angular speed
Detect digital changes on a specific input 
pin (Hall Sensor) and generates an interrupt
One of the Hall effect sensors is connected 
to an IC Channel
When ICxInterrupt occurs, the period 
between IC input transitions is buffered

dsPIC® DSC has Input Capture inputs:
The period from the IC Channel is used to 
measure the actual motor angular speed
Detect digital changes on a specific input 
pin (Hall Sensor) and generates an interrupt
One of the Hall effect sensors is connected 
to an IC Channel
When ICxInterrupt occurs, the period 
between IC input transitions is buffered
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Speed Calculation w dsPIC 
Engine

Speed Calculation w dsPIC Speed Calculation w dsPIC 
EngineEngine

Measured 
Speed Speed

Calculation

Hall Sensor
Period

Measured 
Speed = (Fractional Divide)

Minimum Period

IC Period

Fast Speed Calculation using dsPIC®

DSC Engine
Small code size

Fast Speed Calculation using dsPIC®

DSC Engine
Small code size
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Lab5 – Running Closed-
Loop BLDC Motor

Lab5 Lab5 –– Running ClosedRunning Closed--
Loop BLDC MotorLoop BLDC Motor

3-Phase
Inverter BLDC6-Step 

Generation

Main State 
Machine

Start /
Stop

3-Phase 
Voltages

Hall 
Sensors

Angular 
Position

dsPIC30F
+5V

Required
Speed

Duty
Cycles

+ - PID
Error Voltage

Speed
Calculation

Measured
Speed

IC Period

10
-b

it 
A

D
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G
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O

M
C

PW
M

C
N

IC
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Control 
Technique:
Control 
Technique:

Hall Change ISR

Calculate Speed

Read new Hall values

Duty Cycle = PID Output

Periodic ISR

Desired Speed = ADC

Return

Process PID

Lab5 – Running Closed-
Loop BLDC Motor

Lab5 Lab5 –– Running ClosedRunning Closed--
Loop BLDC MotorLoop BLDC Motor

New Commutation

Return
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Lab5 – Running Closed-Loop 
BLDC Motor

Lab5 Lab5 –– Running ClosedRunning Closed--Loop Loop 
BLDC MotorBLDC Motor

Instructions for Lab5:
Use workspace 
“C:\WIB\Lab5\Lab5.mcw”
Follow Lab 1 instructions to:

Compile code
Program dsPIC® DSC 
Run code

Continued...

Instructions for Lab5:
Use workspace 
“C:\WIB\Lab5\Lab5.mcw”
Follow Lab 1 instructions to:

Compile code
Program dsPIC® DSC 
Run code

Continued...
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Lab5 – Running Closed-
Loop BLDC Motor

Lab5 Lab5 –– Running ClosedRunning Closed--
Loop BLDC MotorLoop BLDC Motor

Press S2 to start motor
Use Pot to set the Speed Reference of the motor
Calculate speed of the motor
Notice that the duty cycle is automatically 
adjusted to keep the same speed, even when 
changing the load
WHY?
Press S2 to stop the motor

Press S2 to start motor
Use Pot to set the Speed Reference of the motor
Calculate speed of the motor
Notice that the duty cycle is automatically 
adjusted to keep the same speed, even when 
changing the load
WHY?
Press S2 to stop the motor
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Lab5 ResultsLab5 ResultsLab5 Results

Speed Control a Sensored BLDC motor
Implementing a PID digital controller 
using DSP engine of a dsPIC® DSC
Use dsPIC DSC’s PWM, OVDCON, CN and 
IC feature to control the speed of the 
BLDC motor

Speed Control a Sensored BLDC motor
Implementing a PID digital controller 
using DSP engine of a dsPIC® DSC
Use dsPIC DSC’s PWM, OVDCON, CN and 
IC feature to control the speed of the 
BLDC motor
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Lab 6. Running 
Sinusoidal BLDC Motor

Lab 6. Lab 6. Running Running 
Sinusoidal BLDC MotorSinusoidal BLDC Motor



© 2005 Microchip Technology Incorporated Slide 124 Digital Signal Controller

Lab6 – Running Sinusoidal 
BLDC Motor

Lab6 Lab6 –– Running Sinusoidal Running Sinusoidal 
BLDC MotorBLDC Motor

Used for reducing audible noise and reducing 
torque ripple
Control technique used in Sinusoidal Back EMF 
motors, usually called Brushless AC
Each hall effect sensor transition updates the 
sine phase
The frequency of the generated sine wave 
depends on the motor actual speed
The amplitude will depend on the speed 
controller output

Used for reducing audible noise and reducing 
torque ripple
Control technique used in Sinusoidal Back EMF 
motors, usually called Brushless AC
Each hall effect sensor transition updates the 
sine phase
The frequency of the generated sine wave 
depends on the motor actual speed
The amplitude will depend on the speed 
controller output
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Lab6 – Running Sinusoidal 
BLDC Motor

Lab6 Lab6 –– Running Sinusoidal Running Sinusoidal 
BLDC MotorBLDC Motor

Sine Phase

BR G

Q1 Q3Q2

Q4 Q6Q5

Green Winding

60 120 180 240 300 0

60o

HALL A

HALL B

HALL C

60 1200

Sector 5

Hall States
0 1 2

5 4 6 2

3

3
4

1

5
5

0
4

1
6

Blue Winding

Red Winding

2% 50% 98%

50%



© 2005 Microchip Technology Incorporated Slide 126 Digital Signal Controller

Lab6 – Running Sinusoidal 
BLDC Motor

Lab6 Lab6 –– Running Sinusoidal Running Sinusoidal 
BLDC MotorBLDC Motor

Sine Phase

Green Winding

60 120 180 240 300 0

60o

HALL A

HALL B

HALL C

60 1200

Sector 5

Hall States

0 1 2

5 4 6 2

3

3

4

1

5

5

0

4

1

6

Blue Winding

Red Winding

1 1

1
2
3

1
2
3

1
2
31 1 1 1 1

1

2

3

Operations
Executed

Set Sine wave Phase according to new 
sector

Calculate period of one hall effect 
sensor using Input Capture value

Apply new sine wave period according 
to previous Hall effect period (Op 2)



© 2005 Microchip Technology Incorporated Slide 127 Digital Signal Controller

Lab6 – Running Sinusoidal 
BLDC Motor

Lab6 Lab6 –– Running Sinusoidal Running Sinusoidal 
BLDC MotorBLDC Motor

3-Phase
Inverter BLDCGeneration

Main State 
Machine

Start /
Stop

3-Phase 
Voltages

Hall 
Sensors

Angular 
Position

dsPIC30F
+5V

Required
Speed

Duty
Cycles

+ - PID
Error

Amplitude

Speed
Calculation

Measured
Speed

IC Period

10
-b

it 
A

D
C

 
G

PI
O

M
C

PW
M

C
N

IC

Sine Waves
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Control Technique:Control Technique:
Hall Change ISR

Calculate Speed

Read new Hall values

Periodic ISR

Desired Speed = ADC

Return

Process PID

Lab6 – Running Sinusoidal 
BLDC Motor

Lab6 Lab6 –– Running Sinusoidal Running Sinusoidal 
BLDC MotorBLDC Motor

Set new Phase for sine

Return

PWM ISR

Calculate Phase Inc
Based on Speed

Return

Modulate Sine Wave
Based on PID Output
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Lab6 – Running Sinusoidal 
BLDC Motor

Lab6 Lab6 –– Running Sinusoidal Running Sinusoidal 
BLDC MotorBLDC Motor

Instructions for Lab6:
Use workspace 
“C:\WIB\Lab6\Lab6.mcw”
Follow Lab 1 instructions to:

Compile code
Program dsPIC® DSC 
Run code

Continued...

Instructions for Lab6:
Use workspace 
“C:\WIB\Lab6\Lab6.mcw”
Follow Lab 1 instructions to:

Compile code
Program dsPIC® DSC 
Run code

Continued...
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Lab6 – Running Sinusoidal 
BLDC Motor

Lab6 Lab6 –– Running Sinusoidal Running Sinusoidal 
BLDC MotorBLDC Motor

Press S2 to start motor
Use Pot to set the Speed Reference of the 
motor
Work with a partner to compare with 
previous Lab
Notice that the noise from the motor has 
been significantly reduced by using 
sinusoidal control
Press S2 to stop the motor

Press S2 to start motor
Use Pot to set the Speed Reference of the 
motor
Work with a partner to compare with 
previous Lab
Notice that the noise from the motor has 
been significantly reduced by using 
sinusoidal control
Press S2 to stop the motor
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Six-Step Control
Trapezoidal Phase Voltage

Sinusoidal Phase Voltage

Lab6 – Running Sinusoidal 
BLDC Motor

Lab6 Lab6 –– Running Sinusoidal Running Sinusoidal 
BLDC MotorBLDC Motor



© 2005 Microchip Technology Incorporated Slide 132 Digital Signal Controller

Sinusoidal control of a BLDC motor
Reduced audible noise
Reduced torque ripple
CE003. Driving a BLDC with Sinusoidal 
Voltages using dsPIC30F.

Sinusoidal control of a BLDC motor
Reduced audible noise
Reduced torque ripple
CE003. Driving a BLDC with Sinusoidal 
Voltages using dsPIC30F.

Lab6 ResultsLab6 ResultsLab6 Results
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Lab 7. BLDC Operation 
with Phase Advance

Lab 7. BLDC Operation Lab 7. BLDC Operation 
with Phase Advancewith Phase Advance
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Lab 7. BLDC Operation with 
Phase Advance

Lab 7. BLDC Operation with Lab 7. BLDC Operation with 
Phase AdvancePhase Advance

Drive voltages are shifted (Phase advanced) 
compared to back EMF
Phase advance will produce an increase in the 
stator field, which increases the speed of the 
motor
Phase shift will produce a negative field on the 
rotor, which will reduce the overall torque 
available in the motor
For light loads, the speed is significantly 
increased using phase advance, sacrificing full 
load torque, efficiency and audible noise

Drive voltages are shifted (Phase advanced) 
compared to back EMF
Phase advance will produce an increase in the 
stator field, which increases the speed of the 
motor
Phase shift will produce a negative field on the 
rotor, which will reduce the overall torque 
available in the motor
For light loads, the speed is significantly 
increased using phase advance, sacrificing full 
load torque, efficiency and audible noise
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Lab 7. BLDC Operation with 
Phase Advance

Lab 7. BLDC Operation with Lab 7. BLDC Operation with 
Phase AdvancePhase Advance

Consists on commutating the motor 
before the next hall effect sensor 
transition has occurred
Knowing the motor speed, we can 
schedule a commutation with a timer, 
before the next hall effect sensor 
interrupt occurs
Phase advance technique substantially 
increases speed range
It also helps to compensate 
misalignments on the hall effect sensor

Consists on commutating the motor 
before the next hall effect sensor 
transition has occurred
Knowing the motor speed, we can 
schedule a commutation with a timer, 
before the next hall effect sensor 
interrupt occurs
Phase advance technique substantially 
increases speed range
It also helps to compensate 
misalignments on the hall effect sensor
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Plots showing the effect of 
Phase Advance at High Speed

Plots showing the effect of Plots showing the effect of 
Phase Advance at High SpeedPhase Advance at High Speed

NO ADVANCE

15° ADVANCE

5 0 1 2SECTOR

0

0
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Lab7 – BLDC Operation 
with Phase Advance

Lab7 Lab7 –– BLDC Operation BLDC Operation 
with Phase Advancewith Phase Advance

3-Phase
Inverter BLDC6-Step 

Generation

Main State 
Machine

Start /
Stop

3-Phase 
Voltages

Hall 
Sensors

Angular 
Position

dsPIC30F
+5V Duty
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Control 
Technique:

Control 
Technique:

Lab7 – BLDC Operation 
with Phase Advance

Lab7 Lab7 –– BLDC Operation BLDC Operation 
with Phase Advancewith Phase Advance

Hall Change ISR

Calculate Speed

Schedule ISR Based on
Actual Speed

Return

Duty Cycle = ADC

Save Hall values

Scheduled ISR

New Commutation, 
Actual Sector + 1

Return

Load saved Hall values

Predict new Hall values
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Lab7 – BLDC Operation 
with Phase Advance

Lab7 Lab7 –– BLDC Operation BLDC Operation 
with Phase Advancewith Phase Advance

Instructions for Lab7:
Use workspace 
“C:\WIB\Lab7\Lab7.mcw”
Follow Lab 1 instructions to:

Compile code
Program dsPIC® DSC 
Run code

Continued...

Instructions for Lab7:
Use workspace 
“C:\WIB\Lab7\Lab7.mcw”
Follow Lab 1 instructions to:

Compile code
Program dsPIC® DSC 
Run code

Continued...
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Press S2 to start motor
Use Pot to set the Voltage applied to the 
motor
Notice that the maximum speed of the 
motor is extended using Phase Advance
Although, motor is very noisy and current 
consumption is higher
WHY?
Press S2 to stop the motor

Press S2 to start motor
Use Pot to set the Voltage applied to the 
motor
Notice that the maximum speed of the 
motor is extended using Phase Advance
Although, motor is very noisy and current 
consumption is higher
WHY?
Press S2 to stop the motor

Lab7 – BLDC Operation 
with Phase Advance

Lab7 Lab7 –– BLDC Operation BLDC Operation 
with Phase Advancewith Phase Advance
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Lab7 – BLDC Operation 
with Phase Advance

Lab7 Lab7 –– BLDC Operation BLDC Operation 
with Phase Advancewith Phase Advance

1 A Peak

Extended Speed:
6500 RPM
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Details of ProgramDetails of ProgramDetails of Program

Use MPLAB® IDE to go thru sections 
of the code
Use MPLAB® IDE to go thru sections 
of the code
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Phase advance control
Extended speed range of up to 70% 
(motor dependent)
Trade-off, current consumption and 
audible noise.

Phase advance control
Extended speed range of up to 70% 
(motor dependent)
Trade-off, current consumption and 
audible noise.

Lab7 ResultsLab7 ResultsLab7 Results
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Sensorless BLDC MotorSensorless BLDC MotorSensorless BLDC Motor
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Why sensorless?Why sensorless?Why sensorless?
Reliability – especially aerospace, military
Physical space restrictions – axial length.
Issues surrounding sealing of connections
Applications where rotor runs “flooded”
Manufacturability – alignment and duty cycle 
tolerance
Cost – especially on low power systems

Even at high volumes, position sensing can 
add $3 to system cost.

Reliability – especially aerospace, military
Physical space restrictions – axial length.
Issues surrounding sealing of connections
Applications where rotor runs “flooded”
Manufacturability – alignment and duty cycle 
tolerance
Cost – especially on low power systems

Even at high volumes, position sensing can 
add $3 to system cost.
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BLDC Sensorless TechniquesBLDC Sensorless TechniquesBLDC Sensorless Techniques

AN901 uses Back EMF sensing
Reliable
Varies linearly with speed 
Works over a wide range of BLDC Motors
Relatively easy to implement
Works well for applications like Fan or 
pump speed control

Method used is called Back EMF “zero 
crossing” method

Consists of monitoring the voltage of the 
inactive winding for “zero crossing”

AN901 uses Back EMF sensing
Reliable
Varies linearly with speed 
Works over a wide range of BLDC Motors
Relatively easy to implement
Works well for applications like Fan or 
pump speed control

Method used is called Back EMF “zero 
crossing” method

Consists of monitoring the voltage of the 
inactive winding for “zero crossing”
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What is BEMF?What is BEMF?What is BEMF?
When a DC motor spins, 
the PM rotor, moving past 
the stator coils induces a 
electrical potential in the 
coils called Back EMF.
BEMF is directly 
proportional to speed
BEMF = RPM/Kv
In order to sense BEMF 
we have to spin the motor. 

When a DC motor spins, 
the PM rotor, moving past 
the stator coils induces a 
electrical potential in the 
coils called Back EMF.
BEMF is directly 
proportional to speed
BEMF = RPM/Kv
In order to sense BEMF 
we have to spin the motor. 

BEMF

Motor

R L
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BLDC Motor Back EMF BLDC Motor Back EMF BLDC Motor Back EMF 

A

C B

DC+

DC-

Back EMF

Phase A and C are 
energized
Inactive Phase B 
has induced Back 
EMF
Normally the phase 
which is not 
energized, is 
monitored for Back 
EMF
Important: Motor 
has to be spinning

Phase A and C are 
energized
Inactive Phase B 
has induced Back 
EMF
Normally the phase 
which is not 
energized, is 
monitored for Back 
EMF
Important: Motor 
has to be spinning
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Back EMF Crossing 
Diagram

Back EMF Crossing Back EMF Crossing 
DiagramDiagram

T30

T60

5 0 1 2 3 4 5 0 1SECTOR

0

0

0
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The Back EMF “zero 
crossing” method in detail

The Back EMF The Back EMF ““zero zero 
crossingcrossing”” method in detailmethod in detail

In every electrical cycle, there are periods when 
each phase is not being driven.
During these regions one end of the inactive phase 
is referenced to the star point and the other is 
monitored.
The monitored voltage will cross the 1/2 VDD point 
at 30 electrical degrees.
Knowing the last “zero crossing” time we know the 
60 electrical degree time (T60)
T60 divided by 2 = T30 is loaded in TMR2.
The ISR of TMR2 then commutes the next pair of 
windings at T30 seconds later

In every electrical cycle, there are periods when 
each phase is not being driven.
During these regions one end of the inactive phase 
is referenced to the star point and the other is 
monitored.
The monitored voltage will cross the 1/2 VDD point 
at 30 electrical degrees.
Knowing the last “zero crossing” time we know the 
60 electrical degree time (T60)
T60 divided by 2 = T30 is loaded in TMR2.
The ISR of TMR2 then commutes the next pair of 
windings at T30 seconds later
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BEMF v/s Hall sensorsBEMF v/s Hall sensorsBEMF v/s Hall sensors

Back EMF

Hall sensor
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AN901 method to Monitor 
Back EMF

AN901 method to Monitor AN901 method to Monitor 
Back EMFBack EMF

• Back EMF signal read using A/D Channels
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How to “Start Spinning”How to How to ““Start SpinningStart Spinning””
The motor is energized Open Loop (no feedback)
The speed is ramped up to a programmable value
At a given time two winding are energized. The 
third is monitored for Back EMF
The unexcited windings are then monitored for two 
rising edges (120° information)
From the time and sequencing of the edges we can 
determine the speed and rotation direction
The BEMF sensing algorithm is now applied to 
rotate the motor

The motor is energized Open Loop (no feedback)
The speed is ramped up to a programmable value
At a given time two winding are energized. The 
third is monitored for Back EMF
The unexcited windings are then monitored for two 
rising edges (120° information)
From the time and sequencing of the edges we can 
determine the speed and rotation direction
The BEMF sensing algorithm is now applied to 
rotate the motor
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Starting Algorithm 
Parameters used in AN901

Starting Algorithm Starting Algorithm 
Parameters used in AN901Parameters used in AN901

Lock Position 1 Time
Before starting, motor is rotated to a known 
position
The amount of time that the rotor is held in 
that position is LP1T

Lock Position 1 Demand
Speed at which the rotor moves to the lock 
position
If value is too high then rotor may 
overshoot the position

Lock Position 1 Time
Before starting, motor is rotated to a known 
position
The amount of time that the rotor is held in 
that position is LP1T

Lock Position 1 Demand
Speed at which the rotor moves to the lock 
position
If value is too high then rotor may 
overshoot the position
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Starting Algorithm 
Parameters used in AN901

Starting Algorithm Starting Algorithm 
Parameters used in AN901Parameters used in AN901

Ramp Start/End Speed:
Open loop speed to get the rotor moving 
before back EMF is monitored
Too low a speed will not generate enough 
back EMF
Too high a speed may cause an over-
current stall
Rotor is accelerated from Ramp Start speed 
to the Ramp End Speed in the Ramp 
Duration time – Acceleration Profile. 

Ramp Start/End Speed:
Open loop speed to get the rotor moving 
before back EMF is monitored
Too low a speed will not generate enough 
back EMF
Too high a speed may cause an over-
current stall
Rotor is accelerated from Ramp Start speed 
to the Ramp End Speed in the Ramp 
Duration time – Acceleration Profile. 
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Starting Algorithm 
Parameters used in AN901

Starting Algorithm Starting Algorithm 
Parameters used in AN901Parameters used in AN901

Ramp Start/End Demand:
The amount of “torque” required to spin the 
motor without slipping
If the rotor appears to be spinning slowly as 
the ramp time proceeds then the ramp 
demand needs to be increased
If the whole motor vibrated when the ramp 
time increases then the demand is too high 
and most likely the over current will trip

Ramp Start/End Demand:
The amount of “torque” required to spin the 
motor without slipping
If the rotor appears to be spinning slowly as 
the ramp time proceeds then the ramp 
demand needs to be increased
If the whole motor vibrated when the ramp 
time increases then the demand is too high 
and most likely the over current will trip
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Lab 8. Running Sensorless BLDC 
Motor

Lab 8. Running Sensorless BLDC 
Motor
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Lab8 Jumper settingsLab8 Jumper settingsLab8 Jumper settings
Turn MCLV board over and refer to 
the jumper settings for “dsPIC 
Sensorless”
Keep Potentiometer REF(R14) and 
R60 in center position
Disconnect Hall Sensors from Motor 
(Black connector)

Turn MCLV board over and refer to 
the jumper settings for “dsPIC 
Sensorless”
Keep Potentiometer REF(R14) and 
R60 in center position
Disconnect Hall Sensors from Motor 
(Black connector)
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dsPIC® DSC Sensored 
Settings

dsPICdsPIC®® DSC Sensored DSC Sensored 
SettingsSettings
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Running Sensorless BLDC 
Motor

Running Sensorless BLDC Running Sensorless BLDC 
MotorMotor
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Sensorless Motor Tuning 
Interface (SMTI) 

Sensorless Motor Tuning Sensorless Motor Tuning 
Interface (SMTI) Interface (SMTI) 

Visual tool for 
Tuning sensorless 
BLDC Applications 
Runs with MPLAB®

ICD 2
Can change any 
parameter specified 
in AN901
See GS005 for 
Operation Details

Visual tool for 
Tuning sensorless 
BLDC Applications 
Runs with MPLAB®

ICD 2
Can change any 
parameter specified 
in AN901
See GS005 for 
Operation Details
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Lab8 – Running Sensorless BLDC 
Motor using dsPIC® DSC 

Lab8 Lab8 –– Running Sensorless BLDC Running Sensorless BLDC 
Motor using dsPICMotor using dsPIC®® DSC DSC 

Instructions for Lab8:
Use workspace 
“C:\WIB\Lab8\Lab8.mcw”
Follow Lab 1 instructions to:

Compile code
Program dsPIC 
Run code

Disconnect Black connector from Motor
Continued...

Instructions for Lab8:
Use workspace 
“C:\WIB\Lab8\Lab8.mcw”
Follow Lab 1 instructions to:

Compile code
Program dsPIC 
Run code

Disconnect Black connector from Motor
Continued...
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Lab8 – Running Sensorless BLDC 
Motor using dsPIC® DSC

Lab8 Lab8 –– Running Sensorless BLDC Running Sensorless BLDC 
Motor using dsPICMotor using dsPIC®® DSCDSC

Open Sensorless Motor Tuning 
Interface
Click on Halt in the SMTI window
Click on Refresh in the SMTI window

PART I
Change parameters as per next slide

Open Sensorless Motor Tuning 
Interface
Click on Halt in the SMTI window
Click on Refresh in the SMTI window

PART I
Change parameters as per next slide

SMTI runs ONLY under Debugger, not ProgrammerSMTI runs ONLY under Debugger, not Programmer
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Lab8 – Running Sensorless BLDC 
Motor using dsPIC® DSC

Lab8 Lab8 –– Running Sensorless BLDC Running Sensorless BLDC 
Motor using dsPICMotor using dsPIC®® DSCDSC
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Lab8 – Running Sensorless BLDC 
Motor using dsPIC® DSC

Lab8 Lab8 –– Running Sensorless BLDC Running Sensorless BLDC 
Motor using dsPICMotor using dsPIC®® DSCDSC

Click on Start in the SMTI window
Press S2 to start motor
Motor appears to start but does not 
spin
WHY?

Start demand is to low to keep the 
motor running while ramping up.
Hint. Increase the start/end speed ramp 
demand when motor slips

Click on Start in the SMTI window
Press S2 to start motor
Motor appears to start but does not 
spin
WHY?

Start demand is to low to keep the 
motor running while ramping up.
Hint. Increase the start/end speed ramp 
demand when motor slips
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Lab8 – Running Sensorless BLDC 
Motor using dsPIC® DSC

Lab8 Lab8 –– Running Sensorless BLDC Running Sensorless BLDC 
Motor using dsPICMotor using dsPIC®® DSCDSC

Press S2 to stop/reset the motor
Click on Halt in the SMTI window

PART II
Change parameters as per next slide

Press S2 to stop/reset the motor
Click on Halt in the SMTI window

PART II
Change parameters as per next slide
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Lab8 – Running Sensorless BLDC 
Motor using dsPIC® DSC

Lab8 Lab8 –– Running Sensorless BLDC Running Sensorless BLDC 
Motor using dsPICMotor using dsPIC®® DSCDSC
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Lab8 – Running Sensorless BLDC 
Motor using dsPIC® DSC

Lab8 Lab8 –– Running Sensorless BLDC Running Sensorless BLDC 
Motor using dsPICMotor using dsPIC®® DSCDSC

Click on Start in the SMTI window
Press S2 to start motor
Motor appears to start but does not spin
Observe the mechanics of the motor
What is happening?

The motor is vibrating in each sector while ramping 
up, because the demand was to high
This generates a lot of start up current and bad back 
EMF feedback
Hint. Reduce the start/end demands when motor 
vibrates in every sector while ramping. If we reduce 
the demands more than we should, the motor will 
start slipping again

Click on Start in the SMTI window
Press S2 to start motor
Motor appears to start but does not spin
Observe the mechanics of the motor
What is happening?

The motor is vibrating in each sector while ramping 
up, because the demand was to high
This generates a lot of start up current and bad back 
EMF feedback
Hint. Reduce the start/end demands when motor 
vibrates in every sector while ramping. If we reduce 
the demands more than we should, the motor will 
start slipping again
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Lab8 – Running Sensorless BLDC 
Motor using dsPIC® DSC

Lab8 Lab8 –– Running Sensorless BLDC Running Sensorless BLDC 
Motor using dsPICMotor using dsPIC®® DSCDSC

Press S2 to stop/reset the motor
Click on Halt in the SMTI window

Part III
Change parameters as per next 
slide

Press S2 to stop/reset the motor
Click on Halt in the SMTI window

Part III
Change parameters as per next 
slide
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Lab8 – Running Sensorless BLDC 
Motor using dsPIC® DSC

Lab8 Lab8 –– Running Sensorless BLDC Running Sensorless BLDC 
Motor using dsPICMotor using dsPIC®® DSCDSC
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Lab8 – Running Sensorless BLDC 
Motor using dsPIC® DSC

Lab8 Lab8 –– Running Sensorless BLDC Running Sensorless BLDC 
Motor using dsPICMotor using dsPIC®® DSCDSC

Click on Start in the SMTI window
Press S2 to start motor
Motor appears to start but does not spin
What is wrong?

The motor is ramping with good torque and 
does not slip, but the end speed is too low. 
Back EMF zero crossings are still not 
detectable by the controller.
Hint. When ramping up a motor, try to set a 
maximum speed of 50% of the motor rated 
speed, which is around 2000 RPM in this 
Motor

Click on Start in the SMTI window
Press S2 to start motor
Motor appears to start but does not spin
What is wrong?

The motor is ramping with good torque and 
does not slip, but the end speed is too low. 
Back EMF zero crossings are still not 
detectable by the controller.
Hint. When ramping up a motor, try to set a 
maximum speed of 50% of the motor rated 
speed, which is around 2000 RPM in this 
Motor
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Lab8 – Running Sensorless BLDC 
Motor using dsPIC® DSC

Lab8 Lab8 –– Running Sensorless BLDC Running Sensorless BLDC 
Motor using dsPICMotor using dsPIC®® DSCDSC

Press S2 to stop/reset the motor
Click on Halt in the SMTI window

PART IV
Change parameters as per next slide

Press S2 to stop/reset the motor
Click on Halt in the SMTI window

PART IV
Change parameters as per next slide
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Lab8 – Running Sensorless BLDC 
Motor using dsPIC® DSC

Lab8 Lab8 –– Running Sensorless BLDC Running Sensorless BLDC 
Motor using dsPICMotor using dsPIC®® DSCDSC
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Lab8 – Running Sensorless BLDC 
Motor using dsPIC® DSC

Lab8 Lab8 –– Running Sensorless BLDC Running Sensorless BLDC 
Motor using dsPICMotor using dsPIC®® DSCDSC

Keep Pot in center position
Click on Start in the SMTI window
Press S2 to start motor
Does the motor spin?
Press S2 to stop/reset the motor

Discuss why the motor spins 
Use AN992: Sensorless Control of 

BLDC motor using dsPIC30F2010, for 
details 

Keep Pot in center position
Click on Start in the SMTI window
Press S2 to start motor
Does the motor spin?
Press S2 to stop/reset the motor

Discuss why the motor spins 
Use AN992: Sensorless Control of 

BLDC motor using dsPIC30F2010, for 
details 
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Phase PWM 
Voltage

BEMF Zero
Crossing

Lab8 – Running Sensorless BLDC 
Motor using dsPIC® DSC

Lab8 Lab8 –– Running Sensorless BLDC Running Sensorless BLDC 
Motor using dsPICMotor using dsPIC®® DSCDSC
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SummarySummarySummary
BLDC motor basics
Blindly spin a BLDC motor
Improve efficiency by using Hall sensors 
Used dsPIC peripherals to spin a sensored 
BLDC motor
Controlling BLDC Speed with Digital PID
Reducing audible noise of BLDC with 
Sinusoidal control
Extending speed range with Phase Advance 
control
Techniques for sensorless control
Modified Parameters in AN901 to spin a 
sensorless BLDC motor

BLDC motor basics
Blindly spin a BLDC motor
Improve efficiency by using Hall sensors 
Used dsPIC peripherals to spin a sensored 
BLDC motor
Controlling BLDC Speed with Digital PID
Reducing audible noise of BLDC with 
Sinusoidal control
Extending speed range with Phase Advance 
control
Techniques for sensorless control
Modified Parameters in AN901 to spin a 
sensorless BLDC motor
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Reference Application Notes 
and Collateral

Reference Application Notes Reference Application Notes 
and Collateraland Collateral

GS001: Getting Started with BLDC Motors and dsPIC30F
GS002: Measuring Speed and Position with the QEI Module
GS004: Driving an ACIM with the dsPIC MWPWM Module
GS005: Using the dsPIC30F Sensorless Motor Tuning Interface 
CE003: Driving a BLDC with Sinusoidal Voltages using dsPIC30F
AN901: Sensorless Control of BLDC Motor using dsPIC30F
AN907: Using the dsPIC30F for Vector Control of an ACIM 
AN957 : Sensored Control of BLDC Motor using dsPIC30F2010 
AN992: Sensorless Control of BLDC Motor using dsPIC30F2010

GS001: Getting Started with BLDC Motors and dsPIC30F
GS002: Measuring Speed and Position with the QEI Module
GS004: Driving an ACIM with the dsPIC MWPWM Module
GS005: Using the dsPIC30F Sensorless Motor Tuning Interface 
CE003: Driving a BLDC with Sinusoidal Voltages using dsPIC30F
AN901: Sensorless Control of BLDC Motor using dsPIC30F
AN907: Using the dsPIC30F for Vector Control of an ACIM 
AN957 : Sensored Control of BLDC Motor using dsPIC30F2010 
AN992: Sensorless Control of BLDC Motor using dsPIC30F2010
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Thanks for Attending!
Good Luck in Your 

Development

Thanks for Attending!
Good Luck in Your 

Development
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