
© 2006 Microchip Technology Incorporated. All Rights Reserved. Page 1

204 ADV
16-bit Advanced

Peripherals
Hand Out

© 2006 Microchip Technology Incorporated. All Rights Reserved. 204 ADV Page 2

Explorer 16
POTPOT

ICD2 connectorICD2 connector

RS232 connectorRS232 connector
SwitchesSwitchesLEDsLEDs

RESET SWITCHRESET SWITCH

© 2006 Microchip Technology Incorporated. All Rights Reserved. 204 ADV Page 3

MPLAB Navigation

Quick ways to find functions
or variables in MPLAB
− Source Locator

To Enable
− Right-click on editor and go to

“Properties…”
− Check “Enable Source Locator”
− On the Project window, click on the

“Symbols” tab. Right click and check
“Enable Tag Locators”

Use this feature to quickly
navigate through large
applications
− Right-click on a function or variable in

code and select “Goto Locator” to
jump its definition

− In the project window under the
symbols tab, you can browse through
and double click items to jump there
in code

− Edit->Find in Files (ctrl+shift+F)
Use this to search all files in the
project for a variable, function
name, or anything else

© 2006 Microchip Technology Incorporated. All Rights Reserved. Page 4

Lab 1
Parallel Master Port

(PMP)

© 2006 Microchip Technology Incorporated. All Rights Reserved. 204 ADV Page 5

Lab 1 Goals

To configure the PMP
module
To understand the signals
required to interface with a
LCD
To display a string on LCD

© 2006 Microchip Technology Incorporated. All Rights Reserved. 204 ADV Page 6

Lab 1 To Do

In LCD.c
− STEP 1

Configure PMPCON: PMP on, address/data
not multiplexed, PMPBE active high,
PMPWR I/O, PMPRD I/O, 8-bit data,
PMPENB and PMPRD/~PMPWR active
high.

− STEP 2
Configure PMPMODE: Interrupts, stall,
buffers, inc/dec off, 8 bit mode,
combined read/write with byte enable
signals, and max the 3 wait delays.

− STEP 3
Configure PMPEN: Enable A0 function to
control RS and disable all other PMP
address pins.

− STEP 4
Configure PMPADDR: A0 selects type of
instruction, either command or data.
This is a command so A0 should be low.

© 2006 Microchip Technology Incorporated. All Rights Reserved. 204 ADV Page 7

Lab 1 To Do

In main.c
− STEP 5:

Change text to your name

Extra Credit for advanced
users
− Modify code provided to display

the rotating banners in
my_banner

− Useful variables and functions:
pban, num_banners, wait_time,
mLCDPutChar(char), and
mLCDClear()

− Refer to comments in code for
explanation of functions

© 2006 Microchip Technology Incorporated. All Rights Reserved. 204 ADV Page 8

Lab 1
PMP Registers

PMCON: PMP Control RegisterPMCON: PMP Control Register

Address/Data Muxing Selection bits
10: A15-A8 & A7-A0

multiplexed with D7-D0
01: A7-A0 is multiplexed with D7-D0
00: No Address/Data multiplexing

PTRDENPTWRENPTBEENADRMUX0ADRMUX1PSIDL--PMPEN

Bit:8Bit:15

PMP Module
Enable bits

PMP Module
enable/disable in
IDLE mode bit

Byte-Enable
port enable bit

Write or Enable
signal port enable bit

Read or Rd/Wr
signal port
enable bit

RDSPWRSPBEPCS1PCS2PALPCSF0CSF1
Bit:0Bit:7

Chip Select Function Selection bits
10: CS2 & CS1 both are used as chip select
01: CS2 is used as chip select and CS1 as A14
00: CS2 & CS1 are used as A15 & A14

Signal ALEs, CS2, CS1, Byte-Enable, WR or
Enb, RD or Rd/Wr polarity Selection bits
1: Active High
0: Active Low

Refer to PIC24FJ128GA010 Data Sheet, page 140

© 2006 Microchip Technology Incorporated. All Rights Reserved. 204 ADV Page 9

Lab 1
PMP Registers

PMMODE: PMP Mode Selection RegisterPMMODE: PMP Mode Selection Register

Address inc/dec Selection
bits
11: Buffer mode
10: Auto address decrement
01: Auto address increment
00: No Address inc/dec

MODE0MODE1MODE16INCM0INCM1IRQM0IRQM1BUSY
Bit:8Bit:15

PMP Module
Status bits

Interrupt Mode Selection bits
11: Interrupt is generated when

buffer is full
01: Interrupt is generated at the

end of Read/Write cycle
1x: No Interrupt is generated

Data Bus Width
Selection bit
1: 16-bit
0: 8-bit

Mode Selection bits
11: Master Mode with controls,

CSs, Rd/Wr, Enb, BE, ALEs
10: Master Mode with controls,

CSs, Read, Write, BE, ALEs
01: Enhanced Slave Mode
00: Legacy Slave Mode

WAITE0WAITE1WAITM0WAITM1WAITM2WAITM3WAITB0WAITB1

Bit:0Bit:7

Begining phase Wait
Selection bits
11: 4 Tcycle
10: 3 Tcycle
01: 2 Tcycle
00: 1 Tcycle

Final phase Wait
Selection bits
11: 4 Tcycle
10: 3 Tcycle
01: 2 Tcycle
00: 1 Tcycle

Middle phase Wait Selection bits
1111: 15 Tcycle
1110: 14 Tcycle
..
0001: 1 Tcycle
0000: No Wait cycles

Refer to PIC24FJ128GA010 Data Sheet, page 142

© 2006 Microchip Technology Incorporated. All Rights Reserved. 204 ADV Page 10

Lab 1
LCD Operation

VVDDDD

VssVss

PIC24PIC24 LCD ModuleLCD Module

PMRD/PMWRPMRD/PMWR

PMENBPMENB

RSRS

D0D0--D7D7

EnEn R/WR/W

PMA0PMA0

RSRS

PMP to LCD Connections

LCD write timing

© 2006 Microchip Technology Incorporated. All Rights Reserved. 204 ADV Page 11

Lab 1
Expected Result

Name is displayed on
the LCD

For extra credit:
Rotate banner
displayed on LCD
once approximately
every 2 seconds.

© 2006 Microchip Technology Incorporated. All Rights Reserved. Page 12

LAB 2
Real Time Clock and

Calendar (RTCC)

© 2006 Microchip Technology Incorporated. All Rights Reserved. 204 ADV Page 13

Lab 2 Goals

Configure RTCC
Set RTCC Time and
Alarm

© 2006 Microchip Technology Incorporated. All Rights Reserved. 204 ADV Page 14

Lab 2 To Do

In rtcc.c
− STEP 1:

Unlock RTCC Registers

− STEP 2:
Configure RCFGCAL,
RTCPTR Auto-
decrementing pointer

− STEP 3:
Write Year To RTCVAL
Write Month & Day To
RTCVAL
Write Weekday & Hour To
RTCVAL
Write Minutes & Seconds
To RTCVAL

© 2006 Microchip Technology Incorporated. All Rights Reserved. 204 ADV Page 15

Lab 2 To Do

− STEP 4:
Enable RTCC

− STEP 5:
Lock RTCC Registers

− STEP 6:
In ALCFGRPT, Configure
Alarm Frequency Every 10
seconds
In ALCFGRPT, Configure
Alarm To Repeat 10 Times

− STEP 7:
Enable Alarm

© 2006 Microchip Technology Incorporated. All Rights Reserved. 204 ADV Page 16

Lab 2 RTCC
Registers

RTCPTR0RTCPTR1RTCOEHALFSECRTCSYNCRTCWREN--RTCEN

Bit:8Bit:15

CAL0CAL1CAL2CAL3CAL4CAL5CAL6CAL7
Bit:0Bit:7

RCFGCAL: RTCC Calibration and
Configuration Register

Pointer to the Time and
calendar Registers
00: Minutes : Seconds
01: Week day : Hours
10: Month : Day
11: Reserved : Year

Enables Sec.
pulse o/p port

Indicates the part of
the second

RTCC Value Registers Read
Synchronization bit

Enables write
to the RTCC

RTCC Module
enable bit

Crystal offset calibration bits (RTCC Drift calibration bits)

Refer to PIC24FJ128GA010 Data Sheet, page 151

© 2006 Microchip Technology Incorporated. All Rights Reserved. 204 ADV Page 17

Lab 2 RTCC
Registers

ALRMPTR0ALRMPTR1AMASK0AMASK1AMASK2AMASK3CHIMEALRMEN

Bit:8Bit:15

ARPT0ARPT1ARPT2ARPT3ARPT4ARPT5ARPT6ARPT7
Bit:0Bit:7

ALCFGRPT: RTCC Alarm Configuration
register

Pointer to the Alarm
registers

00: MIN : SEC

01: WD : HR

10: MNTH : DAY

11: Reserved

Chime Enable bit
Allows ARPT to
rollover from 00 to FF

ALARM enable bit

Alarm Repeat Counter Value bits (Repeat count = 2n)

Alarm Mask bits

Refer to PIC24FJ128GA010 Data Sheet, page 154

© 2006 Microchip Technology Incorporated. All Rights Reserved. 204 ADV Page 18

Lab 2 RTCC
Registers

RTCPTR<1:0> auto decrements when RTCVAL<15:8> is
read or written until it reaches ‘00’

HOURSWEEKDAY01

DAYMONTH10

YEAR---11

SECONDSMINUTES00

RTCVAL<7:0>RTCVAL<15:8>RTCPTR<1:0>

ALRMHRALRMWD01

ALRMDAYALRMMNTH10

------11

ALRMSECALRMMIN00

ALRMVAL<7:0>ALRMVAL<15:8>ALRMPTR<1:0>

RTCVAL: RTCC Value Register

ALRMPTR<1:0> auto decrements when
ALRMVAL<15:8> is read or written until it reaches ‘00’

ALRMVAL: RTCC Alarm Value Register

Refer to PIC24FJ128GA010 Data Sheet, page 155-158

© 2006 Microchip Technology Incorporated. All Rights Reserved. 204 ADV Page 19

Lab 2 Expected
Results

The time and date will
be displayed on the
LCD.
An LED should blink
once every 10 seconds
for 3 blinks when the
RTCC seconds value
equals Alarm seconds
value (5).

© 2006 Microchip Technology Incorporated. All Rights Reserved. Page 20

LAB 3
Cyclic Redundancy

Check Generator
(CRC)

© 2006 Microchip Technology Incorporated. All Rights Reserved. 204 ADV Page 21

Lab 3 Goals

Understand
Configuration of CRC
module
Understand CRC
operation
Find the CRC Result of
a data transmission

© 2006 Microchip Technology Incorporated. All Rights Reserved. 204 ADV Page 22

Lab 3 To Do
In main.c:
− STEP 1:

In CRCCON, Configure The
Polynomial Length (PLEN) for
the Polynomial:
− x^16 + x^15 + x^2 + 1

− STEP 2:
In CRCXOR, Configure for the
Polynomial x^16 + x^15 + x^2 + 1

− STEP 3:
Clear CRCWDAT

− STEP 4:
In CRCCON, Enable The CRC
Generator

© 2006 Microchip Technology Incorporated. All Rights Reserved. 204 ADV Page 23

Lab 3 CRC Registers

VWORD0VWORD1VWORD2VWORD3VWORD4CSIDL----

Bit:8Bit:15

PLEN3PLEN3PLEN3PLEN3CRCGO--CRCMTCRCFUL

Bit:0Bit:7

CRCCON: CRC Control register

CRC FIFO
Empty Status bit

Indicates the
number of valid
words in FIFO

CRC Module
enable/disable in
IDLE mode bit

Start
CRC bit

Denotes the
length of the
Polynomial

CRC FIFO
Full Status bit

Refer to PIC24FJ128GA010 Data Sheet, page 161

© 2006 Microchip Technology Incorporated. All Rights Reserved. 204 ADV Page 24

Lab 3 To Do

− Step 5 – Open Needed Files &
Programs:

Open HyperTerminal by,
1095_Lab5.ht, in the directory
Open CRC spreadsheet,
CRCCalc.xls, in the directory
− If there are errors, go to Tools->Add-

Ins and check “Analysis Toolpack”
and “Analysis Toolpack – VBA”

Open Lab5.txt in the directory

− Step 6 – Calculate A Known
Good CRC Value:

Enter 10 words of data in the
CRC spreadsheet in blue cells
A4 to A13
Copy the green cell C13 Into The
Lab5.txt file, This is your data
message and CRC checksum

© 2006 Microchip Technology Incorporated. All Rights Reserved. 204 ADV Page 25

Lab 3 To Do
− Step 7 – Transmit Data message +

CRC value
Compile and run the code
Send the data with HyperTerminal
using copy then right click -> “Paste to
host” or Transfer -> “Send text file…”
− Ctrl+V will not work correctly

Check the LCD display and verify that
“CRC Verified OK” is displayed

− Step 8 – Corrupt the data message
Change any value in the text file to
corrupt the message
Send the data with HyperTerminal
using copy then right click -> “Paste to
host” or Transfer -> “Send text file…”
− Ctrl+V will not work correctly

Check the LCD display and verify that
“CRC Verified NOK” is displayed. This
indicates that the CRC verification
failed.

© 2006 Microchip Technology Incorporated. All Rights Reserved. 204 ADV Page 26

Lab 3 Expected
Results

With a correct data
transmission the LCD
displays “CRC verified
OK”
With a corrupted data
transmission the LCD
displays “CRC verified
NOK”
Try Both!

© 2006 Microchip Technology Incorporated. All Rights Reserved. Page 27

Lab 4
Direct Memory Access

(DMA)

© 2006 Microchip Technology Incorporated. All Rights Reserved. 204 ADV Page 28

Lab 4 Goals

Implement UART loop
back utilizing DMA for
receiving and
transmitting
Receive and buffer 8
characters one at a time
Transmit all 8
characters back

© 2006 Microchip Technology Incorporated. All Rights Reserved. 204 ADV Page 29

Lab 4 DMA Resigers

------NULLWHALFDIRSIZECHEN

Bit:8Bit:15

MODE0MODE1----AMODE0AMODE1----

Bit:0Bit:7

DMAxCON: DMA control register

Channel Enable
bit

DMA Channel Operating
Mode Select bits:

11: One-Shot, Ping-Pong
enabled

10: Continuous, Ping-Pong
enabled

01: One-shot, Ping-Pong
disabled

00: Continuous, Ping-Pong
disabled

Data Transfer
Size bit (word or
byte)

Transfer
Direction bit

Early Block
Transfer Complete
Interrupt Select bit

Null Data
Peripheral Write
Mode Select bit

DMA Channel Operating Mode
Select bits:

10: Peripheral Indirect

01: Register Indirect w/o Post-
increment

00: Register Indirect with Post-
increment

© 2006 Microchip Technology Incorporated. All Rights Reserved. 204 ADV Page 30

Lab 4 To Do
Step 1
− Configure UART for

DMA transfers

Step 2
− Enable UART Rx and

Tx

// Interrupt after one Tx character is transmitted
U2STAbits.UTXISEL0 = 0;
U2STAbits.UTXISEL1 = 0;

// Interrupt after one RX character is received
U2STAbits.URXISEL = 0;

IEC4bits.U2EIE = 0; // Enable UART2 Error Interrupt

void __attribute__((__interrupt__)) _U2ErrInterrupt(void)
{

/* Process UART 2 Error Condition here */
IFS4bits.U2EIF = 0; // Clear the UART2 Error Interrupt Flag

}

U2MODEbits.UARTEN = 1; // Enable UART
U2STAbits.UTXEN = 1; // Enable UART Tx

© 2006 Microchip Technology Incorporated. All Rights Reserved. 204 ADV Page 31

Lab 4 To Do
Step 3
− Associate DMA Channels

Channel 0 with UART Tx
Channel 1 with UART Rx

Desired Peripheral to DMA Association

DMAxREQ
Register, Bits
IRQSEL<6:0>

DMAxPAD Register
Values to Read
from Peripheral

DMAxPAD Register
Values to Write to

Peripheral
INT0 - External Interrupt 0 0000000 - -
IC1 - Input Compare 1 0000001 0x0140 (IC1BUF) -
IC2 - Input Capture 2 0000101 0x0144 (IC2BUF) -
OC1 - Output Compare 1 Data 0000010 - 0x0182 (OC1R)
OC1 - Output Compare 1 Secondary Data 0000010 - 0x0180 (OC1RS)
OC2 - Output Compare 2 Data 0000110 - 0x0188 (OC2R)
OC2 - Output Compare 2 Secondary Data 0000110 - 0x0186 (OC2RS)
TMR2 - Timer 2 0000111 - -
TMR3 - Timer 3 0001000 - -
SPI1 - Transfer Done 0001010 0x0248 (SPI1BUF) 0x0248 (SPI1BUF)
SPI2 - Transfer Done 0100001 0x0268 (SPI2BUF) 0x0268 (SPI2BUF)
UART1RX - UART1 Receiver 0001011 0x0226 (U1RXREG) -
UART1TX - UART1 Transmitter 0001100 - 0x0224 (U1TXREG)
UART2RX - UART2 Receiver 0011110 0x0236 (U2RXREG) -
UART2TX - UART2 Transmitter 0011111 - 0x0234 (U2TXREG)
ECAN1 - RX Data Ready 0100010 0x0440 (C1RXD) -
ECAN1 - TX Data Request 1000110 - 0x0442 (C1TXD)
ECAN2 - RX Data Ready 0110111 0x0540 (C2RXD) -
ECAN2 - TX Data Request 1000111 - 0x0542 (C2TXD)
DCI - CODEC Transfer Done 0111100 0x0290 (RXBUF0) 0x0298 (TXBUF0)
ADC1 - ADC1 convert done 0001101 0x0300 (ADC1BUF0) -
ADC2 - ADC2 Convert Done 0010101 0x0340 (ADC2BUF0) -

DMA0REQbits.IRQSEL = 0x1F;
DMA0PAD = (volatile unsigned int) &U2TXREG;
DMA1REQbits.IRQSEL = 0x1E;
DMA1PAD = (volatile unsigned int) &U2RXREG;

© 2006 Microchip Technology Incorporated. All Rights Reserved. 204 ADV Page 32

Lab 4 To Do
Step 4
− Configure DMA Channel 1 to:

Transfer data from UART to RAM Continuously
Register Indirect with Post-Increment
Using two ‘ping-pong’ buffers
8 transfers per buffer
Transfer words

Step 5
− Configure DMA Channel 0 to:

Transfer data from RAM to UART
One-Shot mode
Register Indirect with Post-Increment
Using single buffer
8 transfers per buffer
Transfer words

DMA1CONbits.AMODE = 0; // Register Indirect with Post-Increment
DMA1CONbits.MODE = 2; // Continuous, Ping-Pong
DMA1CONbits.DIR = 0; // Peripheral-to-RAM direction
DMA1CONbits.SIZE = 0; // Word transfers

DMA1CNT = 7; // 8 DMA Requests

DMA0CONbits.AMODE = 0; // Register Indirect with Post-Increment
DMA0CONbits.MODE = 1; // One-Shot, Single Buffer
DMA0CONbits.DIR = 1; // RAM-to-Peripheral direction
DMA0CONbits.SIZE = 0; // Word transfers

DMA0CNT = 7; // 8 DMA Requests

© 2006 Microchip Technology Incorporated. All Rights Reserved. 204 ADV Page 33

Step 6
− Allocate two buffers for

DMA transfers
− Associate one buffer with

Channel 0 for one-shot
operation

− Associate two buffers with
Channel 1 for ‘Ping-Pong’
operation

Lab 4 To Do

unsigned int BufferA[8] __attribute__(space(dma));
unsigned int BufferB[8] __attribute__(space(dma));

DMA1STA = __builtin_dmaoffset(BufferA);
DMA1STB = __builtin_dmaoffset(BufferB);

DMA0STA = __builtin_dmaoffset(BufferA);

© 2006 Microchip Technology Incorporated. All Rights Reserved. 204 ADV Page 34

Lab 4 To Do

Step 7
− Setup DMA interrupt handlers
− Force transmit after 8 words are

received
void __attribute__((__interrupt__)) _DMA0Interrupt(void)
{

IFS0bits.DMA0IF = 0; //Clear the DMA0 Interrupt Flag;
}

void __attribute__((__interrupt__)) _DMA1Interrupt(void)
{

// Keep record of which buffer contains Rx Data
static unsigned int BufferCount = 0;

if(BufferCount == 0)
{

// Point DMA 0 to data to be transmitted
DMA0STA = __builtin_dmaoffset(BufferA);

}
else
{

// Point DMA 0 to data to be transmitted
DMA0STA = __builtin_dmaoffset(BufferB);

}

DMA0CONbits.CHEN = 1; // Re-enable DMA0 Channel
DMA0REQbits.FORCE = 1; // Manual mode: Kick-start the

// 1st transfer
BufferCount ^= 1;
IFS0bits.DMA1IF = 0; // Clear the DMA1 Interrupt Flag

}

© 2006 Microchip Technology Incorporated. All Rights Reserved. 204 ADV Page 35

Lab 4 To Do

Step 8
− Enable DMA Interrupts

Step 9
− Enable DMA Channel 1 to

receive UART data

IFS0bits.DMA0IF = 0; // Clear DMA 0 Interrupt Flag
IEC0bits.DMA0IE = 1; // Enable DMA 0 interrupt
IFS0bits.DMA1IF = 0; // Clear DMA 1 interrupt
IEC0bits.DMA1IE = 1; // Enable DMA 1 interrupt

DMA1CONbits.CHEN = 1;// Enable DMA Channel 1

© 2006 Microchip Technology Incorporated. All Rights Reserved. 204 ADV Page 36

Lab 4 To Do

Step 10
− Compile, download and

run code
− Connect to HyperTerminal

(8-N-1, 9600)
− Type characters into

HyperTerminal

© 2006 Microchip Technology Incorporated. All Rights Reserved. 204 ADV Page 37

Lab 4 Expected
Results

HyperTerminal should
display all 8 typed
characters when
application transmits
them back

© 2006 Microchip Technology Incorporated. All Rights Reserved. 204 ADV Page 38

