N

MICROCHIP

16-BIT LANGUAGE TOOLS
LIBRARIES

DDDDDDDD

Note the following details of the code protection feature on Microchip devices:

. Microchip products meet the specification contained in their particular Microchip Data Sheet.

. Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the

intended manner and under normal conditions.

. There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

. Microchip is willing to work with the customer who is concerned about the integrity of their code.

. Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not

mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicity or otherwise, under any Microchip
intellectual property rights.

QUALITY MANAGEMENT SYSTEM
CERTIFIED BY DNV

—150/TS 16949:2002 =—

Trademarks

The Microchip name and logo, the Microchip logo, Accuron,
dsPIC, KEELOQ, KEELOQ logo, microlD, MPLAB, PIC,
PICmicro, PICSTART, PRO MATE, PowerSmart, rfPIC, and
SmartShunt are registered trademarks of Microchip
Technology Incorporated in the U.S.A. and other countries.

AmpLab, FilterLab, Linear Active Thermistor, Migratable
Memory, MXDEV, MXLAB, PS logo, SEEVAL, SmartSensor
and The Embedded Control Solutions Company are
registered trademarks of Microchip Technology Incorporated
in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard,
dsPICDEM, dsPICDEM.net, dsPICworks, ECAN,
ECONOMONITOR, FanSense, FlexROM, fuzzyLAB,
In-Circuit Serial Programming, ICSP, ICEPIC, Mindi, MiWi,
MPASM, MPLAB Certified logo, MPLIB, MPLINK, PICkit,
PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal,
Powerlnfo, PowerMate, PowerTool, REAL ICE, rfLAB,
rfPICDEM, Select Mode, Smart Serial, SmartTel, Total
Endurance, UNI/O, WiperLock and ZENA are trademarks of
Microchip Technology Incorporated in the U.S.A. and other
countries.

SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2007, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.

Q Printed on recycled paper.

Microchip received ISO/TS-16949:2002 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona, Gresham, Oregon and Mountain View, California. The
Company'’s quality system processes and procedures are for its PIC®
MCUs and dsPIC® DSCs, KEeLOQ® code hopping devices, Serial
EEPROMSs, microperipherals, nonvolatile memory and analog
products. In addition, Microchip’s quality system for the design and
manufacture of development systems is ISO 9001:2000 certified.

DS51456D-page i

© 2007 Microchip Technology Inc.

16-BIT LANGUAGE TOOLS

MICROCHIP

LIBRARIES

Table of Contents

P ACE e

Chapter 1. Library Overview

1.2 INtroductionoovvveviiiiiiiii e
1.2 OMF-Specific Libraries/Start-up Modules ..
1.3 Start-up Codeoovvvviiiiiiiiiii
1.4 DSP Library ...ccccccceviiviiiiiiiiiii
1.5 16-Bit Peripheral Librariescccccceeeeeeees

1.6 Standard C Libraries (with Math Functions)

1.7 MPLAB C30 Built-in Functions

Chapter 2. DSP Library

2.1 IntroduCtionvceeeeiieeiiiiieiiieee e
2.2 Using the DSP Librarycccccoceeeviiiiiniinnnnne,
2.3 Vector FUNCLIONScoooeeviiiveiiiiieeeeeeeeeeeevia
2.4 Window Functionsccccceeeeeiiveiieeiennnnnn..
2.5 Matrix FUNCLIONS ...ccooeveeiiiiiiiiiiieeeeeeeeeeeeiia
2.6 Filtering Functionscccccceceeeiieeeeeceeeiinnnn,
2.7 Transform Functionsccoceeeeeeeeeeeieeinnnn,
2.8 Control FUNCLioNScocevvieiiiiiiieieecieees
2.9 Miscellaneous Functionsccceeeeeevnne.

Chapter 3. Standard C Libraries with Math Functions

3.2 INtroduCtioneeeueiimiieneiiieiiienieeieeeieeeeee.
3.2 Using the Standard C Libraries
3.3 <assert.h> diagnostiCsccevvvvvivvinnnnnnn.
3.4 <ctype.h> character handling
3.5 <errno.h> errorsccccccvveevevieienineieneiennnee.
3.6 <float.h> floating-point characteristics
3.7 <limits.h> implementation-defined limits
3.8 <locale.h> localizationccccceeviiiirnnnnn..
3.9 <setjmp.h> non-local jumpsccccvvvnnnee
3.10 <signal.h> signal handlingccccc.........
3.11 <stdarg.h> variable argument lists
3.12 <stddef.h> common definitions
3.13 <stdio.h> input and outputcceveeeeee
3.14 <stdlib.h> utility functionscccccceeen....
3.15 <string.h> string functionscccccuvee.
3.16 <time.h> date and time functions
3.17 <math.h> mathematical functions
3.18 Pic30-lbS .covvviiiiiiiii

© 2007 Microchip Technology Inc.

DS51456D-page iii

16-Bit Language Tools Libraries

Appendix A. ASCIl Character Setcoooei oo 267
[Lo 123 TP 269
WOrldwide SAleS anNd SEIVICE ... e 282

DS51456D-page iv © 2007 Microchip Technology Inc.

16-BIT LANGUAGE TOOLS
MICROCHIP LIBRARIES

Preface

NOTICE TO CUSTOMERS

All documentation becomes dated, and this manual is no exception. Microchip tools and
documentation are constantly evolving to meet customer needs, so some actual dialogs
and/or tool descriptions may differ from those in this document. Please refer to our web site
(www.microchip.com) to obtain the latest documentation available.

Documents are identified with a “DS” number. This number is located on the bottom of each
page, in front of the page number. The numbering convention for the DS number is
“DSXXXXXA”, where “XXXXX” is the document number and “A” is the revision level of the
document.

For the most up-to-date information on development tools, see the MPLAB® IDE on-line help.
Select the Help menu, and then Topics to open a list of available on-line help files.

INTRODUCTION
This chapter contains general information that will be useful to know before using 16-bit
libraries. Items discussed include:

* Document Layout

» Conventions Used in this Guide

 Recommended Reading

e The Microchip Web Site

» Development Systems Customer Change Notification Service
¢ Customer Support

DOCUMENT LAYOUT

This document describes how to use GNU language tools to write code for 16-bit
applications. The document layout is as follows:

« Chapter 1: Library Overview — gives an overview of libraries. Some are described
further in this document, while others are described in other documents or on-line
Help files.

e Chapter 2: DSP Library - lists the library functions for DSP operation.

e Chapter 3: Standard C Library with Math Functions - lists the library functions
and macros for standard C operation.

« Appendix A: ASCII Character Set

© 2007 Microchip Technology Inc. DS51456D-page 1

16-Bit Language Tools Libraries

CONVENTIONS USED IN THIS GUIDE

The following conventions may appear in this documentation:

DOCUMENTATION CONVENTIONS

dialog

Description Represents Examples
Arial font:
Italic Referenced books MPLAB® IDE User’s Guide
Emphasized text ...is the only compiler...
Initial caps A window the Output window
A dialog the Settings dialog
A menu selection select Enable Programmer
Quotes A field name in a window or | “Save project before build”

Underlined, italic with right A menu path File>Save
angle bracket
Bold A dialog button Click OK

Atab

Click the Power tab

Text in angle brackets < >

A key on the keyboard

Press <Enter>, <F1>

Courier New font:

Plain Sample source code #define START
Filenames autoexec.bat
File paths c:\mcc18\h
Keywords _asm, _endasm, static
Command-line options -Opa+, -Opa-
Bit values 0, 1
Constants OxFF, 'A’
Italic A variable argument file.o, where file can be

any valid filename

Square brackets []

Optional arguments

mpasmwin [options]
file [options]

Curly brackets and pipe
character: {| }

Choice of mutually exclusive
arguments; an OR selection

errorlevel {0]|1}

Ellipses...

Replaces repeated text

var name [,
var name...]

Represents code supplied by
user

void main (void)
{
}

DS51456D-page 2

© 2007 Microchip Technology Inc.

Preface

RECOMMENDED READING

This documentation describes how to use 16-bit libraries. Other useful documents are
listed below. The following Microchip documents are available and recommended as
supplemental reference resources.

Readme Files

For the latest information on Microchip tools, read the associated Readme files (HTML
files) included with the software.

16-Bit Language Tools Getting Started (DS70094)

A guide to installing and working with the Microchip language tools (MPLAB ASM30,
MPLAB LINK30 and MPLAB C30) for 16-bit devices. Examples using the 16-bit
simulator SIM30 (a component of MPLAB SIM) are provided.

MPLAB® ASM30, MPLAB® LINK30 and Utilities User's Guide (DS51317)

A guide to using the 16-bit assembler, MPLAB ASM30, object linker, MPLAB LINK30
and various utilities, including MPLAB LIB30 archiver/librarian.

MPLAB® C30 C Compiler User’s Guide (DS51284)
A guide to using the 16-bit C compiler. MPLAB LINK30 is used with this tool.
Device-Specific Documentation

The Microchip website contains many documents that describe 16-bit device functions
and features. Among these are:

« Individual and family data sheets

« Family reference manuals

« Programmer’s reference manuals

C Standards Information

American National Standard for Information Systems — Programming Language — C.
American National Standards Institute (ANSI), 11 West 42nd. Street, New York,
New York, 10036.

This standard specifies the form and establishes the interpretation of programs
expressed in the programming language C. Its purpose is to promote portability,
reliability, maintainability and efficient execution of C language programs on a
variety of computing systems.

C Reference Manuals

Harbison, Samuel P. and Steele, Guy L., C A Reference Manual, Fourth Edition,
Prentice-Hall, Englewood Cliffs, N.J. 07632.

Kernighan, Brian W. and Ritchie, Dennis M., The C Programming Language, Second
Edition. Prentice Hall, Englewood Cliffs, N.J. 07632.

Kochan, Steven G., Programming In ANSI C, Revised Edition. Hayden Books,
Indianapolis, Indiana 46268.

Plauger, P.J., The Standard C Library, Prentice-Hall, Englewood Cliffs, N.J. 07632.

Van Sickle, Ted., Programming Microcontrollers in C, First Edition. LLH Technology
Publishing, Eagle Rock, Virginia 24085.

© 2007 Microchip Technology Inc. DS51456D-page 3

16-Bit Language Tools Libraries

THE MICROCHIP WEB SITE

Microchip provides online support via our web site at www.microchip.com. This web
site is used as a means to make files and information easily available to customers.
Accessible by using your favorite Internet browser, the web site contains the following
information:

* Product Support — Data sheets and errata, application notes and sample
programs, design resources, user’s guides and hardware support documents,
latest software releases and archived software

« General Technical Support — Frequently Asked Questions (FAQs), technical
support requests, online discussion groups, Microchip consultant program
member listing

* Business of Microchip — Product selector and ordering guides, latest Microchip
press releases, listing of seminars and events, listings of Microchip sales offices,
distributors and factory representatives

DEVELOPMENT SYSTEMS CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip’s customer notification service helps keep customers current on Microchip
products. Subscribers will receive e-mail natification whenever there are changes,
updates, revisions or errata related to a specified product family or development tool of
interest.

To register, access the Microchip web site at www.microchip.com, click on Customer
Change Notification and follow the registration instructions.

The Development Systems product group categories are:

e Compilers — The latest information on Microchip C compilers and other language
tools. These include the MPLAB C18 and MPLAB C30 C compilers; MPASM™
and MPLAB ASM30 assemblers; MPLINK™ and MPLAB LINK30 object linkers;
and MPLIB™ and MPLAB LIB30 object librarians.

* Emulators — The latest information on Microchip in-circuit emulators.This
includes the MPLAB REAL ICE™, MPLAB ICE 2000 and MPLAB ICE 4000
in-circuit emulators.

 In-Circuit Debuggers — The latest information on the Microchip in-circuit
debugger, MPLAB ICD 2.

« MPLAB® IDE - The latest information on Microchip MPLAB IDE, the Windows®
Integrated Development Environment for development systems tools. This list is
focused on the MPLAB IDE, MPLAB IDE Project Manager, MPLAB Editor and
MPLAB SIM simulator, as well as general editing and debugging features.

* Programmers — The latest information on Microchip programmers. These include
the MPLAB PM3 and PRO MATE® Il device programmers and the PICSTART®
Plus, PICkit™ 1 and PICkit 2 development programmers.

DS51456D-page 4 © 2007 Microchip Technology Inc.

http://www.microchip.com
http://www.microchip.com

Preface

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

« Distributor or Representative

* Local Sales Office

 Field Application Engineer (FAE)

» Technical Support

Customers should contact their distributor, representative or field application engineer

(FAE) for support. Local sales offices are also available to help customers. A listing of
sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://support.microchip.com

© 2007 Microchip Technology Inc. DS51456D-page 5

http://support.microchip.com

16-Bit Language Tools Libraries

NOTES:

DS51456D-page 6 © 2007 Microchip Technology Inc.

16-BIT LANGUAGE TOOLS
MICROCHIP LIBRARIES

Chapter 1. Library Overview

1.1 INTRODUCTION

A library is a collection of functions grouped for reference and ease of linking. See the
“MPLAB® ASM30, MPLAB® LINK30 and Utilities User's Guide” (DS51317) for more
information about making and using libraries.

1.1.1 Assembly Code Applications

Free versions of the 16-bit language tool libraries are available from the Microchip web
site. DSP and 16-bit peripheral libraries are provided with object files and source code.
A math library containing functions from the standard C header file <math.h> is
provided as an object file only. The complete standard C library is provided with the
MPLAB C30 C compiler.

1.1.2 C Code Applications

The 16-bit language tool libraries are included in the 1ib subdirectory of the
MPLAB C30 C compiler install directory, which is by default:

C:\Program Files\Microchip\MPLAB C30\1lib

These libraries can be linked directly into an application with MPLAB LINK30.

1.1.3 Chapter Organization

This chapter is organized as follows:

* OMF-Specific Libraries/Start-up Modules
 Start-up Code

e DSP Library

» 16-Bit Peripheral Libraries

« Standard C Libraries (with Math Functions)
e MPLAB C30 Built-in Functions

1.2 OMF-SPECIFIC LIBRARIES/START-UP MODULES

Library files and start-up modules are specific to OMF (Object Module Format). An
OMF can be one of the following:

¢ COFF — This is the default.
* ELF — The debugging format used for ELF object files is DWARF 2.0.
There are two ways to select the OMF:

1. Set an environment variable called prc30_owmr for all tools.

2. Select the OMF on the command line when invoking the tool, i.e., -omf=omf or
-momf=omf .

16-bit tools will first look for generic library files when building your application (no OMF
specification). If these cannot be found, the tools will look at your OMF specifications
and determine which library file to use.

As an example, if 1ibdsp. a is not found and no environment variable or command-line
option is set, the file 1ibdsp-coff.a will be used by default.

© 2007 Microchip Technology Inc. DS51456D-page 7

16-Bit Language Tools Libraries

1.3 START-UP CODE

In order to initialize variables in data memory, the linker creates a data initialization
template. This template must be processed at start-up, before the application proper
takes control. For C programs, this function is performed by the start-up modules in
libpic30-coff.a (either crt0.o0r crtl.o) Or libpic30-elf.a (either crto.eo Or
crtl.eo). Assembly language programs can utilize these modules directly by linking
with the desired start-up module file. The source code for the start-up modules is pro-
vided in corresponding . s files.

The primary start-up module (crto) initializes all variables (variables without initializers
are set to zero as required by the ANSI standard) except for variables in the persistent
data section. The alternate start-up module (crt1) performs no data initialization.

For more on start-up code, see the “MPLAB® ASM30, MPLAB® LINK30 and Utilities
User’s Guide” (DS51317) and, for C applications, the “MPLAB® C30C Compiler User’s
Guide” (DS51284).

1.4 DSP LIBRARY

The DSP library (1ibdsp-omf . a) provides a set of digital signal processing operations
to a program targeted for execution on a dsPIC30F digital signal controller (DSC). In
total, 49 functions are supported by the DSP Library.

1.5 16-BIT PERIPHERAL LIBRARIES

The 16-bit software and hardware peripheral libraries provide functions and macros for
setting up and controlling 16-bit peripherals. These libraries are processor-specific and
of the form 1ibpDevice-omf.a, where Device is the 16-bit device number (e.g.,
1ibp30F6014-coff.a for the dsPIC30F6014 device) and omf is either coff or elf.

Documentation for these libraries is provided in HTML Help files. Examples of use are
also provided in each file. By default, the documentation is found in:

C:\Program Files\Microchip\MPLAB C30\docs

1.6 STANDARD C LIBRARIES (WITH MATH FUNCTIONS)

A complete set of ANSI-89 conforming libraries are provided. The standard C library
files are 1ibc-omf . a (written by Dinkumware, an industry leader) and 1ibm-omf.a
(math functions, written by Microchip).

Additionally, some 16-bit standard C library helper functions, and standard functions
that must be modified for use with 16-bit devices, are in 1ibpic30-omf.a.

A typical C application will require all three libraries.

1.7 MPLAB C30 BUILT-IN FUNCTIONS

The MPLAB C30 C compiler contains built-in functions that, to the developer, work like
library functions. These functions are listed in the “MPLAB® C30 C Compiler Users’
Guide” (DS51284).

DS51456D-page 8 © 2007 Microchip Technology Inc.

16-BIT LANGUAGE TOOLS
MICROCHIP LIBRARIES

Chapter 2. DSP Library

2.1 INTRODUCTION

The DSP Library provides a set of digital signal processing operations to a program tar-
geted for execution on a dsPIC30F/33F digital signal controller. The library has been
designed to provide you, the C software developer, with efficient implementation of the
most common signal processing functions. In total, 52 functions are supported by the
DSP Library.

A primary goal of the library is to minimize the execution time of each function. To
achieve this goal, the DSP Library is predominantly written in optimized assembly
language. By using the DSP Library, you can realize significant gains in execution
speed over equivalent code written in ANSI C. Additionally, since the DSP Library has
been rigorously tested, using the DSP Library will allow you to shorten your application
development time.

211 Assembly Code Applications

A free version of this library and its associated header file is available from the
Microchip web site. Source code is included.

2.1.2 C Code Applications

The MPLAB C30 C compiler install directory (c:\program files\microchip\mplab
c30) contains the following subdirectories with library-related files:

e 1ib — DSP library/archive files

* src\dsp — source code for library functions and a batch file to rebuild the library

* support\h — header file for DSP library

2.1.3 Chapter Organization

This chapter is organized as follows:

 Using the DSP Library

« Vector Functions

« Window Functions

« Matrix Functions

* Filtering Functions

e Transform Functions

e Control Functions

¢ Miscellaneous Functions

© 2007 Microchip Technology Inc. DS51456D-page 9

16-Bit Language Tools Libraries

2.2 USING THE DSP LIBRARY

2.2.1 Building with the DSP Library

Building an application which utilizes the DSP Library requires only two files: dsp .h and
libdsp-omf.a. dsp.h is a header file which provides all the function prototypes,
#defines and typedefs used by the library. 1ibdsp-omf. a is the archived library file
which contains all the individual object files for each library function. (See Section 1.2
“OMF-Specific Libraries/Start-up Modules” for more on OMF-specific libraries.)

When compiling an application, dsp.h must be referenced (using #include) by all
source files which call a function in the DSP Library or use its symbols or typedefs.
When linking an application, 1ibdsp-omf.a must be provided as an input to the linker
(using the --1ibrary or -1 linker switch) such that the functions used by the
application may be linked into the application.

The linker will place the functions of the DSP library into a special text section named
.libdsp. This may be seen by looking at the map file generated by the linker.

2.2.2 Memory Models

The DSP Library is built with the “small code” and “small data” memory models to cre-
ate the smallest library possible. Since a few DSP library functions are written in C and
make use of the compiler’s floating-point library, the MPLAB C30 linker script files place
the .1ibm and .1libdsp text sections next to each other. This ensures that the DSP
library may safely use the RCALL instruction to call the required floating-point routines
in the floating-point library.

2.2.3 DSP Library Function Calling Convention

All the object modules within the DSP Library are compliant with the C compatibility
guidelines for the dsPIC30F/33F DSC and follow the function call conventions docu-
mented in the Microchip “MPLAB® C30 C Compiler User’s Guide” (DS51284). Specif-
ically, functions may use the first eight working registers (W0 through W7) as function
arguments. Any additional function arguments are passed through the stack.

The working registers WO to W7 are treated as scratch memory, and their values may
not be preserved after the function call. On the other hand, if any of the working regis-
ters W8 to W13 are used by a function, the working register is first saved, the register
is used and then its original value is restored upon function return. The return value of
a (non void) function is available in working register WO (also referred to as WREG).
When needed, the run time software stack is used following the C system stack rules
described in the MPLAB® C30 Compiler User’s Guide. Based on these guidelines, the
object modules of the DSP Library can be linked to either a C program, an assembly
program or a program which combines code in both languages.

224 Data Types

The operations provided by the DSP Library have been designed to take advantage of
the DSP instruction set and architectural features of the dsPIC30F/33F DSC. In this
sense, most operations are computed using fractional arithmetic.

The DSP Library defines a fractional type from an integer type:

#ifndef fractional
typedef int fractiomal;
#endif

The fractional data type is used to represent data that has 1 sign bit, and 15
fractional bits. Data which uses this format is commonly referred to as “1.15” data.

DS51456D-page 10

© 2007 Microchip Technology Inc.

DSP Library

For functions which use the multiplier, results are computed using the 40-bit accumu-
lator, and “9.31" arithmetic is utilized. This data format has 9 sign/magnitude bits and
31 fractional bits, which provides for extra computational headroom above the range
(-1.00 to ~+1.00) provided by the 1.15 format. Naturally when these functions provide
a result, they revert to a fractional data type, with 1.15 format.

The use of fractional arithmetic imposes some constraints on the allowable set of val-
ues to be input to a particular function. If these constraints are ensured, the operations
provided by the DSP Library typically produce numerical results correct to 14 bits. How-
ever, several functions perform implicit scaling to the input data and/or output results,
which may decrease the resolution of the output values (when compared to a
floating-point implementation).

A subset of operations in the DSP Library, which require a higher degree of numerical
resolution, do operate in floating-point arithmetic. Nevertheless, the results of these
operations are transformed into fractional values for integration with the application.
The only exception to this is the MatrixInvert function which computes the inversion
of a floating-point matrix in floating-point arithmetic, and provides the results in float-
ing-point format.

2.2.5 Data Memory Usage

The DSP Library performs no allocation of RAM, and leaves this task to you. If you do
not allocate the appropriate amount of memory and align the data properly, undesired
results will occur when the function executes. In addition, to minimize execution time,
the DSP Library will do no checking on the provided function arguments (including
pointers to data memory), to determine if they are valid. The user may refer to example
projects that utilize the DSP library functions, in order to ascertain proper usage of func-
tions. MPLAB IDE-based example projects/workspaces have been provided in the
installation folder of the MPLAB C30 toolsuite.

Most functions accept data pointers as function arguments, which contain the data to
be operated on, and typically also the location to store the result. For convenience,
most functions in the DSP Library expect their input arguments to be allocated in the
default RAM memory space (X-Data or Y-Data), and the output to be stored back into
the default RAM memory space. However, the more computational intensive functions
require that some operands reside in X-Data and Y-Data (or program memory and
Y-Data), so that the operation can take advantage of the dual data fetch capability of
the 16-bit architecture.

2.2.6 CORCON Register Usage

Many functions of the DSP Library place the dsPIC30F/33F device into a special oper-
ating mode by modifying the CORCON register. On the entry of these functions, the
CORCON register is pushed to the stack. It is then modified to correctly perform the
desired operation, and lastly the CORCON register is popped from the stack to pre-
serve its original value. This mechanism allows the library to execute as correctly as
possible, without disrupting CORCON setting.

When the CORCON register is modified, it is typically set to 0xO0FO. This places the
dsPIC30F/33F device into the following operational mode:

« DSP multiplies are set to used signed and fractional data

» Accumulator saturation is enabled for Accumulator A and Accumulator B
 Saturation mode is set to 9.31 saturation (Super Saturation)

» Data Space Write Saturation is enabled

» Program Space Visibility disabled

« Convergent (unbiased) rounding is enabled

© 2007 Microchip Technology Inc. DS51456D-page 11

16-Bit Language Tools Libraries

For a detailed explanation of the CORCON register and its effects, refer to the
“dsPIC30F Family Reference Manual” (DS70046).

2.2.7 Overflow and Saturation Handling

The DSP Library performs most computations using 9.31 saturation, but must store the
output of the function in 1.15 format. If during the course of operation the accumulator
in use saturates (goes above 0x7F FFFF FFFF or below 0x80 0000 0000), the corre-
sponding saturation bit (SA or SB) in the STATUS register will be set. This bit will stay
set until it is cleared. This allows you to inspect SA or SB after the function executes
and to determine if action should be taken to scale the input data to the function.

Similarly, if a computation performed with the accumulator results in an overflow (the
accumulator goes above 0x00 7FFF FFFF or below OxFF 8000 0000), the correspond-
ing overflow bit (OA or OB) in the STATUS register will be set. Unlike the SA and SB
status bits, OA and OB will not stay set until they are cleared. These bits are updated
each time an operation using accumulator is executed. If exceeding this specified
range marks an important event, you are advised to enable the Accumulator Overflow
Trap via the OVATE, OVBTE and COVTE bits in the INTCONL1 register. This will have
the effect of generating an Arithmetic Error Trap as soon as the Overflow condition
occurs, and you may then take the required action.

2.2.8 Integrating with Interrupts and an RTOS

The DSP Library may easily be integrated into an application which utilizes interrupts
or an RTOS, yet certain guidelines must be followed. To minimize execution time, the
DSP Library utilizes po loops, REPEAT loops, Modulo addressing and Bit-Reversed
addressing. Each of these components is a finite hardware resource on the 16-bit
device, and the background code must consider the use of each resource when
disrupting execution of a DSP Library function.

When integrating with the DSP Library, you must examine the Function Profile of each
function description to determine which resources are used. If a library function will be
interrupted, it is your responsibility to save and restore the contents of all registers used
by the function, including the state of the bo, REPEAT and special addressing hardware.
Naturally this also includes saving and restoring the contents of the CORCON and Sta-
tus registers.

2.2.9 Rebuilding the DSP Library

A batch file named makedsplib.bat is provided to rebuild the DSP library. The MPLAB
C30 compiler is required to rebuild the DSP library, and the batch file assumes that the
compiler is installed in the default directory, c:\Program Files\Microchip\MPLAB
c30\. If your language tools are installed in a different directory, you must modify the
directories in the batch file to match the location of your language tools.

DS51456D-page 12 © 2007 Microchip Technology Inc.

DSP Library

2.3 VECTOR FUNCTIONS

This section presents the concept of a fractional vector, as considered by the DSP
Library, and describes the individual functions which perform vector operations.

23.1 Fractional Vector Operations

A fractional vector is a collection of numerical values, the vector elements, allocated
contiguously in memory, with the first element at the lowest memory address. One word
of memory (two bytes) is used to store the value of each element, and this quantity
must be interpreted as a fractional number represented in the 1.15 data format.

A pointer addressing the first element of the vector is used as a handle which provides
access to each of the vector values. The address of the first element is referred to as
the base address of the vector. Because each element of the vector is 16 bits, the base
address must be aligned to an even address.

The one dimensional arrangement of a vector accommodates to the memory storage
model of the device, so that the nth element of an N-element vector can be accessed
from the vector's base address BA as:

BA+2(n—-1),for1<n<N.
The factor of 2 is used because of the byte addressing capabilities of the 16-bit device.

Unary and binary fractional vector operations are implemented in this library. The oper-
and vector in a unary operation is called the source vector. In a binary operation the

first operand is referred to as the source one vector, and the second as the source two
vector. Each operation applies some computation to one or several elements of the

source vector(s). Some operations produce a result which is a scalar value (also to be
interpreted as a 1.15 fractional number), while other operations produce a result which
is a vector. When the result is also a vector, this is referred to as the destination vector.

Some operations resulting in a vector allow computation in place. This means the
results of the operation are placed back into the source vector (or the source one vector
for binary operations). In this case, the destination vector is said to (physically) replace
the source (one) vector. If an operation can be computed in place, itis indicated as such
in the comments provided with the function description.

For some binary operations, the two operands can be the same (physical) source
vector, which means the operation is applied to the source vector and itself. If this type
of computation is possible for a given operation, it is indicated as such in the comments
provided with the function description.

Some operations can be both self applicable and computed in place.

All the fractional vector operations in this library take as an argument the cardinality
(number of elements) of the operand vector(s). Based on the value of this argument the
following assumptions are made:

a) The sum of sizes of all the vectors involved in a particular operation falls within
the range of available data memory for the target device.

b) Inthe case of binary operations, the cardinalities of both operand vectors must
obey the rules of vector algebra (particularly, see remarks for the
VectorConvolve and VectorCorrelate functions).

c) The destination vector must be large enough to accept the results of an
operation.

2.3.2 User Considerations

a) No boundary checking is performed by these functions. Out of range cardinalities
(including zero length vectors) as well as nonconforming use of source vector

© 2007 Microchip Technology Inc. DS51456D-page 13

16-Bit Language Tools Libraries

sizes in binary operations may produce unexpected results.

b) The vector addition and subtraction operations could lead to saturation if the sum
of corresponding elements in the source vector(s) is greater than 1-2-1° or
smaller than -1.0. Analogously, the vector dot product and power operations
could lead to saturation if the sum of products is greater than 1-2-1° or smaller
than -1.0.

c) Itisrecommended that the STATUS Register (SR) be examined after completion
of each function call. In particular, users can inspect the SA, SB and SAB flags
after the function returns to determine if saturation occurred.

d) All the functions have been designed to operate on fractional vectors allocated
in default RAM memory space (X-Data or Y-Data).

e) Operations which return a destination vector can be nested, so that for instance
if:
a=0p1l (b, c), with b = Op2 (d), and c = Op3 (e, f), then
a=0p1 (Op2 (d), Op3 (e, f))

2.3.3 Additional Remarks

The description of the functions limits its scope to what could be considered the regular
usage of these operations. However, since no boundary checking is performed during
computation of these functions, you have the freedom to interpret the operation and its
results as it fits some particular needs.

For instance, while computing the vectorMax function, the length of the source vector
could be greater than numElems. In this case, the function would be used to find the
maximum value only among the first numeElems elements of the source vector.

As another example, you may be interested in replacing numelems elements of a des-
tination vector located between N and N+numEIems-1, with numElems elements from a
source vector located between elements M and M+numElems-1. Then, the vectorCopy
function could be used as follows:

fractional* dstV[DST ELEMS]
fractional* srcV[SRC ELEMS]
int n = NUM_ELEMS;

int N = N_PLACE; /* NUM_ELEMS+N < DST ELEMS */
int M = M_PLACE; /* NUM_ELEMS+M < SRC_ELEMS */
fractional* dstVector = dstV+N;

fractional* srcVector = srcV+M;

o
—_~———
—— e

dstVector = VectorCopy (n, dstVector, srcVector);

Also in this context, the vectorZeropad function can operate in place, where now dstv
= srcV, numElems iS the number of elements at the beginning of source vector to pre-
serve, and numzeros the number of elements at the vector tail to set to zero.

Other possibilities can be exploited from the fact that no boundary checking is
performed.

2.3.4 Individual Functions

In what follows, the individual functions implementing vector operations are described.

VectorAdd

Description: VectorAdd adds the value of each element in the source one vector
with its counterpart in the source two vector, and places the result in the
destination vector.

Include: dsp.h

DS51456D-page 14

© 2007 Microchip Technology Inc.

DSP Library

VectorAdd (Continued)

Prototype: extern fractional* VectorAdd (
int numElems,
fractional* dstV,
fractional* srcVi,
fractional* srcV2

)i

Arguments: numklems number of elements in source vectors
dstV pointer to destination vector
srcVil pointer to source one vector
srcv2 pointer to source two vector
Return Value: Pointer to base address of destination vector.
Remarks: If the absolute value of srcvi[n] + srcvzIn] is larger than 1-2715,

this operation results in saturation for the n-th element.
This function can be computed in place.
This function can be self applicable.

Source File: vadd.s

Function Profile: System resources usage:
WO0..W4 used, not restored
ACCA used, not restored
CORCON saved, used, restored

DO and REPEAT instruction usage:
1 level DO instructions
no REPEAT instructions

Program words (24-bit instructions):
13

Cycles (including C-function call and return overheads):
17 + 3(numElems)

© 2007 Microchip Technology Inc. DS51456D-page 15

16-Bit Language Tools Libraries

VectorConvolve

Description:

Include:
Prototype:

Arguments:

Return Value:

Remarks:

Source File:

VectorConvolve computes the convolution between two source vec-

tors, and stores the result in a destination vector. The result is com-
puted as follows:
n

y(m = 3 x(kh(n-k), foro<n<M
k=0
n
y(n) = Z x(K)h(n—k),forM<n<N
k=n-M+1
N-1
y(n) = Z x(K)h(n—=k),forN<n<N+M-1
k=n-M+1

where x(k) = source one vector of size N, h(k) = source two vector of
size M (with M < N).

dsp.h

extern fractional* VectorConvolve (
int numElemsl1,
int numElems2,
fractional* dstV,
fractional* srcVi,
fractional* srcV2
)i
numElemsl number of elements in source one vector
numElems2 number of elements in source two vector

dstV pointer to destination vector
srcVi pointer to source one vector
srcv2 pointer to source two vector

Pointer to base address of destination vector.

The number of elements in the source two vector must be less than or
equal to the number of elements in the source one vector.
The destination vector must already exist, with exactly
numElemsl+numElems2-1 number of elements.

This function can be self applicable.

vcon. s

DS51456D-page 16

© 2007 Microchip Technology Inc.

DSP Library

VectorConvolve (Continued)

Function Profile:

System resources usage:

WO0..W7 used, not restored
W8..W10 saved, used, restored
ACCA used, not restored
CORCON saved, used, restored

DO and REPEAT instruction usage:
2 level DO instructions
no REPEAT instructions

Program words (24-bit instructions):
58

Cycles (including C-function call and return overheads):
For N = numElems1, and M = numEIlems2,

M
28+13M +6 Z m+(N-M)(7+3M),forM<N
m=1
M
28+13M+6Z m, forM =N
m=1

VectorCopy

Description:

Include:

Prototype:

Arguments:

Return Value:
Remarks:

Source File:

Function Profile:

VectorCopy copies the elements of the source vector into the begin-
ning of an (already existing) destination vector, so that:
dstV[n] = srcV[n]l, 0 £ n<numElems

dsp.h

extern fractional* VectorCopy (
int numElems,
fractional* dstV,
fractional* srcV
)i
numElems number of elements in source vector
dstV pointer to destination vector
srcVv pointer to source vector

Pointer to base address of destination vector.

The destination vector must already exist. Destination vectors must
have, at least, numEIems elements, but could be longer.

This function can be computed in place. See Additional Remarks at the
end of the section for comments on this mode of operation.

VCopy . s

System resources usage:
WO0..W3 used, not restored

DO and REPEAT instruction usage:
no DO instructions
1 level REPEAT instructions

Program words (24-bit instructions):
6

Cycles (including C-function call and return overheads):
12 + numElems

© 2007 Microchip Technology Inc.

DS51456D-page 17

16-Bit Language Tools Libraries

VectorCorrelate

Description:

Include:
Prototype:

Arguments:

Return Value:
Remarks:

Source File:
Function Profile:

VectorCorrelate computes the correlation between two source vec-
tors, and stores the result in a destination vector. The result is com-
puted as follows:

N-1
r(n) = Z x(k)y(k+n),forOSn<N+M-1

k=0
where x(k) = source one vector of size N, y(k) = source two vector of
size M (with M < N).
dsp.h

extern fractional* VectorCorrelate (
int numElemsl1,
int numElems2,
fractional* dstV,
fractional* srcVi,
fractional* srcV2
)i
numElemsl number of elements in source one vector
numElems2 number of elements in source two vector

dstV pointer to destination vector
srcvi pointer to source one vector
srcv2 pointer to source two vector

Pointer to base address of destination vector.

The number of elements in the source two vector must be less than or
equal to the number of elements in the source one vector.

The destination vector must already exist, with exactly
numElemsl+numElems2-1 number of elements.

This function can be self applicable.

This function uses VectorConvolve.

VCOr.s.s

System resources usage:
WO0..W7 used, not restored,
plus resources from VectorConvolve

DO and REPEAT instruction usage:
1 level DO instructions
no REPEAT instructions,
plus DO/REPEAT instructions from
VectorConvolve

Program words (24-bit instructions):
14,
plus program words from VectorConvolve

Cycles (including C-function call and return overheads):
19 + floor(M / 2) * 3, with M = numEIems2,
plus cycles from VectorConvolve.

Note: In the description of VectorConvolve the number of cycles
reported includes 4 cycles of C-function call overhead. Thus, the num-
ber of actual cycles from VectorConvolve to add to
VectorCorrelate is 4 less than whatever number is reported for a
stand-alone VectorConvolve.

DS51456D-page 18

© 2007 Microchip Technology Inc.

DSP Library

VectorDotProduct
Description: VectorDotProduct computes the sum of the products between cor-
responding elements of the source one and source two vectors.
Include: dsp.h
Prototype: extern fractional VectorDotProduct (
int numElems,
fractional* srcVi,
fractional* srcVv2
)
Arguments: numklems number of elements in source vectors
srcVil pointer to source one vector
srcv2 pointer to source two vector

Return Value:
Remarks:

Source File:

Function Profile:

Value of the sum of products.

If the absolute value of the sum of products is larger than 1-2715, this
operation results in saturation.
This function can be self applicable.

vdot.s
System resources usage:

WO0..W2 used, not restored
W4..W5 used, not restored
ACCA used, not restored
CORCON saved, used, restored

DO and REPEAT instruction usage:
1 level DO instructions
no REPEAT instructions

Program words (24-bit instructions):
13

Cycles (including C-function call and return overheads):
17 + 3(numElems)

VectorMax
Description: VectorMax finds the last element in the source vector whose value is
greater than or equal to any previous vector element. Then, it outputs
that maximum value and the index of the maximum element.
Include: dsp.h
Prototype: extern fractional VectorMax (
int numElems,
fractional* srcV,
int* maxIndex
)
Arguments: numklems number of elements in source vector

Return Value:
Remarks:

Source File:

srcv pointer to source vector
maxIndex pointer to holder for index of (last) maximum element

Maximum value in vector.

If srcV[i] = srcV[j] = maxVal,and i < j,then
*maxIndex = j.

vmax.s

© 2007 Microchip Technology Inc.

DS51456D-page 19

16-Bit Language Tools Libraries

VectorMax (Continued)

Function Profile:

System resources usage:
WO0..W5 used, not restored

DO and REPEAT instruction usage:
no DO instructions
no REPEAT instructions

Program words (24-bit instructions):
13

Cycles (including C-function call and return overheads):
14
if numElems =1
20 + 8(numElems —2)
if srcv[n] <srcvin + 1],0<n<numElems-1
19 + 7(numElems —2)
if srcvin] > srcVin + 1]1,0<n<numElems-—1

VectorMin
Description: VectorMin finds the last element in the source vector whose value is
less than or equal to any previous vector element. Then, it outputs that
minimum value and the index of the minimum element.
Include: dsp.h
Prototype: extern fractional VectorMin (
int numElems,
fractional* srcV,
int* minIndex
)
Arguments: numklems number of elements in source vector

Return Value:
Remarks:

Source File:
Function Profile:

srcv pointer to source vector
minIndex pointer to holder for index of (last) minimum element

Minimum value in vector.

If srev[i] = srcV[j] = minval,andi < 7, then
*minIndex = j.

vmin.s

System resources usage:
WO0..W5 used, not restored

DO and REPEAT instruction usage:
no DO instructions
no REPEAT instructions

Program words (24-bit instructions):
13

Cycles (including C-function call and return overheads):
14
if numElems =1
20 + 8(numElems —2)
if srcv[n] = srcvin + 1]1,0<n<numElems —1
19 + 7(numElems — 2)
if srevin] < srcVin + 1]1,0<n<numElems —1

DS51456D-page 20

© 2007 Microchip Technology Inc.

DSP Library

VectorMultiply

Description:

Include:
Prototype:

Arguments:

Return Value:
Remarks:

Source File:
Function Profile:

VectorMultiply multiplies the value of each element in source one
vector with its counterpart in source two vector, and places the result in
the corresponding element of destination vector.
dsp.h
extern fractional* VectorMultiply (

int numElems,

fractional* dstV,

fractional* srcVi,

fractional* srcV2

)i

numElems number of elements in source vector
dstV pointer to destination vector
srcVi pointer to source one vector
srcv2 pointer to source two vector

Pointer to base address of destination vector.

This operation is also known as vector element-by-element multiplica-
tion.

This function can be computed in place.

This function can be self applicable.

vmul.s

System resources usage:

WO0..W5 used, not restored
ACCA used, not restored
CORCON saved, used, restored

DO and REPEAT instruction usage:
1 level DO instructions
no REPEAT instructions

Program words (24-bit instructions):
14

Cycles (including C-function call and return overheads):
17 + 4(numElems)

VectorNegate
Description: VectorNegate negates (changes the sign of) the values of the ele-
ments in the source vector, and places them in the destination vector.
Include: dsp.h
Prototype: extern fractional* VectorNeg (
int numElems,
fractional* dstV,
fractional* srcV
)i
Arguments: numElems number of elements in source vector
dstV pointer to destination vector
srcv pointer to source vector

Return Value:
Remarks:

Source File:

Pointer to base address of destination vector.

The negated value of 0x8000 is set to Ox7FFF.
This function can be computed in place.

vneg.s

© 2007 Microchip Technology Inc.

DS51456D-page 21

16-Bit Language Tools Libraries

VectorNegate (Continued)

Function Profile: System resources usage:
WO0..W5 used, not restored
ACCA used, not restored
CORCON saved, used, restored

DO and REPEAT instruction usage:
1 level DO instructions
no REPEAT instructions

Program words (24-bit instructions):
16

Cycles (including C-function call and return overheads):
19 + 4(numElems)

VectorPower
Description: VectorPower computes the power of a source vector as the sum of
the squares of its elements.
Include: dsp.h
Prototype: extern fractional VectorPower (
int numElems,
fractional* srcV
)
Arguments: numElems number of elements in source vector
srcv pointer to source vector
Return Value: Value of the vector’s power (sum of squares).
Remarks: If the absolute value of the sum of squares is larger than 1-2715, this
operation results in saturation
This function can be self applicable.
Source File: vVpow. s
Function Profile: System resources usage:
WO0..W2 used, not restored
W4 used, not restored
ACCA used, not restored
CORCON saved, used, restored

DO and REPEAT instruction usage:
no DO instructions
1 level REPEAT instructions

Program words (24-bit instructions):
12

Cycles (including C-function call and return overheads):
16 + 2(numElems)

DS51456D-page 22 © 2007 Microchip Technology Inc.

DSP Library

VectorScale

Description:

Include:
Prototype:

Arguments:

Return Value:
Remarks:

Source File:
Function Profile:

VectorScale scales (multiplies) the values of all the elements in the
source vector by a scale value, and places the result in the destination
vector.

dsp.h

extern fractional* VectorScale (
int numElems,
fractional* dstV,
fractional* srcV,
fractional sclval
)i
numElems number of elements in source vector

dstV pointer to destination vector
srcv pointer to source vector
sclval value by which to scale vector elements

Pointer to base address of destination vector.

sclVal must be a fractional number in 1.15 format.
This function can be computed in place.

vscl.s

System resources usage:

WO0..W5 used, not restored
ACCA used, not restored
CORCON saved, used, restored

DO and REPEAT instruction usage:
1 level DO instructions
no REPEAT instructions

Program words (24-bit instructions):
14

Cycles (including C-function call and return overheads):
18 + 3(numElems)

VectorSubtract

Description:

Include:
Prototype:

Arguments:

Return Value:
Remarks:

VectorSubtract subtracts the value of each element in the source
two vector from its counterpart in the source one vector, and places the
result in the destination vector.
dsp.h
extern fractional* VectorSubtract (
int numElems,
fractional* dstV,
fractional* srcVi,
fractional* srcV2
)i
numElems number of elements in source vectors

dstV pointer to destination vector
srcVi pointer to source one vector (minuend)
srcv2 pointer to source two vector (subtrahend)

Pointer to base address of destination vector.

If the absolute value of srcvi[n] - srcvz[n] is larger than 1-2715,
this operation results in saturation for the n-th element.

This function can be computed in place.

This function can be self applicable.

© 2007 Microchip Technology Inc.

DS51456D-page 23

16-Bit Language Tools Libraries

VectorSubtract (Continued)

Source File:
Function Profile:

vsub.s

System resources usage:

WO0..W4 used, not restored
ACCA used, not restored
ACCB used, not restored
CORCON saved, used, restored

DO and REPEAT instruction usage:
1 level DO instructions
no REPEAT instructions

Program words (24-bit instructions):
14

Cycles (including C-function call and return overheads):
17 + 4(numElems)

VectorZeroPad

Description:

Include:
Prototype:

Arguments:

Return Value:
Remarks:

Source File:

VectorZeroPad copies the source vector into the beginning of the
(already existing) destination vector, and then fills with zeros the
remaining numZeros elements of destination vector:

dstV[n] = srcV[n], 0 < n < numElems
dstV[n] = 0, numElems<n<numElems+numZeros
dsp.h

extern fractional* VectorZeroPad (
int numElems,
int numZeros,
fractional* dstV,
fractional* srcV
)i
numElems number of elements in source vector
numZeros number of elements to fill with zeros at the tail of desti-
nation vector
dstV pointer to destination vector
srcv pointer to source vector
Pointer to base address of destination vector.
The destination vector must already exist, with exactly numElems +
numZeros number of elements.
This function can be computed in place. See Additional Remarks at the
beginning of the section for comments on this mode of operation.
This function uses VectorCopy.

vzpad.s

DS51456D-page 24

© 2007 Microchip Technology Inc.

DSP Library

VectorZeroPad (Continued)

Function Profile:

System resources usage:
WO0..W6 used, not restored
plus resources from VectorCopy

DO and REPEAT instruction usage:
no DO instructions
1 level REPEAT instructions
plus DO/REPEAT from VectorCopy

Program words (24-bit instructions):
13,
plus program words from VectorCopy

Cycles (including C-function call and return overheads):
18 + numZeros
plus cycles from VectorCopy.

Note: In the description of VectorCopy, the number of cycles reported
includes 3 cycles of C-function call overhead. Thus, the number of
actual cycles from VectorCopy to add to VectorCorrelate is 3 less
than whatever number is reported for a stand-alone VectorCopy.

© 2007 Microchip Technology Inc.

DS51456D-page 25

16-Bit Language Tools Libraries

2.4 WINDOW FUNCTIONS

A window is a vector with a specific value distribution within its domain (0 < n <
numElems). The particular value distribution depends on the characteristics of the
window being generated.

Given a vector, its value distribution may be modified by applying a window to it. In
these cases, the window must have the same number of elements as the vector to
modify.

Before a vector can be windowed, the window must be created. Window initialization
operations are provided which generate the values of the window elements. For higher
numerical precision, these values are computed in floating-point arithmetic, and the
resulting quantities stored as 1.15 fractionals.

To avoid excessive overhead when applying a window operation, a particular window
could be generated once and used many times during the execution of the program.
Thus, itis advisable to store the window returned by any of the initialization operations
in a permanent (static) vector.

24.1 User Considerations

a) All the window initialization functions have been designed to generate window
vectors allocated in default RAM memory space (X-Data or Y-Data).

b) The windowing function is designed to operate on vectors allocated in default
RAM memory space (X-Data or Y-Data).

c) Itisrecommended that the STATUS Register (SR) be examined after completion
of each function call.

d) Since the window initialization functions are implemented in C, consult the
electronic documentation included in the release for up-to-date cycle count

information.
2.4.2 Individual Functions
In what follows, the individual functions implementing window operations are
described.
Bartlettinit
Description: BartlettInit initializes a Barlett window of length numEIems.
Include: dsp.h
Prototype: extern fractional* BartlettInit (
int numElems,
fractional* window
)
Arguments: numklems number of elements in window
window pointer to window to be initialized
Return Value: Pointer to base address of initialized window.
Remarks: The window vector must already exist, with exactly numEIems number
of elements.
Source File: initbart.c

DS51456D-page 26 © 2007 Microchip Technology Inc.

DSP Library

Bartlettinit (Continued)

Function Profile:

System resources usage:
WO0..W7 used, not restored
W8..W14 saved, used, not restored

DO and REPEAT instruction usage:
None

Program words (24-bit instructions):
See the file “Readme for dsPIC Language Tools Libraries.txt” for
this information.

Cycles (including C-function call and return overheads):
See the file “Readme for dsPIC Language Tools Libraries.txt” for
this information.

Blackmaninit

Description:

Include:
Prototype:

Arguments:

Return Value:
Remarks:

Source File:
Function Profile:

BlackmanInit initializes a Blackman (3 terms) window of length
numElems.
dsp.h

extern fractional* BlackmanInit (
int numElems,
fractional* window
)i
numElems number of elements in window
window pointer to window to be initialized

Pointer to base address of initialized window.

The window vector must already exist, with exactly numEIems number
of elements.

initblck.c

System resources usage:
WO0..W7 used, not restored
W8..W14 saved, used, not restored

DO and REPEAT instruction usage:
None

Program words (24-bit instructions):
See the file “readme.txt” in pic30_tools\src\dsp for this information.

Cycles (including C-function call and return overheads):
See the file “readme.txt” in pic30_tools\src\dsp for this information.

© 2007 Microchip Technology Inc.

DS51456D-page 27

16-Bit Language Tools Libraries

Hamminglnit

Description:
Include:
Prototype:

Arguments:

Return Value:
Remarks:

Source File:
Function Profile:

HammingInit initializes a Hamming window of length numEIems.
dsp.h

extern fractional* HammingInit (
int numElems,
fractional* window
)i
numElems
window

number of elements in window
pointer to window to be initialized

Pointer to base address of initialized window.

The window vector must already exist, with exactly numEIems number
of elements.

inithamm.c

System resources usage:

WO..W7 used, not restored
W8..W14 saved, used, not restored

DO and REPEAT instruction usage:
None

Program words (24-bit instructions):
See the file “readme.txt” in pic30_tools\src\dsp for this information.

Cycles (including C-function call and return overheads):
See the file “readme.txt” in pic30_tools\src\dsp for this information.

Hanninglnit
Description: HanningInit initializes a Hanning window of length numEIems.
Include: dsp.h
Prototype: extern fractional* HanningInit (
int numElems,
fractional* window
) ;
Arguments: numElems number of elements in window
window pointer to window to be initialized

Return Value:
Remarks:

Source File:
Function Profile:

Pointer to base address of initialized window.

The window vector must already exist, with exactly numEIems number
of elements.

inithann.c

System resources usage:
WO0..W7 used, not restored
W8..W14 saved, used, not restored

DO and REPEAT instruction usage:
None

Program words (24-bit instructions):
See the file “readme.txt” in pic30_tools\src\dsp for this information.

Cycles (including C-function call and return overheads):
See the file “readme.txt” in pic30_tools\src\dsp for this information.

DS51456D-page 28

© 2007 Microchip Technology Inc.

DSP Library

Kaiserlnit

Description:

Include:
Prototype:

Arguments:
Return Value:
Remarks:

Source File:
Function Profile:

KaiserInit initializes a Kaiser window with shape determined by
argument betaVval and of length numElems.
dsp.h
extern fractional* KaiserInit (

int numElems,

fractional* window,

float betaVal
)i
numElems number of elements in window
window pointer to window to be initialized
betaVal window shaping parameter
Pointer to base address of initialized window.

The window vector must already exist, with exactly numEIems number
of elements.

initkais.c

System resources usage:

WO0..W7 used, not restored
W8..W14 saved, used, not restored

DO and REPEAT instruction usage:
None

Program words (24-bit instructions):
See the file “readme.txt” in pic30_tools\src\dsp for this information.

Cycles (including C-function call and return overheads):
See the file “readme.txt” in pic30_tools\src\dsp for this information.

VectorWindow

Description:

Include:
Prototype:

Arguments:

Return Value:
Remarks:

Source File:

VectorWindow applies a window to a given source vector, and stores
the resulting windowed vector in a destination vector.
dsp.h
extern fractional* VectorWindow (
int numElems,
fractional* dstV,
fractional* srcV,
fractional* window
)i
numElems number of elements in source vector

dstV pointer to destination vector
srcv pointer to source vector
window pointer to initialized window

Pointer to base address of destination vector.

The window vector must have already been initialized, with exactly
numEIems number of elements.

This function can be computed in place.

This function can be self applicable.

This function uses VectorMultiply.

dowindow. s

© 2007 Microchip Technology Inc.

DS51456D-page 29

16-Bit Language Tools Libraries

VectorWindow (Continued)

Function Profile:

System resources usage:
resources from VectorMultiply

DO and REPEAT instruction usage:
no DO instructions
no REPEAT instructions,
plus DO/REPEAT from VectorMultiply

Program words (24-bit instructions):
3,
plus program words from VectorMultiply

Cycles (including C-function call and return overheads):
9,
plus cycles from VectorMultiply.

Note: In the description of VvectorMultiply the number of cycles
reported includes 3 cycles of C-function call overhead. Thus, the num-
ber of actual cycles from VectorMultiply to add to VectorWindow
is 3 less than whatever number is reported for a stand-alone
VectorMultiply.

DS51456D-page 30

© 2007 Microchip Technology Inc.

DSP Library

2.5 MATRIX FUNCTIONS

This section presents the concept of a fractional matrix, as considered by the DSP
Library, and describes the individual functions which perform matrix operations.

25.1 Fractional Matrix Operations

A fractional matrix is a collection of numerical values, the matrix elements, allocated
contiguously in memory, with the first element at the lowest memory address. One word
of memory (two bytes) is used to store the value of each element, and this quantity
must be interpreted as a fractional number represented in 1.15 format.

A pointer addressing the first element of the matrix is used as a handle which provides
access to each of the matrix values. The address of the first element is referred to as
the base address of the matrix. Because each element of the matrix is 16 bits, the base
address must be aligned to an even address.

The two dimensional arrangement of a matrix is emulated in the memory storage area
by placing its elements organized in row major order. Thus, the first value in memory is
the first element of the first row. It is followed by the rest of the elements of the first row.
Then, the elements of the second row are stored, and so on, until all the rows are in
memory. This way, the element at row r and column ¢ of a matrix with R rows and C
columns is located from the matrix base address BA at:

BA+2(Cr—1)+c—-1),for1<r<R,1<c<C.

Note that the factor of 2 is used because of the byte addressing capabilities of the 16-bit
device.

Unary and binary fractional matrix operations are implemented in this library. The
operand matrix in a unary operation is called the source matrix. In a binary operation
the first operand is referred to as the source one matrix, and the second matrix as the
source two matrix. Each operation applies some computation to one or several
elements of the source matrix(ces). The operations result in a matrix, referred to as the
destination matrix.

Some operations resulting in a matrix allow computation in place. This means the
results of the operation is placed back into the source matrix (or the source one matrix
for a binary operation). In this case, the destination matrix is said to (physically) replace
the source (one) matrix. If an operation can be computed in place, it is indicated as
such in the comments provided with the function description.

For some binary operations, the two operands can be the same (physical) source
matrix, which means the operation is applied to the source matrix and itself. If this type
of computation is possible for a given operation, it is indicated as such in the comments
provided with the function description.

Some operations can be self applicable and computed in place.

© 2007 Microchip Technology Inc. DS51456D-page 31

16-Bit Language Tools Libraries

All the fractional matrix operations in this library take as arguments the number of rows
and the number of columns of the operand matrix(ces). Based on the values of these
argument the following assumptions are made:

a) The sum of sizes of all the matrices involved in a particular operation falls within
the range of available data memory for the target device.

b) Inthe case of binary operations the number of rows and columns of the operand
matrices must obey the rules of vector algebra; i.e., for matrix addition and sub-
traction the two matrices must have the same number of rows and columns,
while for matrix multiplication, the number of columns of the first operand must
be the same as the number of rows of the second operand. The source matrix to
the inversion operation must be square (the same number of rows as of
columns), and non-singular (its determinant different than zero).

¢) The destination matrix must be large enough to accept the results of an operation.

252 User Considerations

a) No boundary checking is performed by these functions. Out of range dimensions
(including zero row and/or zero column matrices) as well as nonconforming use
of source matrix sizes in binary operations may produce unexpected results.

b) The matrix addition and subtraction operations could lead to saturation if the sum
of corresponding elements in the source(s) matrix(ces) is greater than 1-215 or
smaller than -1.

¢) The matrix multiplication operation could lead to saturation if the sum of products
of corresponding row and column sets results in a value greater than 1-271° or
smaller than -1.

d) Itis recommended that the STATUS Register (SR) is examined after completion
of each function call. In particular, users can inspect the SA, SB and SAB flags
after the function returns to determine if saturation occurred.

e) Allthe functions have been designed to operate on fractional matrices allocated
in default RAM memory space (X-Data or Y-Data).

f) Operations which return a destination matrix can be nested, so that for instance
if:
a=0p1l (b, c), with b = Op2 (d), and c = Op3 (e, f), then
a=0p1 (Op2 (d), Op3 (e, f))

2.5.3 Additional Remarks

The description of the functions limits its scope to what could be considered the regular
usage of these operations. However, since no boundary checking is performed during
computation of these functions, you have the freedom to interpret the operation and its
results as it fits some particular needs.

For instance, while computing the MatrixMultiply function, the dimensions of the
intervening matrices does not necessarily need to be {numrows1, numCos1Rows2} for
source one matrix, {numColsiRows2, numCols2} for source two matrix, and {numrows1,
numCols2} for destination matrix. In fact, all that is needed is that their sizes are large
enough so that during computation the pointers do no exceed over their memory range.

As another example, when a source matrix of dimension {numrows, numCols} is
transposed, the destination matrix has dimensions {numco1ls, numrows}. Thus, properly
speaking the operation can be computed in place only if source matrix is square.
Nevertheless, the operation can be successfully applied in place to non square
matrices; all that needs to be kept in mind is the implicit change of dimensions.

DS51456D-page 32

© 2007 Microchip Technology Inc.

DSP Library

Other possibilities can be exploited from the fact that no boundary checking is

performed.

254 Individual Functions

In what follows, the individual functions implementing matrix operations are described.

MatrixAdd

Description:

Include:
Prototype:

Arguments:

Return Value:
Remarks:

Source File:

Function Profile:

MatrixAdd adds the value of each element in the source one matrix
with its counterpart in the source two matrix, and places the result in the
destination matrix.

dsp.h

extern fractional* MatrixAdd (
int numRows,
int numCols,
fractional* dstM,
fractional* srcMl,
fractional* srcM2

)i

numRows number of rows in source matrices
numCols number of columns in source matrices
dstM pointer to destination matrix

srcMi1 pointer to source one matrix

srcM2 pointer to source two matrix

Pointer to base address of destination matrix.

If the absolute value of srcM1 [r] [c] +sreM2[r] [c] is larger than
1-2'15, this operation results in saturation for the (r, c¢) -th element.
This function can be computed in place.

This function can be self applicable.

madd.s

System resources usage:
WO0..W4 used, not restored
ACCA used, not restored
CORCON saved, used, restored

DO and REPEAT instruction usage:
1 level DO instructions
no REPEAT instructions

Program words (24-bit instructions):
14

Cycles (including C-function call and return overheads):
20 + 3(numRows * numCols)

© 2007 Microchip Technology Inc.

DS51456D-page 33

16-Bit Language Tools Libraries

MatrixMultiply

Description:

Include:
Prototype:

Arguments:

Return Value:
Remarks:

Source File:
Function Profile:

MatrixMultiply performs the matrix multiplication between the
source one and source two matrices, and places the result in the desti-
nation matrix. Symbolically:

dstMI[i][j] = Z(srCM1[i][k])(srCM2i[k][j])
k

where:

0 <i< numRows1

0<j< numCols2

0 £k < numColslRows2

dsp.h

extern fractional* MatrixMultiply (
int numRowsl,
int numColslRows2,
int numCols2,
fractional* dstM,
fractional* srcMl,
fractional* srcM2
)i
numRows1 number of rows in source one matrix
numColslRows2 number of columns in source one matrix; which
must be the same as number of rows in source two

matrix
numCols2 number of columns in source two matrix
dstM pointer to destination matrix
srcMi pointer to source one matrix
srcM2 pointer to source two matrix

Pointer to base address of destination matrix.
If the absolute value of

Z(srcM 1[Ik (sreM2i[k][j1)

k
is larger than 1-271°, this operation results in saturation for the
(i,7)-th element.
If the source one matrix is squared, then this function can be computed
in place and can be self applicable. See Additional Remarks at the
beginning of the section for comments on this mode of operation.

mmul.s

System resources usage:

WO0..W7 used, not restored
W8..W13 saved, used, restored
ACCA used, not restored
CORCON saved, used, restored

DO and REPEAT instruction usage:
2 level DO instructions
no REPEAT instructions

Program words (24-bit instructions):
35

Cycles (including C-function call and return overheads):
36 + numRows1 * (8 + numCols2* (7 + 4 * numColslRows2))

DS51456D-page 34

© 2007 Microchip Technology Inc.

DSP Library

MatrixScale

Description:

Include:
Prototype:

Arguments:

Return Value:
Remarks:
Source File:
Function Profile:

MatrixScale scales (multiplies) the values of all elements in the
source matrix by a scale value, and places the result in the destination
matrix.

dsp.h

extern fractional* MatrixScale (
int numRows,
int numCols,
fractional* dstM,
fractional* srcM,
fractional sclVal

)i

numRows number of rows in source matrix
numCols number of columns in source matrix
dstM pointer to destination matrix

srcM pointer to source matrix

sclVal value by which to scale matrix elements

Pointer to base address of destination matrix.
This function can be computed in place.
mscl.s

System resources usage:

WO0..W5 used, not restored
ACCA used, not restored
CORCON saved, used, restored

DO and REPEAT instruction usage:
1 level DO instructions
no REPEAT instructions

Program words (24-bit instructions):
14

Cycles (including C-function call and return overheads):
20 + 3(numRows * numCols)

MatrixSubtract

Description:

Include:
Prototype:

Arguments:

Return Value:

MatrixSubtract subtracts the value of each element in the source
two matrix from its counterpart in the source one matrix, and places the
result in the destination matrix.

dsp.h

extern fractional* MatrixSubtract (
int numRows,
int numCols,
fractional* dstM,
fractional* srcMl,
fractional* srcM2

)i

numRows number of rows in source matrix(ces)
numCols number of columns in source matrix(ces)
dstM pointer to destination matrix

srcMi pointer to source one matrix (minuend)
srcM2 pointer to source two matrix (subtrahend)

Pointer to base address of destination matrix.

© 2007 Microchip Technology Inc.

DS51456D-page 35

16-Bit Language Tools Libraries

MatrixSubtract (Continued)

Remarks:

Source File:
Function Profile:

If the absolute value of srcM1 [r] [c] -sreM2[r] [c] is larger than
1-2°15_ this operation results in saturation for the (r, c) -th element.
This function can be computed in place.

This function can be self applicable.

msub.s

System resources usage:

WO0..W4 used, not restored
ACCA used, not restored
ACCB used, not restored
CORCON saved, used, restored

DO and REPEAT instruction usage:
1 level DO instructions
no REPEAT instructions

Program words (24-bit instructions):
15

Cycles (including C-function call and return overheads):
20 + 4(numRows * numCols)

MatrixTranspose

Description:

Include:
Prototype:

Arguments:

Return Value:
Remarks:

Source File:
Function Profile:

MatrixTranspose transposes the rows by the columns in the source
matrix, and places the result in destination matrix. In effect:

dstM[i] [j] = srcM[]j] [1],

0 <i< numRows, 0 £j < numCols.

dsp.h

extern fractional* MatrixTranspose (
int numRows,
int numCols,
fractional* dstM,
fractional* srcM

)i

numRows number of rows in source matrix
numCols number of columns in source matrix
dstM pointer to destination matrix

srcM pointer to source matrix

Pointer to base address of destination matrix.

If the source matrix is square, this function can be computed in place.
See Additional Remarks at the beginning of the section for comments
on this mode of operation.

mtrp.s

System resources usage:
WO0..W5 used, not restored

DO and REPEAT instruction usage:
2 level DO instructions
no REPEAT instructions

Program words (24-bit instructions):
14

Cycles (including C-function call and return overheads):
16 + numCols * (6 + (numRows-1) * 3)

DS51456D-page 36

© 2007 Microchip Technology Inc.

DSP Library

255 Matrix Inversion

The result of inverting a non-singular, square, fractional matrix is another square matrix
(of the same dimension) whose element values are not necessarily constrained to the
discrete fractional set {-1, ..., 1-2"15}. Thus, no matrix inversion operation is provided for

fractional matrices.

However, since matrix inversion is a very useful operation, an implementation based
on floating-point number representation and arithmetic is provided within the DSP
Library. Its description follows.

Matrixinvert

Description:

Include:
Prototype:

Arguments:

Return Value:

Remarks:

Source File:
Function Profile:

MatrixInvert computes the inverse of the source matrix, and places
the result in the destination matrix.

dsp.h

extern float* MatrixInvert (
int numRowsCols,
float* dstM,
float* srcM,
float* pivotFlag,
int* swappedRows,
int* swappedCols
)
numRowCols nhumber of rows and columns in (square) source

matrix
dstM pointer to destination matrix
srcM pointer to source matrix

Required for internal use:

pivotFlag pointer to a length numRowsCols vector
swappedRows pointer to a length numRowsCo1ls vector
swappedCols pointer to a length numRowsCols vector

Pointer to base address of destination matrix, or NULL if source matrix
is singular.

Even though the vectors pivotFlag, swappedRows, and
swappedCols, are for internal use only, they must be allocated prior to
calling this function.

If source matrix is singular (determinant equal to zero) the matrix does
not have an inverse. In this case the function returns NULL.

This function can be computed in place.

minv.s (assembled from C code)

System resources usage:
WO0..W7 used, not restored
W8, W14 saved, used, restored

DO and REPEAT instruction usage:
None

Program words (24-bit instructions):
See the file “readme.txt” in pic30_tools\src\dsp for this information.

Cycles (including C-function call and return overheads):
See the file “readme.txt” in pic30_tools\src\dsp for this information.

© 2007 Microchip Technology Inc.

DS51456D-page 37

16-Bit Language Tools Libraries

2.6 FILTERING FUNCTIONS

This section presents the concept of a fractional filter, as considered by the DSP
Library, and describes the individual functions which perform filter operations. The user
may refer to example projects that utilize the DSP library filtering functions, in order to
ascertain proper usage of functions. MPLAB IDE-based example projects/workspaces
have been provided in the installation folder of the MPLAB C30 toolsuite.

2.6.1 Fractional Filter Operations

Filtering the data sequence represented by fractional vector x[n] (0 £ n < N) is
equivalent to solving the difference equation:

P-1 M-1
ylnl+ %" (=alph(yln—pl) = > (b[m])(x[n—m])
p=1 m=0

for every nth sample, which results into the filtered data sequence y[n]. In this sense,
the fractional filter is characterized by the fractional vectors a[p] (0 < p < P) and b[m] (0
<m < M), referred to as the set of filter coefficients, which are designed to induce some
pre-specified changes in the signal represented by the input data sequence.

When filtering it is important to know and manage the past history of the input and out-
put data sequences (x[n], -M + 1 <n <0, and y[n], -P + 1 < n < 0), which represent the
initial conditions of the filtering operation. Also, when repeatedly applying the filter to
contiguous sections of the input data sequence it is necessary to remember the final
state of the last filtering operation (X[n, N—-M+1<n<N-1,andy[n, N-P+1<n
<N - 1). This final state is then taken into consideration for the calculations of the next
filtering stage. Accounting for the past history and current state is required in order to
perform a correct filtering operation.

The management of the past history and current state of a filtering operation is com-
monly implemented via additional sequences (also fractional vectors), referred to as
the filter delay line. Prior to applying the filter operation, the delay describes the past
history of the filter. After performing the filtering operation, the delay contains a set of
the most recently filtered data samples, and of the most recent output samples. (Note
that to ensure correct operation of a particular filter implementation, it is advisable to
initialize the delay values to zero by calling the corresponding initialization function.)

In the filter implementations provided with the DSP Library the input data sequence is
referred to as the sequence of source samples, while the resulting filtered sequence is
called the destination samples. The filter coefficients (a,b) and delay are usually
thought of as making up a filter structure. In all filter implementations, the input and
output data samples may be allocated in default RAM memory space (X-Data or
Y-Data). Filter coefficients may reside either in X-Data memory or program memory,
and filter delay values must be accessed only from Y-Data.

2.6.2 FIR and IIR Filter Implementations

The properties of afilter depend on the value distribution of its coefficients. In particular,
two types of filters are of special interest: Finite Impulse Response (FIR) filters, for
which a[m] = 0 when 1 <m < M, and Infinite Impulse Response (lIR) filters, those such
that a[0] # 0, and a[m] # 0 for some m in {1, ..., M}. Other classifications within the FIR
and IIR filter families account for the effects that the operation induces on input data
sequences.

Furthermore, even though filtering consists on solving the difference equation stated
above, several implementations are available which are more efficient than direct com-
putation of the difference equation. Also, some other implementations are designed to
execute the filtering operation under the constrains imposed by fractional arithmetic.

DS51456D-page 38

© 2007 Microchip Technology Inc.

DSP Library

All these considerations lead to a proliferation of filtering operations, of which a subset
is provided by the DSP Library.

2.6.3 Single Sample Filtering

The filtering functions provided in the DSP Library are designed for block processing.
Each filter function accepts an argument named numSamps which indicates the number
of words of input data (block size) to operate on. If single sample filtering is desired,
you may set numSamps to 1. This will have the effect of filtering one input sample, and
the function will compute a single output sample from the filter.

2.6.4 User Considerations

All the fractional filtering operations in this library rely on the values of either input
parameters or data structure elements to specify the number of samples to process,
and the sizes of the coefficients and delay vectors. Based on these values the following
assumptions are made:

a) The sum of sizes of all the vectors (sample sequences) involved in a particular
operation falls within the range of available data memory for the target device.

b) The destination vector must be large enough to accept the results of an
operation.

¢) No boundary checking is performed by these functions. Out of range sizes
(including zero length vectors) as well as nonconforming use of source vectors
and coefficient sets may produce unexpected results.

d) Itis recommended that the STATUS Register (SR) is examined after completion
of each function call. In particular, users can inspect the SA, SB and SAB flags
after the function returns to determine if saturation occurred.

e) Operations which return a destination vector can be nested, so that for instance
if:
a=0p1l (b, c), with b = Op2 (d), and c = Op3 (e, f), then
a = 0p1l (Op2 (d), Op3 (e, f))

© 2007 Microchip Technology Inc. DS51456D-page 39

16-Bit Language Tools Libraries

2.6.5 Individual Functions

In what follows, the individual functions implementing filtering operations are
described. For further discussions on digital filters, please consult Alan Oppenheim and
Ronald Schafer’s “Discrete-Time Signal Processing”, Prentice Hall, 1989. For imple-
mentation details of Least Mean Square FIR filters, please refer to T. Hsia’s “Conver-
gence Analysis of LMS and NLMS Adaptive Algorithms”, Proc. ICASSP, pp. 667-670,
1983, as well as Sangil Park and Garth Hillman’s “On Acoustic-Echo Cancellation
Implementation with Multiple Cascadable Adaptive FIR Filter Chips”, Proc. ICASSP,

1989.

FIRStruct

Structure: FIRStruct describes the filter structure for any of the FIR filters.
Include: dsp.h

Declaration: typedef struct {

int numCoeffs;
fractional* coeffsBase;
fractional* coeffsEnd;
int coeffsPage;
fractional* delayBase;
fractional* delayEnd;
fractional* delay;

} FIRStruct;

Parameters: numCoeffs number of coefficients in filter (also M)
coeffsBase base address for filter coefficients (also h)
coeffsEnd end address for filter coefficients
coeffsPage coefficients buffer page number
delayBase base address for delay buffer
delayEnd end address for delay buffer
delay current value of delay pointer (also d)

Remarks: Number of coefficients in filter is M.
Coefficients, h[m], defined in 0 < m < M, either within X-Data or pro-
gram memory.

Delay buffer d[m], defined in 0 < m < M, only in Y-Data.

If coefficients are stored in X-Data space, coeffsBase points to the
actual address where coefficients are allocated. If coefficients are
stored in program memory, coeffsBase is the offset from the program
page boundary containing the coefficients to the address in the page
where coefficients are allocated. This latter value can be calculated
using the inline assembly operator psvoffset ().

coeffsEnd is the address in X-Data space (or offset if in program
memory) of the last byte of the filter coefficients buffer.

If coefficients are stored in X-Data space, coeffsPage must be set to
OxFFOO (defined value COEFFS_IN_DATA). If coefficients are stored in
program memory, it is the program page number containing the coeffi-
cients. This latter value can be calculated using the inline assembly
operator psvpage ().

delayBase points to the actual address where the delay buffer is allo-
cated.

delayEnd is the address of the last byte of the filter delay buffer.

DS51456D-page 40 © 2007 Microchip Technology Inc.

DSP Library

FIRStruct (Continued)

When the coefficients and delay buffers are implemented as circular
increasing modulo buffers, both coeffsBase and delayBase must
be aligned to a ‘zero’ power of two address (coeffsEnd and
delayEnd are odd addresses). Whether these buffers are imple-
mented as circular increasing modulo buffers or not is indicated in the
remarks section of each FIR filter function description.

When the coefficients and delay buffers are not implemented as circu-
lar (increasing) modulo buffers, coeffsBase and delayBase do not
need to be aligned to a ‘zero’ power of two address, and the values of
coeffsEnd and delayEnd are ignored within the particular FIR Filter
function implementation.

FIR

Description:

Include:
Prototype:

Arguments:

Return Value:

Remarks:

Source File:

FIR applies an FIR filter to the sequence of source samples, places the
results in the sequence of destination samples, and updates the delay
values.

dsp.h

extern fractional* FIR (

int numSamps,

fractional* dstSamps,

fractional* srcSamps,

FIRStruct* filter
)
numSamps number of input samples to filter (also N)
dstSamps pointer to destination samples (also y)
srcSamps pointer to source samples (also x)
filter pointer to FIRStruct filter structure

Pointer to base address of destination samples.

Number of coefficients in filter is M.

Coefficients, h[m], defined in 0 < m < M, implemented as a circular
increasing modulo buffer.

Delay, d[m], defined in 0 < m < M, implemented as a circular increasing
modulo buffer.

Source samples, x[n], defined in 0 < n < N.

Destination samples, y[n], defined in 0 < n < N.

(See also FIRStruct, FIRStructInit and FIRDelayInit.)

fir.s

© 2007 Microchip Technology Inc.

DS51456D-page 41

16-Bit Language Tools Libraries

FIR (Continued)

Function Profile: System resources usage:

WO0..W6 used, not restored

W8, W10 saved, used, restored

ACCA used, not restored

CORCON saved, used, restored
MODCON saved, used, restored
XMODSTRT saved, used, restored
XMODEND saved, used, restored
YMODSTRT saved, used, restored
PSVPAG saved, used, restored (only if

coefficients in P memory)

DO and REPEAT instruction usage:
1 level DO instructions
1 level REPEAT instructions

Program words (24-bit instructions):
55

Cycles (including C-function call and return overheads):
53 + N(4+M), or
56 + N(8+M) if coefficients in P memory.
Example Please refer to the MPLAB C30 installation folder for a sample project
demonstrating the use of this function.

FIRDecimate

Description: FIRDecimate decimates the sequence of source samples at a rate of
R to 1; or equivalently, it downsamples the signal by a factor of R.
Effectively,
y[n] = x[Rn].
To diminish the effect of aliasing, the source samples are first filtered
and then downsampled. The decimated results are stored in the
sequence of destination samples, and the delay values updated.

Include: dsp.h

Prototype: extern fractional* FIRDecimate (
int numSamps,
fractional* dstSamps,
fractional* srcSamps,
FIRStruct* filter,

int rate

)
Arguments: numSamps number of output samples (also N, N = Rp, p integer)

dstSamp pointer to destination samples (also y)

srcSamps pointer to source samples (also x)

filter pointer to FIRStruct filter structure

rate rate of decimation (downsampling factor, also R)
Return Value: Pointer to base address of destination samples.

DS51456D-page 42 © 2007 Microchip Technology Inc.

DSP Library

FIRDecimate (Continued)

Remarks:

Source File:
Function Profile:

Number of coefficients in filter is M, with M an integer multiple of R.
Coefficients, h[m], defined in 0 < m < M, not implemented as a circular
modulo buffer.

Delay, d[m], defined in 0 < m < M, not implemented as a circular mod-
ulo buffer.

Source samples, x[n], defined in 0 < n < NR.

Destination samples, y[n], defined in 0 < n < N.

(See also FIRStruct, FIRStructInit, and FIRDelayInit.)

firdecim.s

System resources usage:

WO..W7 used, not restored

W8..W12 saved, used, restored

ACCA used, not restored

CORCON saved, used, restored
PSVPAG saved, used, restored (only if

coefficients in P memory)

DO and REPEAT instruction usage:
1 level DO instructions
1 level REPEAT instructions

Program words (24-bit instructions):
48

Cycles (including C-function call and return overheads):
45 + N(10 + 2M), or
48 + N(13 + 2M) if coefficients in P memory.

FIRDelaylnit

Description:
Include:

Prototype:

Arguments:
Remarks:

Source File:
Function Profile:

FIRDelayInit initializes to zero the delay values in an FIRStruct
filter structure.
dsp.h
extern void FIRDelayInit (
FIRStruct* filter
) ;
filter pointer to FIRStruct filter structure.
See description of FIRStruct structure above.

Note: FIR interpolator's delay is initialized by function
FIRInterpDelayInit.

firdelay.s

System resources usage:
WO0..W2 used, not restored

DO and REPEAT instruction usage:
no DO instructions
1 level REPEAT instructions

Program words (24-bit instructions):
7

Cycles (including C-function call and return overheads):
11+M

© 2007 Microchip Technology Inc.

DS51456D-page 43

16-Bit Language Tools Libraries

FIRInterpolate

Description:

Include:
Prototype:

Arguments:

Return Value:

Remarks:

Source File:
Function Profile:

FIRInterpolate interpolates the sequence of source samples at a
rate of 1 to R; or equivalently, it upsamples the signal by a factor of R.
Effectively,

y[n] = x[n/R].

To diminish the effect of aliasing, the source samples are first upsam-
pled and then filtered. The interpolated results are stored in the
sequence of destination samples, and the delay values updated.

dsp.h

extern fractional* FIRInterpolate (
int numSamps,
fractional* dstSamps,
fractional* srcSamps,
FIRStruct* filter,
int rate
)
numSamps number of input samples (also N, N = Rp, p integer)
dstSamps pointer to destination samples (also y)
srcSamps pointer to source samples (also x)
filter pointer to FIRStruct filter structure
rate rate of interpolation (upsampling factor, also R)

Pointer to base address of destination samples.

Number of coefficients in filter is M, with M an integer multiple of R.
Coefficients, h[m], defined in 0 < m < M, not implemented as a circular
modulo buffer.

Delay, d[m], defined in 0 < m < M/R, not implemented as a circular
modulo buffer.

Source samples, x[n], defined in 0 < n < N.

Destination samples, y[n], defined in 0 < n < NR.

(See also FIRStruct, FIRStructInit, and
FIRInterpDelayInit.)

firinter.s

System resources usage:

WO..W7 used, not restored

W8..W13 saved, used, restored

ACCA used, not restored

CORCON saved, used, restored
PSVPAG saved, used, restored (only if

coefficients in P memory)

DO and REPEAT instruction usage:
2 level DO instructions
1 level REPEAT instructions

Program words (24-bit instructions):
63

Cycles (including C-function call and return overheads):
45+ 6(M/R)+N(14+M/R + 3M + 5R), or
48 + 6(M/R) + N(14 + M/ R + 4M + 5R) if coefficients in P memory.

DS51456D-page 44

© 2007 Microchip Technology Inc.

DSP Library

FIRInterpDelaylInit

Description: FIRInterpDelayInit initializes to zero the delay values in an FIR-
Struct filter structure, optimized for use with an FIR interpolating filter.

Include: dsp.h
Prototype: extern void FIRDelayInit (
FIRStruct* filter,
int rate
) ;
Arguments: filter pointer to FIRStruct filter structure
rate rate of interpolation (upsampling factor, also R)
Remarks: Delay, d[m], defined in 0 < m < M/R, with M the number of filter coeffi-

cients in the interpolator.
See description of FIRStruct structure above.

Source File: firintdl.s
Function Profile: System resources usage:
WO0..W4 used, not restored

DO and REPEAT instruction usage:
no DO instructions
1 level REPEAT instructions

Program words (24-bit instructions):
13

Cycles (including C-function call and return overheads):
10 + 7M/R

FIRLattice

Description: FIRLattice uses a lattice structure implementation to apply an FIR
filter to the sequence of source samples. It then places the results in
the sequence of destination samples, and updates the delay values.

Include: dsp.h

Prototype: extern fractional* FIRLattice (
int numSamps,
fractional* dstSamps,
fractional* srcSamps,
FIRStruct* filter
)
Arguments: numSamps number of input samples to filter (also N)
dstSamps pointer to destination samples (also y)
srcSamps pointer to source samples (also x)
filter pointer to FIRStruct filter structure

Return Value: Pointer to base address of destination samples.

Remarks: Number of coefficients in filter is M.
Lattice coefficients, k[m], defined in 0 < m < M, not implemented as a
circular modulo buffer.
Delay, d[m], defined in 0 < m < M, not implemented as a circular mod-
ulo buffer.
Source samples, x[n], defined in 0 < n < N.
Destination samples, y[n], defined in 0 < n < N.
(See also FIRStruct, FIRStructInit and FIRDelayInit.)

Source File: firlatt.s

© 2007 Microchip Technology Inc. DS51456D-page 45

16-Bit Language Tools Libraries

FIRLattice (Continued)

Function Profile: System resources usage:
WO0..W7 used, not restored
W8..W12 saved, used, restored
ACCA used, not restored
ACCB used, not restored
CORCON saved, used, restored
PSVPAG saved, used, restored (only if

coefficients in P memory)

DO and REPEAT instruction usage:
2 level DO instructions
no REPEAT instructions

Program words (24-bit instructions):
50

Cycles (including C-function call and return overheads):
41 + N(4 + 7TM)
44 + N(4 + 8M) if coefficients in P memory

FIRLMS

Description: FIRLMS applies an adaptive FIR filter to the sequence of source sam-
ples, stores the results in the sequence of destination samples, and
updates the delay values.

The filter coefficients are also updated, at a sample-per-sample basis,
using a Least Mean Square algorithm applied according to the values
of the reference samples.

Include: dsp.h

Prototype: extern fractional* FIRLMS (
int numSamps,
fractional* dstSamps,
fractional* srcSamps,
FIRStruct* filter,
fractional* refSamps,
fractional muVal
)
Arguments: numSamps number of input samples (also N)
dstSamps pointer to destination samples (also y)
srcSamps pointer to source samples (also x)
filter pointer to FIRStruct filter structure
refSamps pointer to reference samples (also r)
muVal adapting factor (also mu)

Return Value: Pointer to base address of destination samples.

DS51456D-page 46 © 2007 Microchip Technology Inc.

DSP Library

FIRLMS (Continued)

Remarks: Number of coefficients in filter is M.
Coefficients, h[m], defined in 0 < m < M, implemented as a circular
increasing modulo buffer.
delay, d[m], defined in 0 < m < M-1, implemented as a circular increas-
ing modulo buffer.
Source samples, x[n], defined in 0 < n < N.
Reference samples, r[n], defined in 0 < n < N.
Destination samples, y[n], defined in 0 <n < N.
Adaptation:
h_m[n] = h_m[n — 1] + mu * (r[n] — y[n]) * X[n — m],
forO<n<N,0<m< M.
The operation could result in saturation if the absolute value of
(r[n] - y[n]) is greater than or equal to one.
Filter coefficients must not be allocated in program memory, because in
that case their values could not be adapted. If filter coefficients are
detected as allocated in program memory the function returns NULL.
(See also FIRStruct, FIRStructInit and FIRDelayInit.)

Source File: firlms.s

Function Profile: System resources usage:
WO0..W7 used, not restored
W8..W12 saved, used, restored
ACCA used, not restored
ACCB used, not restored
CORCON saved, used, restored
MODCON saved, used, restored
XMODSTRT saved, used, restored
XMODEND saved, used, restored
YMODSTRT saved, used, restored

DO and REPEAT instruction usage:
2 level DO instructions
1 level REPEAT instructions

Program words (24-bit instructions):
76

Cycles (including C-function call and return overheads):
61 + N(13 + 5M)

FIRLMSNorm

Description: FIRLMSNorm applies an adaptive FIR filter to the sequence of source
samples, stores the results in the sequence of destination samples,
and updates the delay values.
The filter coefficients are also updated, at a sample-per-sample basis,
using a Normalized Least Mean Square algorithm applied according to
the values of the reference samples.

Include: dsp.h

© 2007 Microchip Technology Inc. DS51456D-page 47

16-Bit Language Tools Libraries

FIRLMSNorm (Continued)

Prototype:

Arguments:

Return Value:
Remarks:

Source File:

extern fractional* FIRLMSNorm (
int numSamps,
fractional* dstSamps,
fractional* srcSamps,
FIRStruct* filter,
fractional* refSamps,
fractional muVal,
fractional* energyEstimate

)i

numSamps number of input samples (also N)
dstSamps pointer to destination samples (also y)
srcSamps pointer to source samples (also x)
filter pointer to FIRStruct filter structure
refSamps pointer to reference samples (also r)
muVal adapting factor (also mu)

energyEstimate estimated energy value for the last M input signal
samples, with M the number of filter coefficients

Pointer to base address of destination samples.

Number of coefficients in filter is M.
Coefficients, h[m], defined in 0 < m < M, implemented as a circular
increasing modulo buffer.
delay, d[m], defined in 0 < m < M, implemented as a circular increasing
modulo buffer.
Source samples, x[n], defined in 0 <n < N.
Reference samples, r[n], defined in 0 < n < N.
Destination samples, y[n], defined in 0 < n < N.
Adaptation:
h_m[n] = h_m[n — 1] + nu[n] * (r[n] - y[n]) * X[n — m],
forO<Sn<N,0<m<M,
where nu[n] = mu/ (mu + E[n])
with E[n]=E[n — 1] + (x[n])? = (x[n — M + 1])? an estimate of input
signal energy.
On start up, energyEstimate should be initialized to the value of
E[-1] (zero the first time the filter is invoked). Upon return,
energyEstimate is updated to the value E[N — 1] (which may be
used as the start up value for a subsequent function call if filtering an
extension of the input signal).
The operation could result in saturation if the absolute value of (r[n] —
y[n]) is greater than or equal to one.
Note: Another expression for the energy estimate is:
E[n] = (X[])? + (X[n — 1)2 + ... + (X[n = M + 2])2.
Thus, to avoid saturation while computing the estimate, the input sam-
ple values should be bound so that
-M+2
z (x[n+m])2<l,forOSn <N.
m=0
Filter coefficients must not be allocated in program memory, because in
that case their values could not be adapted. If filter coefficients are
detected as allocated in program memory the function returns NULL.
(See also FIRStruct, FIRStructInit and FIRDelayInit.)

firlmsn.s

DS51456D-page 48

© 2007 Microchip Technology Inc.

DSP Library

FIRLMSNorm (Continued)

Function Profile:

System resources usage:

WO0..W7 used, not restored
W8..W13 saved, used, restored
ACCA used, not restored
ACCB used, not restored
CORCON saved, used, restored
MODCON saved, used, restored
XMODSTRT saved, used, restored
XMODEND saved, used, restored
YMODSTRT saved, used, restored

DO and REPEAT instruction usage:
2 level DO instructions
1 level REPEAT instructions

Program words (24-bit instructions):
91

Cycles (including C-function call and return overheads):
66 + N(49 + 5M)

FIRStructlnit

Description:

Include:
Prototype:

Arguments:

Remarks:

Source File:
Function Profile:

FIRStructInit initializes the values of the parameters in an
FIRStruct FIR Filter structure.

dsp.h

extern void FIRStructInit (

FIRStruct* filter,

int numCoeffs,

fractional* coeffsBase,

int coeffsPage,

fractional* delayBase
)
filter pointer to FIRStruct filter structure
numCoeffs number of coefficients in filter (also M)
coeffsBase base address for filter coefficients (also h)
coeffsPage coefficient buffer page number
delayBase base address for delay buffer

See description of FIRStruct structure above.
Upon completion, FIRStructInit initializes the coeffsEnd and
delayEnd pointers accordingly. Also, delay is set equal to
delayBase.
firinit.s
System resources usage:

WO0..W5 used, not restored

DO and REPEAT instruction usage:
no DO instructions
no REPEAT instructions

Program words (24-bit instructions):
10

Cycles (including C-function call and return overheads):
19

© 2007 Microchip Technology Inc.

DS51456D-page 49

16-Bit Language Tools Libraries

[IRCanonic

Description:

Include:
Prototype:

Arguments:

Return Value:
Remarks:

Source File:

IIRCanonic applies an IR filter, using a cascade of canonic (direct
form Il) biquadratic sections, to the sequence of source samples. It
places the results in the sequence of destination samples, and updates
the delay values.

dsp.h

typedef struct {
int numSectionsLessl;
fractional* coeffsBase;
int coeffsPage;
fractional* delayBase;
int initialGain;
int finalShift;

} IIRCanonicStruct;

extern fractional* IIRCanonic (
int numSamps,
fractional* dstSamps,
fractional* srcSamps,
IIRCanonicStruct* filter
)i
Filter structure:
numSectionsLess1l less than number of cascaded second order
(biquadratic) sections (also S-1)

coeffsBase pointer to filter coefficients (also {a, b}), either
within X-Data or program memory
coeffsPage coefficients buffer page number, or 0xFF00

(defined value COEFFS_IN DATA) if coeffi-
cients in data space

delayBase pointer to filter delay (also d), only in Y-Data
initialGain initial gain value
finalShift output scaling (shift left)

Filter Description:

numSamps number of input samples to filter (also N)
dstSamps pointer to destination samples (also y)
srcSamps pointer to source samples (also x)

filter pointer to ITRCanonicStruct filter structure

Pointer to base address of destination samples.

There are 5 coefficients per second order (biquadratic) sections
arranged in the ordered set {a2[s], al[s], b2[s], b1[s], bO[s]}, 0 < s < S.
Coefficient values should be generated with dsPICFD filter design
package from Momentum Data Systems, Inc., or similar tool.

The delay is made up of two words of filter state per section {d1[s],
d2[s]},0<s<S.

Source samples, x[n], defined in 0 < n < N.

Destination samples, y[n], defined in 0 < n < N.

Initial gain value is applied to each input sample prior to entering the fil-
ter structure.

The output scale is applied as a shift to the output of the filter structure
prior to storing the result in the output sequence. It is used to restore
the filter gain to 0 dB. Shift count may be zero; if not zero, it represents
the number of bits to shift: negative indicates shift left, positive is shift
right.

iircan.s

DS51456D-page 50

© 2007 Microchip Technology Inc.

DSP Library

[IRCanonic (Continued)

Function Profile:

System resources usage:

WO0..W7 used, not restored
W8..W11 saved, used, restored
ACCA used, not restored
CORCON saved, used, restored
PSVPAG saved, used, restored

DO and REPEAT instruction usage:
2 level DO instructions
1 level REPEAT instructions

Program words (24-bit instructions):
42

Cycles (including C-function call and return overheads):
36 + N(8 + 7S), or
39 + N(9 + 12S) if coefficients in program memory.

[IRCanoniclnit

Description:
Include:

Prototype:

Arguments:

Remarks:

Source File:
Function Profile:

IIRCanonicInit initializes to zero the delay values in an

IIRCanonicStruct filter structure.

dsp.h

extern void IIRCanonicInit (
IIRCanonicStruct* filter

)

Filter structure:

(See description of IIRCanonic function).

Initialization Description:
filter pointer to IIRCanonicStruct filter structure

Two words of filter state per second order section {d1[s], d2[s]},
0<s<S.

iircan.s

System resources usage:
W0, W1 used, not restored

DO and REPEAT instruction usage:
1 level DO instructions
no REPEAT instructions

Program words (24-bit instructions):
7

Cycles (including C-function call and return overheads):
10 + S2.

© 2007 Microchip Technology Inc.

DS51456D-page 51

16-Bit Language Tools Libraries

[IRLattice

Description:

Include:
Prototype:

Arguments:

Return Value:
Remarks:

Source File:

IIRLattice uses a lattice structure implementation to apply an IIR fil-
ter to the sequence of source samples. It then places the results in the
sequence of destination samples, and updates the delay values.

dsp.h

typedef struct {
int order;
fractional* kappaVals;
fractional* gammaVals;
int coeffsPage;
fractional* delay;

} IIRLatticeStruct;

extern fractional* IIRLattice (
int numSamps,
fractional* dstSamps,
fractional* srcSamps,
ITRLatticeStruct* filter
)
Filter structure:
order filter order (also M, M < N; see FIRLattice for N)
kappaVals base address for lattice coefficients (also k), either in
X-Data or program memory
gammaVals base address for ladder coefficients (also g), either in
X-Data or program memory. If NULL, the function will
implement an all-pole filter.
coeffsPage coefficients buffer page number, or OXFFOO (defined
value COEFFS_IN DATA) if coefficients in data space
delay base address for delay (also d), only in Y-Data

Filter Description:

numSamps number of input samples to filter (also N, N S M; see
IIRLatticeStruct for M)

dstSamps pointer to destination samples (also y)

srcSamps pointer to source samples (also x)

filter pointer to IIRLatticeStruct filter structure

Pointer to base address of destination samples.

Lattice coefficients, k[m], defined in 0 <m < M.

Ladder coefficients, g[m], defined in 0 < m < M (unless if implementing
an all-pole filter).

Delay, d[m], defined in0 <m <M.

Source samples, x[n], defined in 0 <n < N.

Destination samples, y[n], defined in 0 < n < N.

Note: The fractional implementation provided with this library is prone
to saturation. Design and test the filter “off-line” using a floating-point
implementation such as the OCTAVE model at the end of this section.
Then, the intermediate forward and backward values should be moni-
tored during the floating-point execution in search for levels outside the
[-1, 1) range. If any one of the intermediate values spans outside of that
range, the maximum absolute value should be used to scale the input
signal prior to applying the fractional filter in real-time; i.e., multiply the
signal by the inverse of that maximum. This scaling should prevent the
fractional implementation from saturating.

iirlatt.s

DS51456D-page 52

© 2007 Microchip Technology Inc.

DSP Library

lIRLattice (Continued)

Function Profile:

System resources usage:

WO0..W7 used, not restored
W8..W13 saved, used, restored
ACCA used, not restored
ACCB used, not restored
CORCON saved, used, restored

DO and REPEAT instruction usage:
2 level DO instructions
no REPEAT instructions

Program words (24-bit instructions):
76

Cycles (including C-function call and return overheads):
46 + N(16 + 7M), or
49 + N(20 + 8M) if coefficients in program memory.

If implementing an all-pole filter:
46 + N(16 + 6M), or
49 + N(16 + 7M) if coefficients in program memory

[IRLatticelnit

Description:

Include:
Prototype:

Arguments:

Source File:
Function Profile:

IIRLatticeInit initializes to zero the delay values in an

IIRLatticeStruct filter structure.

dsp.h

extern void IIRLatticeInit (
IIRLatticeStruct* filter

)i

Filter structure:

(See description of IIRLattice function).

Initialization Description:
filter pointer to IIRLatticeStruct filter structure.

iirlattd.s

System resources usage:
WO0..W2 used, not restored

DO and REPEAT instruction usage:
no DO instructions
1 level REPEAT instructions

Program words (24-bit instructions):
6

Cycles (including C-function call and return overheads):
10+ M

© 2007 Microchip Technology Inc.

DS51456D-page 53

16-Bit Language Tools Libraries

IIRTransposed

Description:

Include:
Prototype:

Arguments:

Return Value:
Remarks:

Source File:

IIRTransposed applies an IR filter, using a cascade of transposed
(direct form I1) biquadratic sections, to the sequence of source sam-
ples. It places the results in the sequence of destination samples, and
updates the delay values.

dsp.h

typedef struct {
int numSectionsLessl;
fractional* coeffsBase;
int coeffsPage;
fractional* delayBasel;
fractional* delayBaseZ2;
int finalShift;

} IIRTransposedStruct;

extern fractional* IIRTransposed (
int numSamps,
fractional* dstSamps,
fractional* srcSamps,
IIRTransposedStruct* filter
) ;
Filter structure:
numSectionsLess1l less than number of cascaded second order
(biquadratic) sections (also S-1)

coeffsBase pointer to filter coefficients (also {a, b}), either in
X-Data or program memory
coeffsPage coefficient buffer page number, or OxFF00

(defined value COEFFS_IN DATA) if coeffi-
cients in data space

delayBasel pointer to filter state 1, with one word of delay per
second order section (also d1), only in Y-Data
delayBase2 pointer to filter state 2, with one word of delay per
second order section (also d2), only in Y-Data
finalShift output scaling (shift left)

Filter Description:

numSamps number of input samples to filter (also N)

dstSamps pointer to destination samples (also y)

srcSamps pointer to source samples (also x)

filter pointer to IIRTransposedStruct filter
structure

Pointer to base address of destination samples.

There are 5 coefficients per second order (biquadratic) section
arranged in the ordered set {b0O[s], b1[s], al[s], b2[s],a2[s]}, 0 <s < S.
Coefficient values should be generated with dsPICFD filter design
package from Momentum Data Systems, Inc., or similar tool.

The delay is made up of two independent buffers, each buffer contain-
ing one word of filter state per section {d2[s], d1[s]}, 0 <s < S.

Source samples, x[n], defined in 0 <n < N.

Destination samples, y[n], defined in 0 < n < N.

The output scale is applied as a shift to the output of the filter structure
prior to storing the result in the output sequence. It is used to restore
the filter gain to 0 dB. Shift count may be zero; if not zero, it represents
the number of bits to shift: negative indicates shift left, positive is shift
right.

iirtrans.s

DS51456D-page 54

© 2007 Microchip Technology Inc.

DSP Library

IIRTransposed (Continued)

Function Profile:

Example

System resources usage:

WO0..W7 used, not restored
W8..W11 saved, used, restored
ACCA used, not restored
ACCB used, not restored
CORCON saved, used, restored
PSVPAG saved, used, restored

DO and REPEAT instruction usage:
2 level DO instructions
1 level REPEAT instructions

Program words (24-bit instructions):
48

Cycles (including C-function call and return overheads):
35 + N(11 + 11S), or
38 + N(9 + 17S) if coefficients in P memory.
S is number of second order sections.

Please refer to the MPLAB C30 installation folder for a sample project
demonstrating the use of this function.

lIRTransposedInit

Description:

Include:
Prototype:

Arguments:

Remarks:

Source File:

Function Profile:

Example

IIRTransposedInit initializes to zero the delay values in an

IIRTransposedStruct filter structure.

dsp.h

extern void IIRTransposedInit (
IIRTransposedStruct* filter

)

Filter structure:

(See description of IIRTransposed function).

Initialization Description:
filter pointer to IIRTransposedStruct filter structure.

The delay is made up of two independent buffers, each buffer contain-
ing one word of filter state per section {d2[s], d1[s]}, 0 <s < S.
iirtrans.s

System resources usage:
WO0..W2 used, not restored

DO and REPEAT instruction usage:
1 level DO instructions
no REPEAT instructions

Program words (24-bit instructions):
8

Cycles (including C-function call and return overheads):

11 +2S,

S is number of second order sections.
Please refer to the MPLAB C30 installation folder for a sample project
demonstrating the use of this function.

© 2007 Microchip Technology Inc.

DS51456D-page 55

16-Bit Language Tools Libraries

2.6.6 OCTAVE model for analysis of IIRLattice filter

The following OCTAVE model may be used to examine the performance of an IIR
Lattice Filter prior to using the fractional implementation provided by the function
IIRLattice.

[IRLattice OCTAVE model

function [out, del, forward, backward] = iirlatt (in, kappas, gammas, delay)
FUNCTION. -
IIRLATT: IIR Fileter Lattice implementation.

##

[out, del, forward, backward] = iirlatt (in, kappas, gammas, delay)

#4#

#4# forward: records intermediate forward values.

HH# backward: records intermediate backward values.
2

Get implicit parameters.
numSamps = length(in); numKapps = length (kappas) ;

if (gammas != 0)

numGamms = length (gammas) ;
else

numGamms = 0;
endif

numDels = length(delay); filtOrder = numDels-1;

Error check.

if (numGamms != 0)
if (numGamms != numKapps)
fprintf ("ERROR! %d should be equal to %d.\n", numGamms, numKapps) ;
return;
endif
endif
if (numDels != numKapps)
fprintf ("ERROR! %d should equal to %d.\n", numDels, numKapps) ;
return;
endif

Initialize.
M = filtOrder; out = zeros(numSamps,l); del = delay;
forward = zeros (numSamps*M, 1) ; backward = forward; i = 0;

Filter samples.

for n = 1:numSamps
Get new sample.
current = in(n);

DS51456D-page 56 © 2007 Microchip Technology Inc.

DSP Library

Lattice structure.

for m = 1:M

after = current - kappas(M+l-m) * del(m+1l);
del (m) = del(m+1l) + kappas(M+1l-m) * after;
1 = i+1;
forward (i) current;
backward (i) = after;
current = after;
end
del (M+1) = after;
Ladder structure (computes output) .
if (gammas == 0)
out (n) = del (M+1) ;
else
for m = 1:M+1
out (n) = out(n) + gammas (M+2-m)*del (m) ;
endfor
endif
endfor
Return.
return;
2
endfunction

© 2007 Microchip Technology Inc. DS51456D-page 57

16-Bit Language Tools Libraries

2.7 TRANSFORM FUNCTIONS

This section presents the concept of a fractional transform, as considered by the DSP
Library, and describes the individual functions which perform transform operations. The
user may refer to example projects that utilize the DSP library Transform functions, in
order to ascertain proper usage of functions. Example MPLAB IDE-based
projects/workspaces have been provided in the installation folder of the MPLAB C30
toolsuite.

2.7.1 Fractional Transform Operations

A fractional transform is a linear, time invariant, discrete operation that when applied to
a fractional time domain sample sequence, results in a fractional frequency in the fre-
quency domain. Conversely, inverse fractional transform operation, when applied to
frequency domain data, results in its time domain representation.

A set of transforms (and a subset of inverse transforms) are provided by the DSP
Library. The first set applies a Discrete Fourier transform (or its inverse) to a complex
data set (see below for a description of fractional complex values). The second set
applies a Type Il Discrete Cosine Transform (DCT) to a real valued sequence. These
transforms have been designed to either operate out-of-place, or in-place. The former
type populates an output sequence with the results of the transformation. In the latter,
the input sequence is (physically) replaced by the transformed sequence. For
out-of-place operations, enough memory to accept the results of the computation must
be provided.

The transforms make use of transform factors (or constants) which must be supplied to
the transforming function during its invocation. These factors, which are complex data
sets, are computed in floating-point arithmetic, and then transformed into fractionals for
use by the operations. To avoid excessive computational overhead when applying a
transformation, a particular set of transform factors could be generated once and used
many times during the execution of the program. Thus, it is advisable to store the
factors returned by any of the initialization operations in a permanent (static) complex
vector. It is also advantageous to generate the factors “off-line”, and place them in pro-
gram memory, and use them when the program is later executing. This way, not only
cycles, but also RAM memory is saved when designing an application which involves
transformations.

2.7.2 Fractional Complex Vectors

A complex data vector is represented by a data set in which every pair of values
represents an element of the vector. The first value in the pair is the real part of the
element, and the second its imaginary part. Both the real and imaginary parts are
stored in memory using one word (two bytes) for each, and must be interpreted as
1.15 fractionals. As with the fractional vector, the fractional complex vector stores its
elements consecutively in memory.

The organization of data in a fractional complex vector may be addressed by the
following data structure:

#ifdef fractional

#ifndef fractcomplex

typedef struct ({
fractional real;
fractional imag;

} fractcomplex;

#endif

#endif

DS51456D-page 58

© 2007 Microchip Technology Inc.

DSP Library

2.7.3 User Considerations

a) No boundary checking is performed by these functions. Out of range sizes
(including zero length vectors) as well as nonconforming use of source complex
vectors and factor sets may produce unexpected results.

b) Itisrecommended that the STATUS Register (SR) is examined after completion
of each function call. In particular, users can inspect the SA, SB and SAB flags
after the function returns to determine if saturation occurred.

c) The input and output complex vectors involved in the family of transformations
must be allocated in Y-Data memory. Transforms factors may be allocated either
in X-Data or program memory.

d) Because bit reverse addressing requires the vector set to be modulo aligned, the
input and output complex vectors in operations using either explicitly or implicitly
the BitReverseComplex function must be properly allocated.

e) Operations which return a destination complex vector can be nested, so that for
instance if:

a=0p1l (b, c), with b = Op2 (d), and c = Op3 (e, f), then
a=0p1l (Op2 (d), Op3 (e, f)).

In what follows, the individual functions implementing transform and inverse transform
operations are described.

© 2007 Microchip Technology Inc. DS51456D-page 59

16-Bit Language Tools Libraries

2.7.4 Individual Functions

BitReverseComplex

Description: BitReverseComplex reorganizes the elements of a complex vector
in bit reverse order.
Include: dsp.h
Prototype: extern fractcomplex* BitReverseComplex (
int log2N,

fractcomplex* srcCV

)i

Arguments: log2N based 2 logarithm of N (number of complex elements in

source vector)

srcCV pointer to source complex vector

Return Value: Pointer to base address of source complex vector.

Remarks: N must be an integer power of 2.

The srccv vector must be allocated at a modulo alignment of N.

This function operates in place.

Source File: bitrev.s

Function Profile: System resources usage:
WO0..W7 used, not restored
MODCON saved, used, restored
XBREV saved, used, restored

DO and REPEAT instruction usage:
1 level DO instructions
no REPEAT instructions

Program words (24-bit instructions):

27

Cycles (including C-function call and return overheads):

See below:
Example Please refer to the MPLAB C30 installation folder for a sample project
demonstrating the use of this function.
Transform Size # Complex Elements # Cycles
32 point 245
64 point 485
128 point 945
256 point 1905

DS51456D-page 60

© 2007 Microchip Technology Inc.

DSP Library

CosFactorlnit

Description:

Include:
Prototype:

Arguments:

Return Value:
Remarks:

Source File:
Function Profile:

CosFactorInit generates the first half of the set of cosine factors
required by a Type Il Discrete Cosine Transform, and places the result
in the complex destination vector. Effectively, the set contains the val-
ues:

nk

12N
CN(k) = e” ,where 0 <k < N/2.
dsp.h

extern fractcomplex* CosFactorInit (
int log2N,
fractcomplex* cosFactors
) ;
log2N based 2 logarithm of N (number of complex factors
needed by a DCT)

cosFactors pointer to complex cosine factors
Pointer to base address of cosine factors.

N must be an integer power of 2.

Only the first N/2 cosine factors are generated.

A complex vector of size N/2 must have already been allocated and
assigned to cosFactors prior to invoking the function. The complex
vector should reside in X-Data memory.

Factors are computed in floating-point arithmetic and converted to 1.15
complex fractionals.

initcosf.c

System resources usage:
WO0..W7 used, not restored
W8..W14 saved, used, restored

DO and REPEAT instruction usage:
None

Program words (24-bit instructions):
See the file “readme.txt” in pic30_tools\src\dsp for this information.

Cycles (including C-function call and return overheads):
See the file “readme.txt” in pic30_tools\src\dsp for this information.

DCT
Description: DCT computes the Discrete Cosine Transform of a source vector, and
stores the results in the destination vector.
Include: dsp.h
Prototype: extern fractional* DCT (
int log2N,

fractional* dstV,
fractional* srcV,
fractcomplex* cosFactors,
fractcomplex* twidFactors,
int factPage

© 2007 Microchip Technology Inc.

DS51456D-page 61

16-Bit Language Tools Libraries

DCT (Continued)

Arguments:

Return Value:
Remarks:

Source File:

log2N based 2 logarithm of N (number of complex elements in
source vector)

dstCcv pointer to destination vector

srcCv pointer to source vector

cosFactors pointer to cosine factors
twidFactorspointer to twiddle factors
factPage memory page for transform factors

Pointer to base address of destination vector.

N must be an integer power of 2.

This function operates out of place. A vector of size 2N elements, must
already have been allocated and assigned to dstV.

The dstV vector must be allocated at a modulo alignment of N.

The results of computation are stored in the first N elements of the des-
tination vector.

To avoid saturation (overflow) during computation, the values of the
source vector should be in the range [-0.5, 0.5].

Only the first N/2 cosine factors are needed.

Only the first N/2 twiddle factors are needed.

If the transform factors are stored in X-Data space, cosFactors and
twidFactors point to the actual address where the factors are allo-
cated. If the transform factors are stored in program memory,
cosFactors and twidFactors are the offset from the program page
boundary where the factors are allocated. This latter value can be cal-
culated using the inline assembly operator psvoffset ().

If the transform factors are stored in X-Data space, factPage must be
set to OXFFOO (defined value COEFFS_IN_ DATA). If they are stored in
program memory, factPage is the program page number containing
the factors. This latter value can be calculated using the inline assem-
bly operator psvpage () .

The twiddle factors must be initialized with conjFlag set to a value dif-
ferent than zero.

Only the first N/2 cosine factors are needed.

Output is scaled by the factor 1/(+/2N)
dctoop.s

DS51456D-page 62

© 2007 Microchip Technology Inc.

DSP Library

DCT (Continued)

Function Profile:

System resources usage:
WO0..W5 used, not restored
plus system resources from VectorZeroPad, and DCTIP.

DO and REPEAT instruction usage:
no DO instructions
no REPEAT instructions
plus DO/REPEAT instructions from VectorZeroPad, and DCTIP.

Program words (24-bit instructions):
16
plus program words from VectorZeroPad, and DCTIP.

Cycles (including C-function call and return overheads):
22
plus cycles from VectorZeroPad, and DCTIP.

Note: In the description of VectorZeroPad the number of cycles
reported includes 4 cycles of C-function call overhead. Thus, the num-
ber of actual cycles from VectorZeroPad to add to DCT is 4 less than
whatever number is reported for a stand-alone VectorZeroPad. In
the same way, the number of actual cycles from DCTIP to add to DCT is
3 less than whatever number is reported for a stand-alone DCTIP.

DCTIP

Description:

Include:
Prototype:

Arguments:

Return Value:

DCTIP computes the Discrete Cosine Transform of a source vector in
place.

dsp.h

extern fractional* DCTIP (
int log2N,
fractional* srcV,
fractcomplex* cosFactors,
fractcomplex* twidFactors,
int factPage

)i

log2N based 2 logarithm of N (hnumber of complex elements in
source vector)
srcCv pointer to source vector

cosFactors pointer to cosine factors
twidFactorspointer to twiddle factors
factpbPage memory page for transform factors

Pointer to base address of destination vector.

© 2007 Microchip Technology Inc.

DS51456D-page 63

16-Bit Language Tools Libraries

DCTIP (Continued)

Remarks:

Source File:
Function Profile:

N must be an integer power of 2.

This function expects that the source vector has been zero padded to
length 2N.

The srcVv vector must be allocated at a modulo alignment of N.

The results of computation are stored in the first N elements of source
vector.

To avoid saturation (overflow) during computation, the values of the
source vector should be in the range [-0.5, 0.5].

Only the first N / 2 cosine factors are needed.

Only the first N / 2 twiddle factors are needed.

If the transform factors are stored in X-Data space, cosFactors and
twidFactors point to the actual address where the factors are allo-
cated. If the transform factors are stored in program memory, cosFac-
tors and twidFactors are the offset from the program page
boundary where the factors are allocated. This latter value can be cal-
culated using the inline assembly operator psvoffset ().

If the transform factors are stored in X-Data space, factPage must be
set to OXFFOO (defined value COEFFS_IN DATA). If they are stored in
program memory, factPage is the program page number containing
the factors. This latter value can be calculated using the inline assem-
bly operator psvpage ().

The twiddle factors must be initialized with conjFlag set to a value dif-
ferent than zero.

Output is scaled by the factor 1/(./2N).

dctoop.s
System resources usage:
WO..W7 used, not restored
W8..W13 saved, used, restored
ACCA used, not restored
CORCON saved, used, restored
PSVPAG saved, used, restored (only if

coefficients in P memory)

DO and REPEAT instruction usage:
1 level DO instructions
1 level REPEAT instructions
plus DO/REPEAT instructions from
IFFTComplexIP.
Program words (24-bit instructions):
92
plus program words from IFFTComplexIP.
Cycles (including C-function call and return overheads):
71 + 10N, or
73 + 11N if factors in program memory,
plus cycles from IFFTComplexIP

Note: In the description of IFFTComplexIP the number of cycles
reported includes 4 cycles of C-function call overhead. Thus, the num-
ber of actual cycles from IFFTComplexIP to add to DCTIP is 4 less
than whatever number is reported for a stand-alone IFFTComplexIP.

FFTComplex

Description:

FFTComplex computes the Discrete Fourier Transform of a source
complex vector, and stores the results in the destination complex vec-
tor.

DS51456D-page 64

© 2007 Microchip Technology Inc.

DSP Library

FFTComplex (Continued)

Include:
Prototype:

Arguments:

Return Value:

Remarks:

Source File:

dsp.h

extern fractcomplex* FFTComplex (
int log2N,
fractcomplex* dstCV,
fractcomplex* srcCV,
fractcomplex* twidFactors,
int factPage

)i

log2N based 2 logarithm of N (hnumber of complex elements in
source vector)

dstCVv pointer to destination complex vector

srcCvV pointer to source complex vector

twidFactorsbase address of twiddle factors
factPage memory page for transform factors

Pointer to base address of destination complex vector.

N must be an integer power of 2.

This function operates out of place. A complex vector, large enough to
receive the results of the operation, must already have been allocated
and assigned to dstCV.

The dstcv vector must be allocated at a modulo alignment of N.

The elements in source complex vector are expected in natural order.
The elements in destination complex vector are generated in natural
order.

To avoid saturation (overflow) during computation, the magnitude of the
values of the source complex vector should be in the range [-0.5, 0.5].
Only the first N/2 twiddle factors are needed.

If the twiddle factors are stored in X-Data space, twidFactors points
to the actual address where the factors are allocated. If the twiddle fac-
tors are stored in program memory, twidFactors is the offset from
the program page boundary where the factors are allocated. This latter
value can be calculated using the inline assembly operator psvoff -
set ().

If the twiddle factors are stored in X-Data space, factPage must be
set to OXFFOO (defined value COEFFS_IN DATA). If they are stored in
program memory, factPage is the program page number containing
the factors. This latter value can be calculated using the inline assem-
bly operator psvpage ().

The twiddle factors must be initialized with conjFlag set to zero.
Output is scaled by the factor 1/N.

fftoop.s

© 2007 Microchip Technology Inc.

DS51456D-page 65

16-Bit Language Tools Libraries

FFTComplex (Continued)

Function Profile:

System resources usage:
WO0..W4 used, not restored
plus system resources from VectorCopy, FFTComplexIP, and
BitReverseComplex.

DO and REPEAT instruction usage:
no DO instructions
no REPEAT instructions
plus DO/REPEAT instructions from VectorCopy, FFTComplexIP,
and BitReverseComplex.

Program words (24-bit instructions):
17
plus program words from VectorCopy, FFTComplexIP, and
BitReverseComplex.

Cycles (including C-function call and return overheads):
23
plus cycles from VectorCopy, FFTComplexIP, and
BitReverseComplex.

Note: In the description of VectorCopy the number of cycles reported
includes 3 cycles of C-function call overhead. Thus, the number of
actual cycles from VectorCopy to add to FFTComplex is 3 less than
whatever number is reported for a stand-alone VectorCopy. In the
same way, the number of actual cycles from FFTComplexIP to add to
FFTComplex is 4 less than whatever number is reported for a
stand-alone FFTComplexIP. And those from BitReverseComplex
are 2 less than whatever number is reported for a stand-alone FFT-
Complex.

FFTComplexIP

Description:

Include:
Prototype:

Arguments:

Return Value:

FFTComplexIP computes the Discrete Fourier Transform of a source
complex vector in place..
dsp.h
extern fractcomplex* FFTComplexIP (
int log2N,
fractcomplex* srcCV,
fractcomplex* twidFactors,

int factPage
) ;

log2N based 2 logarithm of N (number of complex elements in
source vector)
srcCv pointer to source complex vector

twidFactorsbase address of twiddle factors
factpPage memory page for transform factors

Pointer to base address of source complex vector.

DS51456D-page 66

© 2007 Microchip Technology Inc.

DSP Library

FFTComplexIP (Continued)

Remarks:

Source File:
Function Profile:

Example:

N must be an integer power of 2.

The elements in source complex vector are expected in natural order.
The resulting transform is stored in bit reverse order.

To avoid saturation (overflow) during computation, the magnitude of the
values of the source complex vector should be in the range [-0.5, 0.5].
Only the first N/2 twiddle factors are needed.

If the twiddle factors are stored in X-Data space, twidFactors points
to the actual address where the factors are allocated. If the twiddle fac-
tors are stored in program memory, twidFactors is the offset from
the program page boundary where the factors are allocated. This latter
value can be calculated using the inline assembly operator psvoff-
set ().

If the twiddle factors are stored in X-Data space, factPage must be
set to OXFFOO (defined value COEFFS_IN_ DATA). If they are stored in
program memory, factPage is the program page number containing
the factors. This latter value can be calculated using the inline assem-
bly operator psvpage () .

The twiddle factors must be initialized with conjFlag set to zero.
Output is scaled by the factor 1/N.

fft.s
System resources usage:
WO..W7 used, not restored
W8..W13 saved, used, restored
ACCA used, not restored
ACCB used, not restored
CORCON saved, used, restored
PSVPAG saved, used, restored (only if

coefficients in P memory)

DO and REPEAT instruction usage:
2 level DO instructions
no REPEAT instructions

Program words (24-bit instructions):
59

Cycles (including C-function call and return overheads):
See table below

Please refer to the MPLAB C30 installation folder for a sample project
demonstrating the use of this function.

Transform Size # Cycles if Twiddle # Cycles if Twiddle

Factors in X-mem Factors in P-mem
32 point 1,633 1,795
64 point 3,739 4,125
128 point 8,485 9,383
256 point 19,055 21,105

IFFTComplex

Description:

Include:

IFFTComplex computes the Inverse Discrete Fourier Transform of a
source complex vector, and stores the results in the destination com-
plex vector.

dsp.h

© 2007 Microchip Technology Inc.

DS51456D-page 67

16-Bit Language Tools Libraries

IFFTComplex (Continued)

Prototype:

Arguments:

Return Value:
Remarks:

Source File:

extern fractcomplex* IFFTComplex (
int log2N,
fractcomplex* dstCV,
fractcomplex* srcCV,
fractcomplex* twidFactors,
int factPage

) ;

log2N based 2 logarithm of N (number of complex elements in
source vector)

dstCcv pointer to destination complex vector

srcCv pointer to source complex vector

twidFactorsbase address of twiddle factors
factbPage memory page for transform factors

Pointer to base address of destination complex vector.

N must be an integer power of 2.

This function operates out of place. A complex vector, large enough to
receive the results of the operation, must already have been allocated
and assigned to dstCV.

The dstcv vector must be allocated at a modulo alignment of N.

The elements in source complex vector are expected in natural order.
The elements in destination complex vector are generated in natural
order.

To avoid saturation (overflow) during computation, the magnitude of the
values of the source complex vector should be in the range [-0.5, 0.5].
If the twiddle factors are stored in X-Data space, twidFactors points
to the actual address where the factors are allocated. If the twiddle fac-
tors are stored in program memory, twidFactors is the offset from
the program page boundary where the factors are allocated. This latter
value can be calculated using the inline assembly operator psvoff -
set ().

If the twiddle factors are stored in X-Data space, factPage must be
set to OXFFOO (defined value COEFFS_IN DATA). If they are stored in
program memory, factPage is the program page number containing
the factors. This latter value can be calculated using the inline assem-
bly operator psvpage ().

The twiddle factors must be initialized with conjFlag set to a value
other than zero.

Only the first N/2 twiddle factors are needed.

ifftoop.s

DS51456D-page 68

© 2007 Microchip Technology Inc.

DSP Library

IFFTComplex (Continued)

Function Profile:

System resources usage:

WO0..w4 used, not restored

plus system resources from VectorCopy, and IFFTComplexIP.
DO and REPEAT instruction usage:

no DO instructions

no REPEAT instructions

plus DO/REPEAT instructions from VectorCopy, and

IFFTComplexIP.
Program words (24-bit instructions):

12

plus program words from VectorCopy, and IFFTComplexIP.
Cycles (including C-function call and return overheads):

15

plus cycles from VectorCopy, and IFFTComplexIP.

Note: In the description of VectorCopy the number of cycles reported
includes 3 cycles of C-function call overhead. Thus, the number of
actual cycles from VectorCopy to add to IFFTComplex is 3 less than
whatever number is reported for a stand-alone VectorCopy. In the
same way, the number of actual cycles from IFFTComplexIP to add to
IFFTComplex is 4 less than whatever number is reported for a
stand-alone IFFTComplexIP.

© 2007 Microchip Technology Inc.

DS51456D-page 69

16-Bit Language Tools Libraries

IFFTComplexIP

Description:

Include:
Prototype:

Arguments:

Return Value:
Remarks:

Source File:

IFFTComplexIP computes the Inverse Discrete Fourier Transform of
a source complex vector in place..
dsp.h
extern fractcomplex* IFFTComplexIP (
int log2N,
fractcomplex* srcCV,
fractcomplex* twidFactors,

int factPage
) ;

log2N based 2 logarithm of N (number of complex elements in
source vector)
srcCv pointer to source complex vector

twidFactorsbase address of twiddle factors
factbPage memory page for transform factors

Pointer to base address of source complex vector.

N must be an integer power of 2.

The elements in source complex vector are expected in bit reverse
order. The resulting transform is stored in natural order.

The srccv vector must be allocated at a modulo alignment of N.

To avoid saturation (overflow) during computation, the magnitude of the
values of the source complex vector should be in the range [-0.5, 0.5].
If the twiddle factors are stored in X-Data space, twidFactors points
to the actual address where the factors are allocated. If the twiddle fac-
tors are stored in program memory, twidFactors is the offset from
the program page boundary where the factors are allocated. This latter
value can be calculated using the inline assembly operator psvoff-
set ().

If the twiddle factors are stored in X-Data space, factPage must be
set to OXFFOO (defined value COEFFS_IN_ DATA). If they are stored in
program memory, factPage is the program page number containing
the factors. This latter value can be calculated using the inline assem-
bly operator psvpage ().

The twiddle factors must be initialized with conjFlag set to a value
other than zero.

Only the first N/2 twiddle factors are needed.

ifft.s

DS51456D-page 70

© 2007 Microchip Technology Inc.

DSP Library

IFFTComplexIP (Continued)

Function Profile:

System resources usage:
WO0..W3 used, not restored
plus system resources from FFTComplexIP, and
BitReverseComplex.

DO and REPEAT instruction usage:
no DO instructions
no REPEAT instructions
plus DO/REPEAT instructions from FFTComplexIP, and
BitReverseComplex.

Program words (24-bit instructions):
11
plus program words from FFTComplexIP, and
BitReverseComplex.

Cycles (including C-function call and return overheads):
15
plus cycles from FFTComplexIP, and BitReverseComplex.

Note: In the description of FFTComplexIP the number of cycles
reported includes 3 cycles of C-function call overhead. Thus, the num-
ber of actual cycles from FFTComplexIP to addto IFFTComplexIP is
3 less than whatever number is reported for a stand-alone
FFTComplexIP. In the same way, the number of actual cycles from
BitReverseComplex to add to IFFTComplexIP is 2 less than what-
ever number is reported for a stand-alone BitReverseComplex.

SquareMagnitudeCplx

Description:

Include:
Prototype:

Arguments:

Return Value:
Remarks:

Source File:

SquareMagnitudeCplx computes the squared magnitude of each
element in a complex source vector.

dsp.h

extern fractional* SquareMagnitudeCplx (
int numElems,

fractcomplex* srcvV,

fractional* dstv
)
numElems number of elements in the complex source vector
srcVv pointer to complex source vector
dstV pointer to real destination vector

Pointer to base address of destination vector.

If the sum of squares of the real and imaginary parts of a complex ele-
ment in the source vector is larger than 1-271°, this operation results in
saturation.

This function can be used to operate in-place on a source data set.

cplxsgrmag.s

© 2007 Microchip Technology Inc.

DS51456D-page 71

16-Bit Language Tools Libraries

SquareMagnitudeCplx (Continued)

Function Profile:

Example:

System resources usage:

WO0..W2 used, not restored
W4, W5, W10 saved, used, restored
ACCA used, not restored
CORCON saved, used, restored

DO and REPEAT instruction usage:
1 level DO instructions
no REPEAT instructions

Program words (24-bit instructions):
19

Cycles (including C-function call and return overheads):
20 + 3(numElems)

Please refer to the MPLAB C30 installation folder for a sample project
demonstrating the use of this function.

TwidFactorlnit

Description:

Include:
Prototype:

Arguments:

Return Value:
Remarks:

Source File:

TwidFactorInit generates the first half of the set of twiddle factors
required by a Discrete Fourier Transform or Discrete Cosine Transform,
and places the result in the complex destination vector. Effectively, the
set contains the values:

.2mk
WN(K) = e N Where 0 <k <N/2, for conjFlag =0
WN(k) = e ,where 0 <k <N/2, for conjFlag!=0
dsp.h
extern fractcomplex* TwidFactorInit (
int log2N,

fractcomplex* twidFactors,
int conjFlag
) ;
log2N based 2 logarithm of N (number of complex factors
needed by a DFT)
twidFactorspointer to complex twiddle factors
conjFlag flagto indicate whether or not conjugate values are to
be generated

Pointer to base address of twiddle factors.

N must be an integer power of 2.

Only the first N/2 twiddle factors are generated.

The value of conjFlag determines the sign in the argument of the
exponential function. For forward Fourier Transforms, conjFlag
should be set to ‘0’. For inverse Fourier Transforms and Discrete
Cosine Transforms, conjFlag should be setto ‘1'.

A complex vector of size N/2 must have already been allocated and
assigned to twidFactors prior to invoking the function. The complex
vector should be allocated in X-Data memory.

Factors computed in floating-point arithmetic and converted to 1.15
complex fractionals.

inittwid.c

DS51456D-page 72

© 2007 Microchip Technology Inc.

DSP Library

TwidFactorInit (Continued)

Function Profile: System resources usage:
WO0..W7 used, not restored
ws8..W14 saved, used, restored

DO and REPEAT instruction usage:
None

Program words (24-bit instructions):
See the file “readme.txt” in pic30_tools\src\dsp for this information.

Cycles (including C-function call and return overheads):
See the file “readme.txt” in pic30_tools\src\dsp for this information.

Example: Please refer to the MPLAB C30 installation folder for a sample project
demonstrating the use of this function.

© 2007 Microchip Technology Inc. DS51456D-page 73

16-Bit Language Tools Libraries

2.8 CONTROL FUNCTIONS

This section describes functions provided in the DSP library that aid the implementation
of closed-loop control systems.

2.8.1 Proportional Integral Derivative (PID) Control

A complete discussion of Proportional Integral Derivative (PID) controllers is beyond
the scope of this discussion, but this section will try to provide you with some guidelines
for tuning PID controllers.

2.8.1.1 PID CONTROLLER BACKGROUND

A PID controller responds to an error signal in a closed control loop and attempts to
adjust the controlled quantity in order to achieve the desired system response. The
controlled parameter can be any measurable system quantity, such as speed, voltage
or current. The output of the PID controller can control one or more system parameters
that will affect the controlled system quantity. For example, a speed control loop in a
Sensorless Brushless DC motor application can control the PWM duty cycle directly or
it can set the current demand for an inner control loop that regulates the motor currents.
The benefit of the PID controller is that it can be adjusted empirically by adjusting one
or more gain values and observing the change in system response.

A digital PID controller is executed at a periodic sampling interval and it is assumed that
the controller is executed frequently enough so that the system can be properly con-
trolled. For example, the current controller in the Sensorless Brushless DC motor appli-
cation is executed every PWM cycle, since the motor can change very rapidly. The
speed controller in such an application is executed at the medium event rate (100 Hz),
because motor speed changes will occur relatively slowly due to mechanical time
constants.

The error signal is formed by subtracting the desired setting of the parameter to be con-
trolled from the actual measured value of that parameter. This sign of the error indicates
the direction of change required by the control input.

The Proportional (P) term of the controller is formed by multiplying the error signal by
a P gain. This will cause the PID controller to produce a control response that is a func-
tion of the error magnitude. As the error signal becomes larger, the P term of the
controller becomes larger to provide more correction.

The effect of the P term will tend to reduce the overall error as time elapses. However,
the effect of the P term will reduce as the error approaches zero. In most systems, the
error of the controlled parameter will get very close to zero, but will not converge. The
result is a small remaining steady state error. The Integral (1) term of the controller is
used to fix small steady state errors. The | term takes a continuous running total of the
error signal. Therefore, a small steady state error will accumulate into a large error
value over time. This accumulated error signal is multiplied by an | gain factor and
becomes the | output term of the PID controller.

The Differential (D) term of the PID controller is used to enhance the speed of the con-
troller and responds to the rate of change of the error signal. The D term input is calcu-
lated by subtracting the present error value from a prior value. This delta error value is
multiplied by a D gain factor that becomes the D output term of the PID controller. The
D term of the controller produces more control output the faster the system error is
changing.

It should be noted that not all PID controllers will implement the D or, less commonly,
the | terms. For example, the speed controller in a Brushless DC motor application
described by Microchip Application Note AN901 does not have a D term due to the rel-

DS51456D-page 74

© 2007 Microchip Technology Inc.

DSP Library

atively slow response time of motor speed changes. In this case, the D term could
cause excessive changes in PWM duty cycle that could affect the operation of the
sensorless algorithm and produce over current trips.

2.8.1.2 ADJUSTING PID GAINS

The P gain of a PID controller will set the overall system response. When first tuning a
controller, the 1 and D gains should be set to zero. The P gain can then be increased
until the system responds well to set-point changes without excessive overshoot or
oscillations. Using lower values of P gain will ‘loosely’ control the system, while higher
values will give ‘tighter’ control. At this point, the system will probably not converge to
the set-point.

After a reasonable P gain is selected, the | gain can be slowly increased to force the

system error to zero. Only a small amount of | gain is required in most systems. Note
that the effect of the | gain, if large enough, can overcome the action of the P term, slow
the overall control response, and cause the system to oscillate around the set-point. If
this occurs, reducing the | gain and increasing the P gain will usually solve the problem.

After the P and | gains are set, the D gain can be set. The D term will speed up the
response of control changes, but it should be used sparingly because it can cause very
rapid changes in the controller output. This behavior is called ‘set-point kick’. The
set-point kick occurs because the difference in system error becomes instantaneously
very large when the control set-point is changed. In some cases, damage to system
hardware can occur. If the system response is acceptable with the D gain set to zero,
you can probably omit the D term.

FIGURE 2-1: PID CONTROL SYSTEM
—P Kp
Reference
Input Control
Output
—| + K| +
HINS a _1) — - + —p| Plant |—r
4
— — +
Control History
or Error
) KD(l -z }
Measured
Output
-

© 2007 Microchip Technology Inc. DS51456D-page 75

16-Bit Language Tools Libraries

2.8.1.3 PID LIBRARY FUNCTIONS AND DATA STUCTURES

The DSP library provides a PID Controller function, PID (tPID*), to performaPID
operation. The function uses a data structure defined in the header file dsp.h, which has
the following form:

typedef struct {
fractional* abcCoefficients;
fractional* controlHistory;
fractional controlOutput;
fractional measuredOutput;
fractional controlReference;
} tPID;

Prior to invoking the p1D () function, the application should initialize the data structure
of type tr1p. This is done in the following steps:

1. Calculate Coefficients from PID Gain values

The element abcCoefficients in the data structure of type tpID is a pointer
to A, B & C coefficients located in X-data space. These coefficients are derived
from the PID gain values, Kp, Ki and Kd, shown in Figure 2-1, as follows:

A = Kp + Ki + Kd

B = -(Kp + 2%*Kd)

C = Kd

To derive the A, B and C coefficients, the DSP library provides a function,
PIDCoeffCalc.

2. Clear the PID State Variables

The structural element controlHistory is a pointer to a history of 3 samples
located in Y-space, with the first sample being the most recent (current). These
samples constitute a history of current and past differences between the Refer-
ence Input and the Measured Output of the plant function. The PIDInit function
clears the elements pointed to by controlHistory. It also clears the
controloutput element in the tPID data structure.

2.8.2 Individual Functions
PIDInit
Description: This routine clears the delay line elements in the 3-element array

located in Y-space and pointed to by controlHistory. It also clears
the current PID output element, controlOutput.

Include: dsp.h

Prototype: void PIDInit (tPID *fooPIDStruct) ;
Arguments: fooPIDStruct a pointer to a PID data structure of type tPID
Return Value: void.

Source File: pid.s

DS51456D-page 76 © 2007 Microchip Technology Inc.

DSP Library

PIDInit (Continued)

Function Profile:

System resources usage:

WO0..W4 used, not restored
ACCA, ACCB used, not restored
CORCON saved, used, restored

DO and REPEAT instruction usage:
0 level DO instructions
0 REPEAT instructions

Program words (24-bit instructions):
11

Cycles (including C-function call and return overheads):
13

PIDCoeffCalc

Description:

Include:
Prototype:

Arguments:
Return Value:
Remarks:

Source File:
Function Profile:

PIDInit computes the PID coefficients based on values of Kp, Ki and
Kd provided by the user.

abcCoefficients[0] = Kp + Ki + Kd

abcCoefficients[1] = -(Kp + 2*Kd)

abcCoefficients[2] = Kd

This routine also clears the delay line elements in the array
ControlDifference, as well as clears the current PID output ele-
ment, ControlOutput.

dsp.h

void PIDCoeffCalc (fractional *fooPIDGainCoeff,

tPID *fooPIDStruct)

fooPIDGainCoeffpointer to input array containing Kp, Ki, Kd coeffi-
cients in order [Kp, Ki, Kd]

fooPIDStruct pointer to a PID data structure of type tPID

Void.

PID Coefficient array elements may be subject to saturation depending
on values of Kp, Ki and Kd.

pid.s

System resources usage:
WO0..W2 used, not restored
ACCA, ACCB used, not restored
CORCON saved, used, restored

DO and REPEAT instruction usage:
0 level DO instructions
0 REPEAT instructions

Program words (24-bit instructions):
18

Cycles (including C-function call and return overheads):
20

© 2007 Microchip Technology Inc.

DS51456D-page 77

16-Bit Language Tools Libraries

PID

Description: PID computes the controloutput element of the data structure
tPID:
controlOutput[n] = controlOutput[n-1]
+ controlHistory[n] * abcCoefficient[0]
+ controlHistory[n-1] * abcCoefficient[1]
+ controlHistory[n-2] * abcCoefficient[2]
where,
abcCoefficient[0] = Kp + Ki + Kd
abcCoefficient[1] = -(Kp + 2*Kd)
abcCoefficient[2] = Kd
ControlHistory[n] =
MeasuredOutput[n] - Referencelnput[n]

Include: dsp.h

Prototype: extern void PID (tPID* fooPIDStruct);

Arguments: fooPIDStruct pointerto a PID data structure of type tPID
Return Value: Pointer to fooPIDStruct

Remarks: controlOutput element is updated by the PID () routine. The
controlOutput will be subject to saturation.

Source File: pid.s

Function Profile: System resources usage:
WO0..W5 used, not restored
W8,W10 saved, used, restored
ACCA used, not restored
CORCON saved, used, restored

DO and REPEAT instruction usage:
0 level DO instructions
0 REPEAT instructions

Program words (24-bit instructions):
28

Cycles (including C-function call and return overheads):
30

DS51456D-page 78 © 2007 Microchip Technology Inc.

DSP Library

MISCELLANEOUS FUNCTIONS

This section describes other helpful functions provided in the DSP library.

Fract2Float

Description:

Include:
Prototype:
Arguments:
Return Value:
Remarks:
Source File:

Function Profile:

Fract2Float converts a 1.15 fractional value to an IEEE float-
ing-point value.

dsp.h

extern float Fract2Float (fractional aVal) ;

aval 1.15 fractional number in the implicit range [-1,(+ 1 — 2715)]
IEEE floating-point value in the range [-1, (+ 1 — 2719)]

None

flt2frct.c

System resources usage:
WO..W7 used, not restored
W8..W14 saved, used, restored

DO and REPEAT instruction usage:
None

Program words (24-bit instructions):
See the file “readme.txt” in pic30_tools\src\dsp for this information.

Cycles (including C-function call and return overheads):
See the file “readme.txt” in pic30_tools\src\dsp for this information.

Float2Fract

Description:

Include:
Prototype:
Arguments:
Return Value:
Remarks:

Source File:

Function Profile:

Float2Fract converts an IEEE floating-point value to a 1.15 frac-
tional number.

dsp.h

extern fractional Float2Fract (float avVval) ;
aval Floating-point number in the range [-1,(+ 1 — 2719)]
1.15 Fractional value in the range [-1, (+ 1 — 2719)]

The conversion is performed using convergent rounding and saturation
mechanisms.

flt2frct.c

System resources usage:
WO0..W7 used, not restored
W8..W14 saved, used, restored

DO and REPEAT instruction usage:
None

Program words (24-bit instructions):
See the file “readme.txt” in pic30_tools\src\dsp for this information.

Cycles (including C-function call and return overheads):
See the file “readme.txt” in pic30_tools\src\dsp for this information.

© 2007 Microchip Technology Inc.

DS51456D-page 79

16-Bit Language Tools Libraries

NOTES:

DS51456D-page 80 © 2007 Microchip Technology Inc.

16-BIT LANGUAGE TOOLS
MICROCHIP LIBRARIES

Chapter 3. Standard C Librarieswith Math Functions

3.1 INTRODUCTION

Standard ANSI C library functions are contained in the libraries 1ibc-omf.a and
libm-omf .a (math functions), where omf will be cof £ or el£ depending upon the
selected object module format.

Additionally, some 16-bit standard C library helper functions, and standard functions
that must be modified for use with 16-bit devices, are in the library 1ibpic30-omf.a.

3.1.1 Assembly Code Applications

A free version of the math functions library and header file is available from the
Microchip web site. No source code is available with this free version.

3.1.2 C Code Applications

The MPLAB C30 C compiler install directory (c: \Program Files\Microchip\MPLAB
€30) contains the following subdirectories with library-related files:

e 1ib — standard C library files

* src\libm— source code for math library functions, batch file to rebuild the library
» support\h — header files for libraries

In addition, there is afile, ResourceGraphs . pdf, which contains diagrams of resources
used by each function, located in 1ib.

3.1.3 Chapter Organization

This chapter is organized as follows:
« Using the Standard C Libraries
libc-omf.a

» <assert.h> diagnostics

» <ctype.h> character handling

» <errno.h> errors

 <float.h> floating-point characteristics
« <limits.h> implementation-defined limits
+ <locale.h> localization

» <setjmp.h> non-local jumps
 <signal.h> signal handling
 <stdarg.h> variable argument lists

» <stddef.h> common definitions
 <stdio.h> input and output

« <stdlib.h> utility functions
 <string.h> string functions

» <time.h> date and time functions
libm-omf.a

« <math.h> mathematical functions

© 2007 Microchip Technology Inc. DS51456D-page 81

16-Bit Language Tools Libraries

libpic30-omf.a
* pic30-libs

3.2 USING THE STANDARD C LIBRARIES

Building an application which utilizes the standard C libraries requires two types of files:
header files and library files.

3.2.1 Header Files

All standard C library entities are declared or defined in one or more standard headers
(See listin Section 3.1.3 “Chapter Organization”.) To make use of a library entity in
a program, write an include directive that names the relevant standard header.

The contents of a standard header is included by naming it in an include directive, as in:
#include <stdio.h> /* include I/0 facilities */

The standard headers can be included in any order. Do not include a standard header
within a declaration. Do not define macros that have the same names as keywords
before including a standard header.

A standard header never includes another standard header.

3.2.2 Library Files

The archived library files contain all the individual object files for each library function.

When linking an application, the library file must be provided as an input to the linker
(using the --1ibrary or -1 linker option) such that the functions used by the
application may be linked into the application.

A typical C application will require three library files: 1ibc-omf.a, libm-omf.a, and
libpic30-omf.a. (See Section 1.2 “OMF-Specific Libraries/Start-up Modules” for
more on OMF-specific libraries.) These libraries will be included automatically if linking
is performed using the MPLAB C30 compiler.

Note: Some standard library functions require a heap. These include the standard
I/O functions that open files and the memory allocation functions. See the
“MPLAB® ASM30, MPLAB® LINK30 and Utilities User’s Guide” (DS51317)
and “MPLAB® C30 C Compiler User’s Guide” (DS51284) for more
information on the heap.

DS51456D-page 82

© 2007 Microchip Technology Inc.

Standard C Libraries with Math Functions

3.3 <ASSERT.H> DIAGNOSTICS

The header file assert . h consists of a single macro that is useful for debugging logic
errors in programs. By using the assert statement in critical locations where certain
conditions should be true, the logic of the program may be tested.

Assertion testing may be turned off without removing the code by defining NDEBUG
before including <assert . hs>. If the macro NDEBUG is defined, assert () is ignored and
no code is generated.

assert

Description:

Include:
Prototype:
Argument:
Remarks:

Example:

If the expression is false, an assertion message is printed to stderr and
the program is aborted.

<assert.h>

void assert (int expression) ;

expression The expression to test.

The expression evaluates to zero or non-zero. If zero, the assertion
fails, and a message is printed to stderr. The message includes the
source file name (__FILE), the source line number (__LINE),
the expression being evaluated and the message. The macro then calls
the function abort () . If the macro _VERBOSE_DEBUGGING is defined,
a message will be printed to stderr each time assert () is called.

#include <assert.h> /* for assert */

int main(void)

{

int a;
a =2 * 2;
assert(a == 4); /* if true-nothing prints */
assert(a == 6); /* if false-print message */
/* and abort */
Output:
sampassert.c:9 a == 6 -- assertion failed
ABRT

with VERBOSE_DEBUGGING defined:

sampassert.c:8
sampassert.c:9
ABRT

a
a

© 2007 Microchip Technology Inc.

DS51456D-page 83

16-Bit Language Tools Libraries

<CTYPE.H> CHARACTER HANDLING

The header file ctype.h consists of functions that are useful for classifying and
mapping characters. Characters are interpreted according to the Standard C locale.

isalnum

Description: Test for an alphanumeric character.
Include: <ctype.h>

Prototype: int isalnum(int c¢);
Argument: c The character to test.

Return Value:

Remarks:
Example:

Returns a non-zero integer value if the character is alphanumeric;
otherwise, returns a zero.

Alphanumeric characters are included within the ranges A-Z, a-z or 0-9.

#include <ctype.h> /* for isalnum */
#include <stdio.h> /* for printf */

int main(void)

{

int ch;

ch = '3';
if (isalnum(ch))

printf ("3 is an alphanumeric\n") ;
else

printf ("3 is NOT an alphanumeric\n") ;

ch = "#';
if (isalnum(ch))
printf ("# is an alphanumeric\n") ;
else
printf ("# is NOT an alphanumeric\n") ;
}

Output:
3 is an alphanumeric
is NOT an alphanumeric

isalpha

Description:
Include:
Prototype:
Argument:

Return Value:

Remarks:

Test for an alphabetic character.
<ctype.h>

int isalpha (int c¢);

c The character to test.

Returns a non-zero integer value if the character is alphabetic;
otherwise, returns zero.

Alphabetic characters are included within the ranges A-Z or a-z.

DS51456D-page 84

© 2007 Microchip Technology Inc.

Standard C Libraries with Math Functions

isalpha (Continued)

Example:

#include <ctype.h> /* for isalpha */
#include <stdio.h> /* for printf */

int main(void)

{

int ch;

ch = 'B';
if (isalpha(ch))

printf ("B is alphabetic\n") ;
else

printf ("B is NOT alphabetic\n") ;

ch = "#';
if (isalpha(ch))

printf ("# is alphabetic\n") ;
else

printf ("# is NOT alphabetic\n") ;

}

Output:
B is alphabetic
1s NOT alphabetic

iscntrl

Description:
Include:
Prototype:
Argument:

Return Value:

Remarks:

Example:

Test for a control character.
<ctype.h>
int iscntrl (int c¢);

c character to test.

Returns a non-zero integer value if the character is a control character;

otherwise, returns zero.

A character is considered to be a control character if its ASCII value is

in the range 0x00 to Ox1F inclusive, or Ox7F.

#include <ctype.h> /* for iscntrl */
#include <stdio.h> /* for printf */

int main(void)

{

char ch;

}

ch = 'B';
if (iscntrl (ch))

printf ("B is a control character\n") ;
else

printf ("B is NOT a control character\n") ;

ch = "\t';
if (iscntrl (ch))

printf ("A tab is a control character\n");
else

printf ("A tab is NOT a control character\n");

Output:
B is NOT a control character
A tab is a control character

© 2007 Microchip Technology Inc.

DS51456D-page 85

16-Bit Language Tools Libraries

isdigit

Description:
Include:
Prototype:
Argument:

Return Value:

Remarks:

Example:

Test for a decimal digit.

<ctype.h>

int isdigit (int c);

c character to test.

Returns a non-zero integer value if the character is a digit; otherwise,
returns zero.

A character is considered to be a digit character if it is in the range of
0-9.

#include <ctype.h> /* for isdigit */

#include <stdio.h> /* for printf */

int main(void)

{

int ch;

ch = '31;
if (isdigit(ch))

printf ("3 is a digit\n");
else

printf ("3 is NOT a digit\n");

ch = "#';
if (isdigit(ch))
printf ("# is a digit\n");
else
printf ("# is NOT a digit\n");
!

Output:
3 is a digit
is NOT a digit

isgraph

Description:
Include:
Prototype:
Argument:

Return Value:

Remarks:

Example:

Test for a graphical character.
<ctype.h>

int isgraph (int c);

c character to test

Returns a non-zero integer value if the character is a graphical charac-
ter; otherwise, returns zero.

A character is considered to be a graphical character if it is any print-
able character except a space.

#include <ctype.h> /* for isgraph */
#include <stdio.h> /* for printf */

int main(void)

{

int ch;

DS51456D-page 86

© 2007 Microchip Technology Inc.

Standard C Libraries with Math Functions

isgraph (Continued)

ch = '3';
if (isgraph(ch))

printf ("3 is a graphical character\n") ;
else

printf ("3 is NOT a graphical character\n");

ch = "#';
if (isgraph(ch))

printf ("# is a graphical character\n");
else

printf ("# is NOT a graphical character\n") ;

ch =" "1;
if (isgraph(ch))

printf ("a space is a graphical character\n") ;
else

printf ("a space is NOT a graphical character\n") ;

}

Output:

3 is a graphical character

is a graphical character

a space is NOT a graphical character

islower

Description:
Include:
Prototype:
Argument:

Return Value:

Remarks:

Example:

Test for a lower case alphabetic character.

<ctype.h>

int islower (int c¢);

c character to test

Returns a non-zero integer value if the character is a lower case alpha-
betic character; otherwise, returns zero.

A character is considered to be a lower case alphabetic character if it is
in the range of ‘a’-‘z".

#include <ctype.h> /* for islower */

#include <stdio.h> /* for printf */

int main(void)

{

int ch;

ch = 'B';
if (islower (ch))

printf ("B is lower case\n");
else

printf ("B is NOT lower case\n");

ch = 'b';
if (islower (ch))
printf ("b is lower case\n");
else
printf ("b is NOT lower case\n");
}

Output:
B is NOT lower case
b is lower case

© 2007 Microchip Technology Inc.

DS51456D-page 87

16-Bit Language Tools Libraries

isprint

Description: Test for a printable character (includes a space).
Include: <ctype.h>

Prototype: int isprint (int c);

Argument: c character to test

Return Value:

Remarks:

Example:

Returns a non-zero integer value if the character is printable; other-
wise, returns zero.

A character is considered to be a printable character if it is in the range
0x20 to Ox7e inclusive.

#include <ctype.h> /* for isprint */
#include <stdio.h> /* for printf */

int main(void)

{

int ch;

ch = '&';
if (isprint(ch))

printf ("& is a printable character\n");
else

printf ("& is NOT a printable character\n") ;

ch = "\t';
if (isprint(ch))
printf ("a tab is a printable character\n");
else
printf ("a tab is NOT a printable character\n") ;
!

Output:
& is a printable character
a tab is NOT a printable character

ispunct

Description:
Include:
Prototype:
Argument:

Return Value:

Remarks:

Test for a punctuation character.
<ctype.h>

int ispunct (int c);

c character to test

Returns a non-zero integer value if the character is a punctuation char-
acter; otherwise, returns zero.

A character is considered to be a punctuation character if it is a print-
able character which is neither a space nor an alphanumeric character.
Punctuation characters consist of the following:

"#$3% &' ();<=>?2@[\]1*+,-./[:"_{]|}~

DS51456D-page 88

© 2007 Microchip Technology Inc.

Standard C Libraries with Math Functions

ispunct (Continued)

Example:

#include <ctype.h> /* for ispunct */
#include <stdio.h> /* for printf */

int main(void)

{

int ch;

ch = '&';
if (ispunct (ch))

printf ("& is a punctuation character\n");
else

printf ("& is NOT a punctuation character\n") ;

ch = "\t';
if (ispunct (ch))
printf ("a tab is a punctuation character\n") ;
else
printf ("a tab is NOT a punctuation character\n") ;
}
Output:
& is a punctuation character
a tab is NOT a punctuation character

isspace

Description:
Include:
Prototype:
Argument:

Return Value:

Remarks:

Example:

Test for a white-space character.

<ctype.h>

int isspace (int c);

c character to test

Returns a non-zero integer value if the character is a white-space char-
acter; otherwise, returns zero.

A character is considered to be a white-space character if it is one of
the following: space (' '), form feed (\f'), newline (\n), carriage return
('\r"), horizontal tab ('\t'), or vertical tab ('\v').

#include <ctype.h> /* for isspace */
#include <stdio.h> /* for printf */

int main(void)

{
int ch;

ch = '&';
if (isspace(ch))

printf ("& is a white-space character\n") ;
else

printf ("& is NOT a white-space character\n") ;

ch = "\t';
if (isspace(ch))

printf ("a tab is a white-space character\n") ;
else

printf ("a tab is NOT a white-space character\n") ;

© 2007 Microchip Technology Inc.

DS51456D-page 89

16-Bit Language Tools Libraries

isspace (Continued)

Output:
& is NOT a white-space character
a tab is a white-space character

isupper

Description: Test for an upper case letter.
Include: <ctype.h>

Prototype: int isupper (int c);
Argument: c character to test

Return Value:

Remarks:

Example:

Returns a non-zero integer value if the character is an upper case
alphabetic character; otherwise, returns zero.

A character is considered to be an upper case alphabetic character if it
is in the range of ‘A-'Z".

#include <ctype.h> /* for isupper */

#include <stdio.h> /* for printf */

int main(void)

{

int ch;

ch = 'B';
if (isupper(ch))

printf ("B is upper case\n");
else

printf ("B is NOT upper case\n") ;

ch = 'b';
if (isupper(ch))
printf ("b is upper case\n");
else
printf ("b is NOT upper case\n") ;
}

Output:
B is upper case
b is NOT upper case

isxdigit

Description:
Include:
Prototype:
Argument:

Return Value:

Remarks:

Test for a hexadecimal digit.
<ctype.h>

int isxdigit (int c);

c character to test

Returns a non-zero integer value if the character is a hexadecimal digit;
otherwise, returns zero.

A character is considered to be a hexadecimal digit character if it is in
the range of ‘0’-'9’, ‘A-‘F’, or ‘a’-‘f". Note: The list does not include the
leading Ox because 0x is the prefix for a hexadecimal number but is not
an actual hexadecimal digit.

DS51456D-page 90

© 2007 Microchip Technology Inc.

Standard C Libraries with Math Functions

isxdigit (Continued)

Example:

#include <ctype.h> /* for isxdigit */
#include <stdio.h> /* for printf */

int main(void)

{

int ch;

ch = 'B';
if (isxdigit(ch))

printf ("B is a hexadecimal digit\n");
else

printf ("B is NOT a hexadecimal digit\n");

ch = 't';
if (isxdigit(ch))
printf ("t is a hexadecimal digit\n");
else
printf ("t is NOT a hexadecimal digit\n");
}
Output:
B is a hexadecimal digit
t is NOT a hexadecimal digit

tolower

Description:
Include:
Prototype:
Argument:

Return Value:

Remarks:

Example:

Convert a character to a lower case alphabetical character.
<ctype.h>

int tolower (int c¢);

c The character to convert to lower case.

Returns the corresponding lower case alphabetical character if the
argument was originally upper case; otherwise, returns the original
character.

Only upper case alphabetical characters may be converted to lower
case.

#include <ctype.h> /* for tolower */
#include <stdio.h> /* for printf */

int main(void)

{

int ch;

ch = 'B';
printf ("B changes to lower case %c\n",
tolower (ch)) ;

ch = 'b';
printf ("b remains lower case %c\n",
tolower (ch)) ;

ch = 'e';
printf ("@ has no lower case, ");
printf ("so %c is returned\n", tolower (ch)) ;

© 2007 Microchip Technology Inc.

DS51456D-page 91

16-Bit Language Tools Libraries

tolower (Continued)

Output:

B changes to lower case b

b remains lower case b

@ has no lower case, so @ is returned

toupper

Description: Convert a character to an upper case alphabetical character.
Include: <ctype.h>

Prototype: int toupper (int c¢);

Argument: c The character to convert to upper case.

Return Value:

Remarks:

Example:

Returns the corresponding upper case alphabetical character if the
argument was originally lower case; otherwise, returns the original
character.

Only lower case alphabetical characters may be converted to upper
case.

#include <ctype.h> /* for toupper */
#include <stdio.h> /* for printf */

int main(void)

{

ch = 'b';
printf ("b changes to upper case %c\n",
toupper (ch)) ;

ch = 'B';
printf ("B remains upper case %c\n",
toupper (ch)) ;

ch = 'e';
printf ("@ has no upper case, ");
printf ("so %c is returned\n", toupper (ch)) ;

}

Output:

b changes to upper case B

B remains upper case B

@ has no upper case, so @ is returned

DS51456D-page 92

© 2007 Microchip Technology Inc.

Standard C Libraries with Math Functions

3.5

<ERRNO.H> ERRORS

The header file errno. h consists of macros that provide error codes that are reported
by certain library functions (see individual functions). The variable errno may return
any value greater than zero. To test if a library function encounters an error, the pro-
gram should store the value zero in errno immediately before calling the library func-
tion. The value should be checked before another function call could change the value
At program start-up, errno is zero. Library functions will never set errno to zero.

EDOM

Description: Represents a domain error.

Include: <errno.h>

Remarks: EDOM represents a domain error, which occurs when an input argument
is outside the domain in which the function is defined.

ERANGE

Description: Represents an overflow or underflow error.

Include: <errno.h>

Remarks: ERANGE represents an overflow or underflow error, which occurs when
aresult is too large or too small to be stored.

errno

Description: Contains the value of an error when an error occurs in a function.

Include: <errno.h>

Remarks: The variable errno is set to a non-zero integer value by a library func-

tion when an error occurs. At program start-up, errno is set to zero.
Errno should be reset to zero prior to calling a function that sets it.

© 2007 Microchip Technology Inc.

DS51456D-page 93

16-Bit Language Tools Libraries

3.6 <FLOAT.H>FLOATING-POINT CHARACTERISTICS

The header file f1oat .h consists of macros that specify various properties of float-
ing-point types. These properties include number of significant figures, size limits, and
what rounding mode is used.

DBL_DIG

Description:

Include:
Value:
Remarks:

Number of decimal digits of precision in a double precision float-
ing-point value

<float.h>

6 by default, 15 if the switch -fno-short-double is used

By default, a double type is the same size as a float type (32-bit repre-
sentation). The - fno-short-double switch allows the IEEE 64-bit
representation to be used for a double precision floating-point value.

DBL_EPSILON

Description:

Include:
Value:

Remarks:

The difference between 1.0 and the next larger representable double
precision floating-point value

<float.h>
1.192093e-07 by default, 2.220446e-16 if the switch
-fno-short-double is used

By default, a double type is the same size as a float type (32-bit repre-
sentation). The - fno-short-double switch allows the IEEE 64-bit
representation to be used for a double precision floating-point value.

DBL_MANT DIG

Description:

Include:
Value:
Remarks:

Number of base-FLT RADIX digits in a double precision floating-point
significand

<float.h>

24 by default, 53 if the switch -fno-short-double is used

By default, a double type is the same size as a float type (32-bit repre-
sentation). The -fno-short-double switch allows the IEEE 64-bit
representation to be used for a double precision floating-point value.

DBL_MAX

Description:
Include:
Value:

Remarks:

Maximum finite double precision floating-point value
<float.h>

3.402823e+38 by default, 1.797693e+308 if the switch
-fno-short-double is used

By default, a double type is the same size as a float type (32-bit repre-
sentation). The -fno-short-double switch allows the IEEE 64-bit
representation to be used for a double precision floating-point value.

DS51456D-page 94

© 2007 Microchip Technology Inc.

Standard C Libraries with Math Functions

DBL_MAX_10_EXP

Description: Maximum integer value for a double precision floating-point exponent in
base 10

Include: <float.h>

Value: 38 by default, 308 if the switch - fno-short-double is used

Remarks: By default, a double type is the same size as a float type (32-bit repre-

sentation). The -fno-short-double switch allows the IEEE 64-bit
representation to be used for a double precision floating-point value.

DBL_MAX_EXP

Description: Maximum integer value for a double precision floating-point exponent in
base FLT RADIX

Include: <float.h>
Value: 128 by default, 1024 if the switch -fno-short-double is used
Remarks: By default, a double type is the same size as a float type (32-bit repre-

sentation). The - fno-short-double switch allows the IEEE 64-bit
representation to be used for a double precision floating-point value.

DBL_MIN

Description: Minimum double precision floating-point value

Include: <float.h>

Value: 1.175494e-38 by default, 2.225074e-308 if the switch
-fno-short-double is used

Remarks: By default, a double type is the same size as a float type (32-bit repre-

sentation). The - fno-short-double switch allows the IEEE 64-bit
representation to be used for a double precision floating-point value.

DBL_MIN_10 EXP

Description: Minimum negative integer value for a double precision floating-point
exponent in base 10

Include: <float.h>
Value: -37 by default, -307 if the switch - fno-short-double is used
Remarks: By default, a double type is the same size as a float type (32-bit repre-

sentation). The -fno-short-double switch allows the IEEE 64-bit
representation to be used for a double precision floating-point value.

© 2007 Microchip Technology Inc. DS51456D-page 95

16-Bit Language Tools Libraries

DBL_MIN_EXP

Description: Minimum negative integer value for a double precision floating-point
exponent in base FLT RADIX

Include: <float.h>

Value: -125 by default, -1021 if the switch - fno-short-double is used

Remarks: By default, a double type is the same size as a float type (32-bit repre-
sentation). The - fno-short-double switch allows the IEEE 64-bit
representation to be used for a double precision floating-point value.

FLT DIG

Description: Number of decimal digits of precision in a single precision floating-point
value

Include: <float.h>

Value: 6

FLT_EPSILON

Description: The difference between 1.0 and the next larger representable single
precision floating-point value

Include: <float.h>

Value: 1.192093e-07

FLT MANT DIG

Description: Number of base-FLT RADIX digits in a single precision floating-point
significand

Include: <float.h>

Value: 24

FLT _MAX

Description: Maximum finite single precision floating-point value

Include: <float.h>

Value: 3.402823e+38

FLT_MAX_10 EXP

Description:

Include:
Value:

Maximum integer value for a single precision floating-point exponent in
base 10

<float.h>
38

DS51456D-page 96

© 2007 Microchip Technology Inc.

Standard C Libraries with Math Functions

FLT MAX_EXP

Description: Maximum integer value for a single precision floating-point exponent in
base FLT RADIX

Include: <float.h>

Value: 128

FLT MIN

Description: Minimum single precision floating-point value

Include: <float.h>

Value: 1.175494e-38

FLT_MIN_10_EXP

Description: Minimum negative integer value for a single precision floating-point
exponent in base 10

Include: <float.h>

Value: -37

FLT _MIN_EXP

Description: Minimum negative integer value for a single precision floating-point
exponent in base FLT RADIX

Include: <float.h>

Value: -125

FLT_RADIX

Description: Radix of exponent representation

Include: <float.h>

Value: 2

Remarks: The base representation of the exponent is base-2 or binary.

FLT_ROUNDS

Description: Represents the rounding mode for floating-point operations

Include: <float.h>

Value: 1

Remarks: Rounds to the nearest representable value

LDBL_DIG

Description: Number of decimal digits of precision in a long double precision float-
ing-point value

Include: <float.h>

Value: 15

© 2007 Microchip Technology Inc.

DS51456D-page 97

16-Bit Language Tools Libraries

LDBL_EPSILON

Description:

Include:
Value:

The difference between 1.0 and the next larger representable long dou-
ble precision floating-point value

<float.h>
2.220446e-16

LDBL_MANT_DIG

Description: Number of base-FLT_RADIX digits in a long double precision float-
ing-point significand

Include: <float.h>

Value: 53

LDBL_MAX

Description: Maximum finite long double precision floating-point value

Include: <float.h>

Value: 1.797693e+308

LDBL_MAX_10_EXP

Description:

Include:
Value:

Maximum integer value for a long double precision floating-point expo-
nent in base 10

<float.h>
308

LDBL_MAX_EXP

Description: Maximum integer value for a long double precision floating-point expo-
nent in base FLT RADIX

Include: <float.h>

Value: 1024

LDBL_MIN

Description: Minimum long double precision floating-point value

Include: <float.h>

Value: 2.225074e-308

LDBL_MIN_10_EXP

Description:

Include:
Value:

Minimum negative integer value for a long double precision float-
ing-point exponent in base 10

<float.h>
-307

DS51456D-page 98

© 2007 Microchip Technology Inc.

Standard C Libraries with Math Functions

LDBL_MIN_EXP

Description: Minimum negative integer value for a long double precision float-
ing-point exponent in base FLT RADIX

Include: <float.h>
Value: -1021

3.7 <LIMITS.H> IMPLEMENTATION-DEFINED LIMITS

The header file 1imits.h consists of macros that define the minimum and maximum
values of integer types. Each of these macros can be used in #if preprocessing

directives.

CHAR_BIT

Description: Number of bits to represent type char
Include: <limits.h>

Value: 8

CHAR_MAX

Description: Maximum value of a char
Include: <limits.h>

Value: 127

CHAR_MIN

Description: Minimum value of a char
Include: <limits.h>

Value: -128

INT_MAX

Description: Maximum value of an int
Include: <limits.h>

Value: 32767

INT_MIN

Description: Minimum value of an int
Include: <limits.h>

Value: -32768
LLONG_MAX

Description: Maximum value of a long long int
Include: <limits.h>

Value: 9223372036854775807

© 2007 Microchip Technology Inc. DS51456D-page 99

16-Bit Language Tools Libraries

LLONG_MIN

Description: Minimum value of a long long int
Include: <limits.h>

Value: -9223372036854775808
LONG_MAX

Description: Maximum value of a long int
Include: <limits.h>

Value: 2147483647

LONG_MIN

Description: Minimum value of a long int
Include: <limits.h>

Value: -2147483648

MB_LEN_MAX

Description: Maximum number of bytes in a multibyte character
Include: <limits.h>

Value: 1

SCHAR_MAX

Description: Maximum value of a signed char
Include: <limits.h>

Value: 127

SCHAR_MIN

Description: Minimum value of a signed char
Include: <limits.h>

Value: -128

SHRT_MAX

Description: Maximum value of a short int
Include: <limits.h>

Value: 32767

SHRT_MIN

Description: Minimum value of a short int
Include: <limits.h>

Value: -32768

DS51456D-page 100 © 2007 Microchip Technology Inc.

Standard C Libraries with Math Functions

UCHAR_MAX

Description:
Include:
Value:

Maximum value of an unsigned char
<limits.h>
255

UINT_MAX

Description:
Include:
Value:

Maximum value of an unsigned int

<limits.h>
65535

ULLONG_MAX

Description:
Include:
Value:

Maximum value of a long long unsigned int

<limits.h>
18446744073709551615

ULONG_MAX

Description:
Include:
Value:

Maximum value of a long unsigned int
<limits.h>
4294967295

USHRT_MAX

Description:
Include:
Value:

Maximum value of an unsigned short int
<limits.h>
65535

3.8 <LOCALE.H>LOCALIZATION

This compiler defaults to the C locale and does not support any other locales; therefore
it does not support the header file 1ocale.h. The following would normally be found in

this file:

« struct Iconv

* NULL

« LC ALL

« LC_COLLATE

» LC _CTYPE

* LC_MONETARY
« LC_NUMERIC
* LC TIME

« localeconv

« setlocale

© 2007 Microchip Technology Inc.

DS51456D-page 101

16-Bit Language Tools Libraries

3.9 <SETJMP.H>NON-LOCAL JUMPS

The header file setjmp . h consists of a type, a macro and a function that allow control
transfers to occur that bypass the normal function call and return process.

jmp_buf

Description: A type that is an array used by setjmp and 1longjmp to save and
restore the program environment.

Include: <setjmp.h>

Prototype: typedef int jmp buf [NSETJMP] ;

Remarks: _NSETJMP is defined as 16 + 2 that represents 16 registers and a
32-bit return address.

setimp

Description: A macro that saves the current state of the program for later use by
longjmp.

Include: <setjmp.h>

Prototype: #define setjmp (jmp_buf env)

Argument: env variable where environment is stored

Return Value:

If the return is from a direct call, setjmp returns zero. If the return is
from a call to longjmp, setjmp returns a non-zero value.
Note: If the argument val from longjmp is 0, setjmp returns 1.

Example: See longjmp.
longjmp
Description: A function that restores the environment saved by setjmp.
Include: <setjmp.h>
Prototype: void longjmp (jmp buf env, int val);
Arguments: env variable where environment is stored
val value to be returned to setjmp call.
Remarks: The value parameter val should be non-zero. If longjmp is invoked

from a nested signal handler (that is, invoked as a result of a signal
raised during the handling of another signal), the behavior is undefined.

DS51456D-page 102

© 2007 Microchip Technology Inc.

Standard C Libraries with Math Functions

3.10 <SIGNAL.H> SIGNAL HANDLING

The header file signal.h consists of a type, several macros and two functions that
specify how the program handles signals while it is executing. A signal is a condition
that may be reported during the program execution. Signals are synchronous, occur-
ring under software control via the raise function.

A signal may be handled by:
» Default handling (s1¢_DFL); the signal is treated as a fatal error and execution
stops

« Ignoring the signal (s1¢_1GN); the signal is ignored and control is returned to the
user application

« Handling the signal with a function designated via signal.
By default all signals are handled by the default handler, which is identified by s1c_DFL.

The type sig atomic_t is an integer type that the program access atomically. When
this type is used with the keyword volatile, the signal handler can share the data
objects with the rest of the program.

sig_atomic_t

Description: A type used by a signal handler

Include: <signal.h>

Prototype: typedef int sig atomic_t;

SIG_DFL

Description: Used as the second argument and/or the return value for signal to
specify that the default handler should be used for a specific signal.

Include: <signal.h>

SIG_ERR

Description: Used as the return value for signal when it cannot complete a
request due to an error.

Include: <signal.h>

SIG_IGN

Description: Used as the second argument and/or the return value for signal to

specify that the signal should be ignored.
Include: <signal.h>

© 2007 Microchip Technology Inc. DS51456D-page 103

16-Bit Language Tools Libraries

SIGABRT

Description: Name for the abnormal termination signal.

Include: <signal.h>

Prototype: #define SIGABRT

Remarks: SIGABRT represents an abnormal termination signal and is used in
conjunction with raise or signal. The default raise behavior
(action identified by SIG_DFL) is to output to the standard error stream:

abort - terminating

See the example accompanying signal to see general usage of sig-
nal names and signal handling.

Example: #include <signal.h> /* for raise, SIGABRT */
#include <stdio.h> /* for printf */
int main(void)
{

raise (SIGABRT) ;
printf ("Program never reaches here.");

}
Output:
ABRT
Explanation:
ABRT stands for “abort”.

SIGFPE

Description: Signals floating-point error such as for division by zero or result out of
range.

Include: <signal.h>

Prototype: #define SIGFPE

Remarks: SIGFPE is used as an argument for raise and/or signal. When
used, the default behavior is to print an arithmetic error message and
terminate the calling program. This may be overridden by a user func-
tion that defines the signal handler actions. See signal for an exam-
ple of a user defined function.

Example: #include <signal.h> /* for raise, SIGFPE */

#include <stdio.h> /* for printf */

int main(void)

{

raise (SIGFPE) ;
printf ("Program never reaches here");

}

Output:
FPE

Explanation:
FPE stands for “floating-point error”.

DS51456D-page 104

© 2007 Microchip Technology Inc.

Standard C Libraries with Math Functions

SIGILL

Description: Signals illegal instruction.

Include: <signal.h>

Prototype: #define SIGILL

Remarks: SIGILL is used as an argument for raise and/or signal. When
used, the default behavior is to print an invalid executable code mes-
sage and terminate the calling program. This may be overridden by a
user function that defines the signal handler actions. See signal for
an example of a user defined function.

Example: #include <signal.h> /* for raise, SIGILL */
#include <stdio.h> /* for printf */
int main(void)
{

raise (SIGILL) ;
printf ("Program never reaches here");

}
Output:
ILL
Explanation:
ILL stands for “illegal instruction”.

SIGINT

Description: Interrupt signal.

Include: <signal.h>

Prototype: #define SIGINT

Remarks: SIGINT is used as an argument for raise and/or signal. When
used, the default behavior is to print an interruption message and termi-
nate the calling program. This may be overridden by a user function
that defines the signal handler actions. See signal for an example of
a user defined function.

Example: #include <signal.h> /* for raise, SIGINT */

#include <stdio.h> /* for printf */

int main(void)

{

raise (SIGINT) ;
printf ("Program never reaches here.");

}

Output:
INT

Explanation:
INT stands for “interruption”.

© 2007 Microchip Technology Inc.

DS51456D-page 105

16-Bit Language Tools Libraries

SIGSEGV

Description: Signals invalid access to storage.

Include: <signal.h>

Prototype: #define SIGSEGV

Remarks: SIGSEGYV is used as an argument for raise and/or signal. When
used, the default behavior is to print an invalid storage request mes-
sage and terminate the calling program. This may be overridden by a
user function that defines the signal handler actions. See signal for
an example of a user defined function.

Example: #include <signal.h> /* for raise, SIGSEGV */
#include <stdio.h> /* for printf */
int main(void)
{

raise (SIGSEGV) ;
printf ("Program never reaches here.");

}
Output:
SEGV
Explanation:
SEGYV stands for “invalid storage access”.

SIGTERM

Description: Signals a termination request

Include: <signal.h>

Prototype: #define SIGTERM

Remarks: SIGTERM is used as an argument for raise and/or signal. When
used, the default behavior is to print a termination request message
and terminate the calling program. This may be overridden by a user
function that defines the signal handler actions. See signal for an
example of a user defined function.

Example: #include <signal.h> /* for raise, SIGTERM */

#include <stdio.h> /* for printf */

int main(void)

{

raise (SIGTERM) ;
printf ("Program never reaches here.");

}

Output:
TERM

Explanation:
TERM stands for “termination request”.

DS51456D-page 106

© 2007 Microchip Technology Inc.

Standard C Libraries with Math Functions

raise

Description:
Include:
Prototype:
Argument:

Return Value:

Remarks:
Example:

Reports a synchronous signal.

<signal.h>

int raise(int sig);

sig signal name

Returns a 0 if successful; otherwise, returns a non-zero value.
raise sends the signal identified by sig to the executing program.

#include <signal.h> /* for raise, signal, */

/* SIGILL, SIG_DFL */
#include <stdlib.hs> /* for div, div_t */
#include <stdio.h> /* for printf */

#include <p30£f6014.h> /* for INTCONlbits */

void __attribute__ ((__interrupt__))
_MathError (void)
raise (SIGILL) ;
INTCONlbits.MATHERR = 0;

}
void illegalinsn(int idsig)
{
printf ("Illegal instruction executed\n") ;
exit (1) ;
}
int main(void)
{
int x, y;
div_t z;
signal (SIGILL, illegalinsn);
X = 7;
y = 0;
z = div(x, y);
printf ("Program never reaches here");
}
Output:

Illegal instruction executed

Explanation:

This example requires the linker script p30£6014 .g1d. There are
three parts to this example.

First, an interrupt handler is written for the interrupt vector
_MathError to handle a math error by sending an illegal instruction
signal (SIGILL) to the executing program. The last statement in
the interrupt handler clears the exception flag.

Second, the function 111egalinsn will print an error message and
call exit.

Third, in main, signal (SIGILL, illegalinsn) sets the handler
for SIGILL to the function i1legalinsn.

When a math error occurs, due to a divide by zero, the MathError
interrupt vector is called, which in turn will raise a signal that will call the
handler function for SIGILL, which is the function i1legalinsn.
Thus error messages are printed and the program is terminated.

© 2007 Microchip Technology Inc.

DS51456D-page 107

16-Bit Language Tools Libraries

signal

Description: Controls interrupt signal handling.

Include: <signal.h>

Prototype: void (*signal (int sig, void(*func) (int))) (int) ;
Arguments: sig signal name

Return Value:

Example:

func function to be executed
Returns the previous value of func.

#include <signal.h> /* for signal, raise, */
/* SIGINT, SIGILL, */
/* SIG_IGN, and SIGFPE */
#include <stdio.h> /* for printf */

/* Signal handler function */
void mysigint (int id)
{

printf ("SIGINT received\n") ;

}

int main(void)
/* Override default with user defined function */
signal (SIGINT, mysigint) ;
raise (SIGINT) ;

/* Ignore signal handler */
signal (SIGILL, SIG_IGN) ;

raise (SIGILL) ;

printf ("SIGILL was ignored\n") ;

/* Use default signal handler */
raise (SIGFPE) ;
printf ("Program never reaches here.");

}

Output:

SIGINT received
SIGILL was ignored
FPE

Explanation:

The function mysigint is the user-defined signal handler for SIGINT.
Inside the main program, the function signal is called to set up the
signal handler (mysigint) for the signal SIGINT that will override the
default actions. The function raise is called to report the signal
SIGINT. This causes the signal handler for SIGINT to use the
user-defined function (mysigint) as the signal handler so it prints the
"SIGINT received" message.

Next, the function signal is called to set up the signal handler
SIG_IGN for the signal SIGILL. The constant SIG_IGN is used to indi
cate the signal should be ignored. The function raise is called to
report the signal SIGILL that is ignored.

The function raise is called again to report the signal SIGFPE. Since
there is no user defined function for SIGFPE, the default signal handler
is used so the message "FPE" is printed (which stands for
"arithmetic error - terminating”). Then the calling program is
terminated. The print £ statement is never reached.

DS51456D-page 108

© 2007 Microchip Technology Inc.

Standard C Libraries with Math Functions

3.11 <STDARG.H>VARIABLE ARGUMENT LISTS

The header file stdarg.h supports functions with variable argument lists. This allows
functions to have arguments without corresponding parameter declarations. There
must be at least one named argument. The variable arguments are represented by
ellipses (...). An object of type va_1ist must be declared inside the function to hold the
arguments. va_start will initialize the variable to an argument list, va_arg will access
the argument list, and va_end will end the use of the argument.

va_list

Description: The type va_1list declares a variable that will refer to each argument
in a variable-length argument list.

Include: <stdarg.h>

Example: See va_arg.

va_arg

Description: Gets the current argument

Include: <stdarg.h>

Prototype: #define va arg(va list ap, Ty)

Argument: ap pointer to list of arguments

Return Value:

Remarks:
Example:

Ty type of argument to be retrieved

Returns the current argument

va_start must be called before va_arg.
#include <stdio.h> /* for printf */

#include <stdarg.h> /* for va_arg, va_start,
va_list, va_end */

void tprint (const char *fmt, ...)

{

va_list ap;

va_start (ap, fmt);
while (*fmt)
{

switch (*fmt)

{

© 2007 Microchip Technology Inc.

DS51456D-page 109

16-Bit Language Tools Libraries

va_arg (Continued)

case '%':
fmt++;
if (*fmt == 'd'")

{
int d = va_arg(ap, int);
printf ("<%d> is an integer\n",d);
1
else if (*fmt == 'g"'")
{
char *s = va_arg(ap, char¥*);
printf ("<%s> is a string\n", s);
}

else

{

printf ("$%%c is an unknown format\n",
)

*fmt) ;
}
fmt++;
break;
default:
printf ("$c is unknown\n", *fmt);
fmt++;
break;
}
!
va_end(ap) ;
!
int main(void)
{
tprint ("$d%s.%c", 83, "This is text.", 'a');
}
Output:

<83> 1s an integer

<This is text.> is a string
is unknown

$c is an unknown format

DS51456D-page 110 © 2007 Microchip Technology Inc.

Standard C Libraries with Math Functions

va_end

Description: Ends the use of ap.

Include: <stdarg.h>

Prototype: #define va end(va_list ap)

Argument: ap pointer to list of arguments

Remarks: After a call to va_end, the argument list pointer ap is considered to be
invalid. Further calls to va_arg should not be made until the next
va_start. In MPLAB C30, va_end does nothing, so this call is not
necessary but should be used for readability and portability.

Example: See va_arg.

va_start

Description: Sets the argument pointer ap to first optional argument in the
variable-length argument list

Include: <stdarg.h>

Prototype: #define va_start(va_list ap, last_arg)

Argument: ap pointer to list of arguments
last_arg last named argument before the optional arguments

Example: See va_arg.

3.12 <STDDEF.H> COMMON DEFINITIONS

The header file stddef . h consists of several types and macros that are of general use

in programs.

ptrdiff_t

Description: The type of the result of subtracting two pointers.
Include: <stddef .h>

size_t

Description: The type of the result of the sizeof operator.
Include: <stddef.h>

wchar _t

Description: A type that holds a wide character value.
Include: <stddef .h>

NULL

Description: The value of a null pointer constant.

Include: <stddef.h>

© 2007 Microchip Technology Inc.

DS51456D-page 111

16-Bit Language Tools Libraries

offsetof

Description: Gives the offset of a structure member from the beginning of the struc-
ture.

Include: <stddef.h>

Prototype: #define offsetof (T, mbr)

Arguments: T name of structure

Return Value:

Remarks:

Example:

mbr name of member in structure T

Returns the offset in bytes of the specified member (mbzr) from the
beginning of the structure.

The macro of fsetof is undefined for bitfields. An error message will
occur if bitfields are used.

#include <stddef.h> /* for offsetof */
#include <stdio.h> /* for printf */

struct info {
char iteml[5];
int item2;
char item3;
float item4;

Vi

int main(void)
{
printf ("Offset of iteml = %d\n",
offsetof (struct info,iteml)) ;
printf ("Offset of item2 = %d\n",
offsetof (struct info,item2)) ;
printf ("Offset of item3 = %d\n",
offsetof (struct info,item3)) ;
printf ("Offset of item4 = %d\n",
offsetof (struct info,item4)) ;

Output:

Offset of iteml = 0
Offset of item2 = 6
Offset of item3 = 8
Offset of item4 = 10

Explanation:

This program shows the offset in bytes of each structure member from
the start of the structure. Although iteml is only 5 bytes (char
iteml [5]), padding is added so the address of item2 falls on an
even boundary. The same occurs with item3; itis 1 byte (char
item3) with 1 byte of padding.

DS51456D-page 112

© 2007 Microchip Technology Inc.

Standard C Libraries with Math Functions

3.13 <STDIO.H> INPUT AND OUTPUT

The header file stdio.h consists of types, macros and functions that provide support
to perform input and output operations on files and streams. When a file is opened it is
associated with a stream. A stream is a pipeline for the flow of data into and out of files.
Because different systems use different properties, the stream provides more uniform
properties to allow reading and writing of the files.

Streams can be text streams or binary streams. Text streams consist of a sequence of
characters divided into lines. Each line is terminated with a newline (‘\n’) character. The
characters may be altered in their internal representation, particularly in regards to line
endings. Binary streams consist of sequences of bytes of information. The bytes trans-
mitted to the binary stream are not altered. There is no concept of lines - the file is just
a series of bytes.

At start-up three streams are automatically opened: stdin, stdout, and stderr. stdin
provides a stream for standard input, stdout is standard output and stderr is the stan-
dard error. Additional streams may be created with the fopen function. See fopen for
the different types of file access that are permitted. These access types are used by
fopen and freopen.

The type FILE is used to store information about each opened file stream. It includes
such things as error indicators, end-of-file indicators, file position indicators, and other
internal status information needed to control a stream. Many functions in the stdio use
FILE as an argument.

There are three types of buffering: unbuffered, line buffered and fully buffered. Unbuf-
fered means a character or byte is transferred one at a time. Line buffered collects and
transfers an entire line at a time (i.e., the newline character indicates the end of a line).
Fully buffered allows blocks of an arbitrary size to be transmitted. The functions setbuf
and setvbuf control file buffering.

The stdio.h file also contains functions that use input and output formats. The input
formats, or scan formats, are used for reading data. Their descriptions can be found
under scanf, but they are also used by £scanf and sscanf. The output formats, or print
formats, are used for writing data. Their descriptions can be found under print£.
These print formats are also used by fprintf, sprintf, vEprintf, vprintf and
vsprintf.

3.13.1 Compiler Options

Certain compiler options may affect how standard 1/0O performs. In an effort to provide
a more tailored version of the formatted I/O routines, the tool chain may convert a call
to a printf oOr scanf style function to a different call. The options are summarized
below:

*The -msmart-io option, when enabled, will attempt to convert printf, scanf
and other functions that use the input output formats to an integer only variant.
The functionality is the same as that of the C standard forms, minus the support
for floating-point output. -msmart-io=0 disables this feature and no conversion
will take place. -msmart-io=1 Or -msmart-io (the default) will convert a func-
tion call if it can be proven that an 1/O function will never be presented with a
floating-point conversion. -msmart-io=2 is more optimistic than the default and
will assume that non-constant format strings or otherwise unknown format
strings will not contain a floating-point format. In the event that -msmart-io=2 is
used with a floating-point format, the format letter will appear as literal text and
its corresponding argument will not be consumed.

© 2007 Microchip Technology Inc. DS51456D-page 113

16-Bit Language Tools Libraries

*-fno-short-double Will cause the compiler to generate calls to formatted I/O
routines that support double as if it were a 1ong double type.

Mixing modules compiled with these options may result in a larger executable size, or
incorrect execution if large and small double-sized data is shared across modules.

3.13.2 Customizing STDIO

The standard 1/O relies on helper functions described in Section 3.18 “pic30-libs”.
These functions include read (), write (), open (), and close () which are called to
read, write, open or close handles that are associated with standard I/O FILE pointers.
The sources for these libraries are provided for you to customize as you wish.

The simplest way to redirect standard 1/O to the pheripheral of your choice is to select
one of the default handles already in use. Also, you could open files with a specific
name, via fopen (), by rewriting open () to return a new handle to be recognized by
read () Orwrite (), as appropriate.

If only a specific peripheral is required, then you could associate handle 1 == stdout,
or 2 == stderr, to another peripheral by writing the correct code to talk to the
interested peripheral.

A complete generic solution might be:

/* should be in a header file */
enum my handles {

handle_stdin,

handle_stdout,

handle_stderr,

handle canl,

handle can2,

handle spil,

handle_spi2,

}i

int _ attribute ((_ weak , section_ (".libc"))) open(const char
*name, int access, int mode) {
switch (name[0]) {

case 'i' : return handle_stdin;

case 'o' : return handle_ stdout;

case 'e' : return handle_ stderr;

case 'c' : return handle canl;

case 'C' : return handle can2;

case 's' : return handle spil;

case 'S' : return handle spi2;

default: return handle_stderr;

}

Single letters were used in this example because they are faster to check and use less
memory. However, if memory is not an issue, you could use strcmp to compare full
names.

In write (), you would write:

write(int handle, void *buffer, unsigned int len) {
int 1i;
volatile UxMODEBITS *umode = &U1MODEbits;
volatile UxSTABITS *ustatus = &U1STAbits;
volatile unsigned int *txreg = &ULITXREG;
volatile unsigned int *brg = &U1BRG;

switch (handle)

{

DS51456D-page 114

© 2007 Microchip Technology Inc.

Standard C Libraries with Math Functions

default:
case O:
case 1:
case 2:

if

}

((__C30_UART 1) &&
umode = &U2MODEbits;
ustatus = &U2STAbits;
txreg = &U2TXREG;

brg = &U2BRG;

(&U2BRG)) {

((umode->UARTEN) 0)

*brg = 0;
umode->UARTEN = 1;

((ustatus->UTXEN) 0)

ustatus->UTXEN = 1;

(i = len; i; --1i)

while ((ustatus->TRMT) ==0);
*txreg = * (char*)buffer++;

break;

case handle canl:

/* code to support canl */

break;

case handle_can2:

/* code to support can2 */

break;

case handle spil:

/* code to support spil */

break;

case handle spi2:

/* code to support spi2 */

break;

}

return (len) ;

}

where you would fill in the appropriate code as specified in the comments.

Now you can use the generic C STDIO features to write to another port:

FILE *canl

- fopen("c", llwll) ;

fprintf (canl, "This will be output through the can\n");

3.13.3

STDIO Functions

FILE

Description:
Include:

Stores information for a file stream.
<stdio.h>

fpos_t

Description:
Include:

Type of a variable used to store a file position.

<stdio.h>

© 2007 Microchip Technology Inc.

DS51456D-page 115

16-Bit Language Tools Libraries

size_t

Description: The result type of the sizeof operator.

Include: <stdio.h>

_IOFBF

Description: Indicates full buffering.

Include: <stdio.h>

Remarks: Used by the function setvbuf.

_IOLBF

Description: Indicates line buffering.

Include: <stdio.h>

Remarks: Used by the function setvbuf.

_IONBF

Description: Indicates no buffering.

Include: <stdio.h>

Remarks: Used by the function setvbuf.

BUFSIZ

Description: Defines the size of the buffer used by the function setbuf.

Include: <stdio.h>

Value: 512

EOF

Description: A negative number indicating the end-of-file has been reached or to
report an error condition.

Include: <stdio.h>

Remarks: If an end-of-file is encountered, the end-of-file indicator is set. If an

error condition is encountered, the error indicator is set. Error condi-
tions include write errors and input or read errors.

FILENAME_MAX

Description: Maximum number of characters in a filename including the null termi-
nator.

Include: <stdio.h>

Value: 260

FOPEN_MAX

Description: Defines the maximum number of files that can be simultaneously open

DS51456D-page 116

© 2007 Microchip Technology Inc.

Standard C Libraries with Math Functions

FOPEN_MAX (Continued)

Include: <stdio.h>

Value: 8

Remarks: stderr, stdin and stdout are included in the FOPEN_ MAX count.

L_tmpnam

Description: Defines the number of characters for the longest temporary filename
created by the function tmpnam.

Include: <stdio.h>

Value: 16

Remarks: L _tmpnam is used to define the size of the array used by tmpnam.

NULL

Description: The value of a null pointer constant

Include: <stdio.h>

SEEK_CUR

Description: Indicates that £seek should seek from the current position of the file
pointer

Include: <stdio.h>

Example: See example for £seek.

© 2007 Microchip Technology Inc.

DS51456D-page 117

16-Bit Language Tools Libraries

SEEK_END

Description: Indicates that £seek should seek from the end of the file.

Include: <stdio.h>

Example: See example for £seek.

SEEK_SET

Description: Indicates that £seek should seek from the beginning of the file.

Include: <stdio.h>

Example: See example for £seek.

stderr

Description: File pointer to the standard error stream.

Include: <stdio.h>

stdin

Description: File pointer to the standard input stream.

Include: <stdio.h>

stdout

Description: File pointer to the standard output stream.

Include: <stdio.h>

TMP_MAX

Description: The maximum number of unique filenames the function tmpnam can
generate.

Include: <stdio.h>

Value: 32

DS51456D-page 118

© 2007 Microchip Technology Inc.

Standard C Libraries with Math Functions

clearerr

Description: Resets the error indictor for the stream

Include: <stdio.h>

Prototype: void clearerr (FILE *stream) ;

Argument: stream Stream to reset error indicators

Remarks: The function clears the end-of-file and error indicators for the given
stream (i.e., feof and ferror will return false after the function
clearerr is called).

Example: /* This program tries to write to a file that is */

/* readonly. This causes the error indicator to */
/* be set. The function ferror is used to check */
/* the error indicator. The function clearerr is */
/* used to reset the error indicator so the next */
/* time ferror is called it will not report an */

/* error. */
#include <stdio.h> /* for ferror, clearerr, */

/* printf, fprintf, fopen,*/

/* fclose, FILE, NULL */

int main(void)

{

FILE *myfile;

if ((myfile = fopen("sampclearerr.c", "r")) ==
NULL)
printf ("Cannot open file\n");
else

{

fprintf (myfile, "Write this line to the "
"file.\n");
if (ferror (myfile))
printf ("Error\n") ;
else
printf ("No error\n") ;
clearerr (myfile) ;
if (ferror (myfile))
printf ("Still has Error\n");
else
printf ("Error indicator reset\n");

fclose (myfile) ;

Output:
Error
Error indicator reset

© 2007 Microchip Technology Inc. DS51456D-page 119

16-Bit Language Tools Libraries

fclose

Description: Close a stream.

Include: <stdio.h>

Prototype: int fclose(FILE *stream) ;
Argument: stream pointer to the stream to close

Return Value:

Remarks:
Example:

Returns 0 if successful; otherwise, returns EOF if any errors were
detected.

fclose writes any buffered output to the file.

#include <stdio.h> /* for fopen, fclose, */
/* printf,FILE, NULL, EOF */

int main(void)

{
FILE *myfilel, *myfile2;
int y;

if ((myfilel = fopen("afilel", "w+")) == NULL)
printf ("Cannot open afilel\n");
else

{

printf ("afilel was opened\n") ;

y = fclose(myfilel);
if (y == EOF)
printf ("afilel was not closed\n");
else
printf ("afilel was closed\n") ;
!

}

Output:
afilel was opened
afilel was closed

DS51456D-page 120

© 2007 Microchip Technology Inc.

Standard C Libraries with Math Functions

feof
Description: Tests for end-of-file
Include: <stdio.h>
Prototype: int feof (FILE *stream) ;
Argument: stream stream to check for end-of-file
Return Value: Returns non-zero if stream is at the end-of-file; otherwise, returns zero.
Example: #include <stdio.h> /* for feof, fgetc, fputc, */
/* fopen, fclose, FILE, */
/* NULL */
int main(void)
{
FILE *myfile;
int y = 0;
if((myfile = fopen("afile.txt", "rb")) == NULL)
printf ("Cannot open file\n");
else
{
for (;;)
{
y = fgetc(myfile);
if (feof (myfile))
break;
fputc(y, stdout);
}
fclose(myfile);
}
!
Input:

Contents of afile. txt (used as input):
This is a sentence.

Output:

This is a sentence.

© 2007 Microchip Technology Inc. DS51456D-page 121

16-Bit Language Tools Libraries

ferror

Description: Tests if error indicator is set.

Include: <stdio.h>

Prototype: int ferror (FILE *stream) ;
Argument: stream pointer to FILE structure

Return Value:

Example:

Returns a non-zero value if error indicator is set; otherwise, returns a
Zero.

/* This program tries to write to a file that is */
/* readonly. This causes the error indicator to */
/* be set. The function ferror is used to check */
/* the error indicator and find the error. The */
/* function clearerr is used to reset the error */
/* indicator so the next time ferror is called */
/* it will not report an error. */

#include <stdio.h> /* for ferror, clearerr, */

/* printf, fprintf, */
/* fopen, fclose, */
/* FILE, NULL */
int main(void)
{
FILE *myfile;
if ((myfile = fopen("sampclearerr.c", "r")) ==
NULL)
printf ("Cannot open file\n");

else
{
fprintf (myfile, "Write this line to the "
"file.\n");
if (ferror (myfile))
printf ("Error\n") ;
else
printf ("No error\n") ;
clearerr (myfile) ;
if (ferror (myfile))
printf ("Still has Error\n") ;
else
printf ("Error indicator reset\n");

fclose (myfile) ;

Output:
Error
Error indicator reset

DS51456D-page 122

© 2007 Microchip Technology Inc.

Standard C Libraries with Math Functions

fflush

Description:
Include:
Prototype:
Argument:

Return Value:

Remarks:

Flushes the buffer in the specified stream.
<stdio.h>

int f£flush (FILE *stream) ;

stream pointer to the stream to flush.

Returns EOF if a write error occurs; otherwise, returns zero for suc-
cess.

If stream is a null pointer, all output buffers are written to files. ££1ush
has no effect on an unbuffered stream.

fgetc

Description:
Include:
Prototype:
Argument:

Return Value:

Remarks:

Example:

Get a character from a stream
<stdio.h>

int fgetc (FILE *stream) ;
stream pointer to the open stream

Returns the character read or EOF if a read error occurs or end-of-file
is reached.

The function reads the next character from the input stream, advances
the file-position indicator and returns the character as an unsigned
char converted to an int.

#include <stdio.h> /* for fgetc, printf, */
/* fclose, FILE, */
/* NULL, EOF */

int main(void)
{
FILE *buf;
char y;

if ((buf = fopen("afile.txt", "r")) == NULL)
printf ("Cannot open afile.txt\n");
else
{
y = fgetc (buf) ;
while (y != EOF)
{
printf ("%c|", y);
y = fgetc(buf) ;
!
fclose (buf) ;
}
}

Input:

Contents of afile. txt (used as input):
Short

Longer string

Output:

S|hlo|r|t]

|Llo[nlglelr| [slt]r|i|n|g]

© 2007 Microchip Technology Inc.

DS51456D-page 123

16-Bit Language Tools Libraries

fgetpos
Description: Gets the stream'’s file position.
Include: <stdio.h>
Prototype: int fgetpos (FILE *stream, fpos_t *pos);
Arguments: stream target stream
pos position-indicator storage

Return Value:

Remarks:

Example:

Returns 0 if successful; otherwise, returns a non-zero value.

The function stores the file-position indicator for the given stream in
*pos if successful, otherwise, fgetpos sets errno.

/* This program opens a file and reads bytes at */
/* several different locations. The fgetpos */
/* function notes the 8th byte. 21 bytes are */

/* read then 18 bytes are read. Next the */
/* fsetpos function is set based on the */
/* fgetpos position and the previous 21 bytes */

/* are reread.

*/

#include <stdio.h> /* for fgetpos, fread, */

/* printf,

fopen, fclose, */

/* FILE, NULL, perror, */

/* fpos t,

int main(void)

{
FILE *myfile;
fpos t pos;
char buf [25] ;

if ((myfile = fopen("sampfgetpos.c", "rb"))

NULL)

sizeof */

printf ("Cannot open file\n");

else

{

fread (buf, sizeof (char), 8,

if (fgetpos (myfile, &pos)

perror ("fgetpos error") ;

else

{

fread (buf, sizeof (char),

myfile) ;
1= 0)

21, myfile);

printf ("Bytes read: %.21s\n", buf);

fread (buf, sizeof (char), 18, myfile);
printf ("Bytes read: %.18s\n", buf);
}
if (fsetpos(myfile, &pos) != 0)

perror ("fsetpos error") ;

fread (buf, sizeof (char), 21,

myfile) ;

printf ("Bytes read: %.21s\n", buf);

fclose (myfile) ;

}
}

Output:

Bytes read: program opens a file

Bytes read: and reads bytes at

Bytes read: program opens a file

DS51456D-page 124

© 2007 Microchip Technology Inc.

Standard C Libraries with Math Functions

fgets

Description:
Include:
Prototype:
Arguments:

Return Value:

Remarks:

Example:

Get a string from a stream
<stdio.h>

char *fgets(char *s, int n, FILE *stream);

s pointer to the storage string
n maximum number of characters to read
stream pointer to the open stream.

Returns a pointer to the string s if successful; otherwise, returns a null
pointer

The function reads characters from the input stream and stores them
into the string pointed to by s until it has read n-1 characters, stores a
newline character or sets the end-of-file or error indicators. If any char-
acters were stored, a null character is stored immediately after the last
read character in the next element of the array. If fgets sets the error
indicator, the array contents are indeterminate.

#include <stdio.h> /* for fgets, printf, */

/* fopen, fclose, */
/* FILE, NULL */
#define MAX 50
int main(void)
{
FILE *buf;
char s[MAX];
if ((buf = fopen("afile.txt", "r")) == NULL)
printf ("Cannot open afile.txt\n");
else
{
while (fgets(s, MAX, buf) != NULL)
{
printf ("%s|", s);
}
fclose (buf) ;
}
}
Input:
Contents of afile. txt (used as input):
Short
Longer string
Output:
Short

| Longer string

© 2007 Microchip Technology Inc.

DS51456D-page 125

16-Bit Language Tools Libraries

fopen

Description: Opens a file.

Include: <stdio.h>

Prototype: FILE *fopen(const char *filename, const char *mode) ;
Arguments: filename name of the file

Return Value:

Remarks:

Example:

mode type of access permitted

Returns a pointer to the open stream. If the function fails a null pointer
is returned.

Following are the types of file access:

r- opens an existing text file for reading

w - opens an empty text file for writing. (An existing file will
be overwritten.)

a- opens a text file for appending. (A file is created if it
doesn't exist.)

rb - opens an existing binary file for reading.

wb - opens an empty binary file for writing. (An existing file
will be overwritten.)

ab - opens a binary file for appending. (A file is created if it
doesn't exist.)

r+ - opens an existing text file for reading and writing.

W+ - opens an empty text file for reading and writing. (An
existing file will be overwritten.)

a+ - opens a text file for reading and appending. (A file is

created if it doesn't exist.)
r+b or rb+ - opens an existing binary file for reading and writing.

w+b or wb+ - opens an empty binary file for reading and writing. (An
existing file will be overwritten.)

a+b or ab+ - opens a binary file for reading and appending. (A file is
created if it doesn't exist.)

#include <stdio.h> /* for fopen, fclose, */

/* printf, FILE, */
/* NULL, EOF */
int main(void)
{
FILE *myfilel, *myfile2;
int y;

DS51456D-page 126

© 2007 Microchip Technology Inc.

Standard C Libraries with Math Functions

fopen (Continued)

if ((myfilel = fopen("afilel", "xr")) == NULL)
printf ("Cannot open afilel\n");

else

{

printf ("afilel was opened\n") ;
y = fclose(myfilel);
if (y == EOF)
printf ("afilel was not closed\n");
else
printf ("afilel was closed\n") ;

if ((myfilel = fopen("afilel", "w+")) == NULL)
printf ("Second try, cannot open afilel\n");
else
{
printf ("Second try, afilel was opened\n") ;
y = fclose(myfilel);
if (y == EOF)
printf ("afilel was not closed\n");
else
printf ("afilel was closed\n") ;

}
if ((myfile2 = fopen("afile2", "w+")) == NULL)
printf ("Cannot open afile2\n");
else
{
printf ("afile2 was opened\n") ;
y = fclose(myfile2);
if (y == EOF)
printf ("afile2 was not closed\n");
else
printf ("afile2 was closed\n") ;

}
}
Output:
Cannot open afilel
Second try, afilel was opened
afilel was closed
afile2 was opened
afile2 was closed
Explanation:
afilel must exist before it can be opened for reading (r) or the
fopen function will fail. If the fopen function opens a file for writing

(w+) it does not have to already exist. If it doesn't exist, it will be created
and then opened.

© 2007 Microchip Technology Inc.

DS51456D-page 127

16-Bit Language Tools Libraries

fprintf
Description: Prints formatted data to a stream.
Include: <stdio.h>
Prototype: int fprintf (FILE *stream, const char *format, ...);
Arguments: stream pointer to the stream in which to output data
format format control string
.. optional arguments
Return Value: Returns number of characters generated or a negative number if an
error occurs.
Remarks: The format argument has the same syntax and use that it has in
print.
Example: #include <stdio.h> /* for fopen, fclose, */
/* fprintf, printf, */
/* FILE, NULL */

int main(void)
FILE *myfile;
int y;
char s[]="Print this string";
int x = 1;

char a = '\n';

if ((myfile = fopen("afile", "w")) == NULL)
printf ("Cannot open afile\n") ;

else

{
y = fprintf (myfile, "%s %d time%c", s, x, a);

printf ("Number of characters printed "
"to file = %4",y);

fclose (myfile) ;

}
}
Output:
Number of characters printed to file = 25
Contents of afile:
Print this string 1 time

DS51456D-page 128 © 2007 Microchip Technology Inc.

Standard C Libraries with Math Functions

fputc

Description:
Include:
Prototype:
Arguments:

Return Value:

Remarks:

Example:

Puts a character to the stream.

<stdio.h>

int fputc(int ¢, FILE *stream) ;

c character to be written

stream pointer to the open stream

Returns the character written or EOF if a write error occurs.

The function writes the character to the output stream, advances the
file-position indicator and returns the character as an unsigned char
converted to an int.

#include <stdio.h> /* for fputc, EOF, stdout */

int main(void)

{

char *y;
char buf[] = "This is text\n";
int x;
X = 0;
for (y = buf; (x != EOF) && (*y != '\0'); y++)
{
x = fputc(*y, stdout);
fputc('|', stdout);
}
}
Output:
TIhli|s| [i]s]| |tfe|x|t]

fputs

Description:
Include:
Prototype:
Arguments:

Return Value:

Remarks:

Example:

Puts a string to the stream.

<stdio.h>

int fputs(const char *s, FILE *stream) ;

s string to be written

stream pointer to the open stream

Returns a non-negative value if successful; otherwise, returns EOF.

The function writes characters to the output stream up to but not includ-
ing the null character.

#include <stdio.h> /* for fputs, stdout */

int main(void)

{

char buf[] = "This is text\n";

fputs (buf, stdout) ;
fputs ("|", stdout) ;

Output:
This is text

© 2007 Microchip Technology Inc.

DS51456D-page 129

16-Bit Language Tools Libraries

fread
Description: Reads data from the stream.
Include: <stdio.h>
Prototype: size t fread(void *ptr, size t size, size t nelem,
FILE *stream) ;
Arguments: ptr pointer to the storage buffer
size size of item
nelem maximum number of items to be read
stream pointer to the stream

Return Value:

Remarks:

Example:

Returns the number of complete elements read up to nelem whose
size is specified by size.

The function reads characters from a given stream into the buffer
pointed to by ptz until the function stores size * nelem characters
or sets the end-of-file or error indicator. fread returns n/size where n is
the number of characters it read. If n is not a multiple of size, the value
of the last element is indeterminate. If the function sets the error indica-
tor, the file-position indicator is indeterminate.

#include <stdio.h> /* for fread, fwrite, */
/* printf, fopen, fclose, */
/* sizeof, FILE, NULL */

int main(void)
FILE *buf;
int x, numwrote, numread;
double nums[10], readnums[10];

if ((buf = fopen("afile.out", "w+")) != NULL)
{
for (x = 0; X < 10; X++)
{
nums [x] = 10.0/(x + 1);

printf ("10.0/%d = %f\n", x+1, nums[x]);

}

numwrote = fwrite (nums, sizeof (double),
10, buf);
printf ("Wrote %d numbers\n\n", numwrote) ;
fclose (buf) ;
}
else

printf ("Cannot open afile.out\n");

DS51456D-page 130

© 2007 Microchip Technology Inc.

Standard C Libraries with Math Functions

fread (Continued)

if ((buf = fopen("afile.out", "r+")) != NULL)
{
numread = fread(readnums, sizeof (double),
10, buf);
printf ("Read %d numbers\n", numread) ;
for (x = 0; X < 10; X++)
{
printf("sd * %f = %f\n", x+1, readnums[x],
(x + 1) * readnums[x]);
}
fclose (buf) ;
}
else
printf ("Cannot open afile.out\n") ;
!
Output:
10.0/1 = 10.000000
10.0/2 = 5.000000
10.0/3 = 3.333333
10.0/4 = 2.500000
10.0/5 = 2.000000
10.0/6 = 1.666667
10.0/7 = 1.428571
10.0/8 = 1.250000
10.0/9 = 1.111111

10.0/10 = 1.000000
Wrote 10 numbers

Read 10 numbers

1 * 10.000000 = 10.000000
2 * 5.000000 = 10.000000
3 * 3.333333 = 10.000000
4 * 2.500000 = 10.000000
5 * 2.000000 = 10.000000
6 * 1.666667 = 10.000000
7 * 1.428571 = 10.000000
8 * 1.250000 = 10.000000
9 * 1.111111 = 10.000000

10 * 1.000000 = 10.000000

Explanation:

This program uses fwrite to save 10 numbers to a file in binary form.
This allows the numbers to be saved in the same pattern of bits as the
program is using which provides more accuracy and consistency. Using
fprintf would save the numbers as text strings which could cause
the numbers to be truncated. Each number is divided into 10 to pro-
duce a variety of numbers. Retrieving the numbers with fread to a
new array and multiplying them by the original number shows the num-
bers were not truncated in the save process.

© 2007 Microchip Technology Inc.

DS51456D-page 131

16-Bit Language Tools Libraries

freopen

Description: Reassigns an existing stream to a new file.

Include: <stdio.h>

Prototype: FILE *freopen(const char *filename, const char
*mode, FILE *stream) ;

Arguments: filename name of the new file

Return Value:

Remarks:

Example:

mode type of access permitted
stream pointer to the currently open stream

Returns a pointer to the new open file. If the function fails a null pointer
is returned.

The function closes the file associated with the stream as though
fclose was called. Then it opens the new file as though fopen was
called. freopen will fail if the specified stream is not open. See fopen
for the possible types of file access.

#include <stdio.h> /* for fopen, freopen, */
/* printf, fclose, */
/* FILE, NULL */

int main(void)

{
FILE *myfilel, *myfile2;
int y;

if ((myfilel = fopen("afilel", "w+")) == NULL)
printf ("Cannot open afilel\n");
else

{

printf ("afilel was opened\n") ;

if ((myfile2 = freopen("afile2", "w+",
myfilel)) == NULL)
{

printf ("Cannot open afile2\n");
fclose (myfilel) ;

}

else

{
printf ("afile2 was opened\n") ;
fclose (myfile2) ;

}
}
}

Output:
afilel was opened
afile2 was opened

Explanation:

This program uses myfile2 to point to the stream when freopen is
called so if an error occurs, myfilel will still point to the stream and
can be closed properly. If the freopen call is successful, myfile2 can
be used to close the stream properly.

fscanf

Description:
Include:

Scans formatted text from a stream.

<stdio.h>

DS51456D-page 132

© 2007 Microchip Technology Inc.

Standard C Libraries with Math Functions

fscanf (Continued)

Prototype: int fscanf (FILE *stream, const char *format, ...);
Arguments: stream pointer to the open stream from which to read data
format format control string
optional arguments
Return Value: Returns the number of items successfully converted and assigned. If

no items are assigned, a O is returned. EOF is returned if end-of-file is
encountered before the first conversion or if an error occurs.

Remarks: The format argument has the same syntax and use that it has in
scanf.
Example: #include <stdio.h> /* for fopen, fscanf, */
/* fclose, fprintf, */
/* fseek, printf, FILE, */
/* NULL, SEEK SET */

int main(void)

{
FILE *myfile;
char s[30];
int x;
char a;
if ((myfile = fopen("afile", "w+")) == NULL)
printf ("Cannot open afile\n") ;
else
{
fprintf (myfile, "%s %d times%c",
"Print this string", 100, '\n');
fseek (myfile, OL, SEEK SET);
fscanf (myfile, "%s", s);
printf ("$s\n", s);
fscanf (myfile, "%s", s);
printf ("$s\n", s);
fscanf (myfile, "%s", s);
printf ("$s\n", s);
fscanf (myfile, "&%d", &x);
printf ("$d\n", x);
fscanf (myfile, "%s", s);
printf ("$s\n", s);
fscanf (myfile, "%c", a);
printf ("%c\n", a);
fclose (myfile) ;
!
}
Input:

Contents of afile:
Print this string 100 times

Output:
Print
this
string
100
times

© 2007 Microchip Technology Inc. DS51456D-page 133

16-Bit Language Tools Libraries

fseek
Description: Moves file pointer to a specific location.
Include: <stdio.h>
Prototype: int fseek (FILE *stream, long offset, int mode) ;
Arguments: stream stream in which to move the file pointer.
offset value to add to the current position
mode type of seek to perform

Return Value:

Remarks:

Example:

Returns 0 if successful; otherwise, returns a non-zero value and set

errno.
mode can be one of the following:

SEEK_SET — seeks from the beginning of the file
SEEK_CUR — seeks from the current position of the file pointer
SEEK_END — seeks from the end of the file

#include <stdio.h> /* for fseek, fgets, */
/* printf, fopen, fclose, */
/* FILE, NULL, perror, */
/* SEEK_SET, SEEK CUR, */

/* SEEK _END

int main(void)

*/

{
FILE *myfile;
char s[70];
int vy;
myfile = fopen("afile.out", "w+");
if (myfile == NULL)
printf ("Cannot open afile.out\n") ;
else

{

fprintf (myfile, "This is the beginning, "
"this is the middle and "
"this is the end.");

y = fseek(myfile, 0L, SEEK SET);

if (y)

perror ("Fseek failed") ;

else

{

fgets (s, 22, myfile);

printf ("\"%s\"\n\n",

}

s);

y = fseek(myfile, 2L, SEEK CUR);

if (y)

perror ("Fseek failed");

else

{
fgets (s, 70, myfile);
printf ("\"%s\"\n\n",

}

s);

DS51456D-page 134

© 2007 Microchip Technology Inc.

Standard C Libraries with Math Functions

fseek (Continued)

y = fseek(myfile, -16L, SEEK END) ;
if (y)

perror ("Fseek failed") ;
else

{
fgets (s, 70, myfile);
printf ("\"%s\"\n", s);
!
fclose (myfile) ;
}
}

Output:
"This is the beginning"

"this is the middle and this is the end."

"this is the end."

Explanation:

The file afile. out is created with the text, “This is the beginning, this
is the middle and this is the end”.

The function £seek uses an offset of zero and SEEK_SET to set the file
pointer to the beginning of the file. fgets then reads 22 characters
which are “This is the beginning”, and adds a null character to the
string.

Next, £seek uses an offset of two and SEEK_CURRENT to set the file
pointer to the current position plus two (skipping the comma and
space). £gets then reads up to the next 70 characters. The first 39
characters are “this is the middle and this is the end”. It stops when it
reads EOF and adds a null character to the string.

Flnally, £seek uses an offset of negative 16 characters and SEEK_END
to set the file pointer to 16 characters from the end of the file. fgets
then reads up to 70 characters. It stops at the EOF after reading 16
characters “this is the end”. and adds a null character to the string.

fsetpos

Description:
Include:
Prototype:
Arguments:

Return Value:

Remarks:

Sets the stream'’s file position.
<stdio.h>

int fsetpos(FILE *stream, const fpos t *pos) ;

stream target stream
pos position-indicator storage as returned by an earlier call
to fgetpos

Returns 0 if successful; otherwise, returns a non-zero value.

The function sets the file-position indicator for the given stream in *pos
if successful; otherwise, fsetpos sets errno.

© 2007 Microchip Technology Inc.

DS51456D-page 135

16-Bit Language Tools Libraries

fsetpos (Continued)

Example: /*
/*
/*
/*
/*
/*
/*

#include <stdio.h> /*

This program opens a file and reads bytes at */

several different locations. The fgetpos
function notes the 8th byte. 21 bytes are
read then 18 bytes are read. Next the
fsetpos function is set based on the
fgetpos position and the previous 21 bytes
are reread.

for fgetpos, fread,
printf, fopen, fclose,
FILE, NULL, perror,
fpos_t, sizeof

/*
/*
/*

int main(void)

{

}

FILE *myfile;
fpos t pos;
char buf [25] ;
if ((myfile = fopen ("sampfgetpos.c", "rb"))
NULL)
printf ("Cannot open file\n");
else
{
fread (buf, sizeof (char), 8, myfile);
if (fgetpos(myfile, &pos) != 0)
perror ("fgetpos error") ;
else
{
fread (buf, sizeof (char), 21, myfile);
printf ("Bytes read: %.21s\n", buf);
fread (buf, sizeof (char), 18, myfile);
printf ("Bytes read: %.18s\n", buf);
}
if (fsetpos(myfile, &pos) != 0)
perror ("fsetpos error") ;
fread (buf, sizeof (char), 21, myfile);
printf ("Bytes read: %.21s\n", buf);

fclose (myfile) ;

}

Output:
Bytes read: program opens a file

Bytes read:

and reads bytes at

Bytes read: program opens a file

*/
*/
*/
*/

*/

*/

*/
*/
*/
*/

DS51456D-page 136

© 2007 Microchip Technology Inc.

Standard C Libraries with Math Functions

ftell

Description:
Include:
Prototype:
Argument:

Return Value:

Example:

Gets the current position of a file pointer.

<stdio.h>
long ftell (FILE *stream) ;
stream stream in which to get the current file position

Returns the position of the file pointer if successful; otherwise, returns
-1.
#include <stdio.h> /* for ftell, fread, */

/* fprintf, printf, */

/* fopen, fclose, sizeof, */

/* FILE, NULL */

int main(void)

{
FILE *myfile;
char s[75];
long vy;
myfile = fopen("afile.out", "w+");
if (myfile == NULL)
printf ("Cannot open afile.out\n") ;
else
{
fprintf (myfile, "This is a very long sentence "
"for input into the file named "
"afile.out for testing.");
fclose (myfile) ;
if ((myfile = fopen("afile.out", "rb")) != NULL)
{
printf ("Read some characters:\n");
fread (s, sizeof (char), 29, myfile);
printf ("\t\"%s\"\n", s);
y = ftell (myfile);
printf ("The current position of the "
"file pointer is %1d\n", vy);
fclose (myfile) ;
}
}
}
Output:

Read some characters:
"This is a very long sentence "
The current position of the file pointer is 29

© 2007 Microchip Technology Inc.

DS51456D-page 137

16-Bit Language Tools Libraries

fwrite

Description:
Include:
Prototype:

Arguments:

Return Value:

Remarks:

Example:

Writes data to the stream.
<stdio.h>

size t fwrite(const void *ptr, size t size,
size t nelem, FILE *stream);

ptr pointer to the storage buffer

size size of item

nelem maximum number of items to be read
stream pointer to the open stream

Returns the number of complete elements successfully written, which
will be less than nelem only if a write error is encountered.

The function writes characters to a given stream from a buffer pointed
to by ptr up to nelem elements whose size is specified by size. The
file position indicator is advanced by the number of characters success-
fully written. If the function sets the error indicator, the file-position indi-
cator is indeterminate.

#include <stdio.h> /* for fread, fwrite, */
/* printf, fopen, fclose, */
/* sizeof, FILE, NULL */

int main(void)
FILE *buf;
int x, numwrote, numread;
double nums[10], readnums[10];

if ((buf = fopen("afile.out", "w+")) != NULL)
{
for (x = 0; X < 10; X++)
{
nums [x] = 10.0/(x + 1);

printf ("10.0/%d = %f\n", x+1, nums[x]);

}

numwrote = fwrite (nums, sizeof (double),
10, buf);
printf ("Wrote %d numbers\n\n", numwrote) ;
fclose (buf) ;
!
else

printf ("Cannot open afile.out\n") ;

DS51456D-page 138

© 2007 Microchip Technology Inc.

Standard C Libraries with Math Functions

fwrite (Continued)

if ((buf = fopen("afile.out", "r+")) != NULL)
{
numread = fread(readnums, sizeof (double),
10, buf);
printf ("Read %d numbers\n", numread) ;
for (x = 0; X < 10; X++)
{
printf("sd * %f = %f\n", x+1, readnums[x],
(x + 1) * readnums[x]);
}
fclose (buf) ;
}
else
printf ("Cannot open afile.out\n") ;
!
Output:
10.0/1 = 10.000000
10.0/2 = 5.000000
10.0/3 = 3.333333
10.0/4 = 2.500000
10.0/5 = 2.000000
10.0/6 = 1.666667
10.0/7 = 1.428571
10.0/8 = 1.250000
10.0/9 = 1.111111

10.0/10 = 1.000000
Wrote 10 numbers

Read 10 numbers

1 * 10.000000 = 10.000000
2 * 5.000000 = 10.000000
3 * 3.333333 = 10.000000
4 * 2.500000 = 10.000000
5 * 2.000000 = 10.000000
6 * 1.666667 = 10.000000
7 * 1.428571 = 10.000000
8 * 1.250000 = 10.000000
9 * 1.111111 = 10.000000

10 * 1.000000 = 10.000000

Explanation:

This program uses fwrite to save 10 numbers to a file in binary form.
This allows the numbers to be saved in the same pattern of bits as the
program is using which provides more accuracy and consistency. Using
fprintf would save the numbers as text strings, which could cause
the numbers to be truncated. Each number is divided into 10 to pro-
duce a variety of numbers. Retrieving the numbers with fread to a
new array and multiplying them by the original number shows the num-
bers were not truncated in the save process.

© 2007 Microchip Technology Inc.

DS51456D-page 139

16-Bit Language Tools Libraries

getc

Description: Get a character from the stream.
Include: <stdio.h>

Prototype: int getc(FILE *stream) ;
Argument: stream pointer to the open stream

Return Value:

Remarks:
Example:

Returns the character read or EOF if a read error occurs or end-of-file

is reached.

getc is the same as the function fgetc.

#include <stdio.h> /* for getc, printf, */

/* fopen,

fclose, */

/* FILE, NULL, EOF */

int main(void)

{

FILE *buf;
char y;

if ((buf =

else

{

fopen("afile.txt", "r")) == NULL)
printf ("Cannot open afile.txt\n");

y = getc (buf) ;

while (y

{

printf (

!= EOF)

ll%c|ll, Y);

y = getc(buf) ;

}

fclose (buf) ;

}
}

Input:

Contents of afile. txt (used as input):

Short

Longer string
Output:
S|hlo|r|t]
|Llo|n|gle]|r]

|slelr|iln|g]

DS51456D-page 140

© 2007 Microchip Technology Inc.

Standard C Libraries with Math Functions

getchar

Description:
Include:
Prototype:

Return Value:

Remarks:
Example:

Get a character from stdin.
<stdio.h>
int getchar (void) ;

Returns the character read or EOF if a read error occurs or end-of-file
is reached.

Same effect as £getc with the argument stdin.
#include <stdio.h> /* for getchar, printf */

int main(void)

{
char y;

y = getchar () ;
printf ("%c|", vy);
y = getchar () ;
printf ("sc|", y);
y = getchar () ;
printf ("sc|", y);
y = getchar () ;
printf ("%c|", vy);
y = getchar() ;
printf ("sc|", y);

}

Input:

Contents of UartIn.txt (used as stdin input for simulator):
Short
Longer string

Output:
s|hlo|r|t]

gets

Description:
Include:
Prototype:
Argument:

Return Value:

Remarks:

Get a string from stdin.

<stdio.h>

char *gets(char *s);

s pointer to the storage string

Returns a pointer to the string s if successful; otherwise, returns a null
pointer

The function reads characters from the stream stdin and stores them
into the string pointed to by s until it reads a newline character (which is
not stored) or sets the end-of-file or error indicators. If any characters
were read, a null character is stored immediately after the last read
character in the next element of the array. If gets sets the error indica-
tor, the array contents are indeterminate.

© 2007 Microchip Technology Inc.

DS51456D-page 141

16-Bit Language Tools Libraries

gets (Continued)

Example: #include <stdio.h> /* for gets, printf */
int main(void)
{
char y[50];
gets(y) ;
printf ("Text: %s\n", y);
}
Input:
Contents of UartIn.txt (used as stdin input for simulator):
Short
Longer string
Output:
Text: Short
perror
Description: Prints an error message to stderr.
Include: <stdio.h>
Prototype: void perror (const char *s);
Argument: s string to print
Return Value: None.
Remarks: The string s is printed followed by a colon and a space. Then an error
message based on errno is printed followed by an newline
Example: #include <stdio.h> /* for perror, fopen, */

/* fclose, printf, */
/* FILE, NULL */
int main(void)
{
FILE *myfile;
if ((myfile = fopen("samp.fil", "r+")) == NULL)
perror ("Cannot open samp.fil");

else
printf ("Success opening samp.fil\n") ;

fclose (myfile) ;
!

Output:
Cannot open samp.fil: file open error

DS51456D-page 142

© 2007 Microchip Technology Inc.

Standard C Libraries with Math Functions

printf

Description:
Include:
Prototype:
Arguments:

Return Value:

Remarks:

Prints formatted text to stdout.
<stdio.h>
int printf (const char *format, ...);
format format control string
optional arguments

Returns number of characters generated or a negative number if an
error occurs.

There must be exactly the same number of arguments as there are for-
mat specifiers. If the are less arguments than match the format specifi-
ers, the output is undefined. If there are more arguments than match
the format specifiers, the remaining arguments are discarded. Each for-
mat specifier begins with a percent sign followed by optional fields and
a required type as shown here:

% [flags] [width] [.precision] [size] type

flags

- left justify the value within a given field width

0 Use 0 for the pad character instead of space (which is the
default)

+ generate a plus sign for positive signed values

space generate a space or signed values that have neither a plus
nor a minus sign

to prefix 0 on an octal conversion, to prefix Ox or 0X on a
hexadecimal conversion, or to generate a decimal point and
fraction digits that are otherwise suppressed on a float-
ing-point conversion

width

specify the number of characters to generate for the conversion. If the
asterisk (*) is used instead of a decimal number, the next argument
(which must be of type int) will be used for the field width. If the result
is less than the field width, pad characters will be used on the left to fill
the field. If the result is greater than the field width, the field is
expanded to accommodate the value without padding.

precision

The field width can be followed with dot (.) and a decimal integer repre-
senting the precision that specifies one of the following:

- minimum number of digits to generate on an integer conversion

- number of fraction digits to generate on an e, E, or f conversion

- maximum number of significant digits to generate on a g or G
conversion

- maximum number of characters to generate from a C string on an s
conversion

If the period appears without the integer the integer is assumed to be
zero. If the asterisk (*) is used instead of a decimal number, the next
argument (which must be of type int) will be used for the precision.

© 2007 Microchip Technology Inc.

DS51456D-page 143

16-Bit Language Tools Libraries

printf (Continued)

Example:

size
h modifier —

h modifier —

| modifier —

| modifier —

| modifier —
| modifier —

Il modifier —

Il modifier —

L modifier —

ot

ype
i

D XXcoga
m

ST LwoQ ™o
®

%

used with type d, i, 0, u, X, X; converts the value to a
short int orunsigned short int

used with n; specifies that the pointer points to a short
int

used with type d, i, 0, u, X, X; converts the value to a
long int orunsigned long int

used with n; specifies that the pointer points to a 1ong
int

used with c; specifies a wide character

used with type e, E, f, F, g, G; converts the value to a
double

used with type d, i, 0, u, X, X; converts the value to a
long long int orunsigned long long int
used with n; specifies that the pointer points to a 1ong
long int

used with e, E, f, g, G; converts the value to a long
double

signed int

unsigned int in octal

unsigned int in decimal

unsigned int inlowercase hexadecimal

unsigned int in uppercase hexadecimal

double in scientific notation

double decimal notation

double (takes the form of e, E or f as appropriate)
char - a single character

string

value of a pointer

the associated argument shall be an integer pointer into
which is placed the number of characters written so far.
No characters are printed.

A % character is printed

#include <stdio.h> /* for printf */

int main(void)

{

/* print a character right justified in a 3 */

/* character space. */
printf ("$3c\n", 'a');

/* print an integer, left justified (as */
/* specified by the minus sign in the format */
/* string) in a 4 character space. Print a */
/* second integer that is right justified in */
/* a 4 character space using the pipe (|) as */
/* a separator between the integers. */

printf ("%-4d|%4d\n", -4, 4);

/* print a number converted to octal in 4 */
/* digits. */
printf ("%$.40\n", 10);

DS51456D-page 144

© 2007 Microchip Technology Inc.

Standard C Libraries with Math Functions

printf (Continued)

/* print a number converted to hexadecimal */
/* format with a 0x prefix. */
printf ("$#x\n", 28);

/* print a float in scientific notation */
p
printf ("$E\n", 1.1e20);

/* print a float with 2 fraction digits */
printf ("$.2f\n", -3.346);
/* print a long float with %E, %e, or %f */
/* whichever is the shortest version */
printf ("$Lg\n", .02L);
}
Output:
a
-4 4
0012
0x1lc
1.100000E+20
-3.35
0.02
putc
Description: Puts a character to the stream.
Include: <stdio.h>
Prototype: int putc(int ¢, FILE *stream) ;
Arguments: c character to be written
stream pointer to FILE structure
Return Value: Returns the character or EOF if an error occurs or end-of-file is
reached.
Remarks: putc is the same as the function fputc.
Example: #include <stdio.h> /* for putc, EOF, stdout */

int main(void)

{

char *y;
char buf[] = "This is text\n";
int x;

for (y = buf; (x != EOF) && (*y != '\0'); y++)

x = putc(*y, stdout);
putc('|', stdout);
!
!

Output:
TIhli|s| [i]s]| |tle|x|t]

© 2007 Microchip Technology Inc. DS51456D-page 145

16-Bit Language Tools Libraries

putchar

Description: Put a character to stdout.

Include: <stdio.h>

Prototype: int putchar (int c¢);
Argument: c character to be written

Return Value:

Returns the character or EOF if an error occurs or end-of-file is
reached.

Remarks: Same effect as fputc with stdout as an argument.
Example: #include <stdio.h> /* for putchar, printf, */
/* EOF, stdout */
int main(void)
{
char *y;
char buf[] = "This is text\n";
int x;
x = 0;
for (y = buf; (x != EOF) && (*y != '"\0'); y++)
x = putchar (*y) ;
}
Output:
This is text
puts
Description: Put a string to stdout.
Include: <stdio.h>
Prototype: int puts(const char *s);
Argument: s string to be written
Return Value: Returns a non-negative value if successful; otherwise, returns EOF.
Remarks: The function writes characters to the stream stdout. A newline char-
acter is appended. The terminating null character is not written to the
stream.
Example: #include <stdio.h> /* for puts */

int main(void)

{

char buf[] = "This is text\n";

puts (buf) ;
puts("|");
}

Output:
This is text

DS51456D-page 146

© 2007 Microchip Technology Inc.

Standard C Libraries with Math Functions

remove

Description: Deletes the specified file.

Include: <stdio.h>

Prototype: int remove (const char *filename) ;
Argument: filename name of file to be deleted.

Return Value:

Returns 0 if successful, -1 if not.

Remarks: If filename does not exist or is open, remove will fail.
Example: #include <stdio.h> /* for remove, printf */
int main(void)
{
if (remove ("myfile.txt") != 0)
printf ("Cannot remove file");
else
printf ("File removed") ;
}
Output:
File removed
rename
Description: Renames the specified file.
Include: <stdio.h>
Prototype: int rename (const char *old, const char *new);
Arguments: old pointer to the old name
new pointer to the new name.

Return Value:

Remarks:

Example:

Return 0 if successful, non-zero if not.

The new name must not already exist in the current working directory,
the old name must exist in the current working directory.

#include <stdio.h> /* for rename, printf */

int main(void)
{
if (rename ("myfile.txt","newfile.txt") != 0)
printf ("Cannot rename file");
else
printf ("File renamed") ;

}

Output:
File renamed

© 2007 Microchip Technology Inc.

DS51456D-page 147

16-Bit Language Tools Libraries

rewind
Description: Resets the file pointer to the beginning of the file.
Include: <stdio.h>
Prototype: void rewind (FILE *stream) ;
Argument: stream stream to reset the file pointer
Remarks: The function calls £seek (stream, 0L, SEEK SET) and then clears
the error indicator for the given stream.
Example: #include <stdio.h> /* for rewind, fopen, */
/* fscanf, fclose, */
/* fprintf, printf, * /
/* FILE, NULL */
int main(void)
{
FILE *myfile;
char s[] = "cookies";
int x = 10;
if ((myfile = fopen("afile", "w+")) == NULL)
printf ("Cannot open afile\n");
else
{
fprintf (myfile, "%d %s", x, s);
printf ("I have %4 %s.\n", x, s);
/* set pointer to beginning of file */
rewind (myfile) ;
fscanf (myfile, "%d %$s", &x, &s);
printf ("I ate %4 %s.\n", x, s);
fclose (myfile) ;
}
}
Output:

I have 10 cookies.
I ate 10 cookies.

DS51456D-page 148 © 2007 Microchip Technology Inc.

Standard C Libraries with Math Functions

scanf

Description:
Include:
Prototype:
Argument:

Return Value:

Remarks:

Scans formatted text from stdin.
<stdio.h>
int scanf (const char *format, ...);
format format control string
optional arguments

Returns the number of items successfully converted and assigned. If
no items are assigned, a 0 is returned. EOF is returned if an input fail-
ure is encountered before the first.

Each format specifier begins with a percent sign followed by optional
fields and a required type as shown here:

% [*] [width] [modifier]type
*

indicates assignment suppression. This will cause the input field to be
skipped and no assignment made.

width
specify the maximum number of input characters to match for the con-
version not including white space that can be skipped.

modifier

h modifier — used with type d, i, 0, u, x, X; converts the value to a
short int or unsigned short int.

h modifier — used with n; specifies that the pointer points to a short

int

| modifier — used with type d, i, 0, u, X, X; converts the value to a
long int orunsigned long int

I modifier — used with n; specifies that the pointer points to a 1ong
int

I modifier — used with c; specifies a wide character

| modifier — used with type e, E, f, F, g, G; converts the value to a
double

I modifier — used with type d, i, 0, u, X, X; converts the value to a
long long int orunsigned long long int

Il modifier — used with n; specifies that the pointer points to a 1ong
long int

L modifier— used with e, E, f, g, G; converts the value to a 1ong
double

© 2007 Microchip Technology Inc.

DS51456D-page 149

16-Bit Language Tools Libraries

scanf (Continued)

Example:

type

d,i signed int

o] unsigned int in octal

u unsigned int in decima

X unsigned int inlowercase hexadecimal

X unsigned int in uppercase hexadecimal

eE double in scientific notation

f double decimal notation

0,G double (takes the form of e, E or f as appropriate)

c char - a single character

S string

p value of a pointer

n the associated argument shall be an integer pointer into,
which is placed the number of characters read so far.
No characters are scanned.

[] character array. Allows a search of a set of characters.
A caret (*) immediately after the left bracket ([) inverts
the scanset and allows any ASCII character except
those specified between the brackets. A dash character
(-) may be used to specify a range beginning with the
character before the dash and ending the character
after the dash. A null character can not be part of the
scanset.

% A % character is scanned

#include <stdio.h> /* for scanf, printf */

int main(void)
{
int number, items;
char letter;
char color([30], string[30];
float salary;

printf ("Enter your favorite number, "
"favorite letter, ");
printf ("favorite color desired salary "
"and SSN:\n");
items = scanf ("%d %c $[A-Za-z] %f %s", &number,
&letter, &color, &salary, &string);

printf ("Number of items scanned = %d\n", items);

printf ("Favorite number = %d, ", number);
printf ("Favorite letter = %c\n", letter);
printf ("Favorite color = %s, ", color);
printf ("Desired salary = $%.2f\n", salary);
printf ("Social Security Number = %s, ", string);
!
Input:

Contents of UartIn.txt (used as stdin input for simulator):
5 T Green 300000 123-45-6789

Output:

Enter your favorite number, favorite letter,
favorite color, desired salary and SSN:

Number of items scanned = 5

Favorite number = 5, Favorite letter = T

Favorite color = Green, Desired salary = $300000.00
Social Security Number = 123-45-6789

DS51456D-page 150

© 2007 Microchip Technology Inc.

Standard C Libraries with Math Functions

setbuf

Description:

Include:
Prototype:

Arguments:

Remarks:

Example:

Defines how a stream is buffered.
<stdio.h>
void setbuf (FILE *stream, char *buf) ;
stream pointer to the open stream
buf user allocated buffer
setbuf must be called after fopen but before any other function calls
that operate on the stream. If buf is a null pointer, setbuf calls the
function setvbuf (stream, 0, _IONBF, BUFSIZ) for no buffering;
otherwise setbuf calls setvbuf (stream, buf, IOFBF, BUF-
s1z) for full buffering with a buffer of size BUFSIZ. See setvbuf.
#include <stdio.h> /* for setbuf, printf, */

/* fopen, fclose, */

/* FILE, NULL, BUFSIZ */

int main(void)

{
FILE *myfilel, *myfile2;
char buf [BUFSIZ];

if ((myfilel = fopen("afilel", "w+")) != NULL)
{

setbuf (myfilel, NULL) ;

printf ("myfilel has no buffering\n") ;

fclose (myfilel) ;

}

if ((myfile2 = fopen("afile2", "w+")) != NULL)
{

setbuf (myfile2, buf) ;

printf ("myfile2 has full buffering");

fclose (myfile2) ;

}

}

Output:
myfilel has no buffering
myfile2 has full buffering

© 2007 Microchip Technology Inc.

DS51456D-page 151

16-Bit Language Tools Libraries

setvbuf

Description:
Include:
Prototype:

Arguments:

Return Value:

Remarks:

Example:

Defines the stream to be buffered and the buffer size.
<stdio.h>

int setvbuf (FILE *stream, char *buf, int mode,
size t size);

stream pointer to the open stream
buf user allocated buffer
mode type of buffering

size size of buffer

Returns 0 if successful

setvbuf must be called after fopen but before any other function
calls that operate on the stream. For mode use one of the following:
__IOFBF - for full buffering

_IOLBF - for line buffering

__IONBF - for no buffering

#include <stdio.h> /* for setvbuf, fopen, */
/* printf, FILE, NULL, */
/* IONBF, IOFBF */

int main(void)

{
FILE *myfilel, *myfile2;
char buf [256] ;

if ((myfilel = fopen("afilel", "w+")) != NULL)
{
if (setvbuf (myfilel, NULL, IONBF, 0) == 0)
printf ("myfilel has no buffering\n") ;
else

printf ("Unable to define buffer stream "
"and/or size\n") ;

}

fclose (myfilel) ;

if ((myfile2 = fopen("afile2", "w+")) != NULL)
{
if (setvbuf (myfile2, buf, IOFBF, sizeof (buf)) ==
0)
printf ("myfile2 has a buffer of %d "
"characters\n", sizeof (buf));
else
printf ("Unable to define buffer stream "
"and/or size\n") ;

}

fclose (myfile2) ;
}
Output:
myfilel has no buffering
myfile2 has a buffer of 256 characters

DS51456D-page 152

© 2007 Microchip Technology Inc.

Standard C Libraries with Math Functions

sprintf
Description: Prints formatted text to a string
Include: <stdio.h>
Prototype: int sprintf (char *s, const char *format, ...);
Arguments: s storage string for output
format format control string

Return Value:

optional arguments

Returns the number of characters stored in s excluding the terminating
null character.

Remarks: The format argument has the same syntax and use that it has in
printf.
Example: #include <stdio.h> /* for sprintf, printf */
int main(void)
{
char sbuf[100], s[]="Print this string";
int x = 1, y;
char a = '\n';
y = sprintf (sbuf, "%s %d time%c", s, x, a);
printf ("Number of characters printed to "
"string buffer = %¥d\n", vy);
printf ("String = %s\n", sbuf);
}
Output:
Number of characters printed to string buffer = 25
String = Print this string 1 time
sscanf
Description: Scans formatted text from a string
Include: <stdio.h>
Prototype: int sscanf (const char *s, const char *format, ...);
Arguments: s storage string for input
format format control string

Return Value:

Remarks:

optional arguments

Returns the number of items successfully converted and assigned. If
no items are assigned, a 0 is returned. EOF is returned if an input error
is encountered before the first conversion.

The format argument has the same syntax and use that it has in
scanf.

© 2007 Microchip Technology Inc.

DS51456D-page 153

16-Bit Language Tools Libraries

sscanf (Continued)

Example:

#include <stdio.h> /* for sscanf, printf */

int main(void)
{
char s[] = "5 T green 3000000.00";
int number, items;
char letter;
char color[10];
float salary;

items = sscanf(s, "%d %c %s %f", &number, &letter,
&color, &salary) ;

printf ("Number of items scanned = %d\n", items);
printf ("Favorite number = %d\n", number) ;

printf ("Favorite letter = %c\n", letter);

printf ("Favorite color = %$s\n", color);

printf ("Desired salary = $%.2f\n", salary);

}

Output:

Number of items scanned = 4
Favorite number = 5

Favorite letter = T

Favorite color = green
Desired salary = $3000000.00

tmpfile

Description:
Include:
Prototype:

Return Value:

Remarks:

Example:

Creates a temporary file
<stdio.h>
FILE *tmpfile(void)

Returns a stream pointer if successful; otherwise, returns a NULL
pointer.

tmpfile creates a file with a unique filename. The temporary file is
opened in w+b (binary read/write) mode. It will automatically be
removed when exit is called; otherwise the file will remain in the
directory.

#include <stdio.h> /* for tmpfile, printf, */

/* FILE, NULL */
int main(void)
{
FILE *mytempfile;
if ((mytempfile = tmpfile()) == NULL)

printf ("Cannot create temporary file");
else
printf ("Temporary file was created");
}

Output:
Temporary file was created

DS51456D-page 154

© 2007 Microchip Technology Inc.

Standard C Libraries with Math Functions

tmpnam

Description: Creates a unique temporary filename
Include: <stdio.h>

Prototype: char *tmpnam(char *s);

Argument: s pointer to the temporary name

Return Value:

Remarks:

Example:

Returns a pointer to the filename generated and stores the filename in
s. If it can not generate a filename, the NULL pointer is returned.

The created filename will not conflict with an existing file name. Use
L_tmpnam to define the size of array the argument of tmpnam points
to.

#include <stdio.h> /* for tmpnam, L _ tmpnam, */
/* printf, NULL */

int main(void)
{
char *myfilename;
char mybuf [L_ tmpnam] ;
char *myptr = (char *) &mybuf;

if ((myfilename = tmpnam(myptr)) == NULL)
printf ("Cannot create temporary file name");
else
printf ("Temporary file %s was created",
myfilename) ;

}

Output:
Temporary file ctm00001l.tmp was created

ungetc

Description:
Include:
Prototype:
Argument:

Return Value:

Remarks:

Pushes character back onto stream.

<stdio.h>

int ungetc(int ¢, FILE *stream) ;

c character to be pushed back

stream pointer to the open stream

Returns the pushed character if successful; otherwise, returns EOF

The pushed back character will be returned by a subsequent read on
the stream. If more than one character is pushed back, they will be
returned in the reverse order of their pushing. A successful call to a file
positioning function (fseek, £setpos or rewind) cancels any pushed
back characters. Only one character of pushback is guaranteed. Multi-
ple calls to ungetc without an intervening read or file positioning oper-
ation may cause a failure.

© 2007 Microchip Technology Inc.

DS51456D-page 155

16-Bit Language Tools Libraries

ungetc (Continued)

Example: #include <stdio.h> /* for ungetc, fgetc, */
/* printf, fopen, fclose, */
/* FILE, NULL, EOF */

int main(void)
{
FILE *buf;
char y, c;

if ((buf = fopen("afile.txt", "r")) == NULL)
printf ("Cannot open afile.txt\n");

else

{

y = fgetc(buf) ;

while (y != EOF)
{
if (y == 'r')
{
¢ = ungetc(y, buf);
if (¢ != EOF)

printf("2");
y = fgetc(buf) ;
}
}
printf ("%c", vy);
y = fgetc(buf) ;
}
fclose (buf) ;
}
}
Input:
Contents of afile. txt (used as input):
Short
Longer string
Output:
Sho2rt
Longe2r st2ring

DS51456D-page 156

© 2007 Microchip Technology Inc.

Standard C Libraries with Math Functions

viprintf

Description:
Include:

Prototype:

Arguments:

Return Value:

Remarks:

Example:

Prints formatted data to a stream using a variable length argument list.
<stdio.h>
<stdarg.h>

int vfprintf (FILE *stream, const char *format,
va_list ap);

stream pointer to the open stream
format format control string
ap pointer to a list of arguments

Returns number of characters generated or a negative number if an
error occurs.

The format argument has the same syntax and use that it has in
printf.

To access the variable length argument list, the ap variable must be ini-
tialized by the macro va_start and may be reinitialized by additional
calls to va_arg. This must be done before the vEprint£ function is
called. Invoke va_end after the function returns. For more details see
stdarg.h.

#include <stdio.h> /* for vfprintf, fopen, */

/* fclose, printf, */
/* FILE, NULL */
#include <stdarg.h> /* for va_start, */
/* va_list, va_end */

FILE *myfile;

void errmsg(const char *fmt, ...)

{

va_list ap;

va_start (ap, fmt);
viprintf (myfile, fmt, ap);
va_end (ap) ;

int main(void)

{

int num = 3;

if ((myfile = fopen("afile.txt", "w")) == NULL)
printf ("Cannot open afile.txt\n");

else
errmsg ("Error: The letter '%c' is not %s\n", 'a',

"an integer value.");
errmsg ("Error: Requires %d%s%c", num,
" or more characters.", '\n');

fclose (myfile) ;
}

Output:

Contents of afile. txt

Error: The letter 'a' is not an integer value.
Error: Requires 3 or more characters.

© 2007 Microchip Technology Inc.

DS51456D-page 157

16-Bit Language Tools Libraries

vprintf

Description: Prints formatted text to stdout using a variable length argument list

Include: <stdio.h>
<stdarg.h>

Prototype: int vprintf (const char *format, va_list ap);

Arguments: format format control string
ap pointer to a list of arguments

Return Value: Returns number of characters generated or a negative number if an
error occurs.

Remarks: The format argument has the same syntax and use that it has in
printf.
To access the variable length argument list, the ap variable must be ini-
tialized by the macro va_start and may be reinitialized by additional
calls to va_arg. This must be done before the vprint£ function is
called. Invoke va_end after the function returns. For more details see
stdarg.h

Example: #include <stdio.h> /* for vprintf, printf */
#include <stdarg.h> /* for va_start, */

/* va_list, va_end */

void errmsg(const char *fmt, ...)

{

va_list ap;

va_start (ap, fmt);
printf ("Exrror: ");
vprintf (fmt, ap);
va_end (ap) ;

int main(void)

{

int num = 3;

errmsg ("The letter '%c' is not %s\n", 'a',
"an integer value.");
errmsg ("Requires %d%s\n", num,
" or more characters.\n");
}

Output:
Error: The letter 'a' is not an integer value.
Error: Requires 3 or more characters.

DS51456D-page 158 © 2007 Microchip Technology Inc.

Standard C Libraries with Math Functions

vsprintf

Description: Prints formatted text to a string using a variable length argument list

Include: <stdio.h>
<stdarg.h>

Prototype: int vsprintf (char *s, const char *format, va list
ap) ;

Arguments: s storage string for output
format format control string
ap pointer to a list of arguments

Return Value: Returns number of characters stored in s excluding the terminating null
character.

Remarks: The format argument has the same syntax and use that it has in
printf.
To access the variable length argument list, the ap variable must be ini-
tialized by the macro va_start and may be reinitialized by additional
calls to va_arg. This must be done before the vsprint£ function is
called. Invoke va_end after the function returns. For more details see
stdarg.h

Example: #include <stdio.hs> /* for vsprintf, printf */
#include <stdarg.h> /* for va_start, */

/* va_list, va_end */

void errmsg(const char *fmt, ...)
{

va_list ap;

char buf[100];

va_start (ap, fmt);
vsprintf (buf, fmt, ap);
va_end (ap) ;

printf ("Error: %s", buf);

int main(void)

{

int num = 3;

errmsg ("The letter '%c' is not %s\n", 'a',
"an integer value.");

errmsg ("Requires %d%s\n", num,
" or more characters.\n");

Output:
Error: The letter 'a' is not an integer value.
Error: Requires 3 or more characters.

© 2007 Microchip Technology Inc. DS51456D-page 159

16-Bit Language Tools Libraries

3.14 <STDLIB.H> UTILITY FUNCTIONS

The header file std1ib.h consists of types, macros and functions that provide text con-
versions, memory management, searching and sorting abilities, and other general util-

ities.

div_t

Description: A type that holds a quotient and remainder of a signed integer division
with operands of type int.

Include: <stdlib.h>

Prototype: typedef struct { int quot, rem; } div t;

Remarks: This is the structure type returned by the function div.

Idiv_t

Description: A type that holds a quotient and remainder of a signed integer division
with operands of type long.

Include: <stdlib.h>

Prototype: typedef struct { long quot, rem; } 1ldiv t;

Remarks: This is the structure type returned by the function 1div.

Size t

Description: The type of the result of the sizeof operator.

Include: <stdlib.h>

wchar_t

Description: A type that holds a wide character value.

Include: <stdlib.h>

EXIT_FAILURE

Description: Reports unsuccessful termination.

Include: <stdlib.h>

Remarks: EXIT FAILURE is a value for the exit function to return an unsuccess-
ful termination status

Example: See exit for example of use.

EXIT_SUCCESS

Description:
Include:
Remarks:

Example:

Reports successful termination
<stdlib.h>

EXIT SUCCESS is a value for the exit function to return a successful
termination status.

See exit for example of use.

DS51456D-page 160

© 2007 Microchip Technology Inc.

Standard C Libraries with Math Functions

MB_CUR_MAX
Description: Maximum number of characters in a multibyte character
Include: <stdlib.h>
Value: 1
NULL
Description: The value of a null pointer constant
Include: <stdlib.h>
RAND_MAX
Description: Maximum value capable of being returned by the rand function
Include: <stdlib.h>
Value: 32767
abort
Description: Aborts the current process.
Include: <stdlib.h>
Prototype: void abort (void) ;
Remarks: abort will cause the processor to reset.
Example: #include <stdio.h> /* for fopen, fclose, */
/* printf, FILE, NULL */
#include <stdlib.hs> /* for abort */
int main(void)
{
FILE *myfile;
if ((myfile = fopen("samp.fil", "r")) == NULL)

{

printf ("Cannot open samp.fil\n");
abort () ;

}

else
printf ("Success opening samp.fil\n") ;

fclose (myfile) ;
}

Output:
Cannot open samp.fil
ABRT

© 2007 Microchip Technology Inc. DS51456D-page 161

16-Bit Language Tools Libraries

abs

Description: Calculates the absolute value.
Include: <stdlib.h>

Prototype: int abs(int 1);
Argument: 1 integer value

Return Value:

Remarks:

Example:

Returns the absolute value of 1.

A negative number is returned as positive; a positive number is
unchanged.

#include <stdio.h> /* for printf */
#include <stdlib.h> /* for abs */

int main(void)

{

int 1i;

i =12;
printf ("The absolute value of %d is %d\n",
i, abs(i));

i=-2;
printf ("The absolute value of %d is %d\n",
i, abs(i));

i=0;
printf ("The absolute value of $d is %d\n",
i, abs(i));
!

Output:

The absolute value of 12 is 12
The absolute value of -2 is

The absolute value of 0 is 0

atexit

Description:

Include:
Prototype:
Argument:

Return Value:

Remarks:

Example:

Registers the specified function to be called when the program termi-
nates normally.

<stdlib.h>

int atexit (void (*func) (void)) ;

func function to be called

Returns a zero if successful; otherwise, returns a non-zero value.

For the registered functions to be called, the program must terminate
with the exit function call.

#include <stdio.h> /* for scanf, printf */
#include <stdlib.h> /* for atexit, exit */

void good msg(void) ;
void bad msg(void) ;
void end msg(void) ;

DS51456D-page 162

© 2007 Microchip Technology Inc.

Standard C Libraries with Math Functions

atexit (Continued)

int main(void)

{

int number;

atexit (end msg) ;
printf ("Enter your favorite number:");
scanf ("%d", &number) ;
printf (" %d\n", number) ;
if (number == 5)
{
printf ("Good Choice\n") ;
atexit (good msg) ;
exit (0) ;
!
else
{
printf ("%d!?\n", number) ;
atexit (bad msg) ;
exit (0) ;
!
!

void good msg(void)
{

printf ("That's an excellent number\n") ;

}

void bad msg(void)
{

printf ("That's an awful number\n") ;

}

void end msg(void)
{

printf ("Now go count something\n") ;

}

Input:
With contents of UartIn.txt (used as stdin input for simulator):
5

Output:

Enter your favorite number: 5
Good Choice

That's an excellent number
Now go count something

Input:
With contents of UartIn.txt (Used as stdin input for simulator):
42

Output:

Enter your favorite number: 42
4217?

That's an awful number

Now go count something

© 2007 Microchip Technology Inc.

DS51456D-page 163

16-Bit Language Tools Libraries

atof

Description: Converts a string to a double precision floating-point value.

Include: <stdlib.h>

Prototype: double atof (const char *s);

Argument: s pointer to the string to be converted

Return Value: Returns the converted value if successful; otherwise, returns 0.

Remarks: The number may consist of the following:

[whitespace] [sign] digits [.digits]
[{ e | E }[signldigits]

optional whitespace, followed by an optional sign then a sequence
of one or more digits with an optional decimal point, followed by one
or more optional digits and an optional e or E followed by an optional
signed exponent. The conversion stops when the first unrecognized
character is reached. The conversion is the same as strtod (s, 0, 0)
except it does no error checking so errno will not be set.

Example: #include <stdio.h> /* for printf =*/

#include <stdlib.h> /* for atof */

int main(void)

{

char a[] = " 1.28";
char b[] = "27.835e2";
char c/[] "Numberl";
double x;

x = atof(a);

printf ("String \"$s\" float = %$f\n", a, x);

x = atof (b);
printf ("String = \"%s\" float = %f\n", b, x);

x = atof (c);
printf ("String = \"%s\" float = %f\n", c, Xx);

}

Output:

String = "1.28" float = 1.280000
String = "27.835:e2" float = 2783.500000
String = "Numberl" float = 0.000000

DS51456D-page 164

© 2007 Microchip Technology Inc.

Standard C Libraries with Math Functions

atoi

Description:
Include:
Prototype:
Argument:

Return Value:

Remarks:

Example:

Converts a string to an integer.

<stdlib.h>
int atoi(const char *s);
s string to be converted

Returns the converted integer if successful; otherwise, returns 0.

The number may consist of the following:

[whitespace] [sign] digits
optional whitespace, followed by an optional sign then a sequence
of one or more digits. The conversion stops when the first unrecog-
nized character is reached. The conversion is equivalent to (int)
strtol(s,0,10) except it does no error checking so errno will not
be set.

#include <stdio.h> /* for printf */
#include <stdlib.h> /* for atoi */

int main(void)

{
char al[] = " -127";
char b[] = "Numberl";
int x;
x = atoi(a);
printf ("String = \"%s\"\tint = %d\n", a, x);
x = atoi(b);
printf ("String = \"%$s\"\tint = %d\n", b, x);
}
Output:
String = " -127" int = -127
String = "Numberl" int = 0

atol

Description:
Include:
Prototype:
Argument:

Return Value:

Remarks:

Converts a string to a long integer.
<stdlib.h>
long atol (const char *s);
s string to be converted
Returns the converted long integer if successful; otherwise, returns 0
The number may consist of the following:

[whitespace] [sign] digits
optional whitespace, followed by an optional sign then a sequence
of one or more digits. The conversion stops when the first unrecog-
nized character is reached. The conversion is equivalent to (int)

strtol(s,0,10) exceptit does no error checking so errno will not
be set.

© 2007 Microchip Technology Inc.

DS51456D-page 165

16-Bit Language Tools Libraries

atol (Continued)

Example: #include <stdio.h> /* for printf =*/
#include <stdlib.h> /* for atol */
int main(void)
{
char a[] = " -123456";
char b[] = "2Number";
long x;
x = atol(a);
printf ("String = \"%s\" int = %1d\n", a, x);
x = atol(b);
printf ("String = \"%$s\" int = %1d\n", b, x);
}
Output:
String = " -123456" = -123456
String = "2Number" =2
bsearch
Description: Performs a binary search
Include: <stdlib.h>
Prototype: void *bsearch(const void *key, const void *base,
size t nelem, size t size,
int (*cmp) (const void *ck, const void *ce));
Arguments: key object to search for
base pointer to the start of the search data
nelem number of elements
size size of elements
cmp pointer to the comparison function
ck pointer to the key for the search
ce pointer to the element being compared with the key.

Return Value:

Remarks:

Returns a pointer to the object being searched for if found; otherwise,

returns NULL.

The value returned by the compare function is <0 if ck is less than ce,
0if ck is equal to ce, or >0 if ck is greater than ce.

In the following example, gsort is used to sort the list before bsearch
is called. bsearch requires the list to be sorted according to the com-
parison function. This comp uses ascending order.

DS51456D-page 166

© 2007 Microchip Technology Inc.

Standard C Libraries with Math Functions

bsearch (Continued)

Example:

#include <stdlib.h> /* for bsearch, gsort */

#include <stdio.h> /* for printf, sizeof */

#define NUM 7
int comp (const void *el,

int main(void)

{

const void *e2);

int list[NUM] = {35, 47, 63, 25, 93, 16, 52};

int x, y;
int *r;
gsort (list, NUM, sizeof (int), comp) ;

printf ("Sorted List:

")

for (x = 0; x < NUM; xX++)
printf("sd ", list[x]);

Yy 25;
r = bsearch(&y, list,
if (r)

printf ("\nThe value
else

printf ("\nThe value

y = 75;
r = bsearch(&y, list,
if (r)

printf ("\nThe value
else

printf ("\nThe value

int comp (const void *el,

{

const int * al = el;
const int * a2 = e2;

if (*al < *a2)
return -1;

NUM, sizeof (int), comp) ;
$d was found\n", vy);

$d was not found\n", vy);

NUM, sizeof (int), comp) ;
$d was found\n", y);

$d was not found\n", v);

const void *e2)

else if (*al == *a2)
return 0;
else
return 1,
}
Output:
Sorted List: 16 25 35 47 52 63 93

The value 25 was found

The value 75 was not found

© 2007 Microchip Technology Inc.

DS51456D-page 167

16-Bit Language Tools Libraries

calloc

Description:
Include:
Prototype:
Arguments:

Return Value:

Remarks:

Example:

Allocates an array in memory and initializes the elements to 0.
<stdlib.h>

void *calloc(size t nelem, size t size);
nelem number of elements

size length of each element

Returns a pointer to the allocated space if successful; otherwise,
returns a null pointer.

Memory returned by calloc is aligned correctly for any size data ele-
ment and is initialized to zero.

/* This program allocates memory for the */
/* array 'i' of long integers and initializes */
/* them to zero. */

#include <stdio.h> /* for printf, NULL */
#include <stdlib.hs> /* for calloc, free */

int main(void)

{

int x;
long *i;
i = (long *)calloc(5, sizeof (long)) ;
if (i != NULL)
{
for (x = 0; X < 5; X++)
printf ("i[%d] = %1d\n", x, i[x]);
free (i) ;
!
else

printf ("Cannot allocate memory\n") ;

}

Output:
ifo]
i[1] =
i[2] =
i[3] =
if4] =

O O O O o

div

Description:
Include:
Prototype:
Arguments:

Return Value:

Remarks:

Calculates the quotient and remainder of two numbers
<stdlib.h>

div_t div(int numer, int denom) ;

numer numerator

denom denominator

Returns the quotient and the remainder.

The returned quotient will have the same sign as the numerator divided
by the denominator. The sign for the remainder will be such that the
quotient times the denominator plus the remainder will equal the
numerator (quot * denom + rem = numer). Division by zero will invoke
the math exception error, which by default, will cause a reset. Write a
math error handler to do something else.

DS51456D-page 168

© 2007 Microchip Technology Inc.

Standard C Libraries with Math Functions

div (Continued)

Example: #include <stdlib.h> /* for div, div_t */
#include <stdio.h> /* for printf */
void __attribute__ ((__interrupt__))

_MathError (void)

{
printf ("Illegal instruction executed\n") ;
abort () ;

}

int main(void)
int x, y;
div_t z;

x = 7;

y = 3;

printf ("For div(%d, %d)\n", x, vy);

z = div(x, y);

printf ("The quotient is %d and the "
"remainder is %d\n\n", z.quot, z.rem);

X = 7;

y = -3;

printf ("For div(%d, %d)\n", x, vy);
z = div(x, y);

printf ("The quotient is %d and the "
"remainder is %d\n\n", z.quot, z.rem);

X = -5;

y = 3;

printf ("For div(%d, %d)\n", x, y);

z = div(x, y);

printf ("The quotient is %d and the "
"remainder is %d\n\n", z.quot, z.rem);

X = 7;

y =7;

printf ("For div(%d, %d)\n", x, vy);

z = div(x, y);

printf ("The quotient is %d and the "
"remainder is %d\n\n", z.quot, z.rem);

X = 7;

y = 0;

printf ("For div(%d, %d4d)\n", x, vy);
z = div(x, y);

printf ("The quotient is %d and the "
"remainder is %d\n\n", z.quot, z.rem);

© 2007 Microchip Technology Inc. DS51456D-page 169

16-Bit Language Tools Libraries

div (Continued)

Output:
For div(7, 3)
The quotient is 2 and the remainder is 1

For div (7, -3)
The quotient is -2 and the remainder is 1

For div (-5, 3)
The quotient is -1 and the remainder is -2

For div (7, 7)
The quotient is 1 and the remainder is 0

For div(7, 0)
Illegal instruction executed

ABRT
exit
Description: Terminates program after clean up.
Include: <stdlib.h>
Prototype: void exit (int status) ;
Argument: status exit status
Remarks: exit calls any functions registered by atexit in reverse order of reg-
istration, flushes buffers, closes stream, closes any temporary files
created with tmpfile, and resets the processor. This function is
customizable. See pic30-1ibs.
Example: #include <stdio.h> /* for fopen, printf, */
/* FILE, NULL */
#include <stdlib.h> /* for exit */
int main(void)
{
FILE *myfile;
if ((myfile = fopen("samp.fil", "r")) == NULL)

{

printf ("Cannot open samp.fil\n");
exit (EXIT FAILURE) ;

}

else

{
printf ("Success opening samp.fil\n") ;
exit (EXIT SUCCESS) ;

}

printf ("This will not be printed");

}

Output:
Cannot open samp.fil

DS51456D-page 170 © 2007 Microchip Technology Inc.

Standard C Libraries with Math Functions

free

Description:
Include:
Prototype:
Argument:
Remarks:

Example:

Frees memory.

<stdlib.h>
void free(void *ptr);
ptr points to memory to be freed

Frees memory previously allocated with calloc, malloc, or real -
loc. If free is used on space that has already been deallocated (by a
previous call to free or by realloc) or on space not allocated with
calloc, malloc, or realloc, the behavior is undefined.

#include <stdio.h> /* for printf, sizeof, */

/* NULL */

#include <stdlib.h> /* for malloc, free */
int main(void)
{

long *1i;

if ((i = (long *)malloc (50 * sizeof (long))) ==

NULL)
printf ("Cannot allocate memory\n") ;
else

{

printf ("Memory allocated\n") ;
free (i) ;
printf ("Memory freed\n") ;

}
}
Output:
Memory allocated
Memory freed

getenv

Description:
Include:
Prototype:
Argument:

Return Value:

Remarks:

Get a value for an environment variable.
<stdlib.h>

char *getenv(const char *name) ;
name name of environment variable

Returns a pointer to the value of the environment variable if successful;
otherwise, returns a null pointer.

This function must be customized to be used as described (see
pic30-1ibs). By default there are no entries in the environment list
for getenv to find.

© 2007 Microchip Technology Inc.

DS51456D-page 171

16-Bit Language Tools Libraries

getenv (Continued)

Example: #include <stdio.h> /* for printf, NULL */
#include <stdlib.h> /* for getenv */

int main(void)

{

char *incvar;

incvar = getenv ("INCLUDE") ;

if (incvar != NULL)
printf ("INCLUDE environment variable = %s\n",
incvar) ;
else
printf ("Cannot find environment variable "
"INCLUDE ") ;
}
Output:

Cannot find environment variable INCLUDE

labs

Description: Calculates the absolute value of a long integer.

Include: <stdlib.h>

Prototype: long labs(long 1i);

Argument: 1 long integer value

Return Value: Returns the absolute value of i.

Remarks: A negative number is returned as positive; a positive number is
unchanged.

Example: #include <stdio.h> /* for printf */

#include <stdlib.hs> /* for labs */

int main(void)

{

long i;

1 = 123456;
printf ("The absolute value of %71d is %61d\n",
i, labs(i));

i = -246834;
printf ("The absolute value of %$71d is %61d\n",
i, labs(i));

i = 0;
printf ("The absolute value of %71d is %61d\n",
i, labs(i));
}

Output:

The absolute value of 123456 is 123456
The absolute value of -246834 is 246834
The absolute value of 0 is 0

DS51456D-page 172 © 2007 Microchip Technology Inc.

Standard C Libraries with Math Functions

Idiv
Description: Calculates the quotient and remainder of two long integers.
Include: <stdlib.h>
Prototype: ldiv_t 1ldiv(long numer, long denom) ;
Arguments: numer numerator

denom denominator

Return Value:

Remarks:

Example:

Returns the quotient and the remainder.

The returned quotient will have the same sign as the numerator divided
by the denominator. The sign for the remainder will be such that the
quotient times the denominator plus the remainder will equal the
numerator (quot * denom + rem = numer). If the denominator is zero,
the behavior is undefined.

#include <stdlib.h> /* for 1ldiv, 1ldiv_t */
#include <stdio.h> /* for printf */

int main(void)

{

long x,vy;

ldiv_t z;

X = 7;

y = 3;

printf ("For 1ldiv(%1d, %1d)\n", x, v);

z = 1ldiv(x, y);

printf ("The quotient is %1d and the "
"remainder is %1d\n\n", z.quot, z.rem);

x = 7;

y = -3;

printf ("For 1div(%1ld, %1d)\n", x, y);

z = 1div(x, vy);

printf ("The quotient is %1d and the "
"remainder is %1d\n\n", z.quot, z.rem);

X = -5;

y = 3;

printf ("For 1ldiv(%1d, %1d)\n", x, v);

z = 1div(x, vy);

printf ("The quotient is %1d and the "
"remainder is %1d\n\n", z.quot, z.rem);

X = 7;

y = 7;

printf ("For 1ldiv(%1d, %1d)\n", x, v);

z = 1div(x, y);

printf ("The quotient is %1d and the "
"remainder is %1d\n\n", z.quot, z.rem);

x = 7;

y = 0;

printf ("For 1div(%1ld, %1d)\n", x, y);

z = 1div(x, vy);

printf ("The quotient is %1d and the "
"remainder is %1d\n\n",
z.quot, z.rem);

!

© 2007 Microchip Technology Inc.

DS51456D-page 173

16-Bit Language Tools Libraries

Idiv (Continued)

Output:

For 1div (7, 3)
The quotient is 2 and the remainder is 1

For 1ldiv (7, -3)
The quotient is -2 and the remainder is 1

For 1ldiv (-5, 3)
The quotient is -1 and the remainder is -2

For 1ldiv (7, 7)
The quotient is 1 and the remainder is 0

For 1div (7, 0)
The quotient is -1 and the remainder is 7

Explanation:

In the last example (1div (7, 0)) the denominator is zero, the behavior

is undefined.

malloc

Description: Allocates memory.

Include: <stdlib.h>

Prototype: void *malloc(size t size);
Argument: size number of characters to allocate

Return Value:

Remarks:
Example:

Returns a pointer to the allocated space if successful; otherwise,
returns a null pointer.

malloc does not initialize memory it returns.

#include <stdio.h> /* for printf, sizeof, */

/* NULL */
#include <stdlib.h> /* for malloc, free */
int main(void)
{
long *1i;
if ((i = (long *)malloc (50 * sizeof (long))) ==
NULL)
printf ("Cannot allocate memory\n") ;
else

{

printf ("Memory allocated\n") ;
free (i) ;
printf ("Memory freed\n") ;

}
}
Output:
Memory allocated
Memory freed

DS51456D-page 174

© 2007 Microchip Technology Inc.

Standard C Libraries with Math Functions

mblen
Description: Gets the length of a multibyte character. (See Remarks.)
Include: <stdlib.h>
Prototype: int mblen(const char *s, size t n);
Arguments: s points to the multibyte character

n number of bytes to check

Return Value:

Returns zero if s points to a null character; otherwise, returns 1.

Remarks: MPLAB C30 does not support multibyte characters with length greater
than 1 byte.
mbstowcs
Description: Converts a multibyte string to a wide character string. (See Remarks.)
Include: <stdlib.h>
Prototype: size t mbstowcs (wchar_t *wcs, const char *s,
size t n);
Arguments: wcs points to the wide character string
s points to the multibyte string
n the number of wide characters to convert.

Return Value:

Returns the number of wide characters stored excluding the null char-
acter.

Remarks: mbstowcs converts n number of wide characters unless it encounters
a null wide character first. MPLAB C30 does not support multibyte char-
acters with length greater than 1 byte.

mbtowc

Description: Converts a multibyte character to a wide character. (See Remarks.)

Include: <stdlib.h>

Prototype: int mbtowc (wchar t *pwc, const char *s, size t n);

Arguments: pwc points to the wide character
s points to the multibyte character
n number of bytes to check

Return Value:
Remarks:

Returns zero if s points to a null character; otherwise, returns 1

The resulting wide character will be stored at pwe. MPLAB C30 does
not support multibyte characters with length greater than 1 byte.

© 2007 Microchip Technology Inc.

DS51456D-page 175

16-Bit Language Tools Libraries

gsort
Description: Performs a quick sort.
Include: <stdlib.h>
Prototype: void gsort (void *base, size t nelem, size t size,
int (*cmp) (const void *el, const void *e2));
Arguments: base pointer to the start of the array
nelem number of elements
size size of the elements
cmp pointer to the comparison function
el pointer to the key for the search
e2 pointer to the element being compared with the key
Remarks: gsort overwrites the array with the sorted array. The comparison func-
tion is supplied by the user. In the following example, the list is sorted
according to the comparison function. This comp uses ascending order.
Example: #include <stdlib.h> /* for gsort */

#include <stdio.h> /* for printf */
#define NUM 7

int comp (const void *el, const void *e2);

int main(void)

{

int list[NUM] = {35, 47, 63, 25, 93, 16, 52};
int x;

printf ("Unsorted List: ");
for (x = 0; X < NUM; xX++)

printf("sd ", list[x]);
gsort (list, NUM, sizeof (int), comp) ;
printf ("\n") ;

printf ("Sorted List: " ;
for (x = 0; X < NUM; xX++)

printf("sd ", list[x]);
int comp (const void *el, const void *e2)
const int * al = el;
const int * a2 = e2;
if (*al < *a2)
return -1;
else if (*al == *a2)
return 0;
else
return 1;
Output:
Unsorted List: 35 47 63 25 93 16 52
Sorted List: 16 25 35 47 52 63 93

DS51456D-page 176

© 2007 Microchip Technology Inc.

Standard C Libraries with Math Functions

rand

Description: Generates a pseudo-random integer.
Include: <stdlib.h>

Prototype: int rand(void) ;

Return Value:

Returns an integer between 0 and RAND MAX.

Remarks: Calls to this function return pseudo-random integer values in the range
[O,RAaND MAX]. To use this function effectively, you must seed the ran-
dom number generator using the srand function. This function will
always return the same sequence of integers when no seeds are used
(as in the example below) or when identical seed values are used. (See
srand for seed example.)

Example: #include <stdio.h> /* for printf */

#include <stdlib.h> /* for rand */
int main(void)
{

int x;

for (x = 0; X < 5; X++)

printf ("Number = %d\n", rand());
}
Output:
Number = 21422
Number = 2061
Number = 16443
Number = 11617
Number = 9125
Notice if the program is run a second time, the numbers are the same.
See the example for srand to seed the random number generator.
realloc

Description: Reallocates memory to allow a size change.

Include: <stdlib.h>

Prototype: void *realloc(void *ptr, size t size);

Arguments: ptr points to previously allocated memory
size new size to allocate to

Return Value:

Remarks:

Returns a pointer to the allocated space if successful; otherwise,
returns a null pointer.

If the existing object is smaller than the new object, the entire existing
object is copied to the new object and the remainder of the new object
is indeterminate. If the existing object is larger than the new object, the
function copies as much of the existing object as will fit in the new
object. If realloc succeeds in allocating a new object, the existing
object will be deallocated; otherwise, the existing object is left
unchanged. Keep a temporary pointer to the existing object since
realloc will return a null pointer on failure.

© 2007 Microchip Technology Inc.

DS51456D-page 177

16-Bit Language Tools Libraries

realloc (Continued)

Example:

#include <stdio.h> /* for printf, sizeof, NULL */
#include <stdlib.h> /* for realloc, malloc, free */

int main(void)

{

long *i, *j;

if ((i = (long *)malloc (50 * sizeof (long)))
== NULL)
printf ("Cannot allocate memory\n") ;
else

{

printf ("Memory allocated\n") ;

/* Temp pointer in case realloc() fails */

j = 1i;

if ((i = (long *)realloc(i, 25 * sizeof (long)))
== NULL)

printf ("Cannot reallocate memory\n") ;
/* j pointed to allocated memory */
free(3j);
}
else
{
printf ("Memory reallocated\n") ;
free (i) ;
}

}
}

Output:
Memory allocated
Memory reallocated

DS51456D-page 178

© 2007 Microchip Technology Inc.

Standard C Libraries with Math Functions

srand

Description:
Include:
Prototype:
Argument:

Return Value:

Remarks:

Example:

Set the starting seed for the pseudo-random number sequence.
<stdlib.h>

void srand(unsigned int seed) ;

seed starting value for the pseudo-random number sequence
None

This function sets the starting seed for the pseudo-random number
sequence generated by the rand function. The rand function will
always return the same sequence of integers when identical seed val-
ues are used. If rand is called with a seed value of 1, the sequence of

numbers generated will be the same as if rand had been called without
srand having been called first.

#include <stdio.h> /* for printf */
#include <stdlib.h> /* for rand, srand */

int main(void)

{

int x;
srand (7) ;
for (x = 0; X < 5; X++)
printf ("Number = %d\n", rand());
}
Output:

Number = 16327
Number = 5931
Number = 23117
Number = 30985
Number = 29612

strtod

Description:
Include:
Prototype:
Arguments:

Return Value:

Remarks:

Converts a partial string to a floating-point number of type double.
<stdlib.h>

double strtod(const char *s, char **endptr) ;

s string to be converted

endptr pointer to the character at which the conversion stopped
Returns the converted number if successful; otherwise, returns 0.

The number may consist of the following:

[whitespace] [sign] digits [.digits]

[{ e | E }[signldigits]

optional whitespace, followed by an optional sign, then a sequence
of one or more digits with an optional decimal point, followed by one
or more optional digits and an optional e or E followed by an optional
signed exponent.
strtod converts the string until it reaches a character that cannot be
converted to a number. endptr will point to the remainder of the string
starting with the first unconverted character.
If a range error occurs, errno will be set.

© 2007 Microchip Technology Inc.

DS51456D-page 179

16-Bit Language Tools Libraries

strtod (Continued)

Example:

#include <stdio.h> /* for printf */
#include <stdlib.h> /* for strtod */

int main(void)

{
char *end;
char a[] = "1.28 inches";
char b[] = "27.835e2i";
char c[] = "Numberl";
double x;

X = strtod(a, &end);
printf ("String = \"%s\" float = %f\n", a, x);
printf ("Stopped at: %$s\n\n", end)

’

x = strtod (b, &end);
printf ("String = \"%s\" float = %f\n", b, x);
printf ("Stopped at: %s\n\n", end);

x = strtod(c, &end);

printf ("String = \"%s\" float = %f\n", c, x);
printf ("Stopped at: %s\n\n", end);

}

Output:

String = "1.28 inches" float = 1.280000

Stopped at: inches

String = "27.835e2i" float = 2783.500000
Stopped at: 1

String = "Numberl™" float = 0.000000
Stopped at: Numberl

DS51456D-page 180

© 2007 Microchip Technology Inc.

Standard C Libraries with Math Functions

strtol

Description:
Include:
Prototype:
Arguments:

Return Value:

Remarks:

Example:

Converts a partial string to a long integer.

<stdlib.h>

long strtol (const char *s, char **endptr, int base) ;
s string to be converted

endptr pointer to the character at which the conversion stopped
base number base to use in conversion

Returns the converted number if successful; otherwise, returns 0.

If base is zero, strtol attempts to determine the base automatically.
It can be octal, determined by a leading zero, hexadecimal, determined
by a leading Ox or 0X, or decimal in any other case. If base is specified
strtol converts a sequence of digits and letters a-z (case insensi-
tive), where a-z represents the numbers 10-36. Conversion stops when
an out of base number is encountered. endpt r will point to the remain-
der of the string starting with the first unconverted character. If a range
error occurs, errno Will be set.

#include <stdio.h> /* for printf */
#include <stdlib.h> /* for strtol */

int main(void)

{

char *end;

char a[] = "-12BGEE";
char b[] = "1234Number";
long x;

x = strtol(a, &end, 16);
printf ("String = \"%s\" long = %1d\n", a, x);
printf ("Stopped at: %s\n\n", end);

x = strtol (b, &end, 4);
printf ("String = \"%s\" long = %1d\n", b, x);
printf ("Stopped at: %s\n\n", end);

}

Output:
String = "-12BGEE" long = -299
Stopped at: GEE

String = "1234Number" 1long = 27
Stopped at: 4Number

© 2007 Microchip Technology Inc.

DS51456D-page 181

16-Bit Language Tools Libraries

strtoul

Description: Converts a partial string to an unsigned long integer.

Include: <stdlib.h>

Prototype: unsigned long strtoul (const char *s, char **endptr,

int base) ;

Arguments: s string to be converted
endptr pointer to the character at which the conversion stopped
base number base to use in conversion

Return Value:

Remarks:

Example:

Returns the converted number if successful; otherwise, returns 0.

If base is zero, strtol attempts to determine the base automatically.
It can be octal, determined by a leading zero, hexadecimal, determined
by a leading Ox or 0X, or decimal in any other case. If base is specified
strtol converts a sequence of digits and letters a-z (case insensi-
tive), where a-z represents the numbers 10-36. Conversion stops when
an out of base number is encountered. endpt r will point to the remain-
der of the string starting with the first unconverted character. If a range
error occurs, errno will be set.

#include <stdio.h> /* for printf */
#include <stdlib.h> /* for strtoul */

int main(void)

{

}

char *end;

char all
char b/[]
char cI]
unsigned

= "12BGET3";
= "0x1234Number";
= "-123abc";
long x;

x = strtoul (a, &end, 25);
printf ("String = \"%s\" long = %lu\n", a, x);
printf ("Stopped at: %s\n\n", end);

x = strtoul (b, &end, 0);
printf ("String = \"%s\" long = %lu\n", b, x);
printf ("Stopped at: %s\n\n", end);

x = strtoul (¢, &end, 0);
printf ("String = \"%s\" long = %lu\n", c, x);
printf ("Stopped at: %s\n\n", end);

Output:

String = "12BGET3" long = 429164
Stopped at: T3

String = "0x1234Number" long = 4660

Stopped at: Number

String = "-
Stopped at:

123abc" long = 4294967173
abc

DS51456D-page 182

© 2007 Microchip Technology Inc.

Standard C Libraries with Math Functions

system

Description:
Include:
Prototype:
Argument:
Remarks:

Example:

Execute a command.

<stdlib.h>

int system(const char *s);

s command to be executed

This function must be customized to be used as described (see
pic30-1libs). By default system will cause a reset if called with any-
thing other than NULL. system (NULL) will do nothing.

/* This program uses system */
/* to TYPE its source file. */

#include <stdlib.h> /* for system */

int main(void)

{

}

Output:
System(type sampsystem.c) called: Aborting

system("type sampsystem.c");

wctomb

Description:
Include:
Prototype:
Arguments:

Return Value:
Remarks:

Converts a wide character to a multibyte character. (See Remarks.)
<stdlib.h>

int wctomb (char *s, wchar t wchar);

s points to the multibyte character

wchar the wide character to be converted

Returns zero if s points to a null character; otherwise, returns 1.

The resulting multibyte character is stored at s. MPLAB C30 does not
support multibyte characters with length greater than 1 character.

wcstombs

Description:
Include:
Prototype:

Arguments:

Return Value:
Remarks:

Converts a wide character string to a multibyte string. (See Remarks.)
<stdlib.h>

size t wcstombs (char *s, const wchar t *wcs,
size t n);

s points to the multibyte string
wcs points to the wide character string
n the number of characters to convert

Returns the number of characters stored excluding the null character.

wcstombs converts n number of multibyte characters unless it encoun-
ters a null character first. MPLAB C30 does not support multibyte char-
acters with length greater than 1 character.

© 2007 Microchip Technology Inc.

DS51456D-page 183

16-Bit Language Tools Libraries

3.15 <STRING.H> STRING FUNCTIONS

The header file string.h consists of types, macros and functions that provide tools to

manipulate strings.

size t
Description: The type of the result of the sizeof operator.
Include: <string.h>
NULL
Description: The value of a null pointer constant.
Include: <string.h>
memchr
Description: Locates a character in a buffer.
Include: <string.h>
Prototype: void *memchr (const void *s, int ¢, size t n);
Arguments: s pointer to the buffer
c character to search for
n number of characters to check

Return Value:

Remarks:

Example:

Returns a pointer to the location of the match if successful; otherwise,
returns null.

memchr stops when it finds the first occurrence of c or after searching
n number of characters.

#include <string.h> /* for memchr, NULL */
#include <stdio.h> /* for printf */

int main(void)

{

char bufl[50] = "What time is it?";
char chl = 'i', ch2 = 'y';

char *ptr;

int res;

printf ("bufl $s\n\n", bufl);
ptr = memchr (bufl, chl, 50);
if (ptr != NULL)
{
res = ptr - bufl + 1;
printf ("$c found at position %d\n", chl, res);
}
else
printf ("$c not found\n", chl);

DS51456D-page 184

© 2007 Microchip Technology Inc.

Standard C Libraries with Math Functions

memchr (Continued)

if (ptr != NULL)
{
res = ptr - bufl + 1;
printf ("$c found at position %d\n",
!
else
printf ("%c not found\n", ch2);
}
Output:
bufl : What time is 1it?

i

Yy

printf ("\n") ;

ptr = memchr (bufl, ch2, 50);

found at position 7

not found

ch2, res);

memcmp

Description:
Include:
Prototype:
Arguments:

Return Value:

Remarks:

Example:

Compare the contents of two buffers.

<S

tring.h>

int memcmp (const void *sl, const void *s2, size t n);

s1
s2

n

first buffer
second buffer
number of characters to compare

Returns a positive number if s1 is greater than s2, zero if s1 is equal to

s2

, Or a negative number if s1 is less than s2.

This function compares the first n characters in s1 to the first n charac-
ters in s2 and returns a value indicating whether the buffers are less
than, equal to or greater than each other.

#1i
#1i

in

{

nclude <string.h> /* memcmp */
nclude <stdio.h> /* for printf */

t main (void)

char bufl[50]
char buf2[50]
char buf3[50]
int res;

n Why? n ;

printf ("bufl : %s\n", bufl);
printf ("buf2 : %$s\n", buf2);
printf ("buf3 : %$s\n\n", buf3);

res = memcmp (bufl, buf2, 6);
if (res < 0)

printf ("bufl comes before buf2\n") ;

else if (res == 0)

"Where is the time?";
"Where did they go?";

printf ("6 characters of bufl and buf2 "

"are equal\n") ;
else

printf ("buf2 comes before bufl\n");

© 2007 Microchip Technology Inc.

DS51456D-page 185

16-Bit Language Tools Libraries

memcmp (Continued)

printf ("\n") ;

res = memcmp (bufl, buf2, 20);
if (res < 0)
printf ("bufl comes before buf2\n") ;
else if (res == 0)
printf ("20 characters of bufl and buf2
"are equal\n") ;
else
printf ("buf2 comes before bufl\n") ;

printf ("\n") ;

res = memcmp (bufl, buf3, 20);
if (res < 0)
printf ("bufl comes before buf3\n");
else if (res == 0)
printf ("20 characters of bufl and buf3
"are equal\n") ;
else
printf ("buf3 comes before bufl\n") ;
}

Output:

bufl : Where is the time?

buf2 : Where did they go?

buf3 : Why?

6 characters of bufl and buf2 are equal

buf2 comes before bufl

bufl comes before buf3

n

n

DS51456D-page 186

© 2007 Microchip Technology Inc.

Standard C Libraries with Math Functions

memcpy

Description:
Include:
Prototype:
Arguments:

Return Value:

Remarks:

Example:

Copies characters from one buffer to another.
<string.h>

void *memcpy (void *dst , const void *src , size t n);

dst buffer to copy characters to
src buffer to copy characters from
n number of characters to copy

Returns dst.

memcpy copies n characters from the source buffer src to the destina-
tion buffer dst. If the buffers overlap, the behavior is undefined.

#include <string.h> /* memcpy */
#include <stdio.h> /* for printf */

int main(void)

{
char bufl[50] = "";
char buf2[50] = "Where is the time?";
char buf3[50] = "Why?";

printf ("bufl : %$s\n", bufl);
printf ("buf2 : %$s\n", buf2);
printf ("buf3 : %$s\n\n", buf3);

memcpy (bufl, buf2, 6);
printf ("bufl after memcpy of 6 chars of "
"buf2: \n\t%s\n", bufl);

printf ("\n") ;

memcpy (bufl, buf3, 5);
printf ("bufl after memcpy of 5 chars of "
"buf3: \n\t%s\n", bufl);
}

Output:

bufl

buf2 : Where is the time?
buf3 : Why?

bufl after memcpy of 6 chars of buf2:
Where

bufl after memcpy of 5 chars of buf3:
Why?

© 2007 Microchip Technology Inc.

DS51456D-page 187

16-Bit Language Tools Libraries

memmove
Description: Copies n characters of the source buffer into the destination buffer,
even if the regions overlap.
Include: <string.h>
Prototype: void *memmove (void *sl, const void *s2, size t n);
Arguments: sl buffer to copy characters to (destination)
s2 buffer to copy characters from (source)
n number of characters to copy from s2 to s1

Return Value:
Remarks:

Example:

Returns a pointer to the destination buffer

If the buffers overlap, the effect is as if the characters are read first from
s2 then written to s1 so the buffer is not corrupted.

#include <string.h> /* for memmove */
#include <stdio.h> /* for printf */

int main(void)

{
char bufl[50] "When time marches on";
char buf2[50] = "Where is the time?";
char buf3[50] "Why?";

printf ("bufl : %$s\n", bufl);
printf ("buf2 : %$s\n", buf2);
printf ("buf3 : %s\n\n", buf3);

memmove (bufl, buf2, 6);
printf ("bufl after memmove of 6 chars of "
"buf2: \n\t%s\n", bufl);

printf ("\n") ;

memmove (bufl, buf3, 5);
printf ("bufl after memmove of 5 chars of "
"buf3: \n\t%s\n", bufl);
}

Output:

bufl : When time marches on
buf2 : Where is the time?
buf3 : Why?

bufl after memmove of 6 chars of buf2:
Where ime marches on

bufl after memmove of 5 chars of buf3:
Why?

DS51456D-page 188

© 2007 Microchip Technology Inc.

Standard C Libraries with Math Functions

memset

Description:
Include:
Prototype:
Arguments:

Return Value:

Remarks:
Example:

Copies the specified character into the destination buffer.

<string.h>

void *memset (void *s,

S

c

n

buffer

int ¢,

character to put in buffer

number of times

Returns the buffer with characters written to it.
The character c is written to the buffer n times.

#include <string.h> /* for memset */
#include <stdio.h>

int main(void)

/* for printf */

size t n);

);\n", bufl, chil);

bufl) ;

;\n", buf2, ch2);

buf2) ;

{
char bufl[20] = "What time is it?";
char buf2[20] = "";
char chl = '?', ch2 = 'y';
char *ptr;
int res;
printf ("memset (\"%s\", \'sc\’
memset (bufl, chl, 4);
printf ("bufl after memset: %s\n",
printf ("\n") ;
printf ("memset (\"%s\", \'%c\',10)
memset (buf2, ch2, 10);
printf ("buf2 after memset: %s\n",
}
Output:
memset ("What time is it?", '?',4);

bufl after memset:

memset ("", 'y',10);

buf2 after memset:

???? time is it?

YYYYYYYYYY

© 2007 Microchip Technology Inc.

DS51456D-page 189

16-Bit Language Tools Libraries

strcat

Description:
Include:
Prototype:
Arguments:

Return Value:

Remarks:

Example:

Appends a copy of the source string to the end of the destination string.
<string.h>

char *strcat (char *sl, const char *s2);

sl null terminated destination string to copy to

52 null terminated source string to be copied

Returns a pointer to the destination string.

This function appends the source string (including the terminating null
character) to the end of the destination string. The initial character of
the source string overwrites the null character at the end of the destina-
tion string. If the buffers overlap, the behavior is undefined.

#include <string.h> /* for strcat, strlen */
#include <stdio.h> /* for printf */

int main(void)
char bufl[50] "We're here";
char buf2[50] = "Where is the time?";

printf ("bufl : %s\n", bufl);
printf ("\t (%d characters)\n\n", strlen(bufl));
printf ("buf2 : %s\n", buf2);
printf ("\t (%d characters)\n\n", strlen(buf2));

strcat (bufl, buf2);

printf ("bufl after strcat of buf2: \n\t%s\n",
bufl) ;

printf ("\t (%d characters)\n", strlen(bufl));

printf ("\n") ;

strcat (bufl, "Why?");

printf ("bufl after strcat of \"Why?\": \n\t%s\n",
bufl) ;

printf ("\t (%d characters)\n", strlen(bufl));

}

Output:
bufl : We're here
(10 characters)

buf2 : Where is the time?
(18 characters)

bufl after strcat of buf2:
We're hereWhere is the time?
(28 characters)

bufl after strcat of "Why?":
We're hereWhere is the time?Why?
(32 characters)

DS51456D-page 190

© 2007 Microchip Technology Inc.

Standard C Libraries with Math Functions

strchr

Description: Locates the first occurrence of a specified character in a string.

Include: <string.h>

Prototype: char *strchr (const char *s, int c);

Arguments: s pointer to the string
c character to search for

Return Value: Returns a pointer to the location of the match if successful; otherwise,
returns a null pointer.

Remarks: This function searches the string s to find the first occurrence of the
character c.

Example: #include <string.h> /* for strchr, NULL */

#include <stdio.h> /* for printf */

int main(void)
char bufl[50] = "What time is it?";
char chl = 'm', ch2 = 'y';
char *ptr;
int res;

printf ("bufl : %$s\n\n", bufl);

ptr = strchr (bufl, chl);
if (ptr != NULL)
{
res = ptr - bufl + 1;
printf ("$c found at position %d\n", chl, res);
!
else
printf ("%c not found\n", chil);

printf ("\n") ;

ptr = strchr (bufl, ch2);
if (ptr != NULL)
{
res = ptr - bufl + 1;
printf ("%c found at position %d\n", ch2, res);
}
else
printf ("$c not found\n", ch2);
!

Output:
bufl : What time is 1it?

m found at position 8

y not found

© 2007 Microchip Technology Inc. DS51456D-page 191

16-Bit Language Tools Libraries

strcmp

Description:
Include:
Prototype:
Arguments:

Return Value:

Remarks:

Example:

Compares two strings.

<string.h>

int strcmp(const char *sl, const char *s2);
sl first string

52 second string

Returns a positive number if s1 is greater than s2, zero if s1 is equal to
s2, or a negative number if s1 is less than s2.

This function compares successive characters from s1 and s2 until
they are not equal or the null terminator is reached.

#include <string.h> /* for strcmp */
#include <stdio.h> /* for printf */

int main(void)
{
char bufl[50]
char buf2[50]
char buf3[50]
int res;

"Where is the time?";
"Where did they go?";
n Why? n ;

printf ("bufl : %$s\n", bufl);
printf ("buf2 : %$s\n", buf2);
printf ("buf3 $s\n\n", buf3);

res = strcmp (bufl, buf2);
if (res < 0)
printf ("bufl comes before buf2\n") ;

else if (res == 0)
printf ("bufl and buf2 are equall\n");
else

printf ("buf2 comes before bufl\n") ;

printf ("\n") ;

res = strcmp (bufl, buf3l);
if (res < 0)

printf ("bufl comes before buf3\n");
else if (res == 0)

printf ("bufl and buf3 are equal\n");
else

printf ("buf3 comes before bufl\n");

printf ("\n") ;

res = strcmp ("Why?", buf3l3);
if (res < 0)

printf ("\"Why?\" comes before buf3\n");
else if (res == 0)

printf ("\"Why?\" and buf3 are equal\n");
else

printf ("buf3 comes before \"Why?\"\n") ;

DS51456D-page 192

© 2007 Microchip Technology Inc.

Standard C Libraries with Math Functions

strcmp (Continued)

Output:

bufl : Where is the time?
buf2 : Where did they go?
buf3 : Why?

buf2 comes before bufl

bufl comes before buf3

"Why?" and buf3 are equal

strcoll
Description: Compares one string to another. (See Remarks.)
Include: <string.h>
Prototype: int strcoll (const char *Sl, const char *S2);
Arguments: s1 first string
s2 second string

Return Value:

Using the locale-dependent rules, it returns a positive number if s1 is
greater than s2, zero if s1 is equal to s2, or a negative number if s1 is
less than s2.

Remarks: Since MPLAB C30 does not support alternate locales, this function is
equivalent to st rcmp.

strcpy

Description: Copy the source string into the destination string.

Include: <string.h>

Prototype: char *strcpy(char *sl, const char *s2);

Arguments: sl destination string to copy to
s2 source string to copy from

Return Value:

Remarks:

Example:

Returns a pointer to the destination string.

All characters of s2 are copied, including the null terminating character.
If the strings overlap, the behavior is undefined.

#include <string.h> /* for strcpy, strlen */
#include <stdio.h> /* for printf */

int main(void)

{
char bufl[50] = "We're here";
char buf2[50] "Where is the time?";
char buf3[50] = "Why?";

printf ("bufl : %$s\n", bufl);
printf ("buf2 : %s\n", buf2);
printf ("buf3 $s\n\n", buf3);

strcpy (bufl, buf2);
printf ("bufl after strcpy of buf2: \n\t%s\n\n",
bufl) ;

© 2007 Microchip Technology Inc.

DS51456D-page 193

16-Bit Language Tools Libraries

strcpy (Continued)

strcpy (bufl, buf3l3);
printf ("bufl after strcpy of buf3: \n\t%s\n",
bufl) ;
}

Output:

bufl : We're here

buf2 : Where is the time?
buf3 : Why?

bufl after strcpy of buf2:
Where is the time?

bufl after strcpy of buf3:
Why?

strcspn
Description: Calculate the number of consecutive characters at the beginning of a
string that are not contained in a set of characters.
Include: <string.h>
Prototype: size t strcspn(const char *sl, const char *s2);
Arguments: sl pointer to the string to be searched
52 pointer to characters to search for

Return Value:

Remarks:

Example:

Returns the length of the segment in s1 not containing characters
found in s2.

This function will determine the number of consecutive characters from
the beginning of s1 that are not contained in s2.

#include <string.h> /* for strcspn */
#include <stdio.h> /* for printf */

int main(void)
{
char strl
char str2
char str3
char str4
int res;

20] = "hello";
20] = "aeiou";
20] = "animal";
20] = "xyz";

res = strcspn(strl, str2);
printf ("strcspn (\"%s\", \"%s\") = %d\n",
strl, str2, res);

res = strcspn(str3, str2);
printf ("strcspn (\"%s\", \"%s\")
str3, str2, res);

$d\n",

res = strcspn(str3, str4);
printf ("strcspn (\"%s\", \"%s\")
str3, str4, res);

$d\n",

}

Output:

strcspn ("hello", "aeiou") = 1
strcspn ("animal", "aeiou") = 0
strespn ("animal", "xyz") = 6

DS51456D-page 194

© 2007 Microchip Technology Inc.

Standard C Libraries with Math Functions

strcspn (Continued)

Explanation:
In the first result, e is in s2 so it stops counting after h.
In the second result, a isin s2.

In the third result, none of the characters of s1 are in s2 so all charac-

ters are counted.

strerror

Description: Gets an internal error message.
Include: <string.h>

Prototype: char *strerror(int errcode) ;
Argument: errcode number of the error code

Return Value:

Returns a pointer to an internal error message string corresponding to

the specified error code errcode.

Remarks: The array pointed to by strerror may be overwritten by a subse-
quent call to this function.
Example: #include <stdio.h> /* for fopen, fclose, */
/* printf, FILE, NULL */
#include <string.h> /* for strerror */
#include <errno.h> /* for errno */
int main(void)
{
FILE *myfile;
if ((myfile = fopen("samp.fil", "r+")) == NULL)
printf ("Cannot open samp.fil: %s\n",
strerror (errno)) ;
else
printf ("Success opening samp.fil\n") ;
fclose (myfile) ;
}
Output:
Cannot open samp.fil: file open error
strlen
Description: Finds the length of a string.
Include: <string.h>
Prototype: size t strlen(const char *s);
Argument: s the string

Return Value:

Remarks:

Returns the length of a string.

This function determines the length of the string, not including the ter-

minating null character.

© 2007 Microchip Technology Inc.

DS51456D-page 195

16-Bit Language Tools Libraries

strlen (Continued)

Example:

#include <string.h> /* for strlen */
#include <stdio.h> /* for printf */

int main(void)
{
char strl1[20]
char str2[20]
char str3[20]

"We are here";
nmn .
i

"Why me?";

printf ("strl : %s\n", strl);

printf ("\t(string length = %d characters)\n\n",
strlen(strl)) ;

printf ("str2 : %$s\n", str2);

printf ("\t (string length = %d characters)\n\n",
strlen(str2));

printf ("str3 : %s\n", str3);

printf ("\t (string length = %d characters)\n\n\n",
strlen(str3));

}

Output:
strl : We are here
(string length = 11 characters)

str2

(string length = 0 characters)

str3 : Why me?
(string length = 7 characters)

strncat

Description:

Include:
Prototype:
Arguments:

Return Value:

Remarks:

Example:

Append a specified number of characters from the source string to the
destination string.

<string.h>

char *strncat (char *sl, const char *s2, size t n);

s1 destination string to copy to
s2 source string to copy from
n number of characters to append

Returns a pointer to the destination string.

This function appends up to n characters (a null character and charac-
ters that follow it are not appended) from the source string to the end of
the destination string. If a null character is not encountered, then a ter-
minating null character is appended to the result. If the strings overlap,
the behavior is undefined.

#include <string.h> /* for strncat, strlen */
#include <stdio.h> /* for printf */

int main(void)

{
char bufl[50] "We're here";
char buf2[50] = "Where is the time?";
char buf3[50] "Why?";

DS51456D-page 196

© 2007 Microchip Technology Inc.

Standard C Libraries with Math Functions

strncat (Continued)

printf ("bufl : %$s\n", bufl);

printf ("\t (%d characters)\n\n", strlen(bufl));
printf ("buf2 : %$s\n", buf2);

printf ("\t (%d characters)\n\n", strlen(buf2));
printf ("buf3 : %s\n", buf3);

printf ("\t (%d characters)\n\n\n", strlen(buf3l));

strncat (bufl, buf2, 6);

printf ("bufl after strncat of 6 characters "
"of buf2: \n\t%s\n", bufl);

printf ("\t (%d characters)\n", strlen(bufl));

printf ("\n") ;

strncat (bufl, buf2, 25);

printf ("bufl after strncat of 25 characters "
"of buf2: \n\t%s\n", bufl);

printf ("\t (%d characters)\n", strlen(bufl));

printf ("\n") ;

strncat (bufl, buf3, 4);
printf ("bufl after strncat of 4 characters "
"of buf3: \n\t%s\n", bufl);

printf ("\t (%d characters)\n", strlen (bufl));
}
Output:
bufl : We're here

(10 characters)

buf2 : Where is the time?
(18 characters)

buf3 : Why?
(4 characters)

bufl after strncat of 6 characters of buf2:
We're hereWhere
(16 characters)

bufl after strncat of 25 characters of buf2:
We're hereWhere Where is the time?
(34 characters)

bufl after strncat of 4 characters of buf3:
We're hereWhere Where is the time?Why?
(38 characters)

© 2007 Microchip Technology Inc. DS51456D-page 197

16-Bit Language Tools Libraries

strncmp

Description: Compare two strings, up to a specified number of characters.

Include: <string.h>

Prototype: int strncmp (const char *sl1, const char *s2,

size t n);

Arguments: sl first string
s2 second string
n number of characters to compare

Return Value: Returns a positive number if s1 is greater than s2, zero if s1 is equal to
s2, or a negative number if s1 is less than s2.

Remarks: strncmp returns a value based on the first character that differs
between s1 and s2. Characters that follow a null character are not
compared.

Example: #include <string.h> /* for strncmp */

#include <stdio.h> /* for printf =*/

int main(void)
{
char bufl[50]
char buf2[50]
char buf3[50]
int res;

"Where is the time?";
"Where did they go?";
n Why? n ;

printf ("bufl : %s\n", bufl);
printf ("buf2 : %s\n", buf2);
printf ("buf3 : %$s\n\n", buf3);

res = strncmp (bufl, buf2, 6);
if (res < 0)
printf ("bufl comes before buf2\n") ;
else if (res == 0)
printf ("6 characters of bufl and buf2 "
"are equal\n") ;
else
printf ("buf2 comes before bufl\n") ;

printf ("\n") ;

res = strncmp (bufl, buf2, 20);
if (res < 0)
printf ("bufl comes before buf2\n") ;
else if (res == 0)
printf ("20 characters of bufl and buf2 "
"are equal\n") ;
else
printf ("buf2 comes before bufl\n");

DS51456D-page 198 © 2007 Microchip Technology Inc.

Standard C Libraries with Math Functions

strncmp (Continued)

printf ("\n") ;

res = strncmp (bufl, buf3, 20);

if (res < 0)
printf ("bufl comes before buf3\n");

else if (res == 0)
printf ("20 characters of bufl and buf3 "

"are equal\n") ;
else

printf ("buf3 comes before bufl\n") ;

Output:

bufl : Where is the time?

buf2 : Where did they go?

buf3d : Why?

6 characters of bufl and buf2 are equal

buf2 comes before bufl

bufl comes before buf3

strncpy

Description:

Include:
Prototype:
Arguments:

Return Value:

Remarks:

Example:

Copy characters from the source string into the destination string, up to
the specified number of characters.

<string.h>

char *strncpy(char *sl, const char *s2, size t n);

sl destination string to copy to
s2 source string to copy from
n number of characters to copy

Returns a pointer to the destination string.

Copies n characters from the source string to the destination string. If

the source string is less than n characters, the destination is filled with
null characters to total n characters. If n characters were copied and no
null character was found then the destination string will not be null-ter-
minated. If the strings overlap, the behavior is undefined.

#include <string.h> /* for strncpy, strlen */
#include <stdio.h> /* for printf */

int main(void)

{
char bufl[50] = "We're here";
char buf2[50] = "Where is the time?";
char buf3[50] = "Why?";
char buf4[7] = "Where?";
printf ("bufl : %$s\n", bufl);
printf ("buf2 : %$s\n", buf2);
printf ("buf3 : %$s\n", buf3);
printf ("buf4 : %s\n", buf4);

© 2007 Microchip Technology Inc.

DS51456D-page 199

16-Bit Language Tools Libraries

strncpy (Continued)

strncpy (bufl, buf2, 6);

printf ("bufl after strncpy of 6 characters "
"of buf2: \n\t%s\n", bufl);

printf ("\t(%d characters)\n", strlen(bufl));

printf ("\n") ;

strncpy (bufl, buf2, 18);

printf ("bufl after strncpy of 18 characters "
"of buf2: \n\t%s\n", bufl);

printf ("\t(%d characters)\n", strlen(bufl));

printf ("\n") ;

strncpy (bufl, buf3, 5);

printf ("bufl after strncpy of 5 characters "
"of buf3: \n\t%s\n", bufl);

printf ("\t(%d characters)\n", strlen(bufl));

printf ("\n") ;

strncpy (bufl, buf4, 9);

printf ("bufl after strncpy of 9 characters "
"of buf4: \n\t%s\n", bufl);

printf ("\t(%d characters)\n", strlen(bufl));

}

Output:

bufl : We're here

buf2 : Where is the time?

buf3 : Why?

buf4 : Where?

bufl after strncpy of 6 characters of buf2:
Where here
(10 characters)

bufl after strncpy of 18 characters of buf2:
Where is the time?
(18 characters)

bufl after strncpy of 5 characters of buf3:
Why?
(4 characters)

bufl after strncpy of 9 characters of buf4:
Where?
(6 characters)

DS51456D-page 200 © 2007 Microchip Technology Inc.

Standard C Libraries with Math Functions

strncpy (Continued)

Explanation:

Each buffer contains the string shown, followed by null characters for a
length of 50. Using strlen will find the length of the string up to but not
including the first null character.

In the first example, 6 characters of but2 (“Where “) replace the first 6
characters of buf1 ("We're ") and the rest of buf1 remains the same
("here" plus null characters).

In the second example, 18 characters replace the first 18 characters of
bufl and the rest remain null characters.

In the third example, 5 characters of buf3 ("Why?" plus a null terminat-
ing character) replace the first 5 characters of buf1. buf1 now actually
contains ("Why?", 1 null character, " is the time?", 32 null characters).
strlen shows 4 characters because it stops when it reaches the first
null character.

In the fourth example, since buf4 is only 7 characters st rncpy uses 2
additional null characters to replace the first 9 characters of buf1. The
result of buf1 is 6 characters ("Where?") followed by 3 null characters,
followed by 9 characters ("the time?"), followed by 32 null characters.

strpbrk

Description:

Include:
Prototype:
Arguments:

Return Value:

Remarks:

Example:

Search a string for the first occurrence of a character from a specified
set of characters.

<string.h>

char *strpbrk (const char *sl, const char *s2);
sl pointer to the string to be searched

52 pointer to characters to search for

Returns a pointer to the matched character in s1 if found; otherwise,
returns a null pointer.

This function will search s1 for the first occurrence of a character con-
tained in s2.

#include <string.h> /* for strpbrk, NULL */
#include <stdio.h> /* for printf */

int main(void)

{
char strl1[20] = "What time is 1it?";
char str2[20] = "xyz";
char str3[20] = "eou?";
char *ptr;
int res;
printf ("strpbrk (\"%s\", \"$s\")\n", strl, str2);

ptr = strpbrk(strl, str2);
if (ptr != NULL)
{
res = ptr - strl + 1;
printf ("match found at position %d\n", res);
}
else
printf ("match not found\n") ;

© 2007 Microchip Technology Inc.

DS51456D-page 201

16-Bit Language Tools Libraries

strpbrk (Continued)

printf ("\n") ;

printf ("strpbrk (\"%s\", \"%s\")\n", strl, str3);
ptr = strpbrk(strl, str3);
if (ptr != NULL)
{
res = ptr - strl + 1;
printf ("match found at position %d\n", res);

!
else
printf ("match not found\n") ;
}
Output:
strpbrk ("What time is it?", "xyz")

match not found

strpbrk ("What time is it?", "eou?")
match found at position 9

strrchr
Description: Search for the last occurrence of a specified character in a string.
Include: <string.h>
Prototype: char *strrchr (const char *s, int c¢);
Arguments: s pointer to the string to be searched
c character to search for

Return Value:

Remarks:

Example:

Returns a pointer to the character if found; otherwise, returns a null
pointer.

The function searches the string s, including the terminating null char-
acter, to find the last occurrence of character c.

#include <string.h> /* for strrchr, NULL */
#include <stdio.h> /* for printf */

int main(void)

{
char bufl[50] = "What time is it?";
char chl = 'm', ch2 = 'y';
char *ptr;
int res;

printf ("bufl : %s\n\n", bufl);

ptr = strrchr (bufl, chl);
if (ptr != NULL)

{

res = ptr - bufl + 1;

printf ("%c found at position %d\n", chl, res);
}
else

printf ("$c not found\n", chl);

DS51456D-page 202

© 2007 Microchip Technology Inc.

Standard C Libraries with Math Functions

strrchr (Continued)

printf ("\n") ;

ptr = strrchr (bufl, ch2);
if (ptr != NULL)
{
res = ptr - bufl + 1;
printf ("$c found at position %d\n", ch2, res);
!
else
printf ("%c not found\n", ch2);

}

Output:
bufl : What time is 1it?

m found at position 8

y not found

strspn

Description:

Include:
Prototype:
Arguments:

Return Value:

Remarks:
Example:

Calculate the number of consecutive characters at the beginning of a
string that are contained in a set of characters.

<string.h>

size t strspn(const char *sl, const char *s2);
s1 pointer to the string to be searched

s2 pointer to characters to search for

Returns the number of consecutive characters from the beginning of s1
that are contained in s2.

This function stops searching when a character from s1 is notin s2.

#include <string.h> /* for strspn */
#include <stdio.h> /* for printf */

int main(void)

{
char strl1[20] = "animal";
char str2[20] = "aeiounm";
char str3[20] = "aimnl";
char str4[20] = "xyz";
int res;

res = strspn(strl, str2);
printf ("strspn (\"%s\", \"%s\") = %d\n",
strl, str2, res);

res = strspn(strl, str3);
printf ("strspn (\"%s\", \"%s\") = %d\n",
strl, str3, res);

res = strspn(strl, str4);
printf ("strspn(\"%s\", \"%s\") = %d\n",
strl, str4, res);

© 2007 Microchip Technology Inc.

DS51456D-page 203

16-Bit Language Tools Libraries

strspn (Continued)

Output:

strspn("animal", "aeiounm") = 5
strspn("animal", "aimnl") = 6
strspn("animal", "xyz") = 0
Explanation:

In the first result, 1 is not in s2.
In the second result, the terminating null is not in s2.
In the third result, a is not in s2, so the comparison stops.

strstr
Description: Search for the first occurrence of a string inside another string.
Include: <string.h>
Prototype: char *strstr(const char *sl, const char *s2);
Arguments: s1 pointer to the string to be searched

52 pointer to substring to be searched for

Return Value:

Remarks:

Example:

Returns the address of the first element that matches the substring if
found; otherwise, returns a null pointer.

This function will find the first occurrence of the string s2 (excluding the
null terminator) within the string s1. If s2 points to a zero length string,
s1 is returned.

#include <string.h> /* for strstr, NULL */
#include <stdio.h> /* for printf */

int main(void)
{
char strl1[20]
char str2[20]
char str3[20]
char *ptr;
int res;

"What time is it?";
IliSII .

;
le-y-zll ,.

printf ("strl : %s\n", strl);
printf ("str2 : %$s\n", str2);
printf ("str3 : %$s\n\n", str3);

ptr = strstr(strl, str2);
if (ptr != NULL)
{
res = ptr - strl + 1;
printf ("\"%s\" found at position %d\n",
str2, res);
!

else
printf ("\"%s\" not found\n", str2);

DS51456D-page 204

© 2007 Microchip Technology Inc.

Standard C Libraries with Math Functions

strstr (Continued)

printf ("\n") ;

ptr = strstr(strl, str3);
if (ptr != NULL)
res = ptr - strl + 1;
printf ("\"%s\" found at position %d\n",
str3, res);
!

else
printf ("\"%s\" not found\n", str3);

Output:

strl : What time is it?
str2 : is

str3 : xyz

"is" found at position 11

"xyz" not found

strtok

Description:

Include:
Prototype:
Arguments:

Return Value:

Remarks:

Break a string into substrings, or tokens, by inserting null characters in
place of specified delimiters.

<string.h>

char *strtok(char *sl, const char *s2);

sl pointer to the null terminated string to be searched
s2 pointer to characters to be searched for (used as delim-
iters)

Returns a pointer to the first character of a token (the first character in
s1 that does not appear in the set of characters of s2). If no token is
found, the null pointer is returned.

A sequence of calls to this function can be used to split up a string into
substrings (or tokens) by replacing specified characters with null char-
acters. The first time this function is invoked on a particular string, that
string should be passed in s1. After the first time, this function can con-
tinue parsing the string from the last delimiter by invoking it with a null
value passed in s1.

It skips all leading characters that appear in the string s2 (delimiters),
then skips all characters not appearing in s2 (this segment of charac-
ters is the token), and then overwrites the next character with a null
character, terminating the current token. The function strtok then
saves a pointer to the character that follows, from which the next
search will start. If strtok finds the end of the string before it finds a
delimiter, the current token extends to the end of the string pointed to
by s1. If this is the first call to strtok, it does not modify the string (no
null characters are written to s1). The set of characters that is passed
in s2 need not be the same for each call to strtok.

If strtok is called with a non-null parameter for s1 after the initial call,
the string becomes the new string to search. The old string previously
searched will be lost.

© 2007 Microchip Technology Inc.

DS51456D-page 205

16-Bit Language Tools Libraries

strtok (Continued)

Example:

#include <string.h> /* for strtok, NULL */
#include <stdio.h> / * for printf */

int main(void)
char strl1[30] "Here, on top of the world!";
char delim[5] "
char *word;
int x;

printf ("strl : %s\n", strl);

x = 1;
word = strtok(strl,delim) ;
while (word != NULL)

{

printf ("word %d: %s\n", x++, word) ;
word = strtok (NULL, delim) ;
}
!

Output:

strl : Here, on top of the world!
word 1: Here

word 2: on

word 3: top

word 4: of

word 5: the

word 6: world!

strxfrm

Description:
Include:
Prototype:
Arguments:

Return Value:

Remarks:

Transforms a string using the locale-dependent rules. (See Remarks.)
<string.h>

size t strxfrm(char *sl, const char *s2, size t n);

sl destination string
s2 source string to be transformed
n number of characters to transform

Returns the length of the transformed string not including the terminat-
ing null character. If n is zero, the string is not transformed (s1 may be
a point null in this case) and the length of s2 is returned.

If the return value is greater than or equal to n, the content of s1 is
indeterminate. Since MPLAB C30 does not support alternate locales,
the transformation is equivalent to st rcpy, except that the length of
the destination string is bounded by n-1.

DS51456D-page 206

© 2007 Microchip Technology Inc.

Standard C Libraries with Math Functions

3.16 <TIME.H> DATE AND TIME FUNCTIONS

The header file time.h consists of types, macros and functions that manipulate time.

clock_t

Description:
Include:
Prototype:

Stores processor time values.
<time.h>

typedef long clock t

size t

Description:
Include:

The type of the result of the sizeof operator.

<time.h>

struct tm

Description:
Include:
Prototype:

Remarks:

Structure used to hold the time and date (calendar time).
<time.h>
struct tm {

int tm _sec;/*seconds after the minute (0 to 61)%/
/*allows for up to two leap seconds*/

int tm min; /*minutes after the hour (0 to 59)*/
int tm _hour;/*hours since midnight (0 to 23)*/
int tm mday;/*day of month (1 to 31)%/

int tm mon; /*month (0 to 11 where January = 0)*/
int tm_year;/*years since 1900%/

int tm wday;/*day of week (0 to 6 where Sunday = 0
) */

int tm yday;/*day of year (0 to 365 where January 1
=0)*/

int tm isdst;/*Daylight Savings Time flag*/

If tm_isdst is a positive value, Daylight Savings is in effect. If it is
zero, Daylight Saving time is not in effect. If it is a negative value, the
status of Daylight Saving Time is not known.

time_t

Description:
Include:
Prototype:

Represents calendar time values.
<time.h>

typedef long time t

CLOCKS_PER_SEC

Description:
Include:
Prototype:
Value:
Remarks:

Number of processor clocks per second.

<time.h>

#define CLOCKS PER SEC

1

MPLAB C30 returns clock ticks (instruction cycles) not actual time.

© 2007 Microchip Technology Inc.

DS51456D-page 207

16-Bit Language Tools Libraries

NULL

Description: The value of a null pointer constant.

Include: <time.h>

asctime

Description: Converts the time structure to a character string.
Include: <time.h>

Prototype: char *asctime (const struct tm *tptr);
Argument: tptr time/date structure

Return Value:

Returns a pointer to a character string of the following format:
DDD MMM dd hh:mm:ss YYYY

DDD is day of the week

MMM is month of the year

dd is day of the month

hh is hour
mm IS minute
ss is second
YYYY is year
Example: #include <time.h> /* for asctime, tm */
#include <stdio.h> /* for printf */
volatile int 1i;
int main(void)
struct tm when;
time t whattime;
when.tm_sec = 30;
when.tm min = 30;
when.tm hour = 2;
when.tm mday = 1;
when.tm mon = 1;
when.tm year = 103;
whattime = mktime (&when) ;
printf ("Day and time is %s\n", asctime (&when)) ;
}
Output:
Day and time is Sat Feb 1 02:30:30 2003
clock
Description: Calculates the processor time.
Include: <time.h>
Prototype: clock t clock(void) ;

Return Value:

Remarks:

Returns the number of clock ticks of elapsed processor time.

If the target environment cannot measure elapsed processor time, the
function returns -1, cast as a clock_t. (i.e. (clock_t) -1) By default,
MPLAB C30 returns the time as instruction cycles.

DS51456D-page 208

© 2007 Microchip Technology Inc.

Standard C Libraries with Math Functions

clock (Continued)

Example:

#include <time.h> /*
#include <stdio.h> /*

volatile int 1i;

int main(void)

{

clock _t start, stop;
int ct;

start = clock();

for (i = 0; 1 < 10;

stop = clock()

for clock */
for printf */

i++)

printf ("start = %1d\n", start);

printf ("stop = %1d\n",

}

Output:
start = 0
stop = 317

stop) ;

ctime

Description:
Include:
Prototype:
Argument:

Return Value:

Remarks:
Example:

Converts calendar time to a string representation of local time.

<time.h>

char *ctime(const time t *tod);

tod pointer to stored time
Returns the address of a string that represents the local time of the

parameter passed.

This function is equivalent to asctime (localtime (tod)).

#include <time.hs> /*
#include <stdio.h> /*

int main(void)
time t whattime;
struct tm nowtime;

nowtime.tm sec = 30;
nowtime.tm min = 30;
nowtime.tm hour = 2;
nowtime.tm mday = 1;
nowtime.tm mon = 1;

for mktime, tm,
for printf

nowtime.tm year = 103;

whattime = mktime (&nowtime) ;

printf ("Day and time %s\n",

}

Output:
Day and time Sat Feb

1 02:30:30 2003

ctime */

*/

ctime (&whattime)) ;

© 2007 Microchip Technology Inc.

DS51456D-page 209

16-Bit Language Tools Libraries

difftime

Description:
Include:
Prototype:
Arguments:

Return Value:

Remarks:

Example:

Find the difference between two times.

<time.h>

double difftime(time t t1, time t tO0);
t1 ending time

to beginning time

Returns the number of seconds between t1 and to.

By default, MPLAB C30 returns the time as instruction cycles so
difftime returns the number of ticks between t1 and to.

#include <time.h> /* for clock, difftime */
#include <stdio.h> /* for printf */

volatile int 1i;

int main(void)

{
clock _t start, stop;
double elapsed;

start = clock();

for (i = 0; 1 < 10; 1i++)

stop = clock() ;

printf ("start = %1d\n", start);

printf ("stop = %$1d\n", stop);

elapsed = difftime(stop, start);

printf ("Elapsed time = %.0f\n", elapsed);

}

Output:
start = 0
stop = 317

Elapsed time = 317

gmtime

Description:

Include:
Prototype:
Argument:

Return Value:

Remarks:

Converts calendar time to time structure expressed as Universal Time
Coordinated (UTC) also known as Greenwich Mean Time (GMT).

<time.h>

struct tm *gmtime (const time t *tod) ;
tod pointer to stored time

Returns the address of the time structure.

This function breaks down the tod value into the time structure of type
tm. By default, MPLAB C30 returns the time as instruction cycles. With
this default gmt ime and localtime will be equivalent except gmt ime
will return tm_isdst (Daylight Savings Time flag) as zero to indicate
that Daylight Savings Time is not in effect.

DS51456D-page 210

© 2007 Microchip Technology Inc.

Standard C Libraries with Math Functions

gmtime (Continued)

Example: #include <time.h> /* for gmtime, asctime, */
/* time_t, tm */
#include <stdio.h> /* for printf */

int main(void)

time t timer;

struct tm *newtime;

timer = 1066668182; /* Mon Oct 20 16:43:02 2003 */

newtime = gmtime (&timer) ;

printf ("UTC time = %s\n", asctime(newtime)) ;
Output:

UTC time = Mon Oct 20 16:43:02 2003

localtime

Description: Converts a value to the local time.

Include: <time.h>

Prototype: struct tm *localtime(const time t *tod);

Argument: tod pointer to stored time

Return Value: Returns the address of the time structure.

Remarks: By default, MPLAB C30 returns the time as instruction cycles. With this
default localtime and gmtime will be equivalent except localtime
will return tm_isdst (Daylight Savings Time flag) as -1 to indicate that
the status of Daylight Savings Time is not known.

Example: #include <time.h> /* for localtime, */

/* asctime, time t, tm */
#include <stdio.h> /* for printf */

int main(void)

time t timer;

struct tm *newtime;

timer = 1066668182; /* Mon Oct 20 16:43:02 2003 */

newtime = localtime (&timer) ;

printf ("Local time = %s\n", asctime (newtime)) ;
Output:

Local time = Mon Oct 20 16:43:02 2003

© 2007 Microchip Technology Inc. DS51456D-page 211

16-Bit Language Tools Libraries

mktime

Description: Converts local time to a calendar value.
Include: <time.h>

Prototype: time t mktime (struct tm *tptr);
Argument: tptr a pointer to the time structure

Return Value:

Returns the calendar time encoded as a value of time t.

Remarks: If the calendar time cannot be represented, the function returns -1, cast
asatime t(i.e.(time_t)-1).
Example: #include <time.h> /* for localtime, */
/* asctime, mktime, */
/* time_t, tm */
#include <stdio.h> /* for printf */
int main(void)
{
time t timer, whattime;
struct tm *newtime;
timer = 1066668182; /* Mon Oct 20 16:43:02 2003 */
/* localtime allocates space for struct tm */
newtime = localtime (&timer) ;
printf ("Local time = %s", asctime (newtime)) ;
whattime = mktime (newtime) ;
printf ("Calendar time as time t = %$1d\n",
whattime) ;
}
Output:
Local time = Mon Oct 20 16:43:02 2003
Calendar time as time t = 1066668182
strftime
Description: Formats the time structure to a string based on the format parameter.
Include: <time.h>
Prototype: size t strftime(char *s, size_t n,
const char *format, const struct tm *tptr);
Arguments: s output string
n maximum length of string
format format-control string
tptr pointer to tm data structure

Return Value:

Remarks:

Returns the number of characters placed in the array s if the total
including the terminating null is not greater than n. Otherwise, the func-
tion returns 0 and the contents of array s are indeterminate.

The format parameters follow:

%a abbreviated weekday name

%A full weekday name

%Db abbreviated month name

%B full month name

%c appropriate date and time representation
%d day of the month (01-31)

%H hour of the day (00-23)

DS51456D-page 212

© 2007 Microchip Technology Inc.

Standard C Libraries with Math Functions

strftime (Continued)

Example:

%I hour of the day (01-12)

%j day of the year (001-366)
%m month of the year (01-12)
%M minute of the hour (00-59)
%p AM/PM designator

%S second of the minute (00-61)
allowing for up to two leap seconds

%U week number of the year where Sunday is the first day of week 1
(00-53)

%w weekday where Sunday is day 0 (0-6)

%W week number of the year where Monday is the first day of week 1
(00-53)

%x appropriate date representation

%X appropriate time representation

%y year without century (00-99)

%Y year with century

%Z time zone (possibly abbreviated) or no characters if time zone is
unavailable

%% percent character %

#include <time.h> /* for strftime, */

/* localtime, */
/* time_t, tm */
#include <stdio.h> /* for printf */

int main(void)
time t timer, whattime;
struct tm *newtime;
char buf[128];

timer = 1066668182; /* Mon Oct 20 16:43:02 2003 */
/* localtime allocates space for structure */
newtime = localtime (&timer) ;

strftime (buf, 128, "It was a %A, %d days into the "
"month of %B in the year %Y.\n", newtime) ;
printf (buf) ;

strftime (buf, 128, "It was %W weeks into the year "
"or %j days into the year.\n", newtime) ;
printf (buf) ;

}

Output:

It was a Monday, 20 days into the month of October in
the year 2003.

It was 42 weeks into the year or 293 days into the
year.

© 2007 Microchip Technology Inc.

DS51456D-page 213

16-Bit Language Tools Libraries

time

Description:
Include:
Prototype:
Argument:

Return Value:

Remarks:

Example:

Calculates the current calendar time.

<time.h>

time t time(time t *tod) ;

tod pointer to storage location for time

Returns the calendar time encoded as a value of time t.

If the target environment cannot determine the time, the function
returns -1, cast as a time_t. By default, MPLAB C30 returns the time
as instruction cycles. This function is customizable. See pic30-1ibs.

#include <time.h> /* for time */
#include <stdio.h> /* for printf */

volatile int 1i;

int main(void)

{

time t ticks;

time (0); /* start time */

for (i = 0; 1 < 10; i+4+) /* waste time */
time (&ticks); /* get time */

printf ("Time = %$1d\n", ticks);

}

Output:
Time = 256

DS51456D-page 214

© 2007 Microchip Technology Inc.

Standard C Libraries with Math Functions

3.17 <MATH.H> MATHEMATICAL FUNCTIONS

The header file math.h consists of a macro and various functions that calculate com-
mon mathematical operations. Error conditions may be handled with a domain error or
range error (see errno.h).

A domain error occurs when the input argument is outside the domain over which the
function is defined. The error is reported by storing the value of EpoM™ in errno and
returning a particular value defined for each function.

A range error occurs when the result is too large or too small to be represented in the
target precision. The error is reported by storing the value of ERANGE in errno and
returning HUGE_VAL if the result overflowed (return value was too large) or a zero if the
result underflowed (return value is too small).

Responses to special values, such as NaNs, zeros, and infinities, may vary depending
upon the function. Each function description includes a definition of the function's
response to such values.

HUGE_VAL

Description: HUGE_VAL is returned by a function on a range error (e.g., the function
tries to return a value too large to be represented in the target preci-
sion).

Include: <math.h>

Remarks: -HUGE_VAL is returned if a function result is negative and is too large
(in magnitude) to be represented in the target precision. When the
printed resultis +/- HUGE_VAL, it will be represented by +/- inf.

acos

Description: Calculates the trigonometric arc cosine function of a double precision
floating-point value.

Include: <math.h>

Prototype: double acos (double x);

Argument: X value between -1 and 1 for which to return the arc cosine

Return Value:

Returns the arc cosine in radians in the range of 0 to pi (inclusive).

Remarks: A domain error occurs if x is less than -1 or greater than 1.
Example: #include <math.h> /* for acos */
#include <stdio.h> /* for printf, perror */
#include <errno.h> /* for errno */

int main(void)

{

double x,y;

errno = 0;
X = -2.0;
y = acos (x);
if (errno)
perror ("Error") ;
printf ("The arccosine of %f is %f\n\n", x, v);

© 2007 Microchip Technology Inc.

DS51456D-page 215

16-Bit Language Tools Libraries

acos (Continued)

errno = 0;
x = 0.10;
y = acos (x);
if (errno)
perror ("Error") ;
printf ("The arccosine of %f is %f\n\n", x, v);

Output:
Error: domain error
The arccosine of -2.000000 is nan

The arccosine of 0.100000 is 1.470629

acosf

Description: Calculates the trigonometric arc cosine function of a single precision
floating-point value.

Include: <math.h>

Prototype: float acosf (float x);

Argument: x value between -1 and 1

Return Value: Returns the arc cosine in radians in the range of 0 to pi (inclusive).

Remarks: A domain error occurs if x is less than -1 or greater than 1.

Example: #include <math.h> /* for acosf */
#include <stdio.h> /* for printf, perror */
#include <errno.hs> /* for errno */

int main(void)

{

float x, y;

errno = 0;
x = 2.0F;
y = acosf (x);
if (errno)
perror ("Error") ;
printf ("The arccosine of %f is %f\n\n", x, v);

errno = 0;
x = 0.0F;
y = acosf (x);
if (errno)
perror ("Erroxr") ;
printf ("The arccosine of %f is %f\n", x, y);

Output:
Error: domain error
The arccosine of 2.000000 is nan

The arccosine of 0.000000 is 1.570796

DS51456D-page 216

© 2007 Microchip Technology Inc.

Standard C Libraries with Math Functions

asin

Description: Calculates the trigonometric arc sine function of a double precision
floating-point value.

Include: <math.h>

Prototype: double asin (double x);

Argument: X value between -1 and 1 for which to return the arc sine

Return Value:

Returns the arc sine in radians in the range of -pi/2 to +pi/2 (inclusive).

Remarks: A domain error occurs if x is less than -1 or greater than 1.
Example: #include <math.h> /* for asin */
#include <stdio.h> /* for printf, perror */
#include <errno.h> /* for errno */
int main(void)
{
double x, vy;
errno = 0;
X = 2.0;
y = asin (x);
if (errno)
perror ("Error") ;
printf ("The arcsine of %f is %f\n\n", x, v);
errno = 0;
x = 0.0;
y = asin (x);
if (errno)
perror ("Error") ;
printf ("The arcsine of %$f is %f\n\n", x, v);
}
Output:
Error: domain error
The arcsine of 2.000000 is nan
The arcsine of 0.000000 is 0.000000
asinf
Description: Calculates the trigopnometric arc sine function of a single precision float-
ing-point value.
Include: <math.h>
Prototype: float asinf (float x);
Argument: x value between -1 and 1
Return Value: Returns the arc sine in radians in the range of -pi/2 to +pi/2 (inclusive).
Remarks: A domain error occurs if x is less than -1 or greater than 1.
Example: #include <math.h> /* for asinf */
#include <stdio.h> /* for printf, perror */
#include <errno.hs> /* for errno */

int main(void)

{

float x, y;

© 2007 Microchip Technology Inc.

DS51456D-page 217

16-Bit Language Tools Libraries

asinf (Continued)

errno = 0;
X = 2.0F;
y = asinf (x);
if (errno)
perror ("Error") ;
printf ("The arcsine of %$f is %f\n\n", x, v);

errno = 0;
x = 0.0F;
y = asinf (x);
if (errno)
perror ("Erroxr") ;
printf ("The arcsine of %$f is %f\n\n", x, v);

Output:
Error: domain error
The arcsine of 2.000000 is nan

The arcsine of 0.000000 is 0.000000

atan

Description: Calculates the trigonometric arc tangent function of a double precision
floating-point value.

Include: <math.h>

Prototype: double atan (double x);

Argument: x value for which to return the arc tangent

Return Value: Returns the arc tangent in radians in the range of -pi/2 to +pi/2 (inclu-
sive).

Remarks: No domain or range error will occur.

Example: #include <math.h> /* for atan */

#include <stdio.h> /* for printf */

int main(void)

{

double x, vy;

X = 2.0;
y = atan (x);
printf ("The arctangent of %f is %f\n\n", x, y);

x = -1.0;

y = atan (x);

printf ("The arctangent of %f is %f\n\n", x, y);
}
Output:
The arctangent of 2.000000 is 1.107149

The arctangent of -1.000000 is -0.785398

DS51456D-page 218 © 2007 Microchip Technology Inc.

Standard C Libraries with Math Functions

atanf

Description: Calculates the trigonometric arc tangent function of a single precision
floating-point value.

Include: <math.h>

Prototype: float atanf (float x);

Argument: x value for which to return the arc tangent

Return Value:

Returns the arc tangent in radians in the range of -pi/2 to +pi/2 (inclu-
sive).

Remarks: No domain or range error will occur.
Example: #include <math.h> /* for atanf */
#include <stdio.h> /* for printf */
int main(void)
{
float x, y;
x = 2.0F;
y = atanf (x);
printf ("The arctangent of %f is %f\n\n", x, y);
x = -1.0F;
y = atanf (x);
printf ("The arctangent of %f is %f\n\n", x, y);
}
Output:
The arctangent of 2.000000 is 1.107149
The arctangent of -1.000000 is -0.785398
atan2
Description: Calculates the trigonometric arc tangent function of y/x.
Include: <math.h>
Prototype: double atan2 (double y, double x);
Arguments: v y value for which to return the arc tangent
x x value for which to return the arc tangent

Return Value:

Remarks:

Example:

Returns the arc tangent in radians in the range of -pi to pi (inclusive)
with the quadrant determined by the signs of both parameters.

A domain error occurs if both x and y are zero or both x and y are
+/- infinity.

#include <math.h> /* for atan2 */
#include <stdio.h> /* for printf, perror */
#include <errno.h> /* for errno */

int main(void)

{

double x, vy, 2Z;

© 2007 Microchip Technology Inc.

DS51456D-page 219

16-Bit Language Tools Libraries

atan2 (Continued)

errno = 0;

X = 0.0;

y = 2.0;

z = atan2(y, x);

if (errno)
perror ("Error") ;
printf ("The arctangent of %f/%f is %f\n\n",

Y, X, Z);
errno = 0;
X = -1.0;
y = 0.0;
z = atan2(y, x);

if (errno)
perror ("Error") ;
printf ("The arctangent of %f/%f is %f\n\n",

Y, X, Z);
errno = 0;
X = 0.0;
y = 0.0;
z = atan2(y, x);

if (errno)
perror ("Error") ;
printf ("The arctangent of %f/%f is %f\n\n",
Y, X, Z);

Output:
The arctangent of 2.000000/0.000000 is 1.570796

The arctangent of 0.000000/-1.000000 is 3.141593

Error: domain error
The arctangent of 0.000000/0.000000 is nan

DS51456D-page 220

© 2007 Microchip Technology Inc.

Standard C Libraries with Math Functions

atan2f

Description:
Include:
Prototype:
Arguments:

Return Value:

Remarks:

Example:

Calculates the trigonometric arc tangent function of y/x.

<math.h>

float atan2f (float y, float x);

v y value for which to return the arc tangent
x x value for which to return the arc tangent

Returns the arc tangent in radians in the range of -pi to pi with the
qguadrant determined by the signs of both parameters.

A domain error occurs if both x and y are zero or both x and y are
+/- infinity.

#include <math.h> /* for atan2f */
#include <stdio.h> /* for printf, perror */
#include <errno.h> /* for errno */

int main(void)

{

float %, y, z;

errno = 0;
x = 2.0F;
y = 0.0F;

z atan2f (y, x);
if (errno)
perror ("Erroxr") ;
printf ("The arctangent of %f/%f is %f\n\n",

Y, X, Z);
errno = 0;
x = 0.0F;
y = -1.0F;

P atan2f (y, x);
if (errno)
perror ("Error") ;
printf ("The arctangent of %f/%f is %f\n\n",

Y, X, Z);
errno = 0;
x = 0.0F;
y = 0.0F;
z = atan2f (y, x);

if (errno)
perror ("Error") ;
printf ("The arctangent of %f/%f is %f\n\n",
Y, X, Z);

Output:
The arctangent of 2.000000/0.000000 is 1.570796

The arctangent of 0.000000/-1.000000 is 3.141593

Error: domain error
The arctangent of 0.000000/0.000000 is nan

© 2007 Microchip Technology Inc.

DS51456D-page 221

16-Bit Language Tools Libraries

ceil

Description: Calculates the ceiling of a value.

Include: <math.h>

Prototype: double ceil (double x);

Argument: X a floating-point value for which to return the ceiling.
Return Value: Returns the smallest integer value greater than or equal to x.
Remarks: No domain or range error will occur. See floor.

Example: #include <math.h> /* for ceil */

#include <stdio.h> /* for printf */

int main(void)
double x[8] = {2.0, 1.75, 1.5, 1.25, -2.0,
-1.75, -1.5, -1.25};
double y;
int 1i;

for (i=0; 1<8; i++)
{
y = ceil (xI[i]l);
printf ("The ceiling for %f is %f\n", x[i], v);

} }

Output:

The ceiling for 2.000000 is 2.000000
The ceiling for 1.750000 is 2.000000
The ceiling for 1.500000 is 2.000000
The ceiling for 1.250000 is 2.000000

The ceiling for -2.000000 is -2.000000
The ceiling for -1.750000 is -1.000000
The ceiling for -1.500000 is -1.000000
The ceiling for -1.250000 is -1.000000

DS51456D-page 222 © 2007 Microchip Technology Inc.

Standard C Libraries with Math Functions

ceilf

Description: Calculates the ceiling of a value.
Include: <math.h>

Prototype: float ceilf (float x);
Argument: X floating-point value.

Return Value:

Returns the smallest integer value greater than or equal to x.

Remarks: No domain or range error will occur. See floorf.
Example: #include <math.h> /* for ceilf */
#include <stdio.h> /* for printf */
int main(void)
{
float x[8] = {2.0F, 1.75F, 1.5F, 1.25F,
-2.0F, -1.75F, -1.5F, -1.25F};
float vy;
int 1i;
for (i=0; 1<8; i++)
{
y = ceilf (x[il]);
printf ("The ceiling for %f is %f\n", x[i], v);
}
}
Output:
The ceiling for 2.000000 is 2.000000
The ceiling for 1.750000 is 2.000000
The ceiling for 1.500000 is 2.000000
The ceiling for 1.250000 is 2.000000
The ceiling for -2.000000 is -2.000000
The ceiling for -1.750000 is -1.000000
The ceiling for -1.500000 is -1.000000
The ceiling for -1.250000 is -1.000000
COS
Description: Calculates the trigonometric cosine function of a double precision float-
ing-point value.
Include: <math.h>
Prototype: double cos (double x);
Argument: x value for which to return the cosine
Return Value: Returns the cosine of x in radians in the ranges of -1 to 1 inclusive.
Remarks: A domain error will occur if x is a NaN or infinity.
Example: #include <math.h> /* for cos */
#include <stdio.h> /* for printf, perror */
#include <errno.hs> /* for errno */

int main(void)

{

double x,y;

© 2007 Microchip Technology Inc.

DS51456D-page 223

16-Bit Language Tools Libraries

cos (Continued)

errno = 0;
X = -1.0;
y = cos (x);

if (errno)
perror ("Error") ;

printf ("The cosine of %f is %f\n\n", x, vy);

errno = 0;
x = 0.0;
y = cos (x);

if (errno)
perror ("Erroxr") ;

printf ("The cosine of %f is %f\n\n", x, Vv);

Output:

The cosine of

-1.000000 is 0.540302

The cosine of 0.000000 is 1.000000

cosf

Description: Calculates the trigonometric cosine function of a single precision float-
ing-point value.

Include: <math.h>

Prototype: float cosf (float x);

Argument: X value for which to return the cosine

Return Value:
Remarks:
Example:

Returns the cosine of x in radians in the ranges of -1 to 1 inclusive.

/* for cosf

A domain error will occur if x is a NaN or infinity.

#include <math.h>

*/

#include <stdio.h> /* for printf, perror */
#include <errno.hs> /* for errno */

int main(void)

{

float x, y;

errno = 0;
X = -1.0F;
y = cosf (x);
if (errno)
perror ("Error") ;

printf ("The cosine of %f is %f\n\n", x, vy);

errno = 0;
x = 0.0F;
y = cosf (x);

if (errno)
perror ("Erroxr") ;

printf ("The cosine of %f is %f\n\n", x, vy);

DS51456D-page 224

© 2007 Microchip Technology Inc.

Standard C Libraries with Math Functions

cosf (Continued)

Output:
The cosine of -1.000000 is 0.540302

The cosine of 0.000000 is 1.000000

cosh

Description:

Include:
Prototype:
Argument:

Return Value:

Remarks:
Example:

Calculates the hyperbolic cosine function of a double precision float-
ing-point value.

<math.h>

double cosh (double x);

x value for which to return the hyperbolic cosine
Returns the hyperbolic cosine of x

A range error will occur if the magnitude of x is too large.

#include <math.h> /* for cosh */
#include <stdio.h> /* for printf, perror */
#include <errno.h> /* for errno */

int main(void)

{

double x, vy;

errno = 0;
x = -1.5;
y = cosh (x);
if (errno)
perror ("Erroxr") ;
printf ("The hyperbolic cosine of %f is %$f\n\n",
X, Y)i

errno = 0;
x = 0.0;
y = cosh (x);
if (errno)
perror ("Erroxr") ;
printf ("The hyperbolic cosine of %f is %f\n\n",

X, Y)i
errno = 0;
x = 720.0;

y = cosh (x);
if (errno)
perror ("Erroxr") ;
printf ("The hyperbolic cosine of %f is %f\n\n",
X, ¥Y)i

Output:
The hyperbolic cosine of -1.500000 is 2.352410
The hyperbolic cosine of 0.000000 is 1.000000

Error: range error
The hyperbolic cosine of 720.000000 is inf

© 2007 Microchip Technology Inc.

DS51456D-page 225

16-Bit Language Tools Libraries

coshf

Description: Calculates the hyperbolic cosine function of a single precision float-
ing-point value.

Include: <math.h>

Prototype: float coshf (float x);

Argument: x value for which to return the hyperbolic cosine

Return Value: Returns the hyperbolic cosine of x

Remarks: A range error will occur if the magnitude of x is too large.

Example: #include <math.h> /* for coshf */
#include <stdio.h> /* for printf, perror */
#include <errno.hs> /* for errno */

int main(void)

{

float x, y;

errno = 0;
x = -1.0F;
y = coshf (x);
if (errno)
perror ("Erroxr") ;
printf ("The hyperbolic
X, ¥Y)i

errno = 0;
x = 0.0F;
y = coshf (x);
if (errno)
perror ("Erroxr") ;
printf ("The hyperbolic
X, ¥Y)i

errno = 0;
X = 720.0F;
y = coshf (x);
if (errno)
perror ("Erroxr") ;
printf ("The hyperbolic
X, ¥Y)i

Output:
The hyperbolic cosine of
The hyperbolic cosine of

Error: range error
The hyperbolic cosine of

cosine of %f is %f\n\n",

cosine of %$f is %f\n\n",

cosine of %$f is %f\n\n",

-1.000000 is 1.543081

0.000000 is 1.000000

720.000000 is inf

DS51456D-page 226

© 2007 Microchip Technology Inc.

Standard C Libraries with Math Functions

exp

Description:

Include:
Prototype:
Argument:

Return Value:

Remarks:
Example:

Calculates the exponential function of x (e raised to the power x where
x is a double precision floating-point value).

<math.h>
double exp (double x);
x value for which to return the exponential

Returns the exponential of x. On an overflow, exp returns inf and on
an underflow exp returns 0.

A range error occurs if the magnitude of x is too large.

#include <math.h> /* for exp */
#include <stdio.h> /* for printf, perror */
#include <errno.hs> /* for errno */

int main(void)

{

double x, vy;

errno = 0;
X = 1.0;
y = exp (x);

if (errno)
perror ("Error") ;
printf ("The exponential of $f is %f\n\n", x, v);

errno = 0;
x = 1E3;
y = exp (x);
if (errno)
perror ("Error") ;
printf ("The exponential of %f is %$f\n\n", x, y);

errno = 0;
x = -1E3;
y = exp (x);

if (errno)
perror ("Error") ;
printf ("The exponential of $f is %f\n\n", x, v);

}

Output:
The exponential of 1.000000 is 2.718282

Error: range error
The exponential of 1000.000000 is inf

Error: range error
The exponential of -1000.000000 is 0.000000

© 2007 Microchip Technology Inc.

DS51456D-page 227

16-Bit Language Tools Libraries

expf

Description: Calculates the exponential function of x (e raised to the power x where
x is a single precision floating-point value).

Include: <math.h>

Prototype: float expf (float x);

Argument: X floating-point value for which to return the exponential

Return Value:

Remarks:
Example:

Returns the exponential of x. On an overflow, expf returns inf and on
an underflow exp returns 0.

A range error occurs if the magnitude of x is too large.

#include <math.h> /* for expf */
#include <stdio.h> /* for printf, perror */
#include <errno.h> /* for errno */

int main(void)

{

float x, y;

errno = 0;
x = 1.0F;
y = expf (x);
if (errno)
perror ("Error") ;
printf ("The exponential of $f is %f\n\n", x, v);

errno = 0;
X = 1.0E3F;
y = expf (x);
if (errno)
perror ("Error") ;
printf ("The exponential of %f is $f\n\n", x, y);

errno = 0;
x = -1.0E3F;
y = expf (x);
if (errno)
perror ("Erroxr") ;
printf ("The exponential of $f is %f\n\n", x, v);

}

Output:
The exponential of 1.000000 is 2.718282

Error: range error
The exponential of 1000.000000 is inf

Error: range error
The exponential of -1000.000000 is 0.000000

DS51456D-page 228

© 2007 Microchip Technology Inc.

Standard C Libraries with Math Functions

fabs

Description: Calculates the absolute value of a double precision floating-point value.
Include: <math.h>

Prototype: double fabs (double x);

Argument: X floating-point value for which to return the absolute value

Return Value:

Returns the absolute value of x. (A negative number is returned as
positive, a positive number is unchanged.)

Remarks: No domain or range error will occur.
Example: #include <math.h> /* for fabs */
#include <stdio.h> /* for printf */
int main(void)
{
double x, vy;
x = 1.75;
y = fabs (x);
printf ("The absolute value of %f is %f\n", x, vy);
X = -1.5;
y = fabs (x);
printf ("The absolute value of %f is %f\n", x, v);
}
Output:
The absolute value of 1.750000 is 1.750000
The absolute value of -1.500000 is 1.500000
fabsf
Description: Calculates the absolute value of a single precision floating-point value.
Include: <math.h>
Prototype: float fabsf (float x);
Argument: x floating-point value for which to return the absolute value

Return Value:

Remarks:
Example:

Returns the absolute value of x. (A negative number is returned as
positive, a positive number is unchanged.)

No domain or range error will occur.

#include <math.h> /* for fabsf */
#include <stdio.h> /* for printf */

int main(void)

{

float x,vy;

x = 1.75F;
y = fabsf (x);
printf ("The absolute value of %f is %f\n", x, y);

X = -1.5F;
y = fabsf (x);
printf ("The absolute value of %f is %f\n", x, v);

}

Output:
The absolute value of 1.750000 is 1.750000
The absolute value of -1.500000 is 1.500000

© 2007 Microchip Technology Inc.

DS51456D-page 229

16-Bit Language Tools Libraries

floor

Description: Calculates the floor of a double precision floating-point value.
Include: <math.h>

Prototype: double floor (double x);

Argument: X floating-point value for which to return the floor.

Return Value:

Returns the largest integer value less than or equal to x.

Remarks: No domain or range error will occur. See ceil.
Example: #include <math.h> /* for floor */
#include <stdio.h> /* for printf */
int main(void)
{
double x[8] = {2.0, 1.75, 1.5, 1.25, -2.0,
-1.75, -1.5, -1.25};
double vy;
int 1i;
for (i=0; 1<8; i++)
{
y = floor (x[il);
printf ("The ceiling for %f is %f\n", x[i], v);
}
}
Output:
The floor for 2.000000 is 2.000000
The floor for 1.750000 is 1.000000
The floor for 1.500000 is 1.000000
The floor for 1.250000 is 1.000000
The floor for -2.000000 is -2.000000
The floor for -1.750000 is -2.000000
The floor for -1.500000 is -2.000000
The floor for -1.250000 is -2.000000
floorf
Description: Calculates the floor of a single precision floating-point value.
Include: <math.h>
Prototype: float floorf (float x);
Argument: x floating-point value.

Return Value:

Remarks:

Returns the largest integer value less than or equal to x.
No domain or range error will occur. See ceilf.

DS51456D-page 230

© 2007 Microchip Technology Inc.

Standard C Libraries with Math Functions

floorf (Continued)

Example: #include <math.h> /* for floorf */
#include <stdio.h> /* for printf */

int main(void)
float x[8] = {2.0F, 1.75F, 1.5F, 1.25F,
-2.0F, -1.75F, -1.5F, —1.25F};
float vy;
int 1i;

for (i=0; 1<8; i++)
{
y = floorf (x[i]);
printf ("The floor for %f is %f\n", xI[il, vy);

} }

Output:

The floor for 2.000000 is 2.000000
The floor for 1.750000 is 1.000000
The floor for 1.500000 is 1.000000
The floor for 1.250000 is 1.000000

The floor for -2.000000 is -2.000000
The floor for -1.750000 is -2.000000
The floor for -1.500000 is -2.000000
The floor for -1.250000 is -2.000000

fmod

Description: Calculates the remainder of x/y as a double precision value.

Include: <math.h>

Prototype: double fmod (double x, double y);

Arguments: x a double precision floating-point value.
v a double precision floating-point value.

Return Value: Returns the remainder of x divided by y.

Remarks: If y =0, a domain error occurs. If yis non-zero, the result will have the
same sign as x and the magnitude of the result will be less than the
magnitude of y.

Example: #include <math.h> /* for fmod */
#include <stdio.h> /* for printf, perror */
#include <errno.h> /* for errno */

int main(void)

{

double x,vy,z;

errno = 0;
X = 7.0;
y = 3.0;
z = fmod (x, Vy);
if (errno)
perror ("Erroxr") ;
printf ("For fmod (%f, %f) the remainder is %f\n\n",
X, YV, 2);

© 2007 Microchip Technology Inc. DS51456D-page 231

16-Bit Language Tools Libraries

fmod (Continued)

errno = 0;
X = 7.0;
y = 7.0;

z = fmod(x, vy);
if (errno)
perror ("Error") ;
printf ("For fmod(%f, %f) the remainder is %f\n\n",
X, Y, 2);

errno = 0;
X = -5.0;
y = 3.0;
z = fmod(x, vy);
if (errno)
perror ("Error") ;
printf ("For fmod(%f, %f) the remainder is %f\n\n",

X, Y, Z);
errno = 0;
X = 5.0;
y = -3.0;

z = fmod(x, vy);
if (errno)
perror ("Error") ;
printf ("For fmod(%f, %f) the remainder is %f\n\n",

X, Y, Z);
errno = 0;
X = -5.0;
y = -5.0;

z = fmod(x, vy);
if (errno)
perror ("Error") ;
printf ("For fmod(%f, %f) the remainder is %f\n\n",

X, Y, Z);
errno = 0;
X = 7.0;
y = 0.0;

z = fmod(x, vy);
if (errno)
perror ("Error") ;
printf ("For fmod(%f, %f) the remainder is %f\n\n",
X, Y, 2);

DS51456D-page 232 © 2007 Microchip Technology Inc.

Standard C Libraries with Math Functions

fmod (Continued)

Output:
For fmod(7.000000, 3.000000) the remainder is
1.000000

For fmod(7.000000, 7.000000) the remainder is
0.000000

For fmod(-5.000000, 3.000000) the remainder is
-2.000000

For fmod(5.000000, -3.000000) the remainder is
2.000000

For fmod(-5.000000, -5.000000) the remainder is
-0.000000

Error: domain error
For fmod(7.000000, 0.000000) the remainder is nan

fmodf

Description:
Include:
Prototype:
Arguments:

Return Value:

Remarks:

Example:

Calculates the remainder of x/y as a single precision value.
<math.h>

float fmodf (float x, float y);

x a single precision floating-point value

v a single precision floating-point value

Returns the remainder of x divided by y.

If y =0, a domain error occurs. If yis non-zero, the result will have the
same sign as x and the magnitude of the result will be less than the
magnitude of y.

#include <math.h> /* for fmodf */
#include <stdio.h> /* for printf, perror */
#include <errno.h> /* for errno */

int main(void)

{

float x,v,z;

errno = 0;
x = 7.0F;
vy = 3.0F;
z = fmodf (x, y);
if (errno)
perror ("Erroxr") ;
printf ("For fmodf (%f, %f) the remainder is"
" $f\n\n", x, vy, 2z);

errno = 0;
x = -5.0F;
y = 3.0F;

z = fmodf (x, y);
if (errno)
perror ("Erroxr") ;
printf ("For fmodf (%f, %f) the remainder is"
" $f\n\n", x, v, 2);

© 2007 Microchip Technology Inc.

DS51456D-page 233

16-Bit Language Tools Libraries

fmodf (Continued)

errno = 0;
x = 5.0F;
y = -3.0F;
z = fmodf (x, vy);
if (errno)
perror ("Error") ;
printf ("For fmodf (%f, %f) the remainder is"
" $f\n\n", x, y, 2z);
errno = 0;
x = 5.0F;
y = -5.0F;
z = fmodf (x, vy);
if (errno)
perror ("Error") ;
printf ("For fmodf (%f, %f) the remainder is"
" $f\n\n", x, y, 2);
errno = 0;
X = 7.0F;
y = 0.0F;
z = fmodf (x, Vy);
if (errno)
perror ("Error") ;
printf ("For fmodf (%f, %f) the remainder is"
" $f\n\n", x, y, 2z);
errno = 0;
x = 7.0F;
y = 7.0F;
z = fmodf (x, Vy);
if (errno)
perror ("Error") ;
printf ("For fmodf (%f, %f) the remainder is"
" $f\n\n", x, y, z);
!
Output:
For fmodf (7.000000, 3.000000) the remainder is
1.000000
For fmodf (-5.000000, 3.000000) the remainder is
-2.000000
For fmodf (5.000000, -3.000000) the remainder is
2.000000
For fmodf (5.000000, -5.000000) the remainder is
0.000000
Error: domain error
For fmodf (7.000000, 0.000000) the remainder is nan
For fmodf (7.000000, 7.000000) the remainder is
0.000000

DS51456D-page 234

© 2007 Microchip Technology Inc.

Standard C Libraries with Math Functions

frexp

Description:

Include:
Prototype:
Arguments:

Return Value:

Remarks:

Example:

Gets the fraction and the exponent of a double precision floating-point
number.

<math.h>

double frexp (double x, int *exp) ;

x floating-point value for which to return the fraction and exponent
exp pointer to a stored integer exponent

Returns the fraction, exp points to the exponent. If x is 0, the function
returns 0O for both the fraction and exponent.

The absolute value of the fraction is in the range of 1/2 (inclusive) to 1
(exclusive). No domain or range error will occur.

#include <math.h> /* for frexp */
#include <stdio.h> /* for printf */

int main(void)
{
double x,vy;
int n;

x = 50.0;

y = frexp (x, &n);

printf ("For frexp of %f\n the fraction is %f\n ",
X, V)i

printf (" and the exponent is %d\n\n", n);

X = -2.5;

y = frexp (x, &n);

printf ("For frexp of %f\n the fraction is %f\n ",
X, Y)i

printf (" and the exponent is %d\n\n", n);

x = 0.0;

y = frexp (x, &n);

printf ("For frexp of %f\n the fraction is %f\n ",
X, V)i

printf (" and the exponent is %d\n\n", n);

Output:

For frexp of 50.000000
the fraction is 0.781250
and the exponent is 6

For frexp of -2.500000
the fraction is -0.625000
and the exponent is 2

For frexp of 0.000000
the fraction is 0.000000
and the exponent is 0

© 2007 Microchip Technology Inc.

DS51456D-page 235

16-Bit Language Tools Libraries

frexpf

Description: Gets the fraction and the exponent of a single precision floating-point
number.

Include: <math.h>

Prototype: float frexpf (float x, int *exp);

Arguments: x floating-point value for which to return the fraction and exponent

Return Value:

Remarks:

Example:

exp pointer to a stored integer exponent

Returns the fraction, exp points to the exponent. If x is 0, the function
returns 0O for both the fraction and exponent.

The absolute value of the fraction is in the range of 1/2 (inclusive) to 1
(exclusive). No domain or range error will occur.

#include <math.h>

/* for frexpf */

#include <stdio.h> /* for printf */

int main(void)

{

float x,vy;
int n;

x = 0.15F;

y = frexpf (x, &n);

printf ("For frexpf of %f\n
X, Y)i

printf (" and the exponent

X = -2.5F;

y = frexpf (x, &n);

printf ("For frexpf of %f\n
X, Y)i

printf (" and the exponent

x = 0.0F;

y = frexpf (x, &n);

printf ("For frexpf of %f\n
X, V)i

printf (" and the exponent

Output:
For frexpf of 0.150000

the fraction is 0.600000
and the exponent is -2

For frexpf of -2.500000

the fraction is -0.625000
and the exponent is 2

For frexpf of 0.000000

the fraction is 0.000000
and the exponent is 0

the fraction is %f\n ",

is %d\n\n", n);

the fraction is %f\n ",

is %d\n\n", n);

the fraction is %f\n ",

is %d\n\n", n);

DS51456D-page 236

© 2007 Microchip Technology Inc.

Standard C Libraries with Math Functions

Idexp

Description:

Include:
Prototype:
Arguments:

Return Value:

Remarks:
Example:

Calculates the result of a double precision floating-point number multi-
plied by an exponent of 2.

<math.h>

double ldexp (double x, int ex);
x floating-point value

ex integer exponent

Returns x * 2*ex. On an overflow, 1dexp returns inf and on an under-
flow, 1dexp returns 0.

A range error will occur on overflow or underflow.

#include <math.h> /* for ldexp */
#include <stdio.h> /* for printf, perror */
#include <errno.h> /* for errno */

int main(void)
{
double x,y;
int n;

errno = 0;
x = -0.625;
n = 2;
y = ldexp (x, n);
if (errno)
perror ("Error") ;

printf ("For a number = $f and an exponent = %d\n",
X, n);

printf (" 1ldexp(%f, %d4) = %f\n\n",
X, n, v);

errno = 0;

X = 2.5;

n = 3;

y = ldexp (x, n);
if (errno)
perror ("Error") ;

printf ("For a number = %f and an exponent = %d\n",
X, n);

printf (" 1ldexp(%f, %d4) = %f\n\n",
X, n, v);

errno = 0;

x = 15.0;

n = 10000;

y = ldexp (x, n);
if (errno)
perror ("Erroxr") ;

printf ("For a number = %f and an exponent = %d\n",
x, n);

printf (" 1ldexp(%$f, %d) = %f\n\n",
X, n, v);

© 2007 Microchip Technology Inc.

DS51456D-page 237

16-Bit Language Tools Libraries

Idexp (Continued)

Output:
For a number = -0.625000 and an exponent = 2
ldexp(-0.625000, 2) = -2.500000

For a number = 2.500000 and an exponent = 3
ldexp(2.500000, 3) = 20.000000

Error: range error
For a number = 15.000000 and an exponent = 10000
1ldexp (15.000000, 10000) = inf

Idexpf

Description: Calculates the result of a single precision floating-point number multi-
plied by an exponent of 2.

Include: <math.h>

Prototype: float 1ldexpf (float x, int ex);

Arguments: x floating-point value

Return Value:

Remarks:
Example:

ex integer exponent

Returns x * 2"ex. On an overflow, 1dexp returns inf and on an under-
flow, 1dexp returns 0.

A range error will occur on overflow or underflow.

#include <math.h> /* for ldexpf */
#include <stdio.h> /* for printf, perror */
#include <errno.h> /* for errno */

int main(void)

{

float x,vy;
int n;

errno = 0;

x = -0.625F;
n = 2;

y = ldexpf (x, n);
if (errno)
perror ("Error") ;

printf ("For a number = $f and an exponent = %d\n",
X, n);

printf (" 1ldexpf (%f, %d) = $f\n\n",
X, n, v);

errno = 0;

x = 2.5F;

n = 3;

v ldexpf (x, n);
if (errno)
perror ("Error") ;

printf ("For a number = %f and an exponent = %d\n",
X, n);

printf (" 1ldexpf (%f, %d) = $f\n\n",
X, n, v);

DS51456D-page 238

© 2007 Microchip Technology Inc.

Standard C Libraries with Math Functions

Idexpf (Continued)

errno = 0;
x = 15.0F;
n = 10000;

y = ldexpf (x, n);
if (errno)
perror ("Error") ;

printf ("For a number = %f and an exponent = %d\n",
x, n);
printf (" 1ldexpf (%f, %d) = $f\n\n",
X, n, y);
Output:
For a number = -0.625000 and an exponent = 2
ldexpf (-0.625000, 2) = -2.500000
For a number = 2.500000 and an exponent = 3
ldexpf (2.500000, 3) = 20.000000

Error: range error
For a number = 15.000000 and an exponent = 10000
ldexpf (15.000000, 10000) = inf

© 2007 Microchip Technology Inc.

DS51456D-page 239

16-Bit Language Tools Libraries

log

Description: Calculates the natural logarithm of a double precision floating-point
value.

Include: <math.h>

Prototype: double log(double x) ;

Argument: X any positive value for which to return the log

Return Value:

Remarks:
Example:

Returns the natural logarithm of x. -inf is returned if x is 0 and NaN is
returned if x is a negative number.

A domain error occurs if x<0.

#include <math.h> /*
#include <stdio.h> /*
#include <errno.h> /*

int main(void)

{

double x, vy;

errno = 0;
X = 2.0;
y = log (x);

if (errno)
perror ("Error") ;
printf ("The natural

X, ¥Y)i
errno = 0;
X = 0.0;
y = log (x);

if (errno)
perror ("Error") ;
printf ("The natural

X, Y)i
errno = 0;
X = -2.0;
y = log (x);

if (errno)
perror ("Error") ;
printf ("The natural
X, ¥Y)i

Output:
The natural logarithm
The natural logarithm

Error: domain error
The natural logarithm

for log */
for printf, perror */
for errno */

logarithm of %f is %f\n\n",

logarithm of %f is %$f\n\n",

logarithm of %f is %$f\n\n",

of 2.000000 is 0.693147

of 0.000000 is -inf

of -2.000000 is nan

DS51456D-page 240

© 2007 Microchip Technology Inc.

Standard C Libraries with Math Functions

log10

Description:

Include:
Prototype:
Argument:

Return Value:

Remarks:
Example:

Calculates the base-10 logarithm of a double precision floating-point
value.

<math.h>
double loglO (double x);
X any double precision floating-point positive number

Returns the base-10 logarithm of x. -inf is returned if x is 0 and NaN
is returned if x is a negative number.

A domain error occurs if x<0.

#include <math.h> /* for loglO */
#include <stdio.h> /* for printf, perror */
#include <errno.hs> /* for errno */

int main(void)

{
double x, vy;
errno = 0;
X = 2.0;
y = logl0o (x);
if (errno)
perror ("Error") ;
printf ("The base-10 logarithm of %f is %f\n\n",
X, Y)i
errno = 0;
X = 0.0;
y = logl0 (x);
if (errno)
perror ("Error") ;
printf ("The base-10 logarithm of %f is %f\n\n",
X, ¥Y)i
errno = 0;
X = -2.0;
y = logl0 (x);
if (errno)
perror ("Error") ;
printf ("The base-10 logarithm of %f is %f\n\n",
X, ¥Y)i
}
Output:

The base-10 logarithm of 2.000000 is 0.301030
The base-10 logarithm of 0.000000 is -inf

Error: domain error
The base-10 logarithm of -2.000000 is nan

© 2007 Microchip Technology Inc.

DS51456D-page 241

16-Bit Language Tools Libraries

log10f

Description: Calculates the base-10 logarithm of a single precision floating-point
value.

Include: <math.h>

Prototype: float logloOf (float x);

Argument: X any single precision floating-point positive number

Return Value:

Remarks:
Example:

Returns the base-10 logarithm of x. -inf is returned if x is 0 and NaN
is returned if x is a negative number.

A domain error occurs if x<0.

#include <math.h> /* for loglOf */
#include <stdio.h> /* for printf, perror */
#include <errno.hs> /* for errno */

int main(void)

{

float x, y;

errno = 0;
X = 2.0F;
y = loglOf (x) ;
if (errno)
perror ("Error") ;
printf ("The base-10 logarithm of %f is %f\n\n",

X, Y)i
errno = 0;
x = 0.0F;
y = loglof (x) ;

if (errno)
perror ("Error") ;
printf ("The base-10 logarithm of %f is %f\n\n",

X, Y)i
errno = 0;
x = -2.0F;

y = loglof (x) ;
if (errno)
perror ("Error") ;
printf ("The base-10 logarithm of %f is %f\n\n",
X, ¥Y)i
!

Output:
The base-10 logarithm of 2.000000 is 0.301030

Error: domain error
The base-10 logarithm of 0.000000 is -inf

Error: domain error
The base-10 logarithm of -2.000000 is nan

DS51456D-page 242

© 2007 Microchip Technology Inc.

Standard C Libraries with Math Functions

logf

Description:

Include:
Prototype:
Argument:

Return Value:

Remarks:
Example:

Calculates the natural logarithm of a single precision floating-point
value.

<math.h>
float logf (float x);
X any positive value for which to return the log

Returns the natural logarithm of x. -inf is returned if x is 0 and NaN is
returned if x is a negative number.

A domain error occurs if x<0.

#include <math.h> /* for logf */
#include <stdio.h> /* for printf, perror */
#include <errno.hs> /* for errno */

int main(void)

{

float x, y;

errno = 0;
X = 2.0F;
y = logf (x);
if (errno)
perror ("Error") ;
printf ("The natural logarithm of %f is %f\n\n",

X, Y)i
errno = 0;
x = 0.0F;
y = logf (x);

if (errno)
perror ("Erroxr") ;
printf ("The natural logarithm of %f is %f\n\n",

X, Y)i
errno = 0;
x = -2.0F;

y = logf (x);
if (errno)
perror ("Erroxr") ;
printf ("The natural logarithm of %f is %f\n\n",
X, ¥Y)i

}
Output:
The natural logarithm of 2.000000 is 0.693147

The natural logarithm of 0.000000 is -inf

Error: domain error
The natural logarithm of -2.000000 is nan

© 2007 Microchip Technology Inc.

DS51456D-page 243

16-Bit Language Tools Libraries

modf

Description: Splits a double precision floating-point value into fractional and integer
parts.

Include: <math.h>

Prototype: double modf (double x, double *pint);

Arguments: X double precision floating-point value

Return Value:

Remarks:

Example:

pint pointer to a stored the integer part
Returns the signed fractional part and pint points to the integer part.

The absolute value of the fractional part is in the range of O (inclusive)
to 1 (exclusive). No domain or range error will occur.

#include <math.h> /* for modf */
#include <stdio.h> /* for printf */

int main(void)

{

double x,y,n;

X = 0.707;
y = modf (x, &n);
printf ("For %f the fraction is %f\n ", x, Vy);
printf (" and the integer is %0.f\n\n", n);
x = -15.2121;
y = modf (x, &n);
printf ("For %f the fraction is %f\n ", x, Vv);
printf (" and the integer is %0.f\n\n", n);
}
Output:

For 0.707000 the fraction is 0.707000
and the integer is 0

For -15.212100 the fraction is -0.212100
and the integer is -15

DS51456D-page 244

© 2007 Microchip Technology Inc.

Standard C Libraries with Math Functions

modff

Description:

Include:
Prototype:
Arguments:

Return Value:

Remarks:

Example:

Splits a single precision floating-point value into fractional and integer
parts.

<math.h>

float modff (float x, float *pint);

X single precision floating-point value

pint pointer to stored integer part

Returns the signed fractional part and pint points to the integer part.

The absolute value of the fractional part is in the range of O (inclusive)
to 1 (exclusive). No domain or range error will occur.

#include <math.h> /* for modff */
#include <stdio.h> /* for printf */

int main(void)

{

float x,vy,n;

X = 0.707F;
y = modff (x, é&n);
printf ("For %f the fraction is %f\n ", x, Vy);
printf (" and the integer is %0.f\n\n", n);
X = -15.2121F;
y = modff (x, &n);
printf ("For %f the fraction is %f\n ", x, Vv);
printf (" and the integer is %0.f\n\n", n);
}
Output:

For 0.707000 the fraction is 0.707000
and the integer is 0

For -15.212100 the fraction is -0.212100
and the integer is -15

© 2007 Microchip Technology Inc.

DS51456D-page 245

16-Bit Language Tools Libraries

pow

Description:
Include:
Prototype:
Arguments:

Return Value:

Remarks:

Example:

Calculates x raised to the power y.
<math.h>

double pow (double x, double y);
x the base

v the exponent

Returns x raised to the power y (xy).

If yis 0, pow returns 1. If xis 0.0 and y is less than 0 pow returns inf
and a domain error occurs. If the result overflows or underflows, a
range error occurs.

#include <math.h> /* for pow */
#include <stdio.h> /* for printf, perror */
#include <errno.h> /* for errno */

int main(void)

{

double x,vy,z;

errno = 0;

X = -2.0;

y = 3.0;

z = pow (x, V);

if (errno)
perror ("Error") ;

printf ("$f raised to %f is %f\n\n ", x, vy, 2z);
errno = 0;

x = 3.0;

y = -0.5;

z = pow (x, V);

if (errno)
perror ("Error") ;
printf ("$f raised to %f is %f\n\n ", x, vy, 2z);

errno = 0;
X = 4.0;
y = 0.0;
z = pow (x, V);
if (errno)
perror ("Erroxr") ;

printf ("$f raised to %f is %$f\n\n ", x, y, z);
errno = 0;

x = 0.0;

y = -3.0;

z = pow (X, V);
if (errno)
perror ("Erroxr") ;
printf ("$f raised to %f is %f\n\n ", x, vy, z);

DS51456D-page 246

© 2007 Microchip Technology Inc.

Standard C Libraries with Math Functions

pow (Continued)

Output:
-2.000000 raised to 3.000000 is -8.000000

3.000000 raised to -0.500000 is 0.577350
4.000000 raised to 0.000000 is 1.000000

Error: domain error
0.000000 raised to -3.000000 is inf

powf

Description: Calculates x raised to the power y.

Include: <math.h>

Prototype: float powf (float x, float y);

Arguments: X base
v exponent

Return Value: Returns x raised to the power y (x\y).

Remarks: If yis 0, powf returns 1. If xis 0.0 and y is less than 0 powf returns
inf and a domain error occurs. If the result overflows or underflows, a
range error occurs.

Example: #include <math.h> /* for powf */
#include <stdio.h> /* for printf, perror */
#include <errno.hs> /* for errno */

int main(void)

{

float x,v,2z;

errno = 0;
x = -2.0F;
y = 3.0F;

z = powf (x, Vv);
if (errno)
perror ("Error") ;

printf ("$f raised to %f is $f\n\n ", x, vy, z);
errno = 0;

X = 3.0F;

y = -0.5F;

z = powf (x, Vy);

if (errno)
perror ("Error") ;
printf ("$f raised to %f is %f\n\n ", x, vy, 2z);

errno = 0;
x = 0.0F;
y = -3.0F;
z = powf (x, Vy);
if (errno)
perror ("Error") ;
printf ("$f raised to %f is %f\n\n ", x, vy, 2z);

© 2007 Microchip Technology Inc. DS51456D-page 247

16-Bit Language Tools Libraries

powf (Continued)

Output:
-2.000000 raised to 3.000000 is -8.000000

3.000000 raised to -0.500000 is 0.577350

Error: domain error
0.000000 raised to -3.000000 is inf

sin

Description: Calculates the trigonometric sine function of a double precision float-
ing-point value.

Include: <math.h>

Prototype: double sin (double x);

Argument: X value for which to return the sine

Return Value: Returns the sine of x in radians in the ranges of -1 to 1 inclusive.

Remarks: A domain error will occur if t x is a NaN or infinity.

Example: #include <math.h> /* for sin */
#include <stdio.h> /* for printf, perror */
#include <errno.h> /* for errno */

int main(void)

{

double x, vy;

errno = 0;
X = -1.0;
y = sin (x);
if (errno)
perror ("Error") ;
printf ("The sine of %f is %f\n\n", x, vy);

errno = 0;
X = 0.0;
y = sin (x);
if (errno)
perror ("Error") ;
printf ("The sine of %f is %f\n\n", x, vy);

Output:
The sine of -1.000000 is -0.841471

The sine of 0.000000 is 0.000000

DS51456D-page 248

© 2007 Microchip Technology Inc.

Standard C Libraries with Math Functions

sinf

Description:

Include:
Prototype:
Argument:

Return Value:

Remarks:
Example:

Calculates the trigonometric sine function of a single precision float-
ing-point value.

<math.h>

float sinf (float x);

x value for which to return the sine

Returns the sin of x in radians in the ranges of -1 to 1 inclusive.
A domain error will occur if x is a NaN or infinity.

#include <math.h> /* for sinf */
#include <stdio.h> /* for printf, perror */
#include <errno.hs> /* for errno */

int main(void)

{

float x, y;

errno = 0;
X = -1.0F;
y sinf (x);
if (errno)
perror ("Error") ;
printf ("The sine of %f is %f\n\n", x, vy);

errno = 0;
x = 0.0F;
y sinf (x);
if (errno)
perror ("Error") ;
printf ("The sine of %f is %f\n\n", x, vy);

Output:
The sine of -1.000000 is -0.841471

The sine of 0.000000 is 0.000000

© 2007 Microchip Technology Inc.

DS51456D-page 249

16-Bit Language Tools Libraries

sinh

Description: Calculates the hyperbolic sine function of a double precision float-
ing-point value.

Include: <math.h>

Prototype: double sinh (double x);

Argument: X value for which to return the hyperbolic sine

Return Value: Returns the hyperbolic sine of x

Remarks: A range error will occur if the magnitude of x is too large.

Example: #include <math.h> /* for sinh */
#include <stdio.h> /* for printf, perror */
#include <errno.hs> /* for errno */

int main(void)

{

double x, vy;

errno = 0;
X = -1.5;
y = sinh (x);

if (errno)
perror ("Error") ;
printf ("The hyperbolic sine of %f is %$f\n\n",
X, Y)i

errno = 0;
X = 0.0;
y = sinh (x);
if (errno)
perror ("Error") ;
printf ("The hyperbolic sine of %f is %$f\n\n",

X, Y)i
errno = 0;
x = 720.0;

y = sinh (x);
if (errno)
perror ("Erroxr") ;
printf ("The hyperbolic sine of %f is %$f\n\n",
X, Y)i

Output:
The hyperbolic sine of -1.500000 is -2.129279
The hyperbolic sine of 0.000000 is 0.000000

Error: range error
The hyperbolic sine of 720.000000 is inf

DS51456D-page 250 © 2007 Microchip Technology Inc.

Standard C Libraries with Math Functions

sinhf

Description:

Include:
Prototype:
Argument:

Return Value:

Remarks:
Example:

Calculates the hyperbolic sine function of a single precision float-
ing-point value.

<math.h>

float sinhf (float x);

x value for which to return the hyperbolic sine
Returns the hyperbolic sine of x

A range error will occur if the magnitude of x is too large.

#include <math.h> /* for sinhf */
#include <stdio.h> /* for printf, perror */
#include <errno.h> /* for errno */

int main(void)

{
float x, y;
errno = 0;
X = -1.0F;
y = sinhf (x);
if (errno)
perror ("Error") ;
printf ("The hyperbolic sine of %f is %$f\n\n",
X, Y)i
errno = 0;
x = 0.0F;
y = sinhf (x);
if (errno)
perror ("Error") ;
printf ("The hyperbolic sine of %f is %$f\n\n",
X, ¥Y)i
}
Output:

The hyperbolic sine of -1.000000 is -1.175201

The hyperbolic sine of 0.000000 is 0.000000

© 2007 Microchip Technology Inc.

DS51456D-page 251

16-Bit Language Tools Libraries

sqrt

Description: Calculates the square root of a double precision floating-point value.
Include: <math.h>

Prototype: double sqgrt (double x);

Argument: X a non-negative floating-point value

Return Value: Returns the non-negative square root of x..

Remarks: If x is negative, a domain error occurs.

Example: #include <math.h> /* for sqgrt */

#include <stdio.h> /* for printf, perror */
#include <errno.hs> /* for errno */

int main(void)

{

double x, vy;

errno = 0;
X = 0.0;
y = sgrt (x);
if (errno)
perror ("Error") ;
printf ("The square

errno = 0;
x = 9.5;
y = sqgrt (x);
if (errno)
perror ("Erroxr") ;
printf ("The square

errno = 0;
x = -25.0;
y = sqgrt (x);
if (errno)
perror ("Error") ;
printf ("The square

Output:
The square root of 0.

The square root of 9.

Error: domain error
The square root of -25.000000 is nan

root of %f is %$f\n\n", x, y);

root of %f is %$f\n\n", x, vy);

root of %f is %$f\n\n", x, vy);

000000 is 0.000000

500000 is 3.082207

DS51456D-page 252

© 2007 Microchip Technology Inc.

Standard C Libraries with Math Functions

sqrtf

Description: Calculates the square root of a single precision floating-point value.

Include: <math.h>

Prototype: float sqgrtf (float x);

Argument: X non-negative floating-point value

Return Value: Returns the non-negative square root of x.

Remarks: If x is negative, a domain error occurs.

Example: #include <math.h> /* for sqrtf */
#include <stdio.h> /* for printf, perror */
#include <errno.hs> /* for errno */

int main(void)

{

double x;

errno = 0;
x = sqgrtf (0.0F);
if (errno)
perror ("Erroxr") ;
printf ("The square root of 0.0F is %f\n\n", x);

errno = 0;
x = sqgrtf (9.5F);
if (errno)
perror ("Error") ;
printf ("The square root of 9.5F is %f\n\n", x);

errno = 0;
x = sqgrtf (-25.0F);
if (errno)
perror ("Erroxr") ;
printf ("The square root of -25F is $f\n", x);

Output:
The square root of 0.0F is 0.000000

The square root of 9.5F is 3.082207

Error: domain error
The square root of -25F is nan

© 2007 Microchip Technology Inc. DS51456D-page 253

16-Bit Language Tools Libraries

tan

Description: Calculates the trigonometric tangent function of a double precision
floating-point value.

Include: <math.h>

Prototype: double tan (double x);

Argument: X value for which to return the tangent

Return Value:

Returns the tangent of x in radians.

Remarks: A domain error will occur if x is a NaN or infinity.
Example: #include <math.h> /* for tan */
#include <stdio.h> /* for printf, perror */
#include <errno.hs> /* for errno */
int main(void)
{
double x, vy;
errno = 0;
X = -1.0;
y = tan (x);
if (errno)
perror ("Error") ;
printf ("The tangent of %f is %f\n\n", x, v);
errno = 0;
x = 0.0;
y = tan (x);
if (errno)
perror ("Error") ;
printf ("The tangent of %f is %f\n\n", x, v);
}
Output:
The tangent of -1.000000 is -1.557408
The tangent of 0.000000 is 0.000000
tanf
Description: Calculates the trigonometric tangent function of a single precision float-
ing-point value.
Include: <math.h>
Prototype: float tanf (float x);
Argument: X value for which to return the tangent
Return Value: Returns the tangent of x
Remarks: A domain error will occur if x is a NaN or infinity.
Example: #include <math.h> /* for tanf */
#include <stdio.h> /* for printf, perror */
#include <errno.hs> /* for errno */

int main(void)

{

float x, y;

DS51456D-page 254

© 2007 Microchip Technology Inc.

Standard C Libraries with Math Functions

tanf (Continued)

errno = 0;
X = -1.0F;
y = tanf (x);
if (errno)
perror ("Error") ;
printf ("The tangent of %f is %f\n\n", x, v);

errno = 0;
x = 0.0F;
y = tanf (x);
if (errno)
perror ("Erroxr") ;
printf ("The tangent of %$f is %f\n", x, y);

Output:
The tangent of -1.000000 is -1.557408

The tangent of 0.000000 is 0.000000

tanh

Description:

Include:
Prototype:
Argument:

Return Value:

Remarks:
Example:

Calculates the hyperbolic tangent function of a double precision float-
ing-point value.

<math.h>

double tanh (double x);

X value for which to return the hyperbolic tangent

Returns the hyperbolic tangent of x in the ranges of -1 to 1 inclusive.
No domain or range error will occur.

#include <math.h> /* for tanh */
#include <stdio.h> /* for printf */

int main(void)

{

double x, vy;

x = -1.0;

y = tanh (x);

printf ("The hyperbolic tangent of %f is %f\n\n",
X, Y)i

X = 2.0;
y = tanh (x);
printf ("The hyperbolic tangent of %f is %f\n\n",
X, ¥Y)i
}

Output:
The hyperbolic tangent of -1.000000 is -0.761594

The hyperbolic tangent of 2.000000 is 0.964028

© 2007 Microchip Technology Inc.

DS51456D-page 255

16-Bit Language Tools Libraries

tanhf

Description: Calculates the hyperbolic tangent function of a single precision float-
ing-point value.

Include: <math.h>

Prototype: float tanhf (float x);

Argument: X value for which to return the hyperbolic tangent

Return Value: Returns the hyperbolic tangent of x in the ranges of -1 to 1 inclusive.

Remarks: No domain or range error will occur.

Example: #include <math.h> /* for tanhf */

#include <stdio.h> /* for printf */

int main(void)

{ float x, y;
x = -1.0F;
y = tanhf (x);
printf ("The hyperbolic tangent of %$f is %f\n\n",
X, ¥Y)i
x = 0.0F;
y = tanhf (x);
printf ("The hyperbolic tangent of %$f is %f\n\n",
X, ¥Y)i
}
Output:

The hyperbolic tangent of -1.000000 is -0.761594

The hyperbolic tangent of 0.000000 is 0.000000

DS51456D-page 256 © 2007 Microchip Technology Inc.

Standard C Libraries with Math Functions

3.18 PIC30-LIBS

The following functions are standard C library helper functions:

e exit terminate program execution

e brk set the end of the process's data space

e close close a file

e lseek move a file pointer to a specified location

e open open a file

* read read data from a file

e sbrk extend the process's data space by a given increment
* write write data to a file

These functions are called by other functions in the standard C library and must be
modified for the target application. The corresponding object modules are distributed in
the 1ibpic30-omf.a archive and the source code (for MPLAB C30) is available in the
src\pic3o folder.

Several standard C library functions must also be modified for the target application.

They are:

e getenv get a value for an environment variable
* remove remove a file

* rename rename a file or directory

* system execute a command

* time get the system time

Although these functions are part of the standard C library, the object modules are
distributed in the 1ibpic30-omf.a archive and the source code (for MPLAB C30) is
available in the src\pic30 folder. These modules are not distributed as part of
libc-omf.a.

Additional functions/constants to support a simulated UART are:

e attach input file attach a file to the standard input

e close input file close a file attached to the standard input
e delay32 provide a specified delay

e (30 _UART set the desired UART module

The corresponding object modules are distributed in the 1ibpic30-omf.a archive and
the source code (for MPLAB C30) is available in the src\pic3o0 folder.

3.18.1 Rebuilding the libpic30-omf.a library

By default, the helper functions listed in this chapter were written to work with the sim30
simulator. The header file, simio.h, defines the interface between the library and the
simulator. It is provided so you can rebuild the libraries and continue to use the simu-
lator. However, your application should not use this interface since the simulator will not
be available to an embedded application.

The helper functions must be modified and rebuilt for your target application. The
libpic30-omf.a library can be rebuild with the batch file named makelib.bat, which
has been provided with the sources in src\pic30. Execute the batch file from a com-
mand window. Be sure you are in the src\pic3o0 directory. Then copy the newly com-
piled file (1ibpic30-omf.a) into the lib directory.

© 2007 Microchip Technology Inc. DS51456D-page 257

16-Bit Language Tools Libraries

3.18.2 Function Descriptions

This section describes the functions that must be customized for correct operation of
the Standard C Library in your target environment. The default behavior section
describes what the function does as it is distributed. The description and remarks
describe what it typically should do.

__attach_input_file

Description:
Include:
Prototype:
Argument:
Remarks:

Default Behavior:

Attach a hosted file to the standard input stream.

None
int _ attach _input_ file(const char *p);
p pointer to file

This function differs from the MPLAB IDE mechanism of providing an
input file because it provides "on-demand" access to the file. That is,
data will only be read from the file upon request and the asynchronous
nature of the UART is not simulated. This function may be called more
than once; any opened file will be closed. It is only appropriate to call
this function in a simulated environment.

Allows the programmer to attach a hosted file to the standard input
stream, stdin.

The function will return 0 to indicate failure. If the file cannot be opened
for whatever reason, standard in will remain connected (or be re-con-
nected) to the simulated UART.

File: __attach_input file.c

brk

Description: Set the end of the process's data space.

Include: None

Prototype: int brk(void *endds) ;

Argument: endds pointer to the end of the data segment

Return Value:
Remarks:

Returns ‘0’ if successful, ‘-1’ if not.

brk () is used to dynamically change the amount of space allocated for
the calling process's data segment. The change is made by resetting
the process's break value and allocating the appropriate amount of
space. The break value is the address of the first location beyond the
end of the data segment. The amount of allocated space increases as
the break value increases.

Newly allocated space is uninitialized.

This helper function is used by the Standard C Library function mal -
loc ().

DS51456D-page 258

© 2007 Microchip Technology Inc.

Standard C Libraries with Math Functions

brk (Continued)

Default Behavior:

If the argument endds is zero, the function sets the global variable
__curbrk to the address of the start of the heap, and returns zero.

If the argument endds is non-zero, and has a value less than the
address of the end of the heap, the function sets the global variable
__curbrk to the value of endds and returns zero.

Otherwise, the global variable ~ curbrk is unchanged, and the func-
tion returns -1.

The argument endds must be within the heap range (see data space

memory map below).

PSV

Stack

Heap

variables

SFR

Notice that, since the stack is located immediately above the heap,
using brk () or sbrk () has little effect on the size of the dynamic
memory pool. The brk () and sbrk () functions are primarily intended
for use in run-time environments where the stack grows downward and
the heap grows upward.

The linker allocates a block of memory for the heap if the
-W1,--heap=n option is specified, where n is the desired heap size in
characters. The starting and ending addresses of the heap are reported
in variables heap and _eheap, respectively.

For MPLAB C30, using the linker's heap size option is the standard way
of controlling heap size, rather than relying on brk () and sbrk ().

File: brk.c

_ C30_UART

Description: Constant that defines the default UART.
Include: N/A

Prototype: int _ C30_UART;

Argument: N/A

Return Value: N/A

Remarks:

Default Behavior:

File:

Defines the default UART that read () and write () will use for
stdin (unless a file has been attached), stdout, and stdout.

By default, or with a value of 1, UART 1 will be used. Otherwise UART
2 will be used. read () and write () are the eventual destinations of
the C standard I/O functions.

N/A

© 2007 Microchip Technology Inc.

DS51456D-page 259

16-Bit Language Tools Libraries

close

Description: Close afile.

Include: None

Prototype: int close (int handle) ;

Argument: handle handle referring to an opened file

Return Value:

Remarks:

Default Behavior:

File:

Returns ‘0’ if the file is successfully closed. A return value of ‘-1’ indi-
cates an error.

This helper function is called by the fclose () Standard C Library
function.

As distributed, this function passes the file handle to the simulator,
which issues a close in the host file system.

close.c

__close_input_file

Description:
Include:
Prototype:
Argument:
Remarks:

Default Behavior:

Close a previously attached file.

None

void _ close input file(void) ;
None

None.

This function will close a previously attached file and re-attach stdin
to the simulated UART. This should occur before a reset to ensure that
the file can be re-opened.

File: __close_input file.c

_ delay32

Description: Produce a delay of a specified number of clock cycles.
Include: None

Prototype: void _ delay32(unsigned long cycles) ;
Argument: cycles number of cycles to delay.

Remarks: None.

Default Behavior:

File:

This function will effect a delay of the requested number of cycles. The
minimum supported delay is 11 cycles (an argument of less than 11 will
result in 11 cycles). The delay includes the call and return state-
ments, but not any cycles required to set up the arugment (typically this
would be two for a literal value).

__delay32.c

DS51456D-page 260

© 2007 Microchip Technology Inc.

Standard C Libraries with Math Functions

_exit

Description: Terminate program execution.

Include: None

Prototype: void _exit (int status);

Argument: status exit status

Remarks: This is a helper function called by the exit () Standard C Library func-

Default Behavior:

tion.

As distributed, this function flushes stdout and terminates. The parame-
ter status is the same as that passed to the exit () standard C library
function.

File: _exit.c

getenv

Description: Get a value for an environment variable
Include: <stdlib.h>

Prototype: char *getenv(const char *s);
Argument: s name of environment variable

Return Value:

Default Behavior:

Returns a pointer to the value of the environment variable if successful;
otherwise, returns a null pointer.

As distributed, this function returns a null pointer. There is no support
for environment variables.

File: getenv.c
Iseek
Description: Move a file pointer to a specified location.
Include: None
Prototype: long lseek(int handle, long offset, int origin);
Argument: handle refers to an opened file
offset the number of characters from the origin
origin the position from which to start the seek. origin may

Return Value:

Remarks:

Default Behavior:

be one of the following values (as defined in stdio.h):
SEEK_SET - Beginning of file.

SEEK_CUR — Current position of file pointer.
SEEK_END - End-of-file.

Returns the offset, in characters, of the new position from the beginning
of the file. A return value of *-1L’ indicates an error.

This helper function is called by the Standard C Library functions
fgetpos (), ftell (), fseek (), fsetpos, and rewind ().

As distributed, the parameters are passed to the host file system
through the simulator. The return value is the value returned by the host
file system.

File: lseek.c

open

Description: Open afile.

Include: None

Prototype: int open(const char *name, int access, int mode) ;

© 2007 Microchip Technology Inc.

DS51456D-page 261

16-Bit Language Tools Libraries

open (Continued)

Argument:

Return Value:

Remarks:

Default Behavior:

name name of the file to be opened
access access method to open file
mode type of access permitted

If successful, the function returns a file handle, a small positive integer.
This handle is then used on subsequent low-level file I/O operations. A
return value of ‘-1’ indicates an error.

The access flag is a union of one of the following access methods and
zero or more access qualifiers:

0 — Open a file for reading.

1 — Open a file for writing.

2 — Open a file for both reading and writing.

The following access qualifiers must be supported:

0x0008 — Move file pointer to end-of-file before every write operation.
0x0100 — Create and open a new file for writing.

0x0200 — Open the file and truncate it to zero length.

0x4000 — Open the file in text (translated) mode.

0x8000 — Open the file in binary (untranslated) mode.

The mode parameter may be one of the following:

0x0100 — Reading only permitted.

0x0080 — Writing permitted (implies reading permitted).

This helper function is called by the Standard C Library functions
fopen () and freopen ().

As distributed, the parameters are passed to the host file system
through the simulator. The return value is the value returned by the host
file system. If the host system returns a value of ‘-1’, the global variable
errno is set to the value of the symbolic constant EFOPEN defined in
<errno.h>.

File: open.c
read
Description: Read data from a file.
Include: None
Prototype: int read(int handle, void *buffer,
unsigned int len);
Argument: handle handle referring to an opened file
buffer points to the storage location for read data
len the maximum number of characters to read

Return Value:

Remarks:

Default Behavior:

File:

Returns the number of characters read, which may be less than len if
there are fewer than 1en characters left in the file or if the file was
opened in text mode, in which case each carriage return-linefeed
(CR-LF) pair is replaced with a single linefeed character. Only the sin-
gle linefeed character is counted in the return value. The replacement
does not affect the file pointer. If the function tries to read at end-of-file,
it returns ‘0'. If the handle is invalid, or the file is not open for reading, or
the file is locked, the function returns *-1'.

This helper function is called by the Standard C Library functions
fgetc (), fgets (), fread(),and gets ().

As distributed, the parameters are passed to the host file system
through the simulator. The return value is the value returned by the host
file system.

read.c

DS51456D-page 262

© 2007 Microchip Technology Inc.

Standard C Libraries with Math Functions

remove

Description: Remove a file.

Include: <stdio.h>

Prototype: int remove (const char *filename) ;
Argument: filename file to be removed

Return Value:

Default Behavior:

Returns ‘0’ if successful, ‘-1' if unsuccessful.

As distributed, the parameters are passed to the host file system
through the simulator. The return value is the value returned by the host
file system.

File: remove.c
rename
Description: Rename a file or directory.
Include: <stdio.h>
Prototype: int rename (const char *oldname, const char
*newname) ;
Argument: oldname pointer to the old name
newname pointer to the new name

Return Value:

Default Behavior:

Returns ‘0’ if it is successful. On an error, the function returns a
non-zero value.

As distributed, the parameters are passed to the host file system
through the simulator. The return value is the value returned by the host
file system.

File: rename.c

sbrk

Description: Extend the process's data space by a given increment.
Include: None

Prototype: void * sbrk(int incr) ;

Argument: incr number of characters to increment/decrement

Return Value:
Remarks:

Return the start of the new space allocated, or ‘-1’ for errors.

sbrk () adds incr characters to the break value and changes the
allocated space accordingly. incr can be negative, in which case the
amount of allocated space is decreased.

sbrk () is used to dynamically change the amount of space allocated
for the calling process's data segment. The change is made by reset-
ting the process's break value and allocating the appropriate amount of
space. The break value is the address of the first location beyond the
end of the data segment. The amount of allocated space increases as
the break value increases.

This is a helper function called by the Standard C Library function
malloc ().

© 2007 Microchip Technology Inc.

DS51456D-page 263

16-Bit Language Tools Libraries

sbrk (Continued)

Default Behavior:

If the global variable _ curbrk is zero, the function calls brk () to ini-
tialize the break value. If brk () returns -1, so does this function.

If the incris zero, the current value of the global variable __ curbrk
is returned.

If the incr is non-zero, the function checks that the address
(__curbrk + incr) is less than the end address of the heap. If it is
less, the global variable __curbrk is updated to that value, and the
function returns the unsigned value of __curbrk.

Otherwise, the function returns -1.

See the description of brk ().

File: sbrk.c

system

Description: Execute a command.

Include: <stdlib.h>

Prototype: int system(const char *s);
Argument: s command to be executed.

Default Behavior:

As distributed, this function acts as a stub or placeholder for your func-
tion. If s is not NULL, an error message is written to stdout and the pro-
gram will reset; otherwise, a value of -1 is returned.

File: system.c

time

Description: Get the system time.

Include: <time.h>

Prototype: time t time(time t *timer) ;

Argument: timer points to a storage location for time

Return Value:

Default Behavior:

File:

Returns the elapse time in seconds. There is no error return.

As distributed, if timer2 is not enabled, it is enabled in 32-bit mode. The
return value is the current value of the 32-bit timer2 register. Except in
very rare cases, this return value is not the elapsed time in seconds.

time.c

DS51456D-page 264

© 2007 Microchip Technology Inc.

Standard C Libraries with Math Functions

write

Description:
Include:
Prototype:

Argument:

Return Value:

Remarks:

Default Behavior:

File:

Write data to a file.
None

int write(int handle, void *buffer,
unsigned int count) ;

handle refers to an opened file
buffer points to the storage location of data to be written
count the number of characters to write.

If successful, write returns the number of characters actually written. A
return value of ‘-1’ indicates an error.

If the actual space remaining on the disk is less than the size of the
buffer the function is trying to write to the disk, write fails and does not
flush any of the buffer's contents to the disk. If the file is opened in text
mode, each linefeed character is replaced with a carriage return — line-
feed pair in the output. The replacement does not affect the return
value.

This is a helper function called by the Standard C Library function
fflush().

As distributed, the parameters are passed to the host file system
through the simulator. The return value is the value returned by the host
file system.

write.c

© 2007 Microchip Technology Inc.

DS51456D-page 265

16-Bit Language Tools Libraries

3.18.3 Examples of Use

EXAMPLE 3-1: UARTL1 I/O

#include <libpic30.h> /* a new header file for
these defintions */
#include <stdio.h>

void main() {
if (__attach input file("foo.txt")) ({
while (!feof (stdin)) {
putchar (getchar()) ;
}

__close_input_file();
}
}

EXAMPLE 3-2: USING UART2

/* This program flashes a light and transmits a lot of messages at
9600 8nl through uart 2 using the default stdio provided
by MPLAB C30. This is for a dsPIC33F on an Explorer 16 (tm) board
(and isn't very pretty) */

#include <libpic30.h> /* a new header file for these
defintions */
#include <stdio.h>

#ifndef dsPIC33F

#error this is a 33F demo for the explorer 16 (tm) board
#endif

#inlcude <p33Fxxxx.h>

_FOSCSEL (FNOSC_PRI) ;
_FOSC (FCKSM_CSDCMD & OSCIOFNC_OFF & POSCMD_XT) ;
_FWDT (FWDTEN_OFF) ;

main()
ODCA = 0;
TRISAbits.TRISA6 = 0;
_ C30_UART=2;
U2BRG = 38;
U2MODEbits.UARTEN = 1;
while (1) ({
__builtin btg(&LATA,6) ;
printf ("Hello world %d\n",U2BRG) ;
}
}

DS51456D-page 266 © 2007 Microchip Technology Inc.

16-BIT LANGUAGE TOOLS
MICROCHIP LIBRARIES

Appendix A. ASCII Character Set

TABLE A-1: ASCII CHARACTER SET

Most Significant Character

Hex 0 1 2 3 4 5 6 7
0 NUL DLE Space 0 @ P p
1 SOH DC1 ! 1 A Q a q
2 STX DC2 2 B R b r
3 ETX DC3 # 3 C S c s
4 EOT DC4 $ 4 D T d t
5 ENQ NAK % 5 E U e u
Least 6 ACK SYN & 6 F Y f v
Significant 7 Bell ETB 7 G w g w
Character
8 BS CAN (8 H X h X
9 HT EM) 9 | Y i y
A LF SUB * : J z j z
B VT ESC + ; K [k {
C FF FS : < L \ ! |
D CR GS - = M] m }
E SO RS . > N n n ~
F S us / ? o} _ 0 DEL

© 2007 Microchip Technology Inc. DS51456D-page 267

16-Bit Language Tools Libraries

NOTES:

DS51456D-page 268 © 2007 Microchip Technology Inc.

MICROCHIP

16-BIT LANGUAGE TOOLS

LIBRARIES

| ndex

Symbols DefiNed.....cviiieiiiiice e 84
HAETING <. TeStOr o 84
) Alphanumeric Character
#include Defined......c..covviiiiiiie e 84
%0, PEICENT w..oovvoeeiereeeeeeieis TESLIOT oo 84

AMIPM oot 213
\f, FOrM FEEA ...t APPENG...ooooooiiiee s 190, 196
\n, Newline arccosine
\r, Carriage Return Double Floating Point..........ccccceevviiniieeiinenn. 215
\t, Horizontal Tab... Single Floating Point...........ccooiiiie, 216
\v, Vertical Tab arcsine
L 1= AR Double Floating Point............ccccoeiiiiiiiiiiaennnns 217
__attach_input_file Single Floating Point..........ccccccoeiiiiienieeiineen. 217

C30 UART....coorrreeeeee, arctangent

—_close_input_file .oovovvveenn.. Double Floating Point..........cccccvireeeeerennnn. 218
delay32 oo, Single Floating Point

Absolute Value

Double Floating Pointccccceiiiieiiiiineen. 229
Integer............

Long Integer

Single Floating Point............ccoccovieeiviiiiienee. 229

Absolute Value Function

Allocate Memory ...
calloc..............

Alphabetic Character

arctangent of y/x

FLT_RADIX...oooiiiiiiieeiien 94, 95, 96, 97, 98, 99
Binary

Streams
BitfieldS..uvee e

© 2007 Microchip Technology Inc.

DS51456D-page 269

16-Bit Language Tools Libraries

Buffering Modes ...
Buffering, See File Buffering
BUFSIZ ..o

C

C LOCAIEcoeee oo
Calendar Time........cccceeuvvvvvenens
calloc
Caret (V)
Carriage Return
CIl it

ceiling
Double Floating Point...........cccccoiiiiiiiiiieneenn. 222
Single Floating Point............ccccoeviiiieeeiniiieeen. 223
char
Maximum Value
Minimum Value
NUMbEr Of BitSevviiiiieiiiieesieeeceeee e
CHAR _BIT oot
CHAR_MAX i
CHAR_MIN.....ccoiiiiiiieiee e
Character Arrayccceeeevcieeee e
Character Case Mapping
Lower Case Alphabetic Character 91
Upper Case Alphabetic Character 92
Character Case Mapping Functions
TOIOWEY <. 91
{108] o= CP O TP UT PP P PRI 92
Character Handling, See ctype.h
Character Input/Output Functions

[0 1= (oA

o]0 (oI

PULS .o
ungetc
Character Testing
Alphabetic Characterccoveeeiiiiiiieeeeneine
Alphanumeric Character
Control Character.....................
Decimal Digit.......ccovvveeiiiiiiieiieccieee e
Graphical Character...........ccoeveeeeiiiiieee e
Hexadecimal Digitcceeeeviiiiieeeeiiiiiee e
Lower Case Alphabetic Character 87
Printable Character...........cccociiiiiiiiee 88
Punctuation Charactercccccceeeeiiiiieneeennns 88
Upper Case Alphabetic Character 20
White-Space Character..........ccccceeeeivivieeeeeinns 89
Character Testing Functions
ISAINUM ... 84
ISAIPNA. ..o 84

ISCNIT .
isdigit........c......
isgraph
islower
(1] 0] 1| SRR
ispunct
isspace.............
iISUPPETr
(£ 1(e [T || ST URR
Characters
AIPhADLELICeveeeeieiiiiii e
Alphanumeric

Convert to Lower Case Alphabetic
Convert to Upper Case Alphabetic
Decimal Digit
GraphiCal........cooiiiiiiieieee e
Hexadecimal Digitccccvvveeeiviiiiie e,
Lower Case Alphabetic
Printable...........
Punctuation
Upper Case Alphabetic
WhiIte-SPpace.......coovuueieeaiiiiie e

Classifying Characters

Clearerrcoovve i

Clearing Error Indicator

ClOCK ...

Common Definitions, See stddef.h
Compare StriNGSccocvvvieeeiiiiie e 192
Comparison FUNCONcccoeeieiiiiieneeeens 166, 176
Comparison Functions
MEMCITIP ..eieieiiiiieeeteeeeer e e e e eeeeeeeeaeeeas e e s aenenenes 185
SECMIP it
streoll....onnenes
strncmp
SEXTTIM L
Compiler Options
-fno-short-double.............ccoooii 114
SMSMATT-I0 .o 113
Concatenation Functions
SEICAL .eeiiiiiee e 190
SEINCAL ..o 196
Control Character
DefiNed.....ccooieee e
Testfor.............
Control Transfers
CONVEISION ...oeeiiiiiiiiie e
Convert
Character to Multibyte Character 183
Multibyte Character to Wide Character 175
Multibyte String to Wide Character String........ 175
String to Double Floating Point 164,179
String to Integer........cc........
String to Long Integer
String to Unsigned Long Integer 182
To Lower Case Alphabetic Character 91
To Upper Case Alphabetic Character 92
Wide Character String to Multibyte String....... 183

DS51456D-page 270

© 2007 Microchip Technology Inc.

Copying Functions
memcpy
memmove
MEMSEL c.vviivieciee et
SITCPY cuveeiveiieeetee et e st eere e se e e e e e e ae e
StrNcpy

cosine
Double Floating Pointccccccevviiieree i, 223
Single Floating Point...........cccoccevveiiiiiiiienee. 224

isalnum
iscntrl
isdigit..............
isgraph
islapha
153 (011 U
ISPING c.vvvveeeeeeiiiiee e
ispunct
isspace
isupper
[£531(e [T || TS SOUPRRRN
tolower
[(010]] o1=] SRR
Current Argument
Customer Notification Service
CUSIOMEr SUPPOIt....cceiiieiiiiiiiiiieieiire e e e
Customized FUnctioncccccccvvvvivieiiienereeeeeeen,

D

DASH ()t 150
Date and TiMeooviiiiiiiieeee e 212
Date and Time Functions, See time.h

Day of the Month..........cccceveeiiiiiniceninns

Day of the WeeKcccccvveveiiiiiiiieeeninns

Day of the Year.......cccccooiiieiiiiieeee

Daylight Savings Time
DBL_DIG....ccoiiieeeeee e

DBL_EPSILONcccocvvveennenn

DBL_MANT_DIG ...ooiiiiiiiiiieiieeecieee e
DBL_MAX .ottt
DBL_MAX_10 EXP....ccccccuennne

DBL_MAX_EXP ..ccoveiieeeienns

DBL_MIN ...ocoiiiiiieeieee e

DBL_MIN_10_EXP ...ceeiiiiiiiiiiieiiiee e

Deallocate MemOoryccccoeeeiiiiineeeiiieeeeene
Debugging Logic Errors
Decimalccccovvviiieeiieniiceese e
Decimal Digit

DEfINEA .ovvvieveeeieeeeee e 86
Number Of ..., 94, 96, 97
LIS A (o] SRR 86

Decimal POINt...........oooiiiiiiiiiieeeeee e 143
Default Handlerccccoo v 103
Diagnostics, See assert.h

AIfftiMe. .o 210
Digit, Decimal, See Decimal Digit

Digit, Hexadecimal, See Hexadecimal Digit

Direct Input/Output Functions

fread. . oo 130

TWIIEE e 138
IVt 160, 168
IVt 160
Divide

INEEQET i 168

LONG INtEQET ...uviiiiiiiiiiiiiiie e 173
Divide bBY Zer0ccocvueiieiiiiiiiieeeeiiieeen 104, 107, 168
Documentation

CONVENLIONSoeiiiiiiiiii e 2

LAYOUL ... 1
Domain Error.....93, 215, 216, 217, 219, 221, 223, 224,

231, 233, 240, 241, 242, 243, 248, 249, 252, 253, 254

o o] S 143
Double Precision Floating Point

Machine EpSiloN........cccciiiiiiiiiiie e

Maximum Exponent (base 10)....

Maximum Exponent (base 2)...........

Maximum Valuecocceeevnneen.

Minimum Exponent (base 10).........cccccueveeennnes

Minimum Exponent (base 2)ccccccvvereeennns

Minimum Valuecccccceeeeeee

Number of Binary Digits...............

Number of Decimal Digits
doUbIE TYPE e
Dream FUNCHON........cociiiiiei e
DSP LIDIari©scoeeeiiieiieeeiieee e

Empty Binary Fileccccoevieviceninnn.

Empty TEXEFlE covviiiiiee e,

ENd Of Fil€ covoveeee e
Indicator

=IO RPRR
Environment Function

[0 <] =] 0|V SRR
Environment Variable

© 2007 Microchip Technology Inc.

DS51456D-page 271

16-Bit Language Tools Libraries

Error Handling Functions
clearerr

0114 o) PRSPPI,
Error INAiCatorcccvvvveeieieieieee et
Error Indicators
Clearing......cccveceeiee e 119, 148
ENd Of Fil€ coovveeeieieeeeceeeee e 119, 125

Test For
Error Signal
Errors, See errno.h

EXIT_FAILURE ... 160
EXIT_SUCCESS......ccccoiiiiiiiiiii s 160

Exponential Function
Double Floating Point...........cccccoiiiiiiiiiieneenn. 227
Single Floating Point...........ccccceevvciviee e, 228

FFTComplex.................

FETCOMPIEXIP ..o 66
FOOIC 1o 123, 262
fgetposooovviieeeerins 124,261
fgets .o 125, 262
Field WIdth ...eeeeeeeeieeeeeeeeeeeeeee e 143
FILE ... ittt 113,115
File Access Functions
fCIOSE... it 120
FIUSH oo 123
FOPEN .o 126
frEOPEN ... 132
SEOUT ..t 151
SEIVOUF .ot 152
File Access Modes 113,126

File Buffering
Fully Buffered..........cccceee...
Line Buffered....
Unbuffered ...
File Operations

FILENAME_MAX
File-Position Indicator..... 113,115,123, 124,129, 130,
R 1 TR 138
Files, Maximum Number Open..........cccccceviiieneen. 116
Filtering FUNCHONScvvvieeiiiiiiee e
FIR .o,
FIRDecimate
FIRDelaylnitccccceeeenne
FIRInterpDelaylnitcccooeeeiiiiiiiieei e 45
FIRINterpolateooveiiiiiiiiiiieie e
FIRLattiCE.......ceeeeeeeeeeiiinnnns
FIRLMS............
FIRLMSNorm ...
FIRSHIUCE ...,
FIRSIIUCEINIE ...
IIRCanonic
IIRCanoniclinit
HIRLALICE vovveviieeeeeeeeeee e
IIRLattice OCTAVE model
IIRLAttiCeINIt ...
IIRTransposed
IIRTransposedInit...........coocvieeeeriiiiiiiee e

float.h.......ccoovvvvvennnn.
DBL_DIG.........
DBL_EPSILON.........ccueen...
DBL_MANT_DIG
DBL_MAX ..eoiiiiiiee et
DBL_MAX_10_EXP
DBL_MAX_EXP ..oooeiiiiiieeeiiee e
DBL_MIN ...ttt
DBL_MIN_10_EXP
DBL_MIN_EXPccccuvueee.
FLT DIG ..o
FLT_EPSILON ...oooiiiiiiiieeeee e
FLT_MANT_DIG ...eiiiiieeii e
FLT _MAX ettt

DS51456D-page 272

© 2007 Microchip Technology Inc.

FLT_MAX_10_EXP

FLT_MAX_EXPccccee....

FLT_MIN ..o

FLT_MIN_10_EXP..oeriiiiieeiiee e

FLT_MIN_EXP ..ooiiiiiieiiee et

FLT_RADIX ..ccocvvvieeiinennn.

FLT_ROUNDS..................

LDBL_DIGcccoveeeeiie.

LDBL_EPSILONovieiiiieeiiie e

LDBL_MANT _DIG ...ooeiiieeiie e

LDBL_MAX ..coeiiiieeiieeenee

LDBL_MAX_10_EXP

LDBL_MAX_EXP..............

LDBL_MIN ..ottt

LDBL_MIN_10_EXPcovveeiieiieee e

LDBL_MIN_EXPoviiiiiiieeee e
Floating Point

LIMIES wrvvvieieiiiieeeeeeeeee e

No Conversion.................

Types, Properties Of
Floating Point, See float.h

FLT DIG oo
FLT_EPSILON ...ouiiiiiiiiiiiiieiieee e
FLT_MANT_DIG ...
FLT _MAX..............
FLT_MAX_10 EXP....cccevvnn.n.

FLT _MAX_EXP ..o
FLT_MIN <o
FLT_MIN_10_EXP
FLT_MIN_EXP .o
FLT _RADDX e
FLT_RADIX Digit

Number Of

-fno-short-double.............ccocceiiiiininnnn. 94, 95, 96, 114
...113, 126, 152, 262
FOPEN_MAX ..ot
o] 0T =TT PN
Format Specifiers..........c..........
Formatted 1/0 Routines
Formatted Input/Output Functions
fprintf
fscanf

SPHNE oo
sscanf
viprintf
vprintf.............
vsprintf

Formatted Text
Printing.....
Scanning ...

fpos_t

fprintf

fputc v

FPULS e

fraction and exponent function
Double Floating Point............ccccoeiiiiiiiiineennnns 235
Single Floating Point..........ccccccoeiiiiiieiieiiineen. 236

Fraction Digits

fread ..o

Free Memoryccocovviiiiiieiic e
freopen ..o

frexp
FrEXPF <o

G
GBLC 1iiiieii e 140
QEIChAN . 141
getenv 171,261
gets ... 141, 262
GMT e 210
gmtime 210,211
Graphical Character

Defined

Test for
Greenwich Mean TiMeccvvvveeiiieieiiieeeeeee e, 210
H
h MOdifier ... 144, 149
HammingInit ..o 28
Handler

Default........oooveiiiiiii

EITOF e

Interrupt

Nested.......

Signal ...

SIgNal TYPE .o
Handling

Interrupt Signal..........cocovveeieiiiiiinee e 108
Hanninglnit
Header Files

ASSEItN o 83

HMIES. N 99
locale.h.....coooe i, 101
math.h............ e, 215
setjmp.h

SIgNal.h...cci i 103
Stdarg.N .o, 109

© 2007 Microchip Technology Inc.

DS51456D-page 273

16-Bit Language Tools Libraries

stdlib.h................... .
SHNG.N e
HME.N o

Hexadecimal Digit
Defined.......ccoiiiiiieee e
Testfor.....cccoevenene

HUGE_VAL ...ooiiiiiieeeeee e
Hyperbolic Cosine

Double Floating Point...........cccccoeiiiiiiiiieneenn. 225

Single Floating Point...........cccceevviiviiee e, 226
Hyperbolic Functions

cosh

Hyperbolic Sine

Double Floating Point...........cccccoieiiiiiiieneen. 250

Single Floating Point...........cccccooviiiieieeniiieeen. 251
Hyperbolic Tangent

Double Floating Point...........ccccccveeiiiiiiienee, 255
hyperbolic tangent

Single Floating Point..........cccccceevvivieee e, 256

IFFTCOMPIEX....eviiiiiiiciiiiee et
IFFTCOMPIEXIP ..o
Ignore Signalcoooiiiiiiie e
IIRCanoniccc.cc.......
IIRCanoniclnit...............
IIRLALHCE ..o
IIRLattice OCTAVE model
IIRLAttiCeINIteeeiieeiiei e
IIRTransposed..............
IIRTransposedInit..........cccccooeeuueeenn.
lllegal Instruction Signal
Implementation-Defined Limits, See limits.h
Indicator

End Of File

File Position
INFINIEY o
Input and Output, See stdio.h
INPUL FOrMALSeveeiviiiiieiiece e
Instruction Cycles.........ccccoeeciieeeeinineen.
int

Maximum Valuecccooeeiiiiiiniaeiiiiee e

Minimum Valuecccccooenee
INT_MAX ..ot
INT_MIN .o
INteger LIMItS........oooi i
Internal Error Message

Internet Address, Microchip
Interrupt Handler
Interrupt Signalccccceeennes

Interrupt Signal Handling..........cccccooviiiiiniiiiinen.
Interruption MeSSage.cuveviirieeeeeiiiieeee e
Invalid Executable Code Message
Invalid Storage Request Message
Inverse Cosine, See arccosine
Inverse Sine, See arcsine

Inverse Tangent, See arctangent
isalnum
iscntrl
isdigit
isgraph
islapha
islower
1] 0] 1 SRR
ispunct
isspace
isupper
isxdigit

L

[0 V0T {1 1T PO
| modifier..................

LC_CTYPE
LC_MONETARY ...ttt
LC_NUMERIC ...ttt
LC TIME .ot
[CONV, SEIUCTccoiiii i
LDBL_DIG
LDBL_EPSILON ..o
LDBL_MANT _DIG ..o
LDBL_MAX. ..o,

LDBL_MAX_10_EXP

Left JUSHITY ...eereeiee e
libpic30, Rebuildingccceviieiiiiiiie e,
Libraries

DS51456D-page 274

© 2007 Microchip Technology Inc.

Limits

CHAR _BITS ..o
CHAR_MAX....ooveviinrn,
CHAR_MIN ...oovovrirnns
INT_MAX. oo,
INT_MIN. e 99
LLONG._MAX .o

LLONG_MIN ..ceverrrreenen.
LONG_MAX.vvrveereeen.
LONG_MIN. ..o,
MB_LEN_MAX. ...,
SCHAR_MAX ..o
SCHAR_MIN
SHRT_MAX. oo eee e 100
SHRT_MIN. oo 100
UCHAR_MAX

UINT_MAX. e
ULLONG_MAX
ULONG_MAX. et 101
USHRT_MAX
Line Buffered..........cccocceeviinens
Line Buffering........
Il modifier...............
LLONG_MAX ..oiiiiee et e et seee e
LLONG_MIN L.oiiiiiieiie e
Load Exponent Function
Double Floating Point 237
Single Floating Point.........
Local TIMEeeeeviieeiiee e 209, 211, 212
[0 o7 [T T 84,101
Locale, Other
locale.N. .o 101
[0CAIECONV ..o 101
Localization, See locale.h
localtime........cccceeenee
Locate Character
J00 e
(0T 1 O PSP SPURRRRI
10GL0f e
Logarithm Function
Double Floating Pointccccccoevviiiiiee i, 241
Single Floating Point...........ccoocooviiiiniiienee. 242
Logarithm Function, Natural
Double Floating Pointcccccceviiieiiiiineen.
Single Floating Point
10gf o,
Logic Errors, Debuggingcccoveeeeeiiiieeeeeiiiiiieeeene
Long Double Precision Floating Point
Machine EpsSiloncccooiiiiiiiiieeee e
Maximum Exponent (base 10).........ccccceeeuuneenen.
Maximum Exponent (base 2)........cccccevveeeinneenn.
Maximum Valueocoeeevvvrennecennnnn
Minimum Exponent (base 10)..............
Minimum Exponent (base 2)................
Minimum Valueccccoiiiiiiiii e
Number of Binary DigitS.........ccccceiiueierieniieeen.
Number of Decimal DigitSccccvveveeeiiinnenn..

long double TYPe.....ccocvvieiieiiiieieee e 114
long int

Maximum Valueoooovvvviiieeeeeeeeeeeeeen, 100

MiniMuM Valuecoeeeeeiiiiiiiiiieeeeeeeeeeeeeen, 100
long long int

Maximum ValUeeveveeeiiieieeeieiiiceccccirinvnnnnns 99

Minimum Value
long long unsigned int

Maximum Valueccccvveeiiieeeeiieecccccciiins 101
long unsigned int

Maximum Valuecccevveeiiiieeeeiieecccccciiiins

LONG_MAX
LONG_MIN
(o700 1001 o FE SRR
Lower Case Alphabetic Character
CONVEIT TO it 91
Defined........cooiiiiiie e 87
TESETON . 87
ISEEK ...ttt 261
M
Machine Epsilon
Double Floating Point...........ccccccvveieeiiiiiereeenns 94
Long Double Floating Point.............ccccccceeeeennes 98
Single Floating Point...........ccccooiiiiiiieiiiiieeeen 96
Magnitude 215, 227, 228, 231, 233, 250, 251
MAIIOC......eiiiiieiiiiie e
Mapping Characters..........ccceeeeeiiiveeeeesiiiieree e

Math Exception Error
math.h

= L= 10124 O 221

atanf.

© 2007 Microchip Technology Inc.

DS51456D-page 275

16-Bit Language Tools Libraries

Mathematical Functions, See math.h
MatriX FUNCLONS ...
MALFXAAD ...
MALTIXINVETT ..ot
MatrixMultiply
MatrixScaleccccveveeeiiiiiniiiennnn,
MatrixSubtractccoceeeiiiiennnnn.
MatriXTrANSPOSE. ...cciiieiieeeeaiiie e e e eeeiie e e e e eiiiee e e e enees
Maximum
Multibyte Character...........c.cccoecviveeeeeniiienee, 161
Maximum Value
Double Floating-Point Exponent (base 10)....... 95
Double Floating-Point Exponent (base 2) 95
Long Double Floating-Point Exponent
(base 10)eeeereeiiiieeeee e 98
Long Double Floating-Point Exponent
(bASE 2) .. 98

Single Floating-Point Exponent (base 10)......... 96
Single Floating-Point Exponent (base 2)........... 97
TYPE Char ..ccceiiiiiiiee e
Type Double..........
TYPE Nt cvvviieeiiciiee e

Type Long Double....................

Type loNg iNteeeeeeeeeee e
Type long 1ong iNt........c.oeeiiiiiiiiee e
Type long long unsigned int
Type long unsigned int.............

Type shortint......ccccooevvvieeennns

Type signed Charc.coeveviiiiieeieeeeeee e
TYPe SINGIE ..o
Type unsigned char

Type unsigned int.....................

Type unsigned short int............

MBDSTOWES ...t
MBIOWC ...
memchr
memcmp
memcpy.........
MEMMOVE ...eeeeiiriirireeeeeeeeeeeeeeeeeeeeeeeseesesessssrseseenees
Memory

AllOCALE ...t 168, 174

MNEMISEL ..ottt ieiee e et e e eee e st e e et eeeeeeeenreeeenneeeeanneeas
Message
Arithmetic Errorc.cooveveiiiiiniieee e
INtErrupt.....cccevvviieiieeciieee
Invalid Executable Code
Invalid Storage Request
Termination Request.........ccccceviieiieeriiiieeennn.
Minimum Value
Double Floating-Point Exponent (base 10)....... 95
Double Floating-Point Exponent (base 2) 96
Long Double Floating-Point Exponent
(base 10).....ccueeeieiiiieeeee e 98
Long Double Floating-Point Exponent
(DASE 2).eeieiieee e 929
Single Floating-Point Exponent (base 10)......... 97
Single Floating-Point Exponent (base 2)........... 97
Type char
Type Double
TYPE INE oo
Type Long Double ...
Type long int.........cccovvveeeens
Type long long int................
Type shortintccccceeeens
Type signed char........cccooociiiiniiiiieee e,
Type Single
Minute.........ccceeeene
MKHMe....oovveeiiiene

modulus function
Double Floating Point............ccccoeeiiiiiiieeinnne. 244
Single Floating Point ... 245
MONth ..o
SMSMArt-i0 .ooevieiieiieeree e
Multibyte Character
Maximum Number of Bytes..........cccccceeeeinnnnn. 100
Multibyte String........cccoveiieeiiiiieee e, 175, 183

N

Natural Logarithm
Double Floating Point...........cccceeeviiinieee e, 240
Single Floating Pointcccccviveee i, 243
NDEBUGoiiiiiiiiiee et 83

Nested Signal Handlerccccceeeviviiveeeciiieeen, 102
Newline.........ccccoeeeeene 89, 113, 125, 130, 141, 142, 146
NO BUfferingcccccceeevviiieneenininenn. 113,116, 151, 152
Non-Local Jumps, See setjmp.h

NULL .o 101,111, 117, 161, 184, 208

DS51456D-page 276

© 2007 Microchip Technology Inc.

(0]

Octal Conversion 143

open
Output Formats
OVEIfIOW EITOIS ...

....................... 93, 215, 227, 228, 237, 238, 246, 247
overlapcccooevvveeeeeiiins 187,188, 190, 193, 196, 199

P

Pad Characterscccccvvvrveeieieiiiieeeeeeeee e eeeeeeeiinnnnns 143

Percent........cooiiiiiiiiii

114 (o] S

pic30-libs
__attach_input_file

PIUS SN ..
Pointer, TEMPOTIAIYccccvvvieeeiiiiie e
POW ittt ettt ettt e
Power Function
Double Floating Pointccccceviiiiiiiiineen. 246
Single Floating Point...........cccocooviiiiniiiienee. 247
Power Functions

Processor Clocks per Second
Processor TIMe........oovevvvecieeiieeeeeeeeeeee e
Pseudo-Random Numberccccceeevviienne
P Lo
Punctuation Character
(DY {1 1= To R
LTS A (o] SRR
Pushed Back
PULC ..
PULCHAT ...

PULS ittt 146
Q
OSOMT ittt 166, 176
QUICK SOOIt ..o 176
R
RAAIX .. 97
TQISE ...oveveveenns 103, 104, 105, 106, 107, 108
L= 1 o [SRS 177,179
RAND_MAX ..ot see e 161, 177
RANGE. . et 150
RanNge EIMOr......ccccccvvviieiieiiiiiicies 93, 181, 182, 225,
............. 226, 227, 228, 237, 238, 246, 247, 250, 251
(=T Lo [262
Reading, Recommendedccceeeeeiiniiieeeeriiiiene. 3
[T 1o o
Reallocate Memory
Rebuilding the libpic30 librarycccccceeeeiiiveneenn. 257
Registered Functionscccccovvveveeeiiinenn. 162,170
Remainder
Double Floating Point............ccccoeeeiiiiiiiieennns 231
Single Floating Point..........ccccccoeiiiiiiiieeineen. 233

Remainder Functions

SCHAR_MAX ..ottt 100
SCHAR_MIN ...cooiiiiiii it 100
Search Functions
MEMCAT ...oiiiii e 184
strchr
S (1] o o SRR
SUPDIK e
strrchr........

From Beginning of File..........cccccceeeeiiiiiieeeeens 134
From Current POSItioNcccvvivivieeeeiiieiiiiieen, 134
From End Of Fil€......ccooovviiiiiieeeeeeeeeeeeeee, 134

© 2007 Microchip Technology Inc.

DS51456D-page 277

16-Bit Language Tools Libraries

longjmp

setimp .oovveveeiee
setlocalecccoeeeeeeennns
SEtVOUT....ooiiiceee e
short int

Maximum ValUecccvvvvvveeeiiieieieeeeeeeeeeeeeeeens 100

Minimum Value
SHRT_MAX ..ot
SHRT_MIN .ot
sig_atomic_t
SIG_DFL i
SIG_ERR
SIG_IGN........
SIGABRT ..o
SIGFPE ...t
SIGILL
ST [1 N
Signal

Abnormal Termination................oceeeeevivvvrnnnnnns 104

Signal Handler TYPe......ooociiiieiiiiei e 103
Signal Handling, See signal.h
SIgNaLh .o 103

TEUSE .ttt ettt 107

sig_atomic_t

SIG_DFL oo

SIG_ERR ...

SIG_IGN oot

SIGABRT ...ttt

SIGFPE ..ot

SIGILL e

SIGINT e

SIGNAL. ...

SIGSEGVooviiiiiiiiieeiiee

SIGTERM.....oiiiiiiiiiiie et
signed char

Maximum Valueoccooeiiiiiiiiieeieeeee 100

Minimum Valueccooiiiiiie e, 100
SIGSEGV 106
SIGTERM 106
sSim30 simulatorcccevieeeinieeens 257
SN ettt 248
sine

Double Floating Point...........cccccoeiiiiiiiiieneen. 248

Single Floating Point............ccccooviiiieeeeniiieeen. 249
SINF e 249
Single Precision Floating Point

Machine EPSilon.........cccovveeeiiiiiiie e 96

Maximum Exponent (base 10)ccccceeeeeriene 96

Maximum Exponent (base 2)cccoccveeeeeniene 97

Maximum Valuecccooeeiiiiiiniaeiiiiee e 96

Minimum Exponent (base 10)ccceveeeennns 97

Minimum Exponent (base 2)
Minimum Value
Number of Binary Digits
Number of Decimal DigitSccccceriiiiieeenn.

111, 116, 160, 184, 207
111, 116, 160, 184, 207
SOort, QUICK.....uviiiiiieiiiiece e
Source File Name.......................
Source Line Number
SPACE ...ttt
Space Character
Defined
Test for
SPECIfIEIS..eeiiiiiiii e
sprintf

Square Root Function
Double Floating Point............ccccoeeiiiiiiieeennne. 252
Single Floating Pointcccooieiiiiiiiineees 253
Square Root Functions

Standard C Library
Standard C Locale

Standard Error.........ccocveeiiiieiiiciienec e 113,118
Standard INPUL..........occiiiii e 113,118
Standard Output

SEAM-UP ettt
Module, Alternate
Module, Primary.................

stdarg.h

LS (0 [SRR 83,113,117,118, 142
[<3 (0 | 113,117,118, 141, 149
SO N 113, 263

DS51456D-page 278

© 2007 Microchip Technology Inc.

FOOLS e

L1 CCT0] o 1= o 1S PR
fSCANT oo,

SEEK_CUR
SEEK_END
SEEK_SET
setbuf

sprithf ..
SSCANT e

TMP_MAX oottt

IMPFIlE o

tmpnam

ungetc

viprintf............

VPR e

VSPHNEE Lo
stdlib.h..................

labs

RAND_MAX
realloc

system.......
WCRNAT T oo

WXSTOMDS ...
stdout

LS (1 1 1] o SRS
strcoll
S (7 0)Y
SEICSPN ittt
Streams...........

ClOSING -
(O] 7= 011 o o EO PR
Reading From

Writing TO..ooceevvvvienene
S (=] 1 (o] OSSR
SHTIME e
String
Length

Transform
String Functions, See string.h
SHNG.N L

MEMCIMP c.eveieveiete ettt
MEMCPY .vevererererenine
memmove

© 2007 Microchip Technology Inc.

DS51456D-page 279

16-Bit Language Tools Libraries

S (7 0)Y SRR
S (1] o o [RRTTS
StIerror .oovvvvevenenens

strlen

strncat
S (110711 o TSRS
SLNCPY eeeeeieiiee et e e nte et e e eee e neee e e
strpbrk ...
strrchr.....
SUSPN .

SIS i
L) (1 (0] SRR
strxfrm ...

strncmp
strncpy.......
strpbrk
LS [(o] o] RO

structtmoeeeeennnnns
strxfrm

Substrings
Subtracting Pointers.........ccccceeviiiiie e
Successful Termination
S £ (=11 1

tangent
Double Floating Point...........cccccoiiiiiiiieneenn. 254
Single Floating Point

Temporary
File oo 154,170
Filename 117, 155
POINEEN ... 177
Termination
Request MESSAgEuuvviviiiiiiiiiiiieeeeeeeeesis 106
Request Signal.......c..ccoccvvvvieiiiiiiiee e 106
Successful
UNSUCCESSTUL......ccoeeeieeeicceee e 160
Text Mode
Text Streams
Ticks..........
tiME e,

fIME. N 207, 264

clock_t
CLOCKS_PER_SEC

difftime
gmtime
localtimeooovveeeeee e

L(010 7o) 1Y PR

Transferring Control

Transform Functions
BitReverseComplex
CosFactorinit.........ccccvveveeiireieee e

FFTComplex

FFTComplexIP....................

IFFTCOMPIEX .evveeeeiiiiieee et

IFFTCOMPIEXIP ..o

TwidFactorlnit .
Transform String.........ooooiieeiiiieee e
Trigonometric Functions

UCHAR_MAX ..ottt

UINT_MAX

ULLONG_MAX

ULONG_MAX..........

Underflow Errorscccoeeeeeeecvvnnnnns 93, 215, 227, 228,
.. 237, 238, 246, 247

DS51456D-page 280

© 2007 Microchip Technology Inc.

Universal Time Coordinated..............ccoeeeeveeeiieeennnns 210
unsigned char

Maximum Valueccceeeeeiieiiiiiieiiieeeeeeeees 101
unsigned int

Maximum Valueccceeeeeeeeiiiiiieiieeeee e 101
unsigned short int

Maximum Valuecoceevviiniinireieieeeeeee e
Unsuccessful Termination
Upper Case Alphabetic Character

Convert To

Definedcccooeeeeeeveiiinninnne.

Testfor. i,

va_start 111, 157,158, 159
Variable Argument Lists, See stdarg.h

Variable Length Argument List 109, 111, 157, 158, 159
Vector Functions
VectorAdd

VectorConvolve............cccc..u.....

VectorCopyccovvvvvvvvverereeeennn.

VECtOrCOITEIALEuvvviiieieieieieee e
VectorDotProduct
VectorMax.............
VectorMin..............
VectorMultiply
VECtOrNEQALEuvviee ettt
VECIOTPOWETvvvvvieieiieiiiiieeeeeeieeeiennn

VectorScale
VeCtorSUDIIaCtccoeeeeiieiiieeeeeee e
VeCtOrWINAOWeeieeeiieeieeeeeeeee e
VectorZeroPad...............cc.oo.....
VERBOSE_DEBUGGING
Vertical Tab........cccoevevvvvvvvennnnns

VPN L
VPFINEE (e
VSPHINEE e

White Space

White-Space Character

Wide Character String
Wide Character Value

Window Functions
Bartlettinit...........ovvveeeeeeiiiiee e
Blackmaninit
Hamminglnit
HanningINit.........ccooveeiiiiiiieeccccee e
KaISEIINIt...uvvviiiiiiiieieieieeeee e

Y
=T | SR 207, 208, 213
Z
ZEIO e 215

© 2007 Microchip Technology Inc.

DS51456D-page 281

MICROCHIP

WORLDWIDE SALES AND SERVICE

AMERICAS
Corporate Office

2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200

Fax: 480-792-7277
Technical Support:

http://support.microchip.com

Web Address:
www.microchip.com

Atlanta

Duluth, GA

Tel: 678-957-9614
Fax: 678-957-1455

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago

Itasca, IL

Tel: 630-285-0071
Fax: 630-285-0075

Dallas

Addison, TX

Tel: 972-818-7423
Fax: 972-818-2924

Detroit

Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260

Kokomo

Kokomo, IN

Tel: 765-864-8360
Fax: 765-864-8387

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608

Santa Clara

Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445

Toronto
Mississauga, Ontario,
Canada

Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Habour City, Kowloon
Hong Kong

Tel: 852-2401-1200
Fax: 852-2401-3431
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China - Beijing

Tel: 86-10-8528-2100
Fax: 86-10-8528-2104

China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889

China - Fuzhou
Tel: 86-591-8750-3506
Fax: 86-591-8750-3521

China - Hong Kong SAR
Tel: 852-2401-1200

Fax: 852-2401-3431
China - Qingdao

Tel: 86-532-8502-7355
Fax: 86-532-8502-7205

China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066

China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393

China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760

China - Shunde
Tel: 86-757-2839-5507
Fax: 86-757-2839-5571

China - Wuhan

Tel: 86-27-5980-5300
Fax: 86-27-5980-5118
China - Xian

Tel: 86-29-8833-7250
Fax: 86-29-8833-7256

ASIA/PACIFIC

India - Bangalore
Tel: 91-80-4182-8400
Fax: 91-80-4182-8422

India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632

India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513

Japan - Yokohama
Tel: 81-45-471- 6166
Fax: 81-45-471-6122

Korea - Gumi
Tel: 82-54-473-4301
Fax: 82-54-473-4302

Korea - Seoul

Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934

Malaysia - Penang
Tel: 60-4-646-8870
Fax: 60-4-646-5086

Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069
Singapore

Tel: 65-6334-8870
Fax: 65-6334-8850

Taiwan - Hsin Chu
Tel: 886-3-572-9526
Fax: 886-3-572-6459

Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-536-4803
Taiwan - Taipei

Tel: 886-2-2500-6610
Fax: 886-2-2508-0102

Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE

Austria - Wels

Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828

Fax: 45-4485-2829

France - Paris

Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Italy - Milan

Tel: 39-0331-742611
Fax: 39-0331-466781

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Spain - Madrid

Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
UK - Wokingham

Tel: 44-118-921-5869
Fax: 44-118-921-5820

12/08/06

DS51456D-page 282 © 2007 Microchip Technology Inc.

	Preface
	Chapter 1. Library Overview
	1.1 Introduction
	1.2 OMF-Specific Libraries/Start-up Modules
	1.3 Start-up Code
	1.4 DSP Library
	1.5 16-Bit Peripheral Libraries
	1.6 Standard C Libraries (with Math Functions)
	1.7 MPLAB C30 Built-in Functions

	Chapter 2. DSP Library
	2.1 Introduction
	2.2 Using the DSP Library
	2.3 Vector Functions
	2.4 Window Functions
	2.5 Matrix Functions
	2.6 Filtering Functions
	2.7 Transform Functions
	2.8 Control Functions
	2.9 Miscellaneous Functions

	Chapter 3. Standard C Libraries with Math Functions
	3.1 Introduction
	3.2 Using the Standard C Libraries
	3.3 <assert.h> diagnostics
	3.4 <ctype.h> character handling
	3.5 <errno.h> errors
	3.6 <float.h> floating-point characteristics
	3.7 <limits.h> implementation-defined limits
	3.8 <locale.h> localization
	3.9 <setjmp.h> non-local jumps
	3.10 <signal.h> signal handling
	3.11 <stdarg.h> variable argument lists
	3.12 <stddef.h> common definitions
	3.13 <stdio.h> input and output
	3.14 <stdlib.h> utility functions
	3.15 <string.h> string functions
	3.16 <time.h> date and time functions
	3.17 <math.h> mathematical functions
	3.18 pic30-libs

	Appendix A. ASCII Character Set
	Index
	Worldwide Sales and Service

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

