N

MICROCHIP

16-BIT
LANGUAGE TOOLS
GETTING STARTED

DDDDDDDD

Note the following details of the code protection feature on Microchip devices:

. Microchip products meet the specification contained in their particular Microchip Data Sheet.

. Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the

intended manner and under normal conditions.

. There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

. Microchip is willing to work with the customer who is concerned about the integrity of their code.

. Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not

mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights.

QUALITY MANAGEMENT SYSTEM
CERTIFIED BY DNV

—150/TS 16949:2002 —

Trademarks

The Microchip name and logo, the Microchip logo, Accuron,
dsPIC, KEELOQ, microID, MPLAB, PIC, PICmicro, PICSTART,
PRO MATE, PowerSmart, rfPIC and SmartShunt are
registered trademarks of Microchip Technology Incorporated
in the U.S.A. and other countries.

AmpLab, FilterLab, Migratable Memory, MXDEV, MXLAB,
SEEVAL, SmartSensor and The Embedded Control Solutions
Company are registered trademarks of Microchip Technology
Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard,
dsPICDEM, dsPICDEM.net, dsPICworks, ECAN,
ECONOMONITOR, FanSense, FlexROM, fuzzyLAB,
In-Circuit Serial Programming, ICSP, ICEPIC, Linear Active
Thermistor, Mindi, MiWi, MPASM, MPLIB, MPLINK, PICkit,
PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal,
Powerlnfo, PowerMate, PowerTool, REAL ICE, rfLAB,
rfPICDEM, Select Mode, Smart Serial, SmartTel, Total
Endurance, UNI/O, WiperLock and ZENA are trademarks of
Microchip Technology Incorporated in the U.S.A. and other
countries.

SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2006, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.

f‘} Printed on recycled paper.

Microchip received ISO/TS-16949:2002 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona, Gresham, Oregon and Mountain View, California. The
Company’s quality system processes and procedures are for its PIC®
8-bit MCUs, KEELOQ® code hopping devices, Serial EEPROMS,
microperipherals, nonvolatile memory and analog products. In addition,
Microchip’s quality system for the design and manufacture of
development systems is ISO 9001:2000 certified.

DS70094D-page ii

© 2006 Microchip Technology Inc.

16-BIT LANGUAGE TOOLS

MICROCHIP GETTING STARTED
Table of Contents
Preface ... 1
Chapter 1. Installation and Overview
T INtrodUCHION ... e 7
1.2 Installing/Uninstalling MPLAB IDEcoooiiiiiiiii e, 7
1.3 Installing MPLAB ASM30, MPLAB LINK30 and Language Tool Utilities 7
1.4 Installing/Uninstalling MPLAB C30coooiiiiiiiiiiee e 7
1.5 Tutorial OVEIVIEW ..o 8
Chapter 2. Tutorial 1 — Creating A Project
b0 B 10T [T 1o R 9
2.2 Creating @ File ... 9
2.3 Using the ProjeCt Wizardoooeiiiiiiiiiii e ee e 10
2.4 Using the Project WINAOWcooiiiiiiiiiiie e 13
2.5 Setting Up Build OPLioNSvvviiiiiiiiiiiiieiieeeeee et a e e 14
2.6 Building the Project ... 19
2.7 Troubleshooting Build EITOrScovvuiiiiiiiieeiceces et 19
2.8 Debugging with the MPLAB SIM Simulatorcccccoviiiiiiiiiien 21
2.9 Generating @ Map Fileuuvuiiiiiiiiiiieieeeeeeeeee e 24
2.10 Debugging at Assembly Code Level ... 25
b2 T 5 q o] Lo To TN U T = O 27
Chapter 3. Tutorial 2 — Real-Time Interrupt
K 20t I [oV o Yo [T 1 o] o TSP 29
3.2 Using Template FileSouvueoiiiiiiieeeee e e 29
3.3 Using the Template in @ New Project ... 33
3.4 Debugging with the MPLAB SIM Simulatorcccccocvviiiiiiiiiiiiiiiiee, 39
3.5 EXPlOring FUMNEr ..o 43
Chapter 4. Tutorial 3 — Mixed C and Assembly Files
4.1 INtrodUCHION ... e 45
4.2 Getting Project Source Files ... 45
4.3 Creating and Building the Projectccoooioiiiiiiees 47
4.4 Examining the Programcoooieuiiiiiii et e e e e e 49
4.5 EXPIONNG FUMNETooiiiiiie e 53
4.6 Where to GO from HEreeeiniiiiiiie e 53
g e 1= G 54
Worldwide Sales and Service ... 56

© 2006 Microchip Technology Inc. DS70094D-page iii

16-Bit Language Tools Getting Started

NOTES:

DS70094D-page iv © 2006 Microchip Technology Inc.

16-BIT LANGUAGE TOOLS
MICROCHIP GETTING STARTED

Preface

NOTICE TO CUSTOMERS

All documentation becomes dated, and this manual is no exception. Microchip tools
and documentation are constantly evolving to meet customer needs, so some actual
dialogs and/or tool descriptions may differ from those in this document. Please refer
to our web site (www.microchip.com) to obtain the latest documentation available.

Documents are identified with a “DS” number. This number is located on the bottom
of each page, in front of the page number. The numbering convention for the DS
number is “DSXXXXXA”, where “XXXXX” is the document number and “A” is the
revision level of the document.

For the most up-to-date information on development tools, see the MPLAB® IDE
on-line help. Select the Help menu, and then Topics to open a list of available on-line
help files.

INTRODUCTION

This chapter contains general information that will be useful to know before using the
16-Bit Language Tools. Items discussed in this chapter include:

* Document Layout

» Conventions Used in this Guide

* Recommended Reading

* The Microchip Web Site

» Development Systems Customer Change Notification Service

» Customer Support

DOCUMENT LAYOUT

This document describes how to use 16-Bit Language Tools as development tools to
emulate and debug firmware on a target board. The manual layout is as follows:

e Chapter 1: Installation and Overview — How to install the 16-Bit Language Tools
on your PC and how they work.

e Chapter 2: Tutorial 1 — Creating a Project — How to set up a project using 16-Bit
Language Tools.

* Chapter 3: Tutorial 2 — Real-Time Interrupt — How to create a dsPIC30F
application using a real-time interrupt.

e Chapter 4: Tutorial 3 — Mixed C and Assembly Files — How to create a
dsPIC30F application using a combination of C and assembly code files.

© 2006 Microchip Technology Inc. DS70094D-page 1

16-Bit Language Tools Getting Started

CONVENTIONS USED IN THIS GUIDE

This manual uses the following documentation conventions:

DOCUMENTATION CONVENTIONS

Description

| Represents

Examples

Arial font:

Italic characters

Referenced books

MPLAB® IDE User’s Guide

Emphasized text

...Is the only compiler...

digit

Initial caps A window the Output window
A dialog the Settings dialog
A menu selection select Enable Programmer
Quotes A field name in a window or | “Save project before build”
dialog
Underlined, italic text with A menu path File>Save
right angle bracket
Bold characters A dialog button Click OK
Atab Click the Power tab
‘bnnnn A binary number where nis a |‘b00100, ‘b10

Text in angle brackets < >

A key on the keyboard

Press <Enter>, <F1>

Courier font:

Plain Courier

Sample source code

#define START

Filenames autoexec.bat

File paths c:\mccl8\h

Keywords _asm, _endasm, static
Command-line options -Opa+, -Opa-

Bit values 0, 1

Italic Courier A variable argument file.o, where file can be
any valid filename
Oxnnnn A hexadecimal number where | 0OXFFFF, 0x007A
n is a hexadecimal digit
Square brackets [] Optional arguments mccl8 [options] file
[options]

Curly brackets and pipe
character: {| }

Choice of mutually exclusive
arguments; an OR selection

errorlevel {0]|1}

Ellipses...

Replaces repeated text

var_name [,
var_name. . .]

Represents code supplied by
user

void main (void)

{
}

DS70094D-page 2

© 2006 Microchip Technology Inc.

Preface

RECOMMENDED READING

This user's guide describes how to use 16-Bit Language Tools. Other useful documents
are listed below. The following Microchip documents are available and recommended
as supplemental reference resources.

README Files

For the latest information on Microchip tools, read the associated README files (ASCII
text files) included with the software.

MPLAB® ASM30, MPLAB® LINK30 and Utilities User's Guide (DS51317)

A guide to using the 16-bit assembler, MPLAB ASM30, 16-bit linker, MPLAB LINK30
and various 16-bit utilities, including MPLAB LIB30 archiver/librarian.

MPLAB® c30 C Compiler User’s Guide (DS51284)
A guide to using the 16-bit C compiler. MPLAB LINK30 is used with this tool.
16-Bit Language Tools Libraries (DS51456)

DSP, dsPIC® DSC/PIC24 peripheral and standard (including math) libraries, as well as
MPLAB C30 built-in functions, for use with 16-bit language tools.

dsPIC30F Data Sheet General Purpose and Sensor Families (DS70083)
Data sheet for dsPIC30F digital signal controller (DSC). Gives an overview of the

device and its architecture. Details memory organization, DSP operation and
peripheral functionality. Includes electrical characteristics.

dsPIC30F Family Reference Manual (DS70046)

Family reference guide explains the operation of the dsPIC30F MCU family
architecture and peripheral modules.

dsPIC30F/33F Programmer’s Reference Manual (DS70157)

Programmer’s guide to dsPIC30F devices. Includes the programmer’s model and
instruction set.

C Standards Information

American National Standard for Information Systems — Programming Language — C.
American National Standards Institute (ANSI), 11 West 42nd. Street, New York,
New York, 10036.

This standard specifies the form and establishes the interpretation of programs
expressed in the programming language C. Its purpose is to promote portability,
reliability, maintainability and efficient execution of C language programs on a
variety of computing systems.

© 2006 Microchip Technology Inc. DS70094D-page 3

16-Bit Language Tools Getting Started

C Reference Manuals

Harbison, Samuel P., and Steele, Guy L., C A Reference Manual, Fourth Edition,
Prentice-Hall, Englewood Cliffs, N.J. 07632.

Kernighan, Brian W., and Ritchie, Dennis M., The C Programming Language, Second
Edition. Prentice Hall, Englewood Cliffs, N.J. 07632.

Kochan, Steven G., Programming In ANSI C, Revised Edition. Hayden Books,
Indianapolis, Indiana 46268.

Plauger, P.J., The Standard C Library, Prentice-Hall, Englewood Cliffs, N.J. 07632.

Van Sickle, Ted., Programming Microcontrollers in C, First Edition. LLH Technology
Publishing, Eagle Rock, Virginia 24085.

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web
site is used as a means to make files and information easily available to customers.
Accessible by using your favorite Internet browser, the web site contains the following
information:

* Product Support — Data sheets and errata, application notes and sample
programs, design resources, user’s guides and hardware support documents,
latest software releases and archived software

* General Technical Support — Frequently Asked Questions (FAQ), technical
support requests, online discussion groups, Microchip consultant program
member listing

» Business of Microchip — Product selector and ordering guides, latest Microchip
press releases, listing of seminars and events, listings of Microchip sales offices,
distributors and factory representatives

DEVELOPMENT SYSTEMS CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip’s customer notification service helps keep customers current on Microchip
products. Subscribers will receive e-mail notification whenever there are changes,
updates, revisions or errata related to a specified product family or development tool of
interest.

To register, access the Microchip web site at www.microchip.com, click on Customer
Change Notification and follow the registration instructions.

The Development Systems product group categories are:

» Compilers — The latest information on Microchip C compilers and other language
tools. These include the MPLAB C18 and MPLAB C30 C compilers; MPASM™
and MPLAB ASM30 assemblers; MPLINK™ and MPLAB LINK30 object linkers;
and MPLIB™ and MPLAB LIB30 object librarians.

+ Emulators — The latest information on Microchip in-circuit emulators. This
includes the MPLAB REAL ICE, MPLAB ICE 2000 and MPLAB ICE 4000 emulators.

* In-Circuit Debuggers — The latest information on the Microchip in-circuit
debugger, MPLAB ICD 2.

* MPLAB IDE - The latest information on Microchip MPLAB IDE, the Windows®
Integrated Development Environment for development systems tools. This list is
focused on the MPLAB IDE, MPLAB SIM simulator, MPLAB IDE Project Manager
and general editing and debugging features.

* Programmers — The latest information on Microchip programmers. These include
the MPLAB PM3 and PRO MATE® Il device programmers and the PICSTART®
Plus development programmer.

DS70094D-page 4

© 2006 Microchip Technology Inc.

Preface

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

+ Distributor or Representative

* Local Sales Office

 Field Application Engineer (FAE)

» Technical Support

Customers should contact their distributor, representative or field application engineer

(FAE) for support. Local sales offices are also available to help customers. A listing of
sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http:/support.microchip.com

© 2006 Microchip Technology Inc. DS70094D-page 5

http://support.microchip.com

16-Bit Language Tools Getting Started

NOTES:

DS70094D-page 6 © 2006 Microchip Technology Inc.

16-BIT LANGUAGE TOOLS
MICROCHIP GETTING STARTED

Chapter 1. Installation and Overview

1.1 INTRODUCTION

This document provides a step-by-step guide to using the MPLAB® C30 C compiler
and other 16-bit (PIC24 MCU and dsPIC DSC devices) language tools with the MPLAB
Integrated Development Environment (IDE) v7.00 or later. The project manager for
MPLAB IDE and the MPLAB SIM simulator are both components of MPLAB IDE and,
along with the built-in debugger, will be used extensively in this guide.

ltems discussed in this chapter are:

* Installing/Uninstalling MPLAB IDE

* Installing MPLAB ASM30, MPLAB LINK30 and Language Tool Utilities
* Installing/Uninstalling MPLAB C30

* Tutorial Overview

1.2 INSTALLING/UNINSTALLING MPLAB IDE

MPLAB IDE is provided on CD-ROM or is available from www.microchip.com at no
charge. Follow the instructions on the CD-ROM or website to install MPLAB IDE. To
uninstall, view the instructions in the file Readme for MPLAB IDE.txt.

1.3 INSTALLING MPLAB ASM30, MPLAB LINK30 AND LANGUAGE TOOL
UTILITIES

MPLAB ASM30 and MPLAB LINK30 are provided free with MPLAB IDE. They are also
included in the MPLAB C30 compiler installation. To ensure compatibility between all
16-bit tools, the versions of these tools provided with MPLAB C30 should be used.

1.4 INSTALLING/UNINSTALLING MPLAB C30

To install MPLAB C30 and related 16-bit language tools:

* When installing MPLAB C30 compiler as an update to a previous version, it may
overwrite existing files on the PC. A backup should be made to retain files which
may have been modified.

* Insert the CD-ROM into the PC and execute the installation MPLAB C30 vX.XX
(where X.XX is the current version number) file. A series of dialogs will step
through the installation process. The installation may take a few minutes as it
searches for MPLAB IDE and other related files on the PC.

+ To follow the examples in this guide, make sure that the check box for
EXAMPLES is checked.

To uninstall MPLAB C30, open the folder where the compiler is installed and double
click on UNWISE.EXE.

Note: When uninstalling an upgraded version of MPLAB C30, the entire
installation will be removed. If files have been added to directories after the
previous installation, these will not be removed.

© 2006 Microchip Technology Inc. DS70094D-page 7

16-Bit Language Tools Getting Started

1.5 TUTORIAL OVERVIEW

The following tutorials are intended to help an engineer familiar with the

C programming language and embedded systems concepts get started using MPLAB
C30 with MPLAB IDE. This document shows how to create and build projects, how to
write code using features of 16-bit devices and how to verify and debug code written
with MPLAB C30.

These tutorials assume that MPLAB C30 and MPLAB IDE are installed (see the previ-
ous sections.) Please refer to the 16-bit literature, such as the “dsPIC30F Data Sheet
General Purpose and Sensor Families” (DS70083) and “dsPIC30F/33F Programmer’s
Reference Manual” (DS70157) for information regarding processor-specific items such
as the Special Function Registers, instruction set and interrupt logic.

Tutorials presented in these chapters for using the MPLAB C30 compiler include:

» Chapter 2 which demonstrates how to:
- set up and build a project
- run, step and set breakpoints in the example code
- debug the code
» Chapter 3 which demonstrates how to:
- use templates to create a source file
- use a real-time interruptin C
» Chapter 4 which demonstrates how to:
- use MPLAB C30 compiler with an assembly language DSP routine
- pass parameters to and from an assembly language module

DS70094D-page 8

© 2006 Microchip Technology Inc.

16-BIT LANGUAGE TOOLS
MICROCHIP GETTING STARTED

Chapter 2. Tutorial 1 — Creating A Project

21 INTRODUCTION

The simple source code in this tutorial is designed for an MPLAB IDE v7.xx project. It
will use the MPLAB SIM simulator for the dsPIC30F6014 device. The tutorial assumes
the default MPLAB C30 compiler installation directory, i.e.,

C:\Program Files\Microchip\MPLAB C30.

Note: If you have an older version of MPLAB C30 installed under
C:\pic30_ tools, any future installs will use this directory by default. To
use the new path, select it during the install or uninstall the older version
first.

This tutorial consists of:

+ Creating a File

» Using the Project Wizard

* Using the Project Window

» Setting Up Build Options

+ Building the Project

» Troubleshooting Build Errors

» Debugging with the MPLAB SIM Simulator
» Generating a Map File

» Debugging at Assembly Code Level

» Exploring Further

2.2 CREATING AFILE

Start MPLAB IDE and select File>New to bring up a new empty source file. The source
code that should be typed in (or copied and pasted if viewing this electronically) to this
new source file window is shown in Example 2-1.

EXAMPLE 2-1: MYFILE.C
#include "p30£f6014.h"

int counter; // for TRISB and PORTB declarations
int main (void)

{

counter = 1;
TRISB = 0; // configure PORTB for output
while (1) // do forever

{

PORTB = counter; // send value of ‘counter’ out PORTB
counter++;

}

return 0;

© 2006 Microchip Technology Inc. DS70094D-page 9

16-Bit Language Tools Getting Started

TRISB and PORTR are Special Function Registers (SFRs) on the dsPIC30F6014
device. PORTE is a set of general purpose input/output pins. TRISB bits configure the
PORTB pins as inputs (1) or outputs (0).

Use File>Save As to save this file with the file name MyFile.c in the \examples
folder under the installation folder.

2.3 USING THE PROJECT WIZARD

Select Project>Project Wizard to create a new project. The Welcome page will appear.
Click Next> to continue.

1.

At “Step One: Select a Device”, use the pull-down menu to select the
dsPIC30F6014 device. Click Next> to continue.

At “Step Two: Select a language toolsuite”, choose “Microchip C30 Toolsuite” as
the “Active Toolsuite”. Then click on each language tool in the toolsuite (under
“Toolsuite Contents”) and check or set up its associated executable (Figure 2-1).

MPLAB ASM30 Assembler should point to the assembler executable,
pic30-as.exe under “Location”. If it does not, enter or browse to the
executable location, which is by default:

C:\Program Files\Microchip\MPLAB C30\bin\pic30-as.exe

MPLAB C30 C Compiler should point to the compiler executable,
pic30-gcc.exe under “Location”. If it does not, enter or browse to the
executable location, which is by default:

C:\Program Files\Microchip\MPLAB C30\bin\pic30-gcc.exe

MPLAB LINK30 Object Linker should point to the linker executable,
pic30-1d.exe under “Location”. If it does not, enter or browse to the
executable location, which is by default:

C:\Program Files\Microchip\MPLAB C30\bin\pic30-1d.exe

Click Next> to continue.

FIGURE 2-1: PROJECT WIZARD - SELECT LANGUAGE TOOLSUITE

Project Wizard x|

Step Two: r‘h
Select a language toolzuite

Active Toolsuite: Microchip C30

~ Toolsuite Contents

MPLAE A5M30 Azzembler [pic30-as.exe]
MPLAE C30 C Compiler [pic30-goc. exe
MPLAE LIMK.30 Object Linker [pic30-d.exe] LI
LIRAN &rehiver Tnic30-ar aesl

i~ Location

C:\Program Fileg\Microchip\MPLAE C304%binpic30-az.exe Browse... |
Help! My Suite lsn't Listed! | ™ Show all installed toolsuites

< Back I Mext » I Cancel | Help

DS70094D-page 10

© 2006 Microchip Technology Inc.

Tutorial 1 — Creating A Project

3. At“Step Three: Name your project”, enter the name of the project as MyProject
and use Browse to go the \examples folder in the installation directory for
MPLAB C30. Then click Next> to continue.

FIGURE 2-2:

PROJECT WIZARD - PROJECT NAME AND DIRECTORY

Project Wizard

Step Three:
Mame your project

~ Project Mame

IM yProject

~ Project Directory

IE:\Program Filez'MicrochiphtPLAR C30hexamples Browse... I
< Back | Mext » | Cancel | Help |

project.

At “Step Four: Add any existing files to your project”, two files will be added to the

First, select the source file created earlier, MyFile.c, in the \examples folder.
Press ADD>> to add it to the list of files to be used for this project (on the right).

FIGURE 2-3:

PROJECT WIZARD - ADD C SOURCE FILE

Project Wizard

Step Four:
Add any existing files to pour project

-1 MPLAB C30

|

"{:I bin Add > |
{:I docs
{:I eratalib E—
B0 emamples | —I
221 lib
{:I S0 il

KN >

O C:“Program Files\MicrochipitPLe

KN b
Check the box to copy the file ta the

project directory. Click the filename to
edit the name of the local copy.

< Back I Mest > I

Cancel Help

© 2006 Microchip Technology Inc.

DS70094D-page 11

16-Bit Language Tools Getting Started

Second, a linker script file must be added to tell the linker about the memory
organization of the dsPIC30F6014 device. Linker scripts are located in the
\support\gld folder in the installation directory for MPLAB C30. Scroll down
tothe p30£6014.gldfile, click on it to highlight, and click ADD>> to add the file
to the project.

FIGURE 2-4: PROJECT WIZARD - ADD LINKER SCRIPT

Project Wizard x|

Step Four: Eﬁ‘
Add any existing files to pour project /{é}

----- p30fE011.gld =] O C:MProgram Files\MicrochiphPLe
p30E0114 gld M O C:“Program Files\MicrochipitPLe

pa0ME012.gld

a0 24, gid

pa0fE013.gld M

pa0fE01 34, gid

pa0fE0T 4. gld

----- pa0fE0T 46, gid

----- pa0fE015.gld

p30sim.gld 4 | | _>|

----- p33FJ128GP206.gld

= - Check the box to copy the file ta the
""" B P33R 286P308'ild I_I project directory. Click the filename to
LI 4 edit the name of the local copy.

< Back I Mext » I Cancel Help

[) e i)))

Select Next> to continue.

5. Atthe Summary screen, review the “Project Parameters” to verify that the device,
toolsuite and project file location are correct. If you wish to change anything, use
Back to return to a previous wizard dialog. Click Finish to create the new project
and workspace.

DS70094D-page 12 © 2006 Microchip Technology Inc.

Tutorial 1 — Creating A Project

2.4 USING THE PROJECT WINDOW

Locate the project window on the MPLAB IDE workspace. The file name of the work-
space should appear in the top title bar of the project window, MyProject . mcw, with

the file name as the top “node” in the project, MyProject .mcp. Project files will be
listed in tree format on the Files tab.

FIGURE 2-5: PROJECT WINDOW - FILES TAB

I MyProject. mcw M=]E

= L3 MyProject.mcp

-2 Source Files

LE] Myl
-2 Header Files
[object Files
[Library Files
[_]D Linketr Scripks
...[2] paoFen14.qid
.7 Other Files

(1 Files |¢l§ SVman5|

Note: If an error was made, highlight a file name and press the Delete key or use
the right mouse menu to delete a file. Place the cursor over “Source Files”

or “Linker Scripts” and use the right mouse menu to add the proper files to
the project.

To view the functions and variables in this short example, click the Symbols tab.

FIGURE 2-6: PROJECT WINDOW - SYMBOLS TAB

Il MyProject. mcw O] x|

= ¢ MyProject.mcp
=% Functions
fos =@ main (\-’Did)
E- @ Mariables

o @ coOURbEF

[Files ¢ Symbals |

© 2006 Microchip Technology Inc. DS70094D-page 13

16-Bit Language Tools Getting Started

2.5 SETTING UP BUILD OPTIONS

The 16-bit tools are almost ready to be invoked to build the project. However, the
project and tool build options need to be checked.

1. Select Project>Build Options and click on “Project” to display the Build Options

dialog for the entire project.

2. Click the General tab. In this tutorial, you do not need to fill in a path for “Include
Path”, but you may need to for your own, future projects. The “Library path”
should be the \1ib directory of the MPLAB C30 installation directory.

FIGURE 2-7:

BUILD OPTIONS DIALOG

General | ASM30/C30 Suite | MPLAB ASM30 | MPLAB 30| MPLAB LINK3D|
Output Directory, $BINDIR]:
|| Browse... |
Intermediates Directory, $[TMPDIR]:
I Browse... |
Azzembler Include Path, $iAINDIR]:
I Browse... |
Include Path, $IMCDIR]:
I Browse... |
Library Path, $ILIBDIR):
IE:\Program Filez'MicrochiphtPLAR C304ib Browse... |
Linker-Script Path, $ILKRDIR]:
I Browse.. |

Help | Suite Defaultsl

QK I Cancel | Apply

DS70094D-page 14

© 2006 Microchip Technology Inc.

Tutorial 1 — Creating A Project

The various command-line options that are passed to the 16-bit tools can be set on the
tool-specific tabs.

3. Click the MPLAB C30 tab. There are three dialogs of options for MPLAB C30:
General, Memory Model and Optimization. These are selected in the
“Categories” pull-down list and will change the items on the dialog accordingly.

For this example, you will keep the default command-line options for

MPLAB C30.
FIGURE 2-8: COMPILER BUILD OPTIONS - GENERAL

General | ASM30/C30 Suite | MPLAB ASM30 MPLAB C30 | MPLAB LINK30|

I > Categories: I General j

i~ Generate Command Line

[V Generate debugging information ™ Additional warnings
™ Support all ANSI-standard programs ™ Shrict ANSI warnings

™ Make warrings into erars

Macro Definitions

Add

Remove

ek

Remave Al

=it et settings Restore Defaults |

fa

I Use Altenate Settings

[

QK Cancel Apply

© 2006 Microchip Technology Inc. DS70094D-page 15

16-Bit Language Tools Getting Started

4. Click the MPLAB LINK30 tab. There are three dialogs of options for MPLAB

LINK30: General, Diagnostics and Symbols & Output. These are selected in the
“Categories” pull-down list and will change the items on the dialog accordingly.

MPLAB LINK30 needs to have a heap entered on its General category in order
to run Tutorial 3 later in this guide. Enter 512 as the Heap size.

FIGURE 2-9: LINKER BUILD OPTIONS — GENERAL

General | ASM30/C30 Suite | MPLAB ASM30 | MPLAB £30 MPLAB LINK3D |

Categories: I General j

Generate Command Line
[§ Heap size: 514 buytes ™ Allow overlapped sections

Min Stack Size: I bytes I™ Link for ICD2

Symbal Definitions

Add... |
Remove |
Remave Al |

=it et settings Restore Defaults |

Ii‘l 2 Map="$[TARGETBASE] map" -o"$[TARGETBASE] ${TARGETSLIFFI<]"

I Use Altenate Settings

I-o"$[TAF|GETBASE].$[TAF|GETSUFFI><]" Map="$TARGETEBASE) map"

QK I Cancel Apply

DS70094D-page 16

© 2006 Microchip Technology Inc.

Tutorial 1 — Creating A Project

5. Click the MPLAB ASM30 tab. There are two dialogs of options for MPLAB
ASM30: General and Diagnostics. These are selected in the “Categories”
pull-down list and will change the items on the dialog accordingly.

For this example, you will keep the default command-line options for MPLAB
ASM30.

FIGURE 2-10: ASSEMBLER BUILD OPTIONS — GENERAL

General | ASM30/C30 Sute MPLAB ASM30 | MPLAB 30| MPLAB LINK30|

Categories: I General j

i~ Generate Command Line
[Allow CALL optimization
™ Keep local symbols

[V Generate debugging information

Macro Definitions

Add... |
Remove |
Remave Al |

=it et settings Restore Defaults |
F

I Use Altenate Settings

[

QK I Cancel Apply

© 2006 Microchip Technology Inc. DS70094D-page 17

16-Bit Language Tools Getting Started

6. Click the ASM30/C30 Suite tab. On this tab, the type of output for the assembler
and compiler may be selected. Select an output format of either COFF or
ELF/DWAREF. Select to create regular output (from the linker) or a library (from
the librarian).

For this example, you will keep the default options.

FIGURE 2-11: SUITE BUILD OPTIONS

General ASM30/T30 Sute | MPLAB ASM30 | MPLAB C30 | MPLAB LINK30|

Categories: |[URATENE]

i~ Generate Command Line

r— Output-File Format
&+ COFF
 ELF/DWARF

& Build normal target [invoke LINK30)
' Build library target [invoke LIB30)

— Target Type

Restore Defaults |

QK I Cancel Apply

DS70094D-page 18 © 2006 Microchip Technology Inc.

Tutorial 1 — Creating A Project

2.6 BUILDING THE PROJECT

Select Project>Build All to compile, assemble and link the project. If there are any error
or warning messages, they will appear in the output window.

For this tutorial, the output window should display no errors and should show a
message stating the project “BUILD SUCCEEDED.” If there were any errors, check to
see that the content of the source file matches the text of myfile. c displayed in
Example 2-1.

FIGURE 2-12: BUILD OUTPUT WINDOW

Dutput =] S
Build |Versi0n Contral | Find in Files |

Clean: Deleting intermediary and output files.

Clean: Deleted file "C\Program Filesi\MicrochiphhPLAB C30examplesi\MyProjectmes".

Clean: Daone.

Executing: "CA\Program Files\Microchip\MPLAB C304hinypic30-gec.exe" -mopu=30F6014 -c -x ¢ "MyFile.c" -o"MyFile.o" -g
Executing: "Ci\Program Files\Microchip\MPLAE C30hinypic30-gec.exe" “W,"ChProgram Files\MicrochipyMPLAB C30hex:
Executing: "CA\Program Files\Microchip\MPLAB C304hinypic30-hinZhex exe" "MyProject.cof

Loaded ChYProgram FilesiMicrochippMPLAE C3lhexamplesihyProject cof.

BUILD SUCCEEDED: Wed Jul 26 11:11:08 2006

q | i

2.7 TROUBLESHOOTING BUILD ERRORS

If errors were reported after building the project, double click on the line with the error
message to go directly to the source code line that caused the error. If the example was
typed in, the most common errors are misspellings, missing semicolons or unmatched
braces. In the following screen, a typo was made. In this example, the letter “i” was

accidentally omitted in the “int” declaration of main () . The error message will appear

in the output window.

FIGURE 2-13: BUILD ERROR

M C:\Program Files\MicrochipA\MPLAB C30\examples\MyFile.c

#include "pI0L£E014.h"

int counter: /¢ for TRIZE and PORTE declarations
Ent main (roid)
i

counter = 1;

Dutput =] S
Build |Versi0n Contral | Find in Files |

Clean: Deleting intermediary and output files.

Clean: Deleted file "CAProgram Files\Microchip\WMPLAE C30examplesiMyFile.o".

Clean: Deleted file "MyProject. cof".

Clean: Deleted file "MyProjecthex".

Clean: Done.

W\| |Executing: "CAProgram Files\MicrochipiWMPLAB C304hinypic3l-gec.exe" -mopu=30F6014 -c -x ¢ "MyFile.c" -o"MyFile.o" g
HyFile.c:d: error: syntax error before "main"

Em Halting build on first failure as requested.

BUILD FAILED: Wed Jul 26 11:13:49 2006

[= = RS = O R T I ey

© 2006 Microchip Technology Inc. DS70094D-page 19

16-Bit Language Tools Getting Started

After double clicking on the third line in the output window above, the desktop looks like

this:
FIGURE 2-14: DOUBLE CLICK TO GO TO SOURCE
Il C:\Program Files\MicrochipA\MPLAB C30\examples\MyFile.c
1 f#include "p30£6014.h"
2
3 int counter: /¢ for TRIZE and PORTE declarations
4 22kt wain (veid) <::I
5 i
6 counter = 1;)] B
7 TRISE = 0: /¢ configure PORTE for output
(=] = while 1) // do forewver
e i
10 PORTE = counter; // send wvalue of ‘counter’ cout PORTE
11 counter++;
1z '
13 return 0O; yFile.c" -0"MyFile.o" g
14 '
15
el | _>l_I
L

The offending typo “nt” is in black text rather than blue — a good indication that
something is wrong, since key words are shown in blue color fonts. Typing an “i” to
make the “nt” the proper key word “int,” results in the text turning blue. Selecting
Project>Project Build All again produces a successful build.

DS70094D-page 20 © 2006 Microchip Technology Inc.

Tutorial 1 — Creating A Project

2.8 DEBUGGING WITH THE MPLAB SIM SIMULATOR

To debug application code, you need the help of a debug tool. In this tutorial, we will
use the MPLAB SIM simulator. In the simulator, breakpoints can be set in the source
code and the value of variables can be observed with a watch window.

1. Select the MPLAB SIM simulator as the debugging tool by selecting
Debugger>Select Tool>MPLAB SIM.

Open the source file by double clicking on its name (MyFile. c) in the project
tree of the Project window. In the source file, place the cursor over the line:
PORTB counter;

Then click the right mouse button and select “Set Breakpoint”.

2.

FIGURE 2-15: SET BREAKPOINT

Il C:\Program Files\Microchip\MPLAB C30\examples\MyFile.c

1 #include "p30£6014.h"
= D MyProject.mcp 2 s
-8 ScurceF\les 3 int counter; /¢ for TRISE and PORTE declarations
: MyFile.c 2 Blint main (void)
[0 Header Files 5 [
CI Object Files & counter = 1:
D Library Files 7 TRISE = 0O: /4 configure PORTE for output
-0 Linker Scripts s E while (1) /¢ do forever

[= panfen4.qid i

10 = —— - - P .
(33 other Files . PORTi +i|?unterl, i ounter’ out PORTE
s . GEMREEETE Add Fiterin Trace
Figmave Filter Trace
13 return 0O

Fiemeye &1 FiterTraces

Close

Bleakp%s 3

Run to Cursor
Set PC at Cursar

S

o

GoTo..
GoTo Locatar

e
Lapy
Paste
Delete

Ldd Tio Brofect
Advanced
Bookmarks
Code Folding
Text Mode
Properties..

The red stop sign symbol in the margin along the left side of the source window
indicates that the breakpoint has been set and is enabled.

FIGURE 2-16: BREAKPOINT IN SOURCE WINDOW
Il C:\Program Files\MicrochipA\MPLAB C30\examples\MyFile.c
f#include "p30£6014.h"
2
3 int counter: /¢ for TRIZE and PORTE declarations
& Hint main (void)
5 i
] counter = 1:
7 TRISE = 0: /¢ configure PORTE for output
(=] = while 1) // do forewver
e i
10 @ PORTE = counterl: /¢ send walue of ‘counter’ out PORTE
11 counter++;
1z oo
13 return O;
14 '
15 -
-
el | _>l_I

© 2006 Microchip Technology Inc.

DS70094D-page 21

16-Bit Language Tools Getting Started

3. Select View>Watch to open a Watch window. Select counter from the
pull-down expandable menu next to Add Symbol and then click Add Symbol.

FIGURE 2-17: ADD WATCH VARIABLE
Watch 1] B
Add SFHl IAEEA VI Add Symboll Icounter VI

Address Symbhol Name | Value
COUNLCEY

Watch1 Waich2 [wiatch 3| watch 4]

Note: There are three ways to enter Watch variables: (1) in the method described
above, a variable can be picked from a list, (2) the symbol’s name can be
typed directly in the Symbol Name column in the Watch window or (3) the
variable’s name can be highlighted in the source text and dragged to the
Watch window.

4. Press Run on the toolbar to run the program.

L

The program should halt just before the statement at the breakpoint is executed.
The green arrow in the left margin of the source window points to the next state-
ment to be executed. The Watch window should show counter with a value of
‘1’. The value of ‘1’ will be shown in red, indicating that this variable has changed.

FIGURE 2-18: RUN TO BREAKPOINT
Watch 1] B
Add SFHl IAEEA VI Add Symboll Icounter VI
Address Symbhol Name | Value I
COUNLCEY
I C:“Program Files\MicrochipA\MPLAB C30A\examples\MyFile_ c
1 #include "pI0L£E014.h™
2
3 int counter: /f for TRISE and FORTE declarations
Watch 1 /iy Eint main (void)
S i
& counter = 1:
7 TRISE = 0O: /¢ monfigure PORTE for output
(=] = while (1) /f do forewver
El i
piln} @ I PORTE = eounter: // send wvalue of ‘counter’ out PORTE
11 counter++;
1z F B
13 return 0:
14 3
15 -
-
Lol_| o

DS70094D-page 22 © 2006 Microchip Technology Inc.

Tutorial 1 — Creating A Project

5. Press Run again to continue the program. Execution will continue in the while
loop until it halts again at the line with the breakpoint. The Watch window should
show counter with a value of ‘2.

6. To step through the source code one statement at a time, use Step Into on the
toolbar.

]

As each statement executes, the green arrow in the margin of the source window
moves to the next statement to be executed.

7. Place the cursor on the line with the breakpoint, and use the right mouse button
menu to select “Remove Breakpoint”. Now press the Run button. The
“Running...” message should appear on the lower left of the Status bar, and next
to it, a moving bar will indicate that the program is running. The Step icon to the
right of the Run Icon will be grayed out. If the Debugger menu is pulled down, the
Step options will also be grayed out. While in the Run mode, these operations
are disabled.

To interrupt a running program, use Halt on the toolbar.

oo

Once the program has stopped (halted), the step icons are no longer grayed out.

Note: There are two basic modes while debugging: Halt or Run. Most debugging
operations are done in Halt mode. In Run mode, most debug functions are
not operational. Registers cannot be inspected or changed and a project
cannot be rebuilt. Functions that try to access the memory or internal
registers of the running target will not be available in Run mode.

© 2006 Microchip Technology Inc. DS70094D-page 23

16-Bit Language Tools Getting Started

2.9 GENERATING A MAP FILE

A map file provides additional information that may be useful in debugging, such as
details of memory allocation. This file can be generated by setting the appropriate linker
build option.

1. Select Project>Build Options>Project, and then click the MPLAB LINK30 tab.

2. Select “Diagnostics” from “Categories” and then click on the checkbox for
“Generate map file”.

3. Click OK to save the option.
4. Rebuild the project (Project>Build All) to generate the map file.
FIGURE 2-19: GENERATE MAP FILE

General | ASM30/C30 Suite | MPLAB ASM30 | MPLAB £30 MPLAB LINK3D |

-

Categories:

i~ Generate Command Line

V' Generate map file
™ Display memory usage
[T Generate cross-reference fil

™ ‘wam on section realignment

Trace Symbols

Add... |
[R |

Remove

Remave Al |
=it et settings Restore Defaults |

Ii‘l 2 Map="$[TARGETBASE] map" -o"$[TARGETBASE] ${TARGETSLIFFI<]"

I Use Altenate Settings

I--heap=51 2 Map="$[TARGETBASE]| map" -0o"$[TARGETBASE]. cof

QK I Cancel | Aol |

The map file (MyProject .map) is present in the project directory and may be opened
by selecting File>Open, and then browsing to the project directory. Select Files of Type
“All files(*.)” in order to see the map file. This excerpt from the MyProject .map file

shows the program and data memory area usage after MyProject .C was compiled.

EXAMPLE 2-2: MAP FILE EXCERPT

Program Memory Usage

section address length (PC units) length (bytes) (dec)
reset 0 0x4 0x6 (6)

ivt 0x4 0x7c Oxba (186)
.aivt 0x84 0x7¢c Oxba (186)
.text 0x100 0x96 0xel (225)
.dinit 0x196 0x8 oxc (12)
.isr 0x19e 0x2 0x3 (3)

Total program memory used (bytes): 0x26a (618) <1%

Data Memory Usage

section address alignment gaps total length (dec)
.nbss 0x800 0 0x2 (2)
Total data memory used (bytes): 0x2 (2) <1%

DS70094D-page 24 © 2006 Microchip Technology Inc.

Tutorial 1 — Creating A Project

210 DEBUGGING AT ASSEMBLY CODE LEVEL

So far all debugging has been done from the C source file, using functions and
variables as defined in the C code. For embedded systems programming, it may be
necessary to dig down deeper into the assembly code level. MPLAB IDE provides tools
to do both, and shows the correlation between the C code and the generated machine

code.

1. Select the MPLAB IDE View>Disassembly Listing window to see the source
code interspersed with the generated machine and assembly code. This is useful
when debugging mixed C and assembly code, and when it is necessary to see
the machine code generated from the C source code.

FIGURE 2-20: DISASSEMBLY WINDOW
—=-= C:wProgram Files'\MicrochipWMPLAE C30%examples \MyFile. o --------—-—-—--—-——— -
1: #include "p320£5014 k" il
b4
a: int counter: A# for TRISE and PORTE declarations
4z int main (void)
B i{
oolso FAoOQOO Ink #0x0
o counter = 1:
oolsz ZoOO0lo mor. v #0xl, 0x0000
ools4 224000 movr.w 0x0000, 0x0200
7: TRISE = 0O; /¢ configure PORTE for output =
oolze EBOOOO cly . w Ox0000
oolss 221630 movr.w 0x0000 0x0Zce
8 while (1} £ do forever
a: i{
10: PORTE = counter; // send wvalue of “counter’ out PORTE
oolsa 204000 movr.w 0x0200 0x0000
oolsc 221e40 movr.w 0x0000 0x0Zcs
11: counter++;
O0l2E 204000 movr.w 0x0200, 0x0000)
0olso E20000 inc.w 0x0000, 0x0000
0olsz 224000 movr.w 0x0000, 0x0200
00154 27FFFAL bra 0x00012s d
| 1%,

The C source code is shown with the line number from the source code file

shown on the left column. The generated machine hex code and the correspond-
ing disassembled instructions are shown with the address in the left column. For
the machine code instructions, the left column is the address of the instruction in
program memory, followed by the hexadecimal bytes for the instruction and then
the dsPIC30F disassembled instruction.

Note:

The Disassembly Listing does not display dsPIC30F instructions correctly.
Working register operands W0 through W15 are displayed as hexadecimal
numbers 0x0000 through 0x001E. For example, register W1 is displayed as
0x0002, and register W15 is displayed as 0x001E.

© 2006 Microchip Technology Inc.

DS70094D-page 25

16-Bit Language Tools Getting Started

2. Select View>Program Memory window to see only the machine and assembly
code in program memory.

FIGURE 2-21: PROGRAM MEMORY WINDOW - SYMBOLIC
Il Program Memory =] S
Line Address Opcode Labhel Disassembly =
188 oo17ea 3ZFFF4 bra z, _memcpypd3 s
189 00175 BAD91S thlrdh.b [w5], [W2++]
190 00174 ES0153 dec.w w3, w3
191 ao17?c 3AFFF1 bra nz, _memcpypd3
192 O017E [n)-u]ulu]n] return
193 ao1so FAOOOO main Ink #0x0
194 oo01sz Z0ooo1io mov.w H0x1,wd
195 00154 §84000 mov.w wl,counter
196 ao0i1se6 EEBOOOO clr.w wid
197 ao01ss 851630 mov.w wi,0x02cE
198 o001k 04000 mov. W counter, wl
199 aoi1sc 851640 mov.w wi,0x02cs
200 O015E 04000 mov. W counter, wl
Z01 o010 ESO000 inc.w wl, wd
202 o019z §84000 mov.w wl,counter
203 0194 37FFFL hra 0Ox00015a
Z04 0196 aoosoo nop
Z05 a019s aooooz nop
Z086 00194 aooooo nop
207 aoi19c aooooo nop
zZ08 O015E FEOOOO _DefaultlInt reset
09 ao01a0 FFFFFF nopr -
J | of]
Opcode Hexl Machine“ Symbalic | PSY Mixedl PSY Datal

By selecting the various tabs at the bottom of the Program Memory window, the
code can be viewed with or without symbolic labels, as a raw hex dump, as mixed
PSV code and data, or just as PSV data.

Note: See the dsPIC DSC device data sheet for more information about PSV
data. PIC24 MCUs do not have PSV.

Breakpoints can be set, single stepped, and all debug functions performed in any
of the Source code, Disassembly and Program Memory windows.

3. Make sure the program is halted by pressing the Halt button. In the Program
Memory window, click on the Symbolic tab at the bottom to view the code tagged
with symbols. Scroll down and click on the line with the label ma in, which corre-
sponds to the main () function in the C file. Use the right mouse button to set a
breakpoint on main. Press the Reset icon (or select to Debugger>Reset and
select Processor Reset).

El

DS70094D-page 26 © 2006 Microchip Technology Inc.

Tutorial 1 — Creating A Project

4. Now press Run. The program should halt at the breakpoint set at main.

FIGURE 2-22:

BREAKPOINT IN PROGRAM MEMORY

M Program Memory

- O] x|

19z

4

O017E

193 Qo180

0s0000

1594 ooisz Z00o10
155 oo1s4 S54000
196 oo1se6 EECOOOO
197 oo1ss §51630
198 00184 S04000
159 oo1sc S51640
Z00 O018E S04000
z01 Qo180 Es0000
z0z o019z S54000
203 00154 37FFFAL

Line Address Opcode Labhel Disassembly =
1ga 00164 ES0153 dec.w w3, w3 -
183 aoilac 320008 hra =z, O0x00017e
164 0O016E BAS9Z5 thlrdl.b [w5—-1, [WZ++]

185 aoi17o ES0153 dec.w w3, w3

186 ao17a 320005 hra =z, O0x00017e

187 o174 EQOOO4 cpd.w wd

188 oo17ea 3ZFFF4 bra z, _memcpypd3
189 00175 BAD91S thlrdh.b [w5], [W2++]
190 00174 ES0153 dec.w w3, w3

191 ao17?c 3AFFF1 bra nz, _memcpypd3

main

LW
mov.w wl,counter
clr.w wl

mov.w wi,0x02ca
mov. W counter, wl
mov.w wi,0x02cd
mov. W counter, wl
inc.w wi, w0
mov.w wl,counter
bra Ox00015a

i

Opcode Hexl Machine “ Symbalic | PSY Mixedl PSY Datal

5. Go back and look at the source file window (File>Open) and the Disassembly
window (View>Disassembly Listing). The breakpoint should be seen in all three

windows. The step function can now be used in any window to single step
through C source lines or to single step through the machine code.

2.11 EXPLORING FURTHER

Go ahead and experiment with this example program. Things to explore include:

» Changing the value of counter by clicking on its value in the Watch window and
typing in a new number.

» Assigning counter an initial value of one in its definition. Inspect the source code
to see where counter is loaded with this value.

© 2006 Microchip Technology Inc.

DS70094D-page 27

16-Bit Language Tools Getting Started

NOTES:

DS70094D-page 28 © 2006 Microchip Technology Inc.

16-BIT LANGUAGE TOOLS
MICROCHIP GETTING STARTED

Chapter 3. Tutorial 2 — Real-Time Interrupt

3.1 INTRODUCTION

This next tutorial demonstrates real-time interrupt code implemented using the basic
“template” file that comes with MPLAB IDE software. Timer1 on the dsPIC30F6014 will
be used to generate a recurring interrupt to measure one second intervals.

This tutorial consists of:

* Using Template Files

» Using the Template in a New Project

» Debugging with the MPLAB SIM Simulator
» Exploring Further

3.2 USING TEMPLATE FILES

Template files are source code files that can serve as a structure to build an application.
They make it easy to start a project for an application since the C constructs and
formats are provided in a simple file where details of an application can be added. The
templates have example C statements for many common features of MPLAB C30
source code, including variables and constants, processor-specific include files,
interrupt vectors and associated interrupt code, plus areas to insert application code.

The template has comments to help identify key constructs. In many cases macros are
defined to make some things easier. In the simplest form, here is a “stripped-down”
template without these comments and macros so its basic structure can be seen:

EXAMPLE 3-1: ELEMENTS OF A TEMPLATE FILE

#include "p30F6014.h" /* proc specific header */
#define CONSTANT1 10 /* sample constant definition */
int arrayl [CONSTANT1] _ attribute_ ((__ space_(xmemory), _ aligned (32)));
/* array with dsPIC30F attributes */
int array5 [CONSTANT2] ; /* simple array */
int variablel _ attribute_ ((__space_ (xmemory))) ;
/* variable with attributes */
int variable3; /* simple variable */
int main (void) /* start of main application code */

{

/* Bpplication code goes here */

void _ attribute_ ((__interrupt_ (_ save_ (variablel,variable2)))) _INTOInterrupt (void)
/* interrupt routine code */
{

/* Interrupt Service Routine code goes here */

}

This template code starts out with the #include statement to include the header file
that has the processor-specific Special Function Register definitions for this particular
processor (dsPIC30F6014). Following this is a simple constant definition (#define)
that can be modified and copied to make a list of constants for the application.

© 2006 Microchip Technology Inc. DS70094D-page 29

16-Bit Language Tools Getting Started

Two array definitions follow to show how to define an array with various attributes,
specifying its section in memory, and how it is aligned in the memory architecture of the
dsPIC DSC device. The second array definition, arrays, is a simple array.

Like arrays, variables can be assigned with attributes (variablel), or with no
attributes (variable3).

A code fragment for main () follows. This is where code for the application can be
placed. Following main () is the code framework for an interrupt.

Actual applications may use different interrupts, different attributes, and will be more
complicated than this, but this template provides a simple place to start. Along with the
appropriate linker file, the unmodified template can be added to a new project, and the
project will build with no errors.

Templates are stored in a folder with the dsPIC DSC tools installation directory named
\support\templates, and are provided for both assembler and compiler source
files in the corresponding \asm and \ ¢ folders.

Here is the full source code for the C template file for the dsPIC30F6014:

EXAMPLE 3-2: TEMP_6014.C TEMPLATE FILE

/% ok ke sk ok

* This file is a basic template for creating C code for a dsPIC30F
device. Copy this file into your project directory and modify or
add to it as needed.

Add the suitable linker script (e.g., p30f6014.gld) to the project.

If interrupts are not used, all code presented for that interrupt
can be removed or commented out with C-style comment declarations.

For additional information about dsPIC architecture and language
tools, refer to the following documents:

MPLAB C30 Compiler User's Guide : C30.pdf
MPLAB C30 Compiler Reference Guide : R30.pdf
dsPIC 30F Assembler, Linker and Utilities User's Guide : ALU.pdf
dsPIC 30F 16-bit MCU Family Reference Manual : DS70046
dsPIC 30F Sensor and General Purpose Family Data Sheet : DS70083
dsPIC 30F Programmer's Reference Manual : DS70030

Template file has been compiled with MPLAB C30 V 1.3.

hkkkkkkkhkkhkkhkkhkhhkhhhhkkhhkhhkhkhkhkkkkkkkkkhkhkhkkkkkkkkkkkkkkkhkhkkk k%

Author:

Date: 08/20/2004

File Version: 1.30

Other Files Required: p30F6014.gld, libpic30.a

Tools Used: MPLAB GL -> 6.60
Compiler -> 1.30
Assembler -> 1.30
Linker -> 1.30

Devices Supported:
dsPIC30F2011
dsPIC30F3012
dsPIC30F2012
dsPIC30F3013
dsPIC30F3014
dsPIC30F5011
dsPIC30F6011
dsPIC30F6012
dsPIC30F5013
dsPIC30F6013
dsPIC30F6014

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
Company : *
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
* Filename: temp 6014.c
) _
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

hkkkkkkkhkkhkkkkkhkhkhkhhkhkhkhkhhkhhkhhkhhkhhkhhkhhkhhkkkhkhkkkhkkkkkkkkkkkkkkkkkkk*k

DS70094D-page 30 © 2006 Microchip Technology Inc.

Tutorial 2 — Real-Time Interrupt

Kkkkkhkkhkkhkkhkhhkkhkhhkhhkkhkkkhkhhkhhkhhkhkhkhkhkhhkhkhkhkhkhkhkhkhkhkkkkhkkkkkkkk

* *
* Other Comments: *
* *

* 1) C attributes, designated by the _ attribute keyword, provide a *

* means to specify various characteristics of a variable or *
* function, such as where a particular variable should be placed *
* in memory, whether the variable should be aligned to a certain *
* address boundary, whether a function is an Interrupt Service *
* Routine (ISR), etc. If no special characteristics need to be *
* specified for a variable or function, then attributes are not *
* required. For more information about attributes, refer to the *
* C30 User's Guide. *
* *
* 2) The _ space_ (xmemory) and _ space_ (ymemory) attributes *
* are used to place a variable in X data space and Y data space, *
* respectively. Variables accessed by dual-source DSP instructions *
* must be defined using these attributes. *
* *

* 3) The aligned (k) attribute, used in variable definitions, is used *

* to align a variable to the nearest higher 'k'-byte address *
* boundary. 'k' must be substituted with a suitable constant *
* number when the ModBuf X (k) or ModBuf Y(k) macro is invoked. *
* In most cases, variables are aligned either to avoid potential *
* misaligned memory accesses, or to configure a modulo buffer. *
* *
* 4) The _ interrupt attribute is used to qualify a function as an *
* interrupt service routine. An interrupt routine can be further *
* configured to save certain variables on the stack, using the *
* _ save__ (var-list) directive. *
* *
* 5) The _ shadow__ attribute is used to set up any function to *
* perform a fast context save using shadow registers. *
* *
* 6) Note the use of double-underscores (__) at the start and end of *
* all the keywords mentioned above. *
* *

K kkkkk ok kk ko kk ok ok k ok ok ok hkkkk ko hkkk ok kkkk ok khkkkkhkkk ok kkkkkkkkkkkkk kK Kk /

/* Include the appropriate header (.h) file, depending on device used */

/* Replace the path shown here with the header path in your system */
/* Example (for dsPIC30F5013): #include "Your path\p30F5013.h" */
/* Alternatively, the header file may be inserted from the Project */
/* window in the MPLAB IDE */

#include "p30F6014.h"

/* Define constants here */
#define CONSTANT1 10
#define CONSTANT2 20
/* Define macros to simplify attribute declarations */

#define ModBuf_ X(k) _ attribute_ ((__space_ (xmemory), _ aligned (k)))
#define ModBuf Y (k) _ attribute_ ((_ space (ymemory), _ aligned (k)))

[**xxkkkkkxxkk% START OF GLOBAL DEFINITIONS ***xkkkxxx/

/* Define arrays: arrayll[], array2[], etc. */
/* with attributes, as given below */
/* either using the entire attribute */
int arrayl [CONSTANT1] _ attribute_ ((__space__ (xmemory), __ aligned__ (32)));
int array2 [CONSTANT1] _ attribute_ ((__ space_ (ymemory), _ aligned (32)));
/* or using macros defined above */

int array3 [CONSTANT1] ModBuf X (32);
int array4 [CONSTANT1] ModBuf Y (32);

© 2006 Microchip Technology Inc. DS70094D-page 31

16-Bit Language Tools Getting Started

/* Define arrays without attributes */

int array5 [CONSTANT2] ; /* array5 is NOT an aligned buffer x/
/* __ */

/* Define global variables with attributes */

int variablel _ attribute ((__space_ (xmemory))) ;

int variable2 _ attribute_ ((__space__ (ymemory))) ;

/* Define global variables without attributes */

int variable3;

kkkkkkkkkkkx END OF GLOBAL DEFINITIONS **kkkkkkkkk /

Jx KKk kkkkkkkkkx START OF MAIN FUNCTION **kkkokkkkkkkkkk /

int main (void)

{

/* Code goes here */

}

/*%%%%%x START OF INTERRUPT SERVICE ROUTINES ***xxxxxx/

/* Replace the interrupt function names with the */
/* appropriate names depending on interrupt source. */

/* The names of various interrupt functions for */
/* each device are defined in the linker script. */
/* Interrupt Service Routine 1 */

/* No fast context save, and no variables stacked */

void _ attribute_ ((__interrupt_)) _ADCInterrupt (void)

{

/* Interrupt Service Routine code goes here */

/* Interrupt Service Routine 2 */

/* Fast context save (using push.s and pop.s) */

void _ attribute_ ((__interrupt_, _ shadow_)) _TlInterrupt (void)
{

/* Interrupt Service Routine code goes here */

/* Interrupt Service Routine 3: INTOInterrupt */

/* Save and restore variables varl, var2, etc. */

void _ attribute ((__interrupt (_ save_ (variablel,variable2)))) _INTOInterrupt (void)
/* Interrupt Service Routine code goes here */

/**%%k%kxxx%x END OF INTERRUPT SERVICE ROUTINES ***xxxxx/

DS70094D-page 32 © 2006 Microchip Technology Inc.

Tutorial 2 — Real-Time Interrupt

3.3 USING THE TEMPLATE IN A NEW PROJECT

For this tutorial, copy the template described above to a new project directory, following
these steps. Go to Windows® Explorer for these folder/file operations.

1.

3.

4.

Make a new folder named \T1 Interrupt in the \Examples directory under
the MPLAB C30 installation directory.

Copy C:\Program Files\Microchip\MPLAB C30\support\
templates\c\temp 6014 .c tothe new \T1 Interrupt folder.

Rename the copied template file temp 6014 .cinthe \T1 Interrupt folder
to T1Clock.c.

Return to MPLAB IDE.

Follow the steps from Chapter 2. “Tutorial 1 — Creating A Project” to use the project
wizard to create the new project T1Clock in this directory, add T1Clock. c as the only
source file, and add the linker script for the dsPIC30F6014. After double clicking on the
file name T1Clock. c in the Project window, the desktop should look something like
this:

FIGURE 3-1: VIEW T1CLOCK.C

T1Clock.mcw M=]E3

= @ TiClock.mcp
E| (23 Source Files
: TiClock.c

He:ader File:
Il C:\Program Files\MicrochipA\MPLAE C30A\examplesi\T1_InterruptiT1Clock c
o o o o o o o o o o o o o o o o o ol o o o o o o o o o o o o
2 * This file i=s a bhasic template for creating C code for a dsPICIO0F *
-3 * device. Copy this file into your project directory and modify or *
e * add to it as needed. *
5 * Add the suitable linker script (e.g., p30£f6014.gld) to the project. ¥
[Files ||l& * *
7 * If interrupts are not used, all code presented for that interrupt *
S * pan be removed or commented out with C-style comment declarations. &
=1 * *
10 * For additional information sbout dsPIC architecture and language =
11 * tools, refer to the following documents: 5.
1z * *
13 * MPLAE C30 Compiler User's Guide : DE51254 *
14 * dsPIC 30F MPLAE ASM30, MPLAE LIMNE3SOD and Utilites x:
15 * User's Guide : D351317 x
16 * Getting S3tarted with dsPIC D3C Language Tools : DE51316 5,
17 * dsPIC 30F Language Tools Quick Reference Card : DE513:22 5
15 * dsPIC 30F 1l6-bit MCU Family Reference Manual : DE70046 .
19 * dsPIC 30F General Purpose and Sensor Families 5
20 * Data Zheet : DE70083 * =
K _>l_I

© 2006 Microchip Technology Inc. DS70094D-page 33

16-Bit Language Tools Getting Started

Some of the header comments for this generic template can now be removed and
application-specific information entered for the new project. The header area at the
beginning of the file should contain information on the new project. After editing is
finished, it might look something like this:

EXAMPLE 3-3: EDITED T1CLOCK.C HEADER

/***

* *
* Author: F. Bar *
* Company : Widgets, Inc. *
* Filename: TlClock.c *
* Date: 08/20/2004 *
* File Version: 1.30 *
* Other Files Required: p30F6014.gld, libpic30.a *
* Tools Used: MPLAB GL -> 6.60 *
* Compiler -> 1.30 *
* Assembler -> 1.30 *
* Linker -> 1.30 *
***/

#include "C:\Program Files\Microchip\MPLAB C30\support\h\p30F6014.h"

/* Define constants here */
/* #define CONSTANT1 10

#define CONSTANT2 20 */
/* Timerl period for 1 ms with FOSC = 20 MHz */

#define TMR1 PERIOD 0x1388

For this tutorial, one constant, two variables and an array need to be defined. The
constants defined in the template are named CONSTANT1 and CONSTANT2.
Comment those out, and below the CONSTANT2 line add a comment and the
definition for TMR1 PERIOD 0x1388.

Note: The period 0x1388 = 5000 decimal. The timer will count at a rate one fourth
the oscillator frequency. 5000 cycles at 5 MHz (the 20 MHz oscillator is
divided by four) yields a time-out for the counter at every 1 ms.

Define some variables to track the code operation in this example. Position these in the
GLOBAL DEFINITIONS area, after the definition of variable3. Add two new integer
variables, main_counter and irg_counter. Then, for the interrupt timer routine,
create a structure of three unsigned integer variable elements, timer, ticks and
seconds, named RTclock:

EXAMPLE 3-4: VARIABLE DEFINITIONS

/* Define global variables without attributes */
int variable3;

int main counter;
int irg counter;

struct clockType

{

unsigned int timer; /* countdown timer, milliseconds */
unsigned int ticks; /* absolute time, milliseconds */
unsigned int seconds; /* absolute time, seconds */

} RTclock;

DS70094D-page 34

© 2006 Microchip Technology Inc.

Tutorial 2 — Real-Time Interrupt

The other template code in this tutorial can be left in or commented out. It is probably
better to comment it out at this time since these definitions will get compiled and take
up memory space. Make sure to comment out all the sample arrays, since they use the
macros which can be commented out. Also, as the code grows, it may be difficult to
remember which code is used by the application and which was part of the original
template.

Note: When using the template, remember that when beginning to code the
application, only a few elements of the template may be needed. It may be
helpful to comment out those portions of code that are not being used so
that later, when similar elements are needed, they can be referred back to
as models.

After the section labelled END OF GLOBAL DEFINITIONS type in this routine to
initialize Timer1 as an interrupt timer using the internal clock (the bold text is the code
that should be typed in):

EXAMPLE 3-5: RESET_CLOCK CODE

kkkkkkkkkkkx END OF GLOBAL DEFINITIONS **kkkkkkkkk /

void reset clock(void)

{

RTclock.timer = 0;/* clear software registers */
RTclock.ticks = 0;
RTclock.seconds = 0;

TMR1 = 0;/* clear timerl register */

PR1 = TMR1l PERIOD;/* set periodl register */
T1CONbits.TCS 0;/* set internal clock source */
IPCObits.T1IP 4;/* set priority level */
IFSObits.T1IF 0;/* clear interrupt flag */
IECObits.T1IE 1;/* enable interrupts */
SRbits.IPL = 3;/* enable CPU priority levels 4-7 */
T1CONbits.TON = 1;/* start the timer */

}

JxKkkkkkkkkkkkx START OF MAIN FUNCTION **kkkokkkkkkkkkk /

This routine uses Special Function Register names, such as TMR1 and
T1CONbits.TCS that are defined in the header file p30F6014 . h. Refer to the data
sheet for more information on these control bits and registers for Timer1.

A main routine and an Interrupt Service Routine may need to be written. The most
complex routine is the Interrupt Service Routine. It is executed when Timer1 counts
down 0x1388 cycles. It increments a counter st icks at each of these 1 ms interrupt
until it exceeds one thousand. Then it increments the seconds variable in the
RTclock structure and resets sticks. This routine should count time in seconds. In
the section labelled “START OF INTERRUPT SERVICE ROUTINES” where atemplate
forthe _TlInterrupt () code is written, replace the comment

“/* Interrupt Service Routine code goes here */”

with these lines of code (added code is bold):

© 2006 Microchip Technology Inc. DS70094D-page 35

16-Bit Language Tools Getting Started

EXAMPLE 3-6: INTERRUPT SERVICE ROUTINE

/* Interrupt Service Routine 2 */
/* Fast context save (using push.s and pop.s) */
void __ attribute_ ((__interrupt_ , _ shadow_)) _TlInterrupt (void)

{

static int sticks=0;
irqg_counter++;

if (RTclock.timer > 0)/* if timer is active */
RTclock.timer -= 1;/* decrement it */

RTclock.ticks++;/* increment ticks counter */

if (sticks++ == 1000)
{/* if time to rollover */
sticks = 0;/* clear seconds ticks */
RTclock.seconds++;/* and increment seconds */

}

IFSObits.T1IF = 0;/* clear interrupt flag */

}

/* Interrupt Service Routine 3: INTOInterrupt */
/* Save and restore variables varl, var2, etc. */

There are three sample interrupt functions in the template file. Comment out
_INTOInterrupt () because it uses two of the template file sample variables and, as
a result, will not compile. ADCInterrupt () can be commented out too, since it will
not be used in this tutorial.

By comparison to the Timer1 interrupt code, the main () code is simple. Type this in
for the body, replacing the line “/* code goes here */” (added code is bold):

EXAMPLE 3-7: MAIN CODE

J*kkkkkkkkkkxx START OF MAIN FUNCTION *xkkkkkkkkkkkkk /

int main (void)

{

reset clock();

for (;;)
main_counter++;

}

/**x*%% START OF INTERRUPT SERVICE ROUTINES **x%%*xxx/

Themain () code is simply a call to our Timer1 initialization routine, followed by an infi-
nite loop, allowing the Timer1 interrupt to function. Typically, an application that made
use of this timer would be placed in this loop in place of this test variable,

main counter.

DS70094D-page 36

© 2006 Microchip Technology Inc.

Tutorial 2 — Real-Time Interrupt

The final code should now look like this:

EXAMPLE 3-8: FINAL C CODE FILE

JRFE ok kk ok ok ok ok kkkkkkk ok kk ok kkkkkkkhkkhkkhkhkkkhkkkkkhkkhkkhkkkkhkkkkkkkkhkk ok ko

*

*

* Author: F. Bar *
* Company : Widgets, Inc. *
* Filename: TlClock.c *
* Date: 08/20/2004 *
* File Version: 1.30 *
* Other Files Required: p30F6014.gld, libpic30.a *
* Tools Used: MPLAB GL -> 6.60 *
* Compiler -> 1.30 *
* Assembler -> 1.30 *
* Linker -> 1.30 *

Kk kkkkkkkkkkkkkkkkhkkkkkhkkhkkhkhkkhkkhkkhkkhkkhkkkkhkkhkkhkkhkkkkkkkk /

#include "C:\Program Files\Microchip\MPLAB C30\support\h\p30F6014.h"

/* Define constants here */
/* #define CONSTANT1 10

#define CONSTANT2 20 */
/* Timerl period for 1 ms with FOSC = 20 MHz */

#define TMR1_PERIOD 0x1388

/* Define macros to simplify attribute declarations */

#define ModBuf X (k) _ attribute_ ((__ space (xmemory), _ aligned (k)))
#define ModBuf_Y (k) __attribute__ ((__space__ (ymemory), __aligned__ (k)))

[**k*kkkxkkxkxxkxx START OF GLOBAL DEFINITIONS ***xxxxxxx/

/* Define arrays: arrayll[], array2[], etc. */

/* with attributes, as given below */

/* either using the entire attribute */

/*
int arrayl [CONSTANT1] _ attribute_ ((__ space_ (xmemory), _ aligned (32)));
int array2 [CONSTANT1] _ attribute ((__ space (ymemory), _ aligned_ (32)));
*/

/* or using macros defined above */

/* int array3 [CONSTANT1] ModBuf_X(32);
int array4 [CONSTANT1] ModBuf_ Y (32); */
/* Define arrays without attributes */

/* int array5 [CONSTANT2] ;

/ / array5 is NOT an aligned buffer */

/* __ */
/* Define global variables with attributes */
/* int variablel _ attribute_ ((__space__(xmemory))) ;
int variable2 _ attribute ((_ space_ (ymemory)));*/
/* Define global variables without attributes */

/* int variable3; */
int main_counter;
int irg counter;

struct clockType
{
unsigned int timer;
unsigned int ticks;
unsigned int seconds;
} RTclock;

/* countdown timer, milliseconds */
/* absolute time, milliseconds */
/* absolute time, seconds */

© 2006 Microchip Technology Inc.

DS70094D-page 37

16-Bit Language Tools Getting Started

kkkkkkkkkkkx END OF GLOBAL DEFINITIONS **kkkkkkkkk /

void reset_clock(void)

{

RTclock.timer = 0; /* clear software registers */
RTclock.ticks = 0;

RTclock.seconds = 0;

TMR1 = O; /* clear timerl register */

PR1 = TMR1 PERIOD; /* set periodl register */
T1CONbits.TCS = 0; /* set internal clock source */
IPCObits.T1IP = 4; /* set priority level x/
IFS0bits.T1IF = 0; /* clear interrupt flag */
IECObits.T1IE = 1; /* enable interrupts */
SRbits.IPL = 3; /* enable CPU priority levels 4-7 x/
T1CONbits.TON = 1; /* start the timer */

/************* START OF MAIN FUNCTION ***************/
int main (void)

reset_clock() ;

while (1)

main_counter++;

/**x*%% START OF INTERRUPT SERVICE ROUTINES **x%%*xxx/

/* Interrupt Service Routine 1 */

/* No fast context save, and no variables stacked */

/* void __ attribute_ ((__interrupt_)) _ADCInterrupt (void)

*/

/* Interrupt Service Routine 2 */

/* Fast context save (using push.s and pop.s) */

void _ attribute_ ((__interrupt_, _ shadow_)) _TlInterrupt (void)

{

static int sticks=0;
irg_counter++;

if (RTclock.timer > 0) /* if countdown timer is active */
RTclock.timer -= 1; /* decrement it */

RTclock.ticks++; /* increment ticks counter */

if (sticks++ > 1000)

{ /* if time to rollover */
sticks = 0; /* clear seconds ticks */
RTclock.seconds++; /* and increment seconds */
IFSObits.T1IF = 0; /* clear interrupt flag */
return;
/* Interrupt Service Routine 3: INTOInterrupt */
/* Save and restore variables varl, var2, etc. */
/* void __ attribute_ ((__interrupt__ (__save_ (variablel)))) _INTOInterrupt (void)

*/
[/**x*x%%%%%x END OF INTERRUPT SERVICE ROUTINES ***%*xxx/
If everything is typed correctly, then selecting Project>Build All should result in a

successful compilation. Double click on any errors appearing in the output window to
return to the source code to fix typos and rebuild the project until it builds with no errors.

DS70094D-page 38

© 2006 Microchip Technology Inc.

Tutorial 2 — Real-Time Interrupt

3.4

DEBUGGING WITH THE MPLAB SIM SIMULATOR

The MPLAB SIM simulator can now be used to test the code. Make sure that
Debugger>Select Tool>MPLAB SIM is selected. Then set the processor clock speed

for the simulator by selecting Debugger>Settings. The Oscillator (Osc/Trace) tab is a
dialog to set the clock frequency of the simulated dsPIC30F6014. Set it to 20 MHz.

Note:

The simulator runs at a speed determined by the PC, so it will not run at the
actual dsPIC30F DSC speed as set by the clock in this dialog. However, all
timing calculations are based on this clock setting, so when timing
measurements are made using the simulator, times will correspond to those
of an actual device running at this frequency.

FIGURE 3-2:

STIMULUS OSCILLATOR FREQUENCY

Simulator Settings K E3
Uart] 10 | Animation £ Realtime Updates I Limitations I
Osc / Trace Break Options SCL Options
~ Processzor Frequency -
Urits:
& MHz
] ' KHz
 Hz
r~ Trace Options
™ Trace al ™ Break on Trace Butfer Ful
QK I Cancel | Apply |

One way to measure time with the simulator is to use the Stopwatch. Select
Debugger>Stopwatch to view the Stopwatch dialog. The stopwatch will always clear

on simulator reset.

FIGURE 3-3:

SIMULATOR STOPWATCH

Stopwatch

| [x|

Stopwatch

Tatal Simulated

Instruction Cycles I

0 | 0

ZFero | Time [uSecs) I

0.000000 |

0.000000

‘ Processor Frequency [MHz)

I 20.000000 ‘

© 2006 Microchip Technology Inc.

DS70094D-page 39

16-Bit Language Tools Getting Started

A good first test is to verify that, at a minimum, the program runs. For this purpose, set
a breakpoint at the line inmain () thatincrements main counter (right mouse click
on the line and select “Set Breakpoint”), then press the Run icon or select
Debugger>Run. The Stopwatch and the screen should like this after the breakpoint is
reached.

FIGURE 3-4: TIME MEASUREMENT
M C:\Program Files\MicrochipA\MPLAB C30\examples\T1_InterruptAT1Clock.c
73 IECOhits.T1IE = 1: /% enable interrupts %/ -
74 S3Rbits.IPL = 3: /% enable CPU priority levels 4-7 %/
75 TiCOMNbits. TON = 1: /% start the timer */
z: L ! M Stopwatch
75 Jrwwanwssansss ITART OF MAIN F |
e Hint main [void | Stopwatch Total Simulated
50 { Instruction Eyclesl 106 I 108
51 reset clocki):
G2 - Zem | e (o8=s) | 21.200000 | 21.200000
53 while (1)
:: o I , wain counter++; ‘ Processor Frequency [MHz) lm ‘
56 o
57 Jwwwxns START OF INTERRUPT 3IERV
S5 /% Interrupt Service Routine 1 7
== /% No fast context save, and no varishles stacked *
S0 A owoid attribute ([interrupt 1] ADCInterrupt (void)
o1 . - - S >
| _>l_I

If the run was successful, then a Watch window can be set to inspect the program’s
variables. Select View>Watch to bring up a Watch window. Add the variable RTclock
(from the drop-down box next to Add Symbol.)

RTclock is a structure, as indicated by the small plus symbol in the box to the left of
its name. Click on the box to expand the structure so it looks like this:

FIGURE 3-5: WATCH STRUCTURE VARIABLE
Watch 1] [
Add SFHl IAEEA vl Add Symboll I_SF' vl
Address | Symbhol Name | Value I
0806 B RTelock
0806 ; timer o
o508 ticks Oxoooo
0504 seconds Ox00o0
[watch1 | Watch2 || Watch 3| Watch 4|

In addition to RTclock, add the variables sticks, irqg counter, and
main_ counter to the Watch window.

FIGURE 3-6: ALL WATCH VARIABLES
Watch 1] [
Add SFHl IAEEA VI Add Symboll Imain_c:ounter VI
Address | Symbhol Name | Value I
0s0a6 E RTolock
aso6 timer o
o508 ticks Oxoooo
0s0L seconds 0x0o000
sticks out of Scope
0304 irg counter 0x0000
0502 main counter 0x0000
|
[watch1 | Watch2 || Watch 3| Watch 4|

DS70094D-page 40

© 2006 Microchip Technology Inc.

Tutorial 2 — Real-Time Interrupt

The Value column may be expanded wider in order to read the text on the sticks
variable. You will see that it says “Out of Scope.” This means that, unlike RTclock,
irg counter,andmain counter, thisis nota global variable, and its value can only
be accessed while the function TlInterrupt ()is executing.

Note: The Address column for sticks does not have a value. This is another
indication that sticks is a local variable.

When inspecting the variables in the Watch window at this first breakpoint, all of them
should be equal to zero. This is to be expected, since Timer1 just has been initialized
and counter has not yet been incremented for the first time.

Press the Step Into icon to step once around the main () loop. The value of

main counter should now show 0001. The interrupt routine has not yet fired.
Looking at the Stopwatch window, the elapsed time only increments by a microsecond
each time through the main () loop. To reach the first interrupt, you would have to step
a thousand times (1000 x 1 us = 1 ms).

In order to test the interrupt functionality, remove the breakpoint at main counter++
by clicking on the highlighted line with the right mouse button and select “Remove
Breakpoint”. Now select “Set Breakpoint” in the right mouse menu to put a breakpoint
in the Interrupt Service Routine atthe irg_counter++ statement. Then, press Run.
The Stopwatch should look like this:

Il C:\Program Files\MicrochipA\MPLAB C30\examples\T1_InterruptiT1Clock.c - O] x|

93 /% Interrupt Zervice Routine 2 w A

S 4 /% Fast context save (using push.s and pop.s) L7

S5

=l Evoid _ attribute_ [(_ interrupt_ | Stopwatch 1 i B
97 i —

S5 static int sticks=0:

g Stopwatch Tatal Simulated
100 & I irg counter++: Instruction Eyclesl 5109 I 5109
101 .

102 if (RTclock.timer > 0O JFod Zerg | Time [mSe% 1'021SDD| 1.021800
103 RTclock.timer -= 1; /% d

104 ‘ ProcessorFrequencsz] I 20.000000 ‘
105 RTolock. ticks++: P

106

107 = if isticks++ > 1000)

108 { A% if time to rollover */

109 sticks = 0; /% clear seconds ticks */

110 RTelock. seconds++; /% and increment seconds ¥/

111 3 -
NN _>l_I

The value shown in the Time window is 1.0218 ms. This is about what was expected,
since the interrupt should happen every millisecond. There was some time since Reset
that was counted by the Stopwatch, including the C start-up code and the Timer 1
initialization.

© 2006 Microchip Technology Inc. DS70094D-page 41

16-Bit Language Tools Getting Started

Look at the Watch window. The variable main counter is showing a value of Ox3ES.
To change the radix of this display to decimal, do the following:

1. Clickmain_counter to select the line in the Watch window. Then, using the
right mouse button, choose “Properties”.
2. In the Watch dialog on the Watch Properties tab, select “Decimal” from the
“Format” pull-down menu.

3. Click OK.

FIGURE 3-8:

SET WATCH RADIX

" atch Properties | Preferencesl Generall

Symbol:lmain_counter - l
Size: I‘IB bits: 'l

Farmat: | D ecimal v Signed
Byte Order: |High:Low -

Memary: IFiIe Register

2|

QK | Cancel | Apply

Help

incrementing each time the interrupt happens.

Themain_ counter value should now show 1000. Press the Step Into icon a few more
times to see the changing variables, especially sticks and irqg counter, which are

DS70094D-page 42

© 2006 Microchip Technology Inc.

Tutorial 2 — Real-Time Interrupt

Remove the breakpoint from the irg counter++; line, and put a breakpoint inside
the conditional statement that increments sticks (at the line sticks = 0;). Click
Run to run and halt at this breakpoint. The window should look like this:

FIGURE 3-9: MEASURE INTERRUPT PERIOD

M C:\Program Files\MicrochipA\MPLAB C30A\examples\T1_InterruptAT1Clock.c

k=] Eﬂ
-

100 irg counter++;
101

10z if [RTclock.timer > 0O) J% 1if countdown timer is active %/
103 RTolock.timer -= 1; & it
104 Stopwatch 1 i B
105 RTclock.ticks++:
12: i Stopwatch Total Simulated

= if isticks++ > 1000) - . B11128 B11128
s . Instruction Eyclesl I
s & || sticks = 0; Zern | Tine [Sees) | 1.002225 | 1.002226
110 RTclock.seconds++; ﬁ

|

111 ¥
112 L ‘ Processor Frequency [MM I 20.000000 ‘
113 IF30bhits. T1IF = 0O;
114
115 return;

116 3
117 L -
I{I I »

The Stopwatch Time window shows 1.002226 seconds, which is close to a one second
interrupt. A good time measurement would be to measure the time to the next interrupt.
That value could then be subtracted from the current time. Or, since it doesn’'t matter
how much time it took to get here — the main interest is the time between interrupts —
press Zero on the Stopwatch and then press Run.

Note: The Stopwatch always tracks total time in the windows on the right side of
the dialog. The left windows can be used to time individual measurements.
Pressing Zero will not cause the total time to change.

3.5 EXPLORING FURTHER

Go ahead and experiment with this example program. Things to explore include:

» Measure the overhead of the interrupt, calculate how this will affect the timing,
and try to adjust the constant TMR1 Period to adjust the interrupt to get better 1
second accuracy.

* What is the maximum time (in minutes) measured by this routine? What can be
done to extend it?

» Add a routine that outputs a two millisecond pulse every second from a port. Verify
the pulse duration with the stopwatch.

© 2006 Microchip Technology Inc. DS70094D-page 43

16-Bit Language Tools Getting Started

NOTES:

DS70094D-page 44 © 2006 Microchip Technology Inc.

16-BIT LANGUAGE TOOLS
MICROCHIP GETTING STARTED

Chapter 4. Tutorial 3 — Mixed C and Assembly Files

41 INTRODUCTION

This tutorial will show how to make a project that uses an assembly language routine
that is called from a C source file.

This tutorial consists of:

» Getting Project Source Files

+ Creating and Building the Project
» Examining the Program

» Exploring Further

* Where to Go from Here

4.2 GETTING PROJECT SOURCE FILES

The files for this tutorial are available in the \Examples\MPLABC30 Getting Started
folder and are called example3. c, a C source code file, and modulo. s, an assembly
language file. Create a folder in the \Examples folder called \DSP_ASM and copy
these two files to that new folder. See Chapter 3. “Tutorial 2 — Real-Time Interrupt”
for how to do this.

For reference, Example 4-1 and Example 4-2 show listings of these two files.

EXAMPLE 4-1: C SOURCE FILE

/**
* Filename: example3.c *
* Date: 08/20/2004 *
* File Version: 1.30 *
* Tools used: MPLAB -> 6.60 *

* Compiler -> 1.30 *

* Assembler -> 1.30 *

* Linker -> 1.30 *

* Linker File: p30£6014.gld *

***/

#include "p30£f6014.h"

#include <stdio.h>

/* Length of output buffer (in words) */
#define PRODLEN 20

/* source arrays of 16-bit elements */
unsigned int arrayl [PRODLEN/2] _ attribute ((_ space (xmemory), aligned(32)));
unsigned int array2 [PRODLEN/2] _ attribute ((__ space__ (ymemory), aligned(32)));

/* output array of 32-bit products defined here */
long array3 [PRODLEN/2] ; /* array3 is NOT a circular buffer */

/* Pointer for traversing array */
unsigned int array_index;

/* 'Point-by-point array multiplication' assembly function prototype */
extern void modulo(unsigned int *, unsigned int *, unsigned int *, unsigned int);

int main (void)

{

/* Set up Modulo addressing for X AGU using W8 and for Y AGU using W10 */

© 2006 Microchip Technology Inc. DS70094D-page 45

16-Bit Language Tools Getting Started

/* Actual Modulo Mode will be turned on in the assembly language routine */

CORCON |= 0x0001; /* Enable integer arithmetic */
XMODSRT = (unsigned int)arrayl;

XMODEND = (unsigned int)arrayl + PRODLEN - 1;

YMODSRT = (unsigned int)array2;

YMODEND = (unsigned int)array2 + PRODLEN - 1;

/* Initialize 10-element arrays, arrayl and array2 */
/* to values 1, 2,, 10 */
while (1) /* just do this over and over */

{

for (array index = 0; array index < PRODLEN/2; array index++)

arrayl [array index] = arrayll[array index] + array_ index + 1;
array2[array index] = array2l[array index] + (array index+1l) * 3;
}
/* Call assembly subroutine to do point-by-point multiply */
/* of arrayl and array2, with 4 parameters: */
/* start addresses of arrayl, array2 and array3, and PRODLEN-1 */
/* in that order x/

modulo(arrayl, array2, array3, PRODLEN-1);

EXAMPLE 4-2: MODULO.S ASM SOURCE FILE

/% ok ke sk ok ok ok ok ok ok ok ok ok ok ok ok ok S ok ok ok ok o ok ok ok ok ok ok ok K ok ok o ok ok ok ok o ok ok ok ok ok ok ok ok ok ok ok ok Sk ok ok ok ok ok ok ok ok ok ok

* Filename: modulo.s *
* Date: 08/20/2004 *
* File Version: 1.30 *
* *
* Tools used: MPLAB -> 6.60 *
* Compiler -> 1.30 *
* Assembler -> 1.30 *
* Linker -> 1.30 *
* *
* Linker File: p30£f6014.gld *
* Description: Assembly routine used in example3.C *

ok ko ok ok ok ok ok ok ok ok ok ok K ok ok o ok ok ok ok ko ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok Sk ok ok sk ok ok ko ko ko ko k ko k ok ko ok k ok ok /

.text

.global _modulo
_modulo:

; If any of the registers W8 - W15 are used, they should be saved
; WO - W7 may be used without saving

PUSH W8

PUSH W10

; turn on modulo addressing
MOV #0xCOA8, W8
MOV W8, MODCON

; The 3 pointers were passed in W0, Wl and W2 when function was called
; Transfer pointers to appropriate registers for MPY

MOV WO, W8 ; Initializing X pointer

MOV Wl, W10 ; Initializing Y pointer

; Clear Accumulator and prefetch 1st pair of numbers
CLR A, [wW8]+=2, W4, [W1l0]+=2, W7

LSR W3, W3

RCALL array loop ; do multiply set

INC2 w8, W8 ; Change alignment of X pointer
RCALL array loop ; second multiply set

POP W10
POP W8
RETURN

; Return to main C program

DS70094D-page 46 © 2006 Microchip Technology Inc.

Tutorial 3 — Mixed C and Assembly Files

array loop:
; Set up DO loop with count 'PRODLEN - 1' (passed in W3)
DO W3, here

; Do a point-by-point multiply
MPY W4*W7, A, [W8]+=2, W4, [W10]+=2, W7

; Store result in a 32-bit array pointed by W2
MOV ACCAL, W5
MOV W5, [W2++]

MOV ACCAH, W5
here: MOV W5, [W2++]

; turn off modulo addressing
CLR MODCON

RETURN

.end

4.3 CREATING AND BUILDING THE PROJECT

Using the Project Wizard, create a new project with these two source files and add the
linker script p30£f6014 .g1d. See Chapter 2. “Tutorial 1 — Creating A Project” for
how to do this. The project window should look like this:

FIGURE 4-1: PROJECT WINDOW

= @ Example3.mcp
ED Source Files

- exampled.c
- modula.s

(23 Header Files

[object Files

) Library Files

= (23 Linker Scripts

L. [2 paoreoi4.gid

------ (22 other Files

1 Fles

This tutorial will use the standard 1/O function printf () to display messages to the
output window. In order to use print £ (), the build options for the linker need to have
the heap enabled. Make sure that the linker build option is set as shown in Figure 2-9
with 512 bytes allocated for the heap.

When building the project (Project>Build All), it should compile with no error messages.
If an error is received, make sure the project is set up with the same options as for the
previous two tutorials.

This tutorial sets up three arrays. It fills two of them with a test numerical sequence,
then calls an assembly language routine that multiplies the values in the two 16-bit
arrays and puts the result into the third 32-bit array. Using modulo arithmetic for
addressing, the two source arrays are traversed twice to generate two sets of products
in the output array, with the pointer to one array adjusted at the second pass through
the multiply loop to change the alignment between the multipliers. Using an assembly
language routine ensures that the arithmetic will be done using the DSP features of the
dsPIC30F6014.

© 2006 Microchip Technology Inc. DS70094D-page 47

16-Bit Language Tools Getting Started

The assembly language routine takes four parameters: the addresses of each of the
three arrays and the array length. It returns its result in the product array. This routine
runs in a continual loop, with the source arrays getting increasingly larger numbers as
the program repeatedly executes the main endless loop.

DS70094D-page 48 © 2006 Microchip Technology Inc.

Tutorial 3 — Mixed C and Assembly Files

44 EXAMINING THE PROGRAM

Once the project is set up and successfully built, the operation of the program can be
inspected using MPLAB SIM simulator (Debugger>Select Tool>MPLAB SIM). Set up
and run to a breakpoint on the function that calls the assembly language routine,
modulo (), from example3.c.

FIGURE 4-2: BREAKPOINT IN C CODE FILE
W C:\Program Files\Microchip\MPLAE C30A\examples\D5FP_ASM\example3.c
46 = while (1) /% just do this over and over */ -
47 i
45
49 (=] for [(array index = 0; array index < PRODLEN/Z: array index+
=0 { - - -
51 arrayl[array index] = arrayl[array index] + array index
52 arrayi[array index] = arrayi[array index] + [array inde
=3 } - - @
54 o
55 /% Call assenbly subroutine to do point-by-point multiply *
56 /% of arrayl and arrayZ, with 4 parameters: *f
57 /% start addresses of arrayl, arrayZz and array3, and PRODLEN-1 */
58 /% in that order =
59 @ I modulo [arrayl, arrayZ, array3, PRODLEN-1)
60 F '
61 '
62 - -
o) of

Set up a Watch window to look at the variables involved in this calculation. Add the
three arrays arrayl, array2 and array3. Also add the SFRs Acca, WREGS and
WREG10. The Watch window should look like this:

FIGURE 4-3: WATCH WINDOW
Mvach]
AddSFH”AEEA vl AddSymboI”_SP vl
Address Symbhol Name | Value o
arrayl
1FCO arrayi
1FD4 arrayd
aozz ACCH Ox00o0aooooao
aoio WEEGS 0x0000 7
o014 WEEG10O 0x0000
[watch1 | Watch2 || Watch 3| Watch 4|

Click on the plus symbol to the left of the symbol name to expand the arrays. At this
point in the program, both array1 and array2 should have been set up with initial
values, but array3 should be all zeros, since the modulo () routine has not yet been
called.

Click on any element in the array to select the element, and then right click on the
element to change the radix of the display. Change the radix for all three arrays to
decimal.

Note: Changing the radix for any element of an array changes the radix for all

elements in that array.

© 2006 Microchip Technology Inc. DS70094D-page 49

16-Bit Language Tools Getting Started

FIGURE 4-4: ARRAYS SET TO DECIMAL

|
Add SFHl IAEEA l Add Symboll I l

Address Symbhol Name | Value o
E arrayl

ul={u]u)
os0z
0s04
0s0e
0s08
0s0L
os0c
OS0E
0s10
0s1z
1FCO
1FCO
1FCze
1FC4
1FCe
1FCE
1FCL
1FCC
1FCE
1FDO
1FDe
1FD4
1FD4
1FDE
1FDC
1FED
1FE4

e |

| watch T Waich? [watch r3l:|1 Wach 4

Set a breakpoint in the modulo. s file at the start of the DO loop. Run to the breakpoint
and scroll the watch window to look at array3. It should still be all zeroes.

FIGURE 4-5: BREAKPOINT IN ASSEMBLY CODE FILE
I C:\Program Files\MicrochipA\MPLAE C30\examples\D5P_ASM\modulo.s
46 RETURH -
47 ; Beturn to main C program
45
49 array_ loop:
50 ; Zet up DO looj LS
51 | bo o R — (1 <] |
52 AddSFH”AEEA | AddSymboI”_ |
53 ; Do a point-hy
54 MPY varyT, A Address= Sy‘mfol HName | Value
55 ﬁ + array d
56 ; Store result irco arrayg
57 MOV ACCAL, T 1§g: Rrray o
55 MOV W5, [W2+] 1FDE o
2 1FDC a
&0 MOV ACCAH, 1FED o
61 here: MOV WS, [WZ+ 1FE4 o
i3 1FES 0
63 CLR HODCON 1FEC o
64 1FFO]
65 RETURH 1FF4 o
NEN 1FF&]
aozz Ox00o0aooooao
aoio
o014 WEEG10O
Watch1 Waich2 [wiatch 3| watch 4]

DS70094D-page 50 © 2006 Microchip Technology Inc.

Tutorial 3 — Mixed C and Assembly Files

Press Run again, to run once through the DO loop. Now array3 should show values
representing the product of each element pair from the source arrays:

FIGURE 4-6: ARRAY3 RESULTS - 1ST PASS
Mwscn
Add SFH| [scce =] Addsembol[_sP =]
Address Symbhol Name | Value
arrayl

1FCO arrayi

1FD4 El array3

1FDE e o]

1FDS - [1]

1FDC - [2]

1FEO - [3]

1FE4 - [4]

1FES - [5]

1FEC - [8]

1FFO - [7]

1FF4 - [8]

1FFE e 9]

aozz ACCH

aoio WEEGS

o014 WEEG10O Ox1FC2
[watch1 | Watch2 || Watch 3| Watch 4|

Run again (run to example3 breakpoint, run to modulo breakpoint once, run to modulo
breakpoint again) to see the results for the second pass through the DO loop:

FIGURE 4-7: ARRAY3 RESULTS - 2ND PASS
OC— |

Add SFHl IAEEA l Add Symboll I l

Address Symbhol Name | Value
arrayl

1FCO arrayz
1FD4 O array:

1FDd ro]

1FD& 1]

1FDC 2]

1FEQ 3]

1FE4 4]

1FES 5]

1FEC 18]

1FFO 7

1FF4 8]

1FFE e [9]

oozz LCCA

o010 WREGS

o014 WREG10 Ox1FC2

[watch1 | Watch2 || Watch 3| Watch 4|

Remove the breakpoint from modulo. s and press Run to see the next time through
the loop. Press Run a few more times to see the values change with subsequent
executions of this multiplication process. Finally, remove the breakpoint from
example3.c.

© 2006 Microchip Technology Inc. DS70094D-page 51

16-Bit Language Tools Getting Started

With Watch windows, data can be examined as code is run and halted with breakpoints.
The simulator can also output data as it executes, providing a log that can be inspected
and sent to other tools for graphing and analysis. Insert a printf () statement after
the modulo () function call to monitor the values in the output array. The code should
look like this (added code is bold):

EXAMPLE 4-3: printf () MONITOR
modulo(arrayl, array2, array3, PRODLEN-1);

printf ("Product Array\n");

for (array index=0; array index<PRODLEN/2; array index++)
printf ("%d\n",array3 [array index]) ;

The printf () function uses the UART1 functions of the dsPIC DSC being simulated
to write messages either to a file or to the output window. Select Debugger>Settings to
bring up the simulator Settings dialog. Click the UART1 10 tab, check “Enable UART
1/0”, and then select the radio button to send text from the printf () statement to the
output window. Click OK.

FIGURE 4-8: UART1 I/O — printf() SETUP
Simulator Settings K E3
Osc / Trace I Break Options I SCL Options I
Uart1 10 | Animation £ Realtime Updates I Limitations
[ebug Options
¥ Enable Uartl 10
Input File: I Browse....l
¥ Rewind Input
Olutput
I & windaw
" File Browse....l
QK I Cancel | Aol |

Now recompile your project (Project>Build All). Press Run, let it run for a few seconds,
then press Halt. If the output window is not present, enable it on View>Output. Click the
SIM UART1 tab. A log of the contents of array3 should have been generated in the
output window.

FIGURE 4-9: printf () OUTPUT
Build | Version Contral | Find in Files | MPLAE SIM ~ SIM Liart |
303 =
374 B
FProduct Array
3
15
33
B0
54
135
184
24
305
377
FProduct Array
3
15
34 j

DS70094D-page 52 © 2006 Microchip Technology Inc.

Tutorial 3 — Mixed C and Assembly Files

4.5 EXPLORING FURTHER

Go ahead and experiment with this example program. Things to explore include:

+ Some of the other DSP instructions can be tried to further process the numbers in
these arrays.

» Use the printf () function to output lists of values that can then be imported into
a spreadsheet. Graph the values.

» Further generalize the code so that all of the modulo indexing is set up from within
modulo. s (i.e., convert these lines from Example 4-1 into assembly code that
sets up the modulo addressing parameters from the parameters passed into the

array).

XMODSRT = (unsigned int)arrayl;

XMODEND = (unsigned int)arrayl + PRODLEN - 1;
YMODSRT = (unsigned int)array2;

YMODEND = (unsigned int)array2 + PRODLEN - 1;

46 WHERE TO GO FROM HERE

These tutorials were designed to help you gain familiarity with using the MPLAB C30
compiler in the MPLAB IDE environment. There are many features of MPLAB IDE and
the MPLAB C30 compiler that were not covered here. For more information, reference
the current MPLAB IDE on-line help, “MPLAB® C30 C Compiler User’s Guide”
(DS51284) and “MPLAB® ASM30, MPLAB® LINK30 and Utilities User’s Guide”
(DS51317) to start using these tools for individual applications.

Instant help can be obtained from MPLAB IDE’s on-line help or by logging on to
Microchip’s web conference for MPLAB C products at www.microchip.com. Go to the
Technical Support section and then to the On-line Discussion Groups. The
Development Systems web board also has a section devoted to MPLAB C30 compiler
discussion.

By subscribing to the Customer Change Notification service on Microchip’s web site,
customers can register to be notified of changes to the MPLAB C30 C compiler.
Choose the MPLAB C compiler category in Development Tools to receive notices when
new versions are available and to receive timely information on the MPLAB C30
compiler.

© 2006 Microchip Technology Inc. DS70094D-page 53

16-Bit Language Tools Getting Started

NOTES:

DS70094D-page 54 © 2006 Microchip Technology Inc.

MICROCHIP

16-BIT LANGUAGE TOOLS

GETTING STARTED

Index
A (0]
Add Files to Project..........ccccoeevvieeiieiiiee e 11 Oscillator Frequency, Stimuluscccccceeeevinen.. 39
ATTAYS et 49 Output WINAOW........ooiiiiiiiiiei e 19
B P
Breakpoints ..o 21,22,49 PN+t e 47
BUIld EFTOrS ... 19 printf() oUtpUL 52
BUild OptioNS......cooeeeeiee e 14 Processor Selection ... 10
Build Project.........ooo oo 19 Program Memory Window............ccccoecuiiiiivieieienenns 26
C Project Windowcccccveiiiiiiiiiiee e 13,47
Project Wizard...........ccovveeeiiiiiiieieeceeee e, 10, 47
CloCK RESEL ..o 35
Creating @ Projectcooooviiiiieii e 9 R
Customer Notification Service.........cccccooeevviivivivnennnnnn. 4 RadiX, Set.....ooeeeeeieeeeee s 42
Customer SUPPOrt.........ooiiiiiiieeiee e 5 Reading, Recommendedc.ooiiiiiiniiii s 3
Real-Time Interrupt Using a Template File 29
D
References...........oevioiiiii 8,53
Disassembly Windowccooiiiiiiiiiiiiiienieeee, 25
Documentation S
CoNVENLIONS ... 2 SOPWALCH ..o 39
LaYOULvvieeeecce e 1 SHUCIUMES ... 40
| T
Installing MPLAB ASM30, MPLAB LINK30................ 7 Template FileS......cccooiiiiiiieeee e 29
Installing MPLAB C30cccooiiiiiiieeiciieee e 7 U
Internet Address.........ooocvieiiiiniic e 4
INEEITUPE PEIOM ..o 43 UARTT /Ot 52
Interrupt Service Routine ... 36 \Y
L Variable Definitionsccccceeeeiiiivie e 34
Language Tool Setup.......ccceeeriiiiiieiieiieeeee e 10 w
Listing Filesoooi i 24 Watch Window .. 22.23.49
M WWW AJAIESSooivieiieeiie it 4
Map Filesoeiiiiie e 24
Microchip Web Siteccoveeeiiiiiiiiiiec e, 4
Mixed C and Assembly Files.........cccccoevuveerieeinnenn.n. 45
MOAUIO() +eeeieiieee et 49
MPLAB SIM Simulatorccccccoeeviieeeieennn. 21,39, 49
N
NeW Project........oooo e 10

© 2006 Microchip Technology Inc.

DS70094D-page 55

MICROCHIP

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office

2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200

Fax: 480-792-7277
Technical Support:
http://support.microchip.com
Web Address:
www.microchip.com

Atlanta
Alpharetta, GA
Tel: 770-640-0034
Fax: 770-640-0307

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago

Itasca, IL

Tel: 630-285-0071
Fax: 630-285-0075

Dallas

Addison, TX

Tel: 972-818-7423
Fax: 972-818-2924

Detroit

Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260

Kokomo

Kokomo, IN

Tel: 765-864-8360
Fax: 765-864-8387

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608

Santa Clara

Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445

Toronto
Mississauga, Ontario,
Canada

Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Habour City, Kowloon
Hong Kong

Tel: 852-2401-1200
Fax: 852-2401-3431
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China - Beijing

Tel: 86-10-8528-2100
Fax: 86-10-8528-2104

China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889

China - Fuzhou
Tel: 86-591-8750-3506
Fax: 86-591-8750-3521

China - Hong Kong SAR
Tel: 852-2401-1200

Fax: 852-2401-3431
China - Qingdao

Tel: 86-532-8502-7355
Fax: 86-532-8502-7205

China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066

China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393

China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760

China - Shunde
Tel: 86-757-2839-5507
Fax: 86-757-2839-5571

China - Wuhan

Tel: 86-27-5980-5300
Fax: 86-27-5980-5118
China - Xian

Tel: 86-29-8833-7250
Fax: 86-29-8833-7256

ASIA/PACIFIC

India - Bangalore
Tel: 91-80-4182-8400
Fax: 91-80-4182-8422

India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632

India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513

Japan - Yokohama
Tel: 81-45-471- 6166
Fax: 81-45-471-6122

Korea - Gumi
Tel: 82-54-473-4301
Fax: 82-54-473-4302

Korea - Seoul

Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934

Malaysia - Penang
Tel: 60-4-646-8870
Fax: 60-4-646-5086

Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069
Singapore

Tel: 65-6334-8870
Fax: 65-6334-8850

Taiwan - Hsin Chu
Tel: 886-3-572-9526
Fax: 886-3-572-6459

Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-536-4803
Taiwan - Taipei

Tel: 886-2-2500-6610
Fax: 886-2-2508-0102

Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE

Austria - Wels

Tel: 43-7242-2244-3910
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828

Fax: 45-4485-2829
France - Paris

Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Munich

Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Italy - Milan

Tel: 39-0331-742611
Fax: 39-0331-466781

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Spain - Madrid

Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
UK - Wokingham

Tel: 44-118-921-5869
Fax: 44-118-921-5820

08/29/06

DS70094D-page 56

© 2006 Microchip Technology Inc.

	Preface
	Chapter 1. Installation and Overview
	1.1 Introduction
	1.2 Installing/Uninstalling MPLAB IDE
	1.3 Installing MPLAB ASM30, MPLAB LINK30 and Language Tool Utilities
	1.4 Installing/Uninstalling MPLAB C30
	1.5 Tutorial Overview

	Chapter 2. Tutorial 1 – Creating A Project
	2.1 Introduction
	2.2 Creating a File
	2.3 Using the Project Wizard
	Figure 2-1: Project Wizard – Select Language Toolsuite
	Figure 2-2: Project Wizard – Project name and directory
	Figure 2-3: Project Wizard – Add C Source File
	Figure 2-4: Project Wizard – Add Linker Script

	2.4 Using the Project Window
	Figure 2-5: Project Window – Files Tab
	Figure 2-6: Project Window – Symbols Tab

	2.5 Setting Up Build Options
	Figure 2-7: Build Options Dialog
	Figure 2-8: Compiler Build Options – General
	Figure 2-9: Linker Build Options – General
	Figure 2-10: Assembler Build Options – General
	Figure 2-11: Suite Build Options

	2.6 Building the Project
	Figure 2-12: Build Output Window

	2.7 Troubleshooting Build Errors
	Figure 2-13: Build Error
	Figure 2-14: Double Click to Go to Source

	2.8 Debugging with the MPLAB SIM Simulator
	Figure 2-15: Set Breakpoint
	Figure 2-16: Breakpoint in Source Window
	Figure 2-17: Add Watch Variable
	Figure 2-18: Run to Breakpoint

	2.9 Generating a Map File
	Figure 2-19: Generate Map File

	2.10 Debugging at Assembly Code Level
	Figure 2-20: Disassembly Window
	Figure 2-21: Program Memory Window – Symbolic
	Figure 2-22: Breakpoint in Program Memory

	2.11 Exploring Further

	Chapter 3. Tutorial 2 – Real-Time Interrupt
	3.1 Introduction
	3.2 Using Template Files
	3.3 Using the Template in a New Project
	Figure 3-1: View T1CLOCK.C

	3.4 Debugging with the MPLAB SIM Simulator
	Figure 3-2: Stimulus Oscillator Frequency
	Figure 3-3: Simulator Stopwatch
	Figure 3-4: Time Measurement
	Figure 3-5: Watch Structure Variable
	Figure 3-6: All Watch Variables
	Figure 3-7: Stopwatch at First interrupt
	Figure 3-8: Set Watch Radix
	Figure 3-9: Measure Interrupt Period

	3.5 Exploring Further

	Chapter 4. Tutorial 3 – Mixed C and Assembly Files
	4.1 Introduction
	4.2 Getting Project Source Files
	4.3 Creating and Building the Project
	Figure 4-1: ProjeCT Window

	4.4 Examining the Program
	Figure 4-2: Breakpoint in C code file
	Figure 4-3: Watch Window
	Figure 4-4: Arrays Set To Decimal
	Figure 4-5: Breakpoint in Assembly code file
	Figure 4-6: Array3 results – 1st Pass
	Figure 4-7: Array3 results – 2nd Pass
	Figure 4-8: UART1 I/O – printf() Setup
	Figure 4-9: printf() output

	4.5 Exploring Further
	4.6 Where to Go from Here

	Index
	Worldwide Sales and Service

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

