
MPLABTM C30 Managed PSV Pointers

Beta support included with MPLAB C30 V3.00

Contents

1 Overview 2
1.1 Why Beta? . 2
1.2 Other Sources of Reference . 2

2 Current feature support 2

3 Goals 4

4 Managed PSV pointers - 24-bit pointers 5
4.1 Actual concrete examples . 6

4.1.1 Example 1: Managed Pointers as Function Arguments . . 7
4.1.2 Example 2: Managed Pointer (to an Array) as Function

Arguments . 9
4.1.3 Example 3: managed array of managed pointers 9
4.1.4 Example 4: Accessing FLASH Variables Directly 10

5 Managed PSV Pointers - ISR Considerations 10

6 Support information 11

1

1 Overview

The dsPIC30F/33F and PIC24F/H families of processors contain hardware
support for accessing data from within program FLASH. Previous versions of
MPLAB C30 only supported direct access via one single PSV page. As the
16-bit parts are getting larger program memories, customers will need to easily
access many pages. This feature provides better support in this area.

The extensions presented here are beyond the scope of C89, though the
method chosen to implement them is within the scope of C99.

1.1 Why Beta?

We hope to provide a feature that will benefit our customers; internal consul-
tation has come up with a set of features described within this document. By
marking the feature as Beta we acknowledge that this design may be incomplete,
and leave room for further customer directed enhancement.

1.2 Other Sources of Reference

Other concepts used in this document can be found in manuals that reside
in the doc folder that may have been installed with the product, or online at
http://www.microchip.com/c30.

Doc Id Title
DS51284 MPLAB C30 C compiler User’s Guide
DS51317 MPLAB ASM30 MPLAB LINK30 and

Utilities User’s Guide

2 Current feature support

Today MPLAB C30 allows the programmer to easily create data in program
memory using the following features:

• the compiler supports a variable attribute, space() which allows the user
to nominate:

psv to place the variable into program memory in suitable chunks for PSV
access to be managed by the user

auto psv to place the variable into program memory in suitable chunks
for PSV access, to be managed by the compiler (currently only 1
PSVPAG setting)

eedata to place the variable into EEDATA memory, access is completely
defined by the user

prog to place the variable into unrestricted program memory, access is
completely defined by the user

2

among other spaces. For a complete description of the space attribute,
please refer to the MPLAB C30 User’s Guide.

• the compiler will place (by default) all const qualified variables into the
auto psv space; this may be disabled by using the command line switch
-mconst-in-data

• MPLAB C30 will enable and support the use of 1 PSV page

Using the current features, the programmer can create data and access data
in several different ways:

• Variables stored in compiler managed PSV section

const char *foo = "a constant string";
int fibonacci[4]

__attribute__((space(auto_psv))) = { 1, 1, 2, 3 };

void bar() {
fprintf(stderr,"%s: %d %d\n", foo, fibonacci[1],

fibonacci[3]);
}

When compiled without specifying the constants-in-data memory model
both foo and fibonacci will be placed into the (same) compiler managed
PSV section. If this section exceeds 32K in size, the linker will complain
and the application will fail to link. The tool chain will arrange for the
PSVPAG to be correctly set at program start-up.

Function bar() requires no special treatment to access the variables de-
fined in this way. The tool chain assumes that the PSVPAG has not changed.

• Variables stored in a user managed PSV section

char *foo
__attribute__((space(psv))) = "a constant string";

int fibonacci[4]
__attribute__((space(psv))) = { 1, 1, 2, 3 };

void bar() {
int a,b;

CORCONbits.PSV = 1;
PSVPAG = __builtin_psvpage(fibonacci);
a = fibonacci[1];
b = fibonacci[3];
PSVPAG = __builtin_psvpage(foo);

3

fprintf(stderr,"%s: %d %d\n", foo, a, b);
}

When compiled without specifying the constants-in-data memory model
this program will fail at run-time. That is because the literal string in the
call to fprintf will occupy the auto psv space and the PSVPAG setting
has been changed. The other things to note are:

– the user must ensure that the PSV window is enabled

– only one PSVPAG is available at a time, so the user must cache some
of the values before the call to fprintf

– it really isn’t hard, just annoying

Note, that this example can apply to data stored in EEDATA too as
the hardware allows the EEDATA memory to be accessed via the PSV
window.

• Variables stored in a general program section

char *foo
__attribute__((space(prog))) = "a constant string";

int fibonacci[4]
__attribute__((space(prog))) = { 1, 1, 2, 3 };

void bar() {
/* eek! */

}

Well, I have been slightly lazy and omitted the code for bar to show how
to access this kind of memory. Mostly to prove a point. There are two
choices, using PSV or using the TBLRD1 machine instructions. In this case,
both are just as hard because the tool chain has not ensured that either
variable doesn’t cross a PSV boundary and table operations are hard to
perform in C.

3 Goals

Ideally a programmer should be able to make use of variables, where ever they
are, without needing to configure hardware resources. In general this would
require the language to support a new kind of pointer, one that represents
a complete 24-bit address in program FLASH. In the ideal world, our user
managed PSV example could be coded in the following manner:

1V3.00 contains built-in definitions to make this easier

4

char *foo
__attribute__((space(psv))) = "this is a constant string";

int fibonacci[4]
__attribute__((space(psv))) = { 1, 1, 2, 3 };

void foo() {
fprintf(stderr,"%s: %d %d\n", foo, a, b);

}

I don’t think this ideal will be reached (unfortunately) but we can come very
close. Incidentally, the reason why I don’t think this will happen is solely due to
they way library functions like fprintf are implemented, but it shows a general
problem that is likely to affect many users.

In this case, when fprintf processes the %s formatting character, it expects
the string to be located in data memory. It is not, so the function will fail.

There are other, architectural, caveats that prevent us from reaching the
ideal. In the following sections, I hope, the reader will observe that our exten-
sions meet the spirit of this ideal goal. Functionality that we provide includes:

• ability to easily create data in program FLASH memory

• ability to access the data without having to think about the hardware
limitations involved with the access

and is discussed in the following sections.

4 Managed PSV pointers - 24-bit pointers

Managed PSV pointers allow the compiler set keep track of the full 24-bit ad-
dress of an object. When a managed PSV pointer is accessed, the compiler
knows that the PSVPAG must be set before access. This operation is most cer-
tainly not atomic, so the compiler’s view of what must be saved in an ISR has
changed. ISR routines that use the PSVPAG resource will be required to set it
first (an incompatibility with old objects).

We will support two kinds of managed pointer, a small pointer where the
address is constrained to single PSV page and a large pointer where addresses
may overlap the page boundary. The small pointer, psv , can be used to
create a pointer to data stored in space(psv). The large pointer, prog , is
more general and should be used when the data may be stored in space(prog).
Large pointers are much more general.

A managed pointer is identified by a new syntax feature which resembles a
cv-qualifier like const or volatile. Note that using this new pseudo-qualifier
does not imply that the storage is in a PSV range. It is possible, for example,
to define pointers to PSV objects where the pointer itself lives in normal data
memory. Some examples:

5

int foo
attribute ((space(psv)));

foo lives in FLASH; it is not a
managed variable - just like cur-
rent syntax

psv int foo
attribute ((space(psv)));

foo lives in FLASH; it is a man-
aged variable, the programmer
can accesses it as if it were a nor-
mal C variable

int psv ?bar = &foo; bar lives in RAM; it is a man-
aged pointer to an int (like
other cv-qualifiers, read out from
the pointer until the type is
complete); assignments to bar
should be addresses of variables
in FLASH and can be derefer-
enced with normal C syntax - the
compiler will do the hard work.
Pointer arithmetic on a psv
pointer will fail if the program-
mer tries to overflow the PSV
page.

int big foo[256]
attribute ((space(prog)))

= { . . . };

big foo is an array that lives in
FLASH, but it is not constrained
by PSV address boundaries like a
space(psv) would be.

int prog ?big bar =
big foo;

like bar, big bar is a managed
pointer to an int. This pointer
is not constrained by a PSV
page boundary; any arithmetic
performed will also update the
page. A prog pointer can
point to something placed into
a space(psv)) constrained sec-
tion.

4.1 Actual concrete examples

Caveat: code-generation is supplied for illustrative purposes only.

6

4.1.1 Example 1: Managed Pointers as Function Arguments

In the following function:

int eek(const char *bar, __prog__ int *foo, __prog__ int *foo2) {

int i = *foo2 + *foo;
baz();
return i + *foo;

}

foo and foo2 are pointers to an int in program space. The compiler will
generate a sequence of code that preserves the PSVPAG and determine the
correct PSV page and offset to access each pointer. For example:

_eek:
mov.d w8,[w15++]
mov w10,[w15++]
mov.d w2,w8
mov.d w4,w2
mov _PSVPAG, w0 ; preserve current _PSVPAG
mov w5, _PSVPAG ; PSVPAG for foo
rrnc w2, w2 ; create *real* offset for foo
mov [w2],w1 ; dereference foo
mov w0, _PSVPAG ; restore _PSVPAG
mov.d w8,w2
mov _PSVPAG, w4 ; preserve _PSVPAG
mov w9, _PSVPAG ; PSVPAG for foo2
rrnc w2, w2 ; create *real* offset for foo2
mov [w2],w0 ; dereference foo2
mov w4, _PSVPAG ; restore _PSVPAG
add w1,w0,w10 ; i = *foo2 + *foo
rcall _baz
mov.d w8,w2
mov _PSVPAG, w4 ; preserve _PSVPAG
mov w9, _PSVPAG ; PSVPAG for foo
rrnc w2, w2 ; create *real* offset for foo2
mov [w2],w0 ; derefence foo2
mov w4, _PSVPAG ; restore _PSVPAG
add w10,w0,w0 ; return i + *foo;
mov [--w15],w10
mov.d [--w15],w8
return

One might call this function by:

7

int foo_value, foo2_value __attribute__((space(prog)));

main() {
eek("test", &foo_value, &foo2_value);

}

The assembly for the function call looks like:

mov #psvpage(_foo_value),w3
mov #psvptr(_foo_value),w2
mov #psvpage(_foo2_value),w5
mov #psvptr(_foo2_value),w4
mov #.LC0,w0
rcall _eek

8

4.1.2 Example 2: Managed Pointer (to an Array) as Function Ar-
guments

In the function below, foo points to a null-terminated buffer somewhere in
FLASH.

int eek(const char *bar, __prog__ int *foo) {
int sum = 0;

while (*foo) sum += *foo++;
return sum;

}

int foo_buffer[256] __attribute__((space(prog)));

main() {
eek("test", foo_buffer);

}

4.1.3 Example 3: managed array of managed pointers

ppi array is an array of pointers to ints; the pointers are themselves managed
(24-bit) pointers. I used the typedef because it makes the definition easier to
read!

typedef int __prog__ *prog_int; /* pointer int in space(prog) */

/* ppi_array is an array of 16 managed pointers to ints;
The array itself is in a psv space, and we would like the compiler
to access the array using a managed access */

__prog__ prog_int ppi_array[16] __attribute__((space(psv)));

int main() {

int sum = 0;
int i;
int __psv__ *p;

for (i = 0; i < 15; i++) {
p = ppi_array[i];
sum += *p;

}
return sum;

}

9

4.1.4 Example 4: Accessing FLASH Variables Directly

Although we talk about this new feature as 24-bit pointers, it really extends be-
yond that. It is possible to identify a variable as being in FLASH, and accessing
them without the need to use a pointer.

#include <stdio.h>

__psv__ int foo __attribute__((space(psv))) = 1;
__psv__ float bar __attribute__((space(psv))) = 3.14159;
__psv__ int eek[256] __attribute__((space(psv))) = {

200,201,202
};

main() {

fprintf(stderr,"foo (@ 0x%6.6lx) is: %d\n", &foo, foo);
fprintf(stderr,"bar (@ 0x%6.6lx) is: %f\n", &bar, bar);
fprintf(stderr,"eek[2] (@ 0x%6.6lx) is: %d\n", &eek[2], eek[2]);

}

Running this under the simulator might yield the following to stdout:

foo (@ 0x004459) is: 1
bar (@ 0x004451) is: 3.141590
eek[2] (@ 0x004059) is: 202

The correct answers, but those addresses do look odd! In order to make
certain operations easier, the compiler represents the PSV addresses in a non-
standard way. If you’d like to decompose them, the format of a 24-bit pointer
(consuming 32-bits) is:

bits 31 . . . 24 23 . . . 16 15 . . . 1 0
padding PSV page PSV offset PSV offset
8 bits 8 bits bits 0 to 14 bit 15

5 Managed PSV Pointers - ISR Considerations

A data access using 24-bit pointers is definitely non-atomic. Furthermore an
interrupt service routine never really knows what the current state of the PSVPAG
register will be. Unfortunately the compiler is not really in any position to
determine whether or not this is important in all cases. The compiler will make
the simplifying assumption that the writer of the interrupt service routine will
know whether or not the the auto, compiler managed, PSVPAG is required by the
ISR (or any functions called by the ISR) and will request that the programmer
specify whether or not it is necessary to assert the default setting of the the

10

PSVPAG register. This is achieved by adding a further attribute to the interrupt
function definition:

auto psv the compiler will set the PSVPAG register to
the correct value for auto psv or const (by
default) variables, and restore the PSVPAG
before returning

no auto psv the compiler will not set the PSVPAG reg-
ister

For example:

void __attribute__((interrupt, no_auto_psv)) _T1Interrupt(void) {
IFS0bits.T1IF = 0;

}

Current code (that does not assert this) may not execute properly unless re-
compiled. When recompiled, if no indication is made, the compiler will generate
a warning message and select the auto psv model. The choice is provided so
that programmers that are especially conscious of interrupt latency may select
the best option for them. Saving and setting the PSVPAG will consume approxi-
mately 3 cycles at the entry to the function and one further cycle to restore the
setting upon exist from the function. Note that boot or secure interrupt ser-
vice routines will use a different setting of the PSVPAG register for their constant
data from interrupt routines in a general FLASH area.

6 Support information

Questions, comments or suggestions can be sent to Microchip in the usual ways:
via your FSE/FAE representive, directly through support@microchip.com.

11

