SAM9x60 Hobby Porting Guide

A Leading Provider of Smart, Connected and Secure Embedded Control Solutions

Goals

- How to modify customer board from official EVK
- How to modify Linux Kernel device tree
- How to build buildroot image
- How to make patch for releasing
- How to customize buildroot package
- How to use cross compiler to development application

Before Start

- When you read this document, your will see two symbols, "\$" and "#"
- Those two symbols are indicate the user account type you're logged in to. The dollar sign means you're the normal user. The hash sign means you're system administrator.
- The following contents means the command that you need to input in host or device console.
 - "\$" means the command for *host* since default user is *normal user*
 - "#" means the command for *device* since default user is *superuser*

Make your board design based on official EVK

Customer Board

- Most of customers referred to official EVK to development their boards.
 - Reduce design risk
 - Improve development schedule
 - Peripheral components are validated

SAM9X60 Curiosity Board

Part Number: EV40E67A

- 100% Compatible with the SAM9X60 SOM
 - Even if not using the SOM
 - Uses the same devices and same schematics
- Development in progress
 - Layout completed
 - Waiting BOM Compliance approval
- Will allow evaluation of
 - The SAM9X60
 - The SAM9X60-SIP
 - The SAM9X60-SOM
- Main benefit
 - One board to support and maintain

Comparison

	SAM9x60 Curiosity	SAM9x60 Hobby
Chip	SAM9x60-D1G, 1Gb SiP	SAM9x60-D1G, 1Gb SiP
NAND Flash	4Gb	N/A
SD/eMMC	uSD/SD	uSD
Ethernet	10/100 PHY	N/A
Wireless	N/A	WILC3000 WiFi/Bt Combo
LCD	RGB parallel	RGB parallel
CAN	Dual CAN 2.0	N/A
Usb UART	N/A	MCP2221
Sensors	N/A	MCP9700/MCP9800
USB Host	X2	X1
I/O	RGB LEDs, User button x1 Raspberry pi GPIO connector, MicroBus	RGB LEDs, User button x2 Raspberry pi GPIO connector, MicroBus Arduino Shield
Audio	N/A	Class D

Differentiation **SD Card detect**

Differentiation

User Buttons

SAM9x60 Curiosity

Idea

- There is only one user button in Curiosity and PA29 is the I/O pin.
- Add one extra user button in Hobby and using PD3 and PD20 for I/O pins.

SAM9x60 Hobby

Modify Linux Kernel Device Tree for your board

Linux Kernel Device Tree & Device Tree Overlay

- The "Open Firmware Device Tree", or simply Device tree (DT), is a data structure and language for describing hardware.
- More specifically, it is a description of hardware that is readable by an operating system so that the operating system doesn't need to hard code details of the machine.
- A device tree overlay (DTO) enables a central device tree blob (DTB) to be overlaid on the device tree. A bootloader using DTO can maintain the system-on-chip (SoC) DT and dynamically overlay a device-specific DT, adding nodes to the tree and making changes to properties in the existing tree.

SAM9x60 Kernel Resource

• Kernel Source Code

https://github.com/linux4microchip/linux

• SAM9x60 Device Tree file

https://github.com/linux4microchip/linux/blob/linux-5.15-mchp/arch/arm/boot/dts/at91-sam9x60_curiosity.dts

Device Tree Overlay Source

https://github.com/linux4microchip/dt-overlay-mchp

Preprocessing

 Learn how to install and setup development environment in your laptop

https://www.youtube.com/watch?v=8sDyjYb8OAY&t=613s

Agenda

- •嵌入式Linux®課程大綱介紹
- ·WSL介紹
- Microchip在Embedded Linux開發的參考網站
- 第一階段簡答
- Hands on
- 在Windows[®] 10環境中安裝 WSL 2
- Reviewing Device tree file
- 參考Linux4sam網站編譯成Image過程
- Camera module和EGT的使用過程
- 第二階段簡答

SD Card Detect

https://github.com/linux4microchip/linux/blob/linux-5.15-mchp/arch/arm/boot/dts/at91-sam9x60_curiosity.dts

&sdmmc0 {

```
bus-width = <4>;
pinctrl-names = "default";
pinctrl-0 = <&pinctrl_sdmmc0_default &pinctrl_sdmmc0_cd>;
cd-gpios = <&pioA 25 GPIO_ACTIVE_LOW>;
disable-wp;
status = "okay";
```

SAM9x60 Curiosity

&sdmmc0 {

};

```
bus-width = <4>;
pinctrl-names = "default";
pinctrl-0 = <&pinctrl_sdmmc0_default &pinctrl_sdmmc0_cd>;
cd-gpios = <&pioD 2 GPIO_ACTIVE_LOW>;
disable-wp;
status = "okay";
```

SAM9x60 Hobby

};

SD Card Detect

https://github.com/linux4microchip/linux/blob/linux-5.15-mchp/arch/arm/boot/dts/at91-sam9x60_curiosity.dts

```
pinctrl_sdmmc0_cd: sdmmc0_cd {
                                                                atmel,pins =
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                SAM9x60 Curiosity
                                                                                                                          <ation content of the second state of the seco
    };
pinctrl sdmmc0 cd: sdmmc0 cd {
                                                            atmel,pins =
                                                                                                                       <AT91 PIOD 2 AT91 PERIPH GPIO AT91 PINCTRL NONE>;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              SAM9x60 Hobby
};
```


User Buttons

https://github.com/linux4microchip/linux/blob/linux-5.15-mchp/arch/arm/boot/dts/at91-sam9x60_curiosity.dts

```
gpio-keys {
    compatible = "gpio-keys";
    pinctrl-names = "default";
    pinctrl-0 = <&pinctrl_key_gpio_default>;
    status = "okay";
    button-user {
        label = "PB_USER";
        gpios = <&pioA 29 GPIO_ACTIVE_LOW>;
        linux,code = <KEY_PROG1>;
        wakeup-source;
    };
};
```

```
gpio-keys {
       compatible = "gpio-keys";
       pinctrl-names = "default";
       pinctrl-0 = <&pinctrl_key_gpio_default>;
       status = "okay";
       sw2 {
              label = "PB_USER_SW2";
              gpios = <&pioD 3 GPIO ACTIVE LOW>;
              linux,code = <KEY PROG1>;
              wakeup-source;
       };
       sw4 {
              label = "PB USER SW4";
              gpios = <&pioD 20 GPIO_ACTIVE_LOW>;
              linux,code = <KEY PROG2>;
              wakeup-source;
       };
};
```


User Buttons

https://github.com/linux4microchip/linux/blob/linux-5.15-mchp/arch/arm/boot/dts/at91-sam9x60_curiosity.dts

How to Build Linux Kernel

Useful link:

https://www.linux4sam.org

https://www.linux4sam.org/bin/view/Linux4SAM/LinuxKernel

Procedures

\$ git clone https://github.com/linux4microchip/linux.git -b sam9x60curiosity-2022.07

\$ cd linux

Modify arch/arm/boot/dts/at91-sam9x60_curiosity.dts

- \$ ARCH=arm make at91_dt_defconfig
- \$ ARCH=arm make

zImage will be placed at arch/arm/boot

How to Build Device Tree Overlay

- The device tree overlay is a standalone project and will refer to the kernel path.
- Need to export KERNEL_DIR

// in kernel working path. For example, /home/USER_NAME/linux

\$ export KERNEL_DIR=\$PWD

Or use absolute path name

\$ export KERNEL_DIR=/home/USER_NAME/linux

• Procedures

- \$ git clone https://github.com/linux4microchip/dt-overlay-mchp.git -b linux4microchip+sam9x60-curiosity-2022.07
- \$ cd dt-overlay-mchp
- \$ ARCH=arm make sam9x60_curiosity.dtbos
- \$ ARCH=arm make sam9x60_curiosity.itb

Preparing SD Card Image

Download SAM9x60 Curiosity prebuilt image

Here

- Flash image to SD card: using Ether Download here How to do here
- There are two partitions in SD Card.
- The FAT16/32 partition is boot partition
- The EXT4 partition is Linux root filesystem partition
- Replace sam9x60_curiosity.itb in boot partition

Bootup

- Insert uSD Card to uSD slot in Hobby board
- Connect uUSB cable between laptop and J4 in Hobby board
 - J1: USB DEVICE. Power source and SAM-BA monitor update
 - J4: DEBUG PORT. Power source and debug log via MCP2221
 - Use terminal software, such as TeraTerm in laptop

22

Testing User buttons

 If gpio-key driver hook well, there will be a input event file node in /dev/input/eventX

Check event type

cat /proc/bus/input/devices

- # cat /proc/bus/input/devices I: Bus=0019 Vendor=0001 Product=0001 Version=0100
- I: Name=″gpio-keys″
- : Phys=gpio-keys/input0
- S: Sysfs=/devices/platform/gpio-keys/input/input0
- J: Unic
- Handlers=kbd event0
- B: PROF
- B: EV=3
- Š: KĖY≟300000 0 0 0 0

Testing User buttons

 Test key event # cat /dev/input/event0

> Press SW2 & SW4 See what does it happen in terminal?

<u>File Edit Setup Control Window H</u>elp

♯ cat /dev/input/event0 、GhXュ、GhXュ、GhXN!、GhXN!・GhXテ ・・GhXテ ・・GhXサ3・GhXサ3

Press ctrl+z exit

What is that?

Don't worry. We will talk about it later. Make sure there is something shown when you press both keys.

Testing LEDs

• The LED devices are located at /sys/class/leds

- Three LEDs have been integrated
- LED functions
 - brightness: on/off LED
 - trigger: trigger mode. Use cat to check what modes are supported

Testing LEDs

Turn on RED LED

echo 1 >> /sys/class/leds/red/brightness

• Turn off RED LED

echo 0 >> /sys/class/leds/red/brightness

Stop BLUE trigger

echo none >> /sys/class/leds/blue/trigger

Enable heartbeat trigger with BLUE

echo heartbeat >> /sys/class/leds/blue/trigger

Generate Linux Kernel Patch

- Using git command to compare the different what we modified
- This patch can be released to others or used when building buildroot image
- // in kernel folder
 \$ git add -A
 \$ git diff --cached >> PATCH_FILENAME

https://github.com/s887432/sam9x60_hobbypatch/blob/main/0000_sam9x60_hobby_linux_dt.oatch

Build Buildroot Image

Linux4Sam Buildroot

https://www.linux4sam.org/bin/view/Linux4SAM/BuildRoot

Download source code

- \$ git clone https://github.com/linux4sam/buildroot-at91.git -b sam9x60curiosity-2022.07
- \$ git clone https://github.com/linux4sam/buildroot-external-microchip.git -b sam9x60-curiosity-2022.07

Apply kernel patch

- \$ mkdir -p buildroot-external-microchip/patches/linux
- \$ cp PATCH_FILENAME buildroot-external-microchip/patches/linux

Linux4Sam Buildroot

Build image

- \$ cd buildroot-at91
- \$ BR2_EXTERNAL=../buildroot-external-microchip make sam9x60_curiosity_graphics_defconfig

\$ make -jn

where n could be double of CPU core

It will take long time to build image depends on CPU and network performance.

- When build successed, the SD card image will be generated at buildroot-at91/output/images/sdcard.img
- You can use etcher or Linux command to flash SD card
 \$ sudo dd if=output/images/sdcard.img of=/dev/sdb bs=4M

Customize your Buildroot

manuconfig and defconfig

- Manuconfig is used in Buildroot which provides an easy and simple way to configure your environment.
- The defconfig file describes the default setting and selected packages.
- Using arrow key to move cursor
- Use space to select or deselect

\$ make menuconfig

Host name and welcome message

Host Name

- Solution 1: defconfig
 - <u>https://github.com/linux4sam/buildroot-external-</u> <u>microchip/blob/master/configs/sam9x60_curiosity_graphics_defconfig</u>
 BR2_TARGET_GENERIC_HOSTNAME="sam9x60_curiosity"
 BR2_TARGET_GENERIC_ISSUE="Welcome to the Microchip SAM9X60 CURIOSITY Demo"

Welcome message

Solution 2: menuconfig

- Host name: [System configuration] → [System hostname]
- Welcome message: [System configuration] → [System banner]

Add Game: ascii invaders

- An ASCII-art game like Space Invaders using Curses.
- https://github.com/macdice/ascii-invaders
- Manuconfig

[Target packages] → [Games] → [ascii_invaders]

/home/user/WorkArea/buildroot_9x60_hobby-2022.07/buildroot-at91/.config - B
> Target packages > Games
Games
Arrow keys navigate the menu. <Enter> selects submenus ---> (or empty
<Y> selects a feature, while <N> excludes a feature. Press <Esc><Esc>
is selected [] feature is excluded
[*] ascii_invaders
[] chocolate-doom

ascii_invaders

<u>E</u> dit	<u>S</u> etup	C <u>o</u> ntrol	Window	<u>H</u> elp	F = = 1	[]	F 1	F = = 1		5001	[]	
			{@@} /‴″¥	{@@} /‴″¥	{@@} /‴″¥	{@@} /‴″¥	{@@} /‴″¥	{@@} /‴″¥	{@@} /‴″¥	{@@} /‴″¥	{@@} /‴″¥	
			d00p /¥	d00b /¥	d00b /¥	d00b 7¥	d00p /¥/	d00p /¥	d00p ∕¥∕	d00b 7¥	d00b ^/¥	
			Ź₩₩¥ ¥ [™] Ź	∕∭¥ ¥ [™] ∕	∕∭M¥ ¥	Ź₩M¥ ¥ ^{™™} Ź	∕MM¥ ¥~~∕	∕∭¥ ¥~~∕	∕₩M¥ ¥~~/	Ź₩M¥ ¥ ^{∞∞} Ź	∕MM¥ ¥~~∕	
			∕MM¥ ¥~~∕	∕MM¥ ¥~~∕	∕MM¥ ¥~~∕	∕MM¥ ¥~~∕	/MM¥ ¥~~/	∕MM¥ ¥~~∕	∕MM¥ ¥~~∕	∕MM¥ ¥~~∕	∕∭M¥ ¥ [∞] ∕	
									/			
MM¥ MMM MMM	/mmv Mmmv Mmm	i M¥ IMMM MMM	/mmmm Mmmmmmm Mmm mmm	/MN MMN MMN	IMM ¥ IMMMM I MMM	MMMN MMMMN MMM N	i IMM i IMM i	/MMM_M MMMMMMM MMM_MMM	/M MM MMN	MMM¥ MMMM MMMM		
					h	mAm MAZAM						

Build Application

Cross Compiler

• Prebuilt cross compilers are workable. Check Linux4Sam for more detail.

https://www.linux4sam.org/bin/view/Linux4SAM/Sam9x60Curi osityMainPage#Setup_ARM_Cross_Compiler

- More suitable is using the cross compiler which built by buildroot.
 - Location: buildroot-at91/output/host
- When added extra libraries, the header files and libraries will be installed. No need to build cross compiler version in your host

Cross Compiler

- For example. The buildroot folder is located at /home/user/buildroot-at91
- Export cross compiler
 - \$ gedit ~/.bachrc
 - Add following item in end of file
 - export PATH=\$PATH:/home/user/buildroot-at91/output/host/bin

Test

\$ arm-buildroot-linux-gnueabi-gcc

```
File Edit View Search Terminal Help
user@user-VirtualBox:~$ arm-buildroot-linux-gnueabi-gcc
arm-buildroot-linux-gnueabi-gcc.br_real: fatal error: no input files
compilation terminated.
iuser@user-VirtualBox:~$
```


Hello World: Cross-Compile

```
    Hello World
        #include <stdio.h>
            int main(int argc, char **argv)
            {
                 printf("Hello World!!!\r\n");
                return 0;
            }
```

1 #inc]	l <mark>ude</mark> <stdio.h></stdio.h>
2	
3 int r	nain(<mark>int</mark> argc, <mark>char</mark> **argv)
4 {	
5	<pre>printf("Hello World!!!\r\n");</pre>
6	return 0;
7 }	
8	
9 // er	nd of file
10	

- compile
- \$ arm-buildroot-linux-gnueabi-gcc -o helloworld helloworld.c

user@user-VirtualBox:~/WorkArea/app/hello\$ arm-buildroot-linux-gnueabi-gcc -o helloworld helloworld.c
user@user-VirtualBox:~/WorkArea/app/hello\$
user@user-VirtualBox:~/WorkArea/app/hello\$ file helloworld
helloworld: ELF 32-bit LSB executable, ARM, EABI5 version 1 (SYSV), dynamically linked, interpreter /lib/ld-linux.so.3, for GNU/Linux 5.4.0,
not stripped
user@user-VirtualBox:~/WorkArea/app/hello\$

Download file to board

- There are several ways to download compiled binary for files to board.
 - via ethernet/WiFi
 - USB mass storage

Buildroot won't mount USB disk automatically in default. We need to do it manually. Will introduce how to do auto-mount in coming training. ~ means current user folder

Host

Insert USB disk to host Copy helloworld to SD card Ex. \$ cp helloworld /media/USER_NAME/MyDisk

Ubuntu will mount USB mass storage automatically. The mount point will be located at /media/USER NAME/DISK LABEL

Device

Insert USB disk to USB host slot Mount USB disk # mount -t vfat /dev/sdb1 /mnt Copy file to root folder # cp /mnt/helloworld ~ Umount USB disk # umount /mnt

Launch your application in board

- When you want to launch program, you need to identify the program location unless it is located at /usr/bin or /sbin
- Launch application in current folder
 # ./helloworld

./ means current path

File Edit Setup Control Window	Hale
--------------------------------	------

Launch application by absoluted filename
 #/root/helloworld

The root folder is located at /root

Summary

• In this training, we learned

- Make a customize board from official EVK.
- Modify Linux Kernel device tree for customize board
- Build buildroot image and apply Kernel patch
- Customize buildroot packages
- Make an application with cross compiler

