
A Leading Provider of Smart, Connected and Secure Embedded Control Solutions

SAM9x60 Hobby Porting Guide

Goals
• How to modify customer board from official EVK

• How to modify Linux Kernel device tree

• How to build buildroot image

• How to make patch for releasing

• How to customize buildroot package

• How to use cross compiler to development application

Before Start
• When you read this document, your will see two symbols, “$”

and “#”

• Those two symbols are indicate the user account type you’re
logged in to. The dollar sign means you’re the normal user. The
hash sign means you’re system administrator.

• The following contents means the command that you need to
input in host or device console.
• “$” means the command for host since default user is normal user

• “#” means the command for device since default user is superuser

4

Make your board design
based on official EVK

5

Customer Board
• Most of customers referred to official EVK to development their

boards.
• Reduce design risk

• Improve development schedule

• Peripheral components are validated

6

SAM9x60 Curiosity SAM9x60 Hobby

https://www.microchip.com/en-us/development-tool/EV40E67A

SAM9X60 Curiosity Board
Part Number: EV40E67A

• 100% Compatible with the SAM9X60 SOM
• Even if not using the SOM
• Uses the same devices and same schematics

• Development in progress
• Layout completed
• Waiting BOM Compliance approval

• Will allow evaluation of
• The SAM9X60
• The SAM9X60-SIP
• The SAM9X60-SOM

• Main benefit
• One board to support and maintain

https://www.microchip.com/en-us/development-tool/EV40E67A

Comparison

8

SAM9x60 Curiosity SAM9x60 Hobby

Chip SAM9x60-D1G, 1Gb SiP SAM9x60-D1G, 1Gb SiP

NAND Flash 4Gb N/A

SD/eMMC uSD/SD uSD

Ethernet 10/100 PHY N/A

Wireless N/A WILC3000 WiFi/Bt Combo

LCD RGB parallel RGB parallel

CAN Dual CAN 2.0 N/A

Usb UART N/A MCP2221

Sensors N/A MCP9700/MCP9800

USB Host X2 X1

I/O RGB LEDs, User button x1
Raspberry pi GPIO connector, MicroBus

RGB LEDs, User button x2
Raspberry pi GPIO connector, MicroBus

Arduino Shield

Audio N/A Class D

Differentiation
SD Card detect

9

SAM9x60 Curiosity SAM9x60 Hobby

Idea
• The SD Card pin assignment are same

basically.
• But PA25 will be used for Class-D.
• Used PD2 for SD card detect instead

of PA25. PA25 will be used for Class-D

Differentiation
User Buttons

10

SAM9x60 Curiosity

SAM9x60 HobbyIdea
• There is only one user button in Curiosity and PA29 is

the I/O pin.
• Add one extra user button in Hobby and using PD3

and PD20 for I/O pins.

Modify Linux Kernel Device
Tree for your board

11

Linux Kernel Device Tree & Device Tree Overlay
• The “Open Firmware Device Tree”, or simply Device tree (DT), is

a data structure and language for describing hardware.

• More specifically, it is a description of hardware that is readable

by an operating system so that the operating system doesn’t need

to hard code details of the machine.

• A device tree overlay (DTO) enables a central device tree blob

(DTB) to be overlaid on the device tree. A bootloader using DTO

can maintain the system-on-chip (SoC) DT and dynamically

overlay a device-specific DT, adding nodes to the tree and making

changes to properties in the existing tree.

12

SAM9x60 Kernel Resource
• Kernel Source Code

https://github.com/linux4microchip/linux

• SAM9x60 Device Tree file

https://github.com/linux4microchip/linux/blob/linux-5.15-mchp/arch/arm/boot/dts/at91-sam9x60_curiosity.dts

• Device Tree Overlay Source

https://github.com/linux4microchip/dt-overlay-mchp

13

https://github.com/linux4microchip/linux
https://github.com/linux4microchip/linux/blob/linux-5.15-mchp/arch/arm/boot/dts/at91-sam9x60_curiosity.dts
https://github.com/linux4microchip/dt-overlay-mchp

Preprocessing
• Learn how to install and setup development environment in

your laptop

https://www.youtube.com/watch?v=8sDyjYb8OAY&t=613s

14

https://www.youtube.com/watch?v=8sDyjYb8OAY&t=613s

SD Card Detect
https://github.com/linux4microchip/linux/blob/linux-5.15-mchp/arch/arm/boot/dts/at91-sam9x60_curiosity.dts

&sdmmc0 {

bus-width = <4>;

pinctrl-names = "default";

pinctrl-0 = <&pinctrl_sdmmc0_default &pinctrl_sdmmc0_cd>;

cd-gpios = <&pioA 25 GPIO_ACTIVE_LOW>;

disable-wp;

status = "okay";

};

15

&sdmmc0 {

bus-width = <4>;

pinctrl-names = "default";

pinctrl-0 = <&pinctrl_sdmmc0_default &pinctrl_sdmmc0_cd>;

cd-gpios = <&pioD 2 GPIO_ACTIVE_LOW>;

disable-wp;

status = "okay";

};

SAM9x60 Curiosity

SAM9x60 Hobby

https://github.com/linux4microchip/linux/blob/linux-5.15-mchp/arch/arm/boot/dts/at91-sam9x60_curiosity.dts

SD Card Detect
https://github.com/linux4microchip/linux/blob/linux-5.15-mchp/arch/arm/boot/dts/at91-sam9x60_curiosity.dts

pinctrl_sdmmc0_cd: sdmmc0_cd {

atmel,pins =

<AT91_PIOA 25 AT91_PERIPH_GPIO AT91_PINCTRL_NONE>;

};

16

pinctrl_sdmmc0_cd: sdmmc0_cd {

atmel,pins =

<AT91_PIOD 2 AT91_PERIPH_GPIO AT91_PINCTRL_NONE>;

};

SAM9x60 Curiosity

SAM9x60 Hobby

https://github.com/linux4microchip/linux/blob/linux-5.15-mchp/arch/arm/boot/dts/at91-sam9x60_curiosity.dts

User Buttons
https://github.com/linux4microchip/linux/blob/linux-5.15-mchp/arch/arm/boot/dts/at91-sam9x60_curiosity.dts

gpio-keys {

compatible = "gpio-keys";

pinctrl-names = "default";

pinctrl-0 = <&pinctrl_key_gpio_default>;

status = "okay";

button-user {

label = "PB_USER";

gpios = <&pioA 29 GPIO_ACTIVE_LOW>;

linux,code = <KEY_PROG1>;

wakeup-source;

};

};

17

gpio-keys {

compatible = "gpio-keys";

pinctrl-names = "default";

pinctrl-0 = <&pinctrl_key_gpio_default>;

status = "okay";

sw2 {

label = "PB_USER_SW2";

gpios = <&pioD 3 GPIO_ACTIVE_LOW>;

linux,code = <KEY_PROG1>;

wakeup-source;

};

sw4 {

label = "PB_USER_SW4";

gpios = <&pioD 20 GPIO_ACTIVE_LOW>;

linux,code = <KEY_PROG2>;

wakeup-source;

};

};

SAM9x60 Curiosity SAM9x60 Hobby

https://github.com/linux4microchip/linux/blob/linux-5.15-mchp/arch/arm/boot/dts/at91-sam9x60_curiosity.dts

User Buttons
https://github.com/linux4microchip/linux/blob/linux-5.15-mchp/arch/arm/boot/dts/at91-sam9x60_curiosity.dts

gpio_keys {

pinctrl_key_gpio_default: pinctrl_key_gpio {

atmel,pins = <AT91_PIOA 29 AT91_PERIPH_GPIO AT91_PINCTRL_NONE>;

};

};

18

gpio_keys {

pinctrl_key_gpio_default: pinctrl_key_gpio {

atmel,pins =

<AT91_PIOD 3 AT91_PERIPH_GPIO AT91_PINCTRL_NONE

AT91_PIOD 20 AT91_PERIPH_GPIO AT91_PINCTRL_NONE>;

};

};

SAM9x60 Curiosity

SAM9x60 Hobby

https://github.com/linux4microchip/linux/blob/linux-5.15-mchp/arch/arm/boot/dts/at91-sam9x60_curiosity.dts

How to Build Linux Kernel
• Useful link:

https://www.linux4sam.org

https://www.linux4sam.org/bin/view/Linux4SAM/LinuxKernel

• Procedures
$ git clone https://github.com/linux4microchip/linux.git -b sam9x60-

curiosity-2022.07

$ cd linux

Modify arch/arm/boot/dts/at91-sam9x60_curiosity.dts

$ ARCH=arm make at91_dt_defconfig

$ ARCH=arm make

zImage will be placed at arch/arm/boot

19

http://www.linux4sam.org/
https://www.linux4sam.org/bin/view/Linux4SAM/LinuxKernel

How to Build Device Tree Overlay
• The device tree overlay is a standalone project and will refer to the

kernel path.
• Need to export KERNEL_DIR

// in kernel working path. For example, /home/USER_NAME/linux
$ export KERNEL_DIR=$PWD
Or use absolute path name
$ export KERNEL_DIR=/home/USER_NAME/linux

• Procedures
$ git clone https://github.com/linux4microchip/dt-overlay-mchp.git -b

linux4microchip+sam9x60-curiosity-2022.07
$ cd dt-overlay-mchp
$ ARCH=arm make sam9x60_curiosity.dtbos
$ ARCH=arm make sam9x60_curiosity.itb

20

Preparing SD Card Image
• Download SAM9x60 Curiosity prebuilt image

Here

• Flash image to SD card: using Ether

Download here

How to do here

• There are two partitions in SD Card.

• The FAT16/32 partition is boot partition

• The EXT4 partition is Linux root filesystem partition

• Replace sam9x60_curiosity.itb in boot partition

21

https://files.linux4sam.org/pub/demo/linux4sam+sam9x60-curiosity-2022.07/linux4sam-buildroot-sam9x60_curiosity-graphics-2022.07.img.bz2
https://www.balena.io/etcher/
https://www.linux4sam.org/bin/view/Linux4SAM/Sam9x60CuriosityMainPage#Create_a_SD_card_with_the_demo

Bootup
• Insert uSD Card to uSD slot in Hobby board

• Connect uUSB cable between laptop and J4 in Hobby board
• J1: USB_DEVICE. Power source and SAM-BA monitor update

• J4: DEBUG_PORT. Power source and debug log via MCP2221

• Use terminal software, such as TeraTerm in laptop

22

Default username is root
No password

Testing
User buttons

• If gpio-key driver hook well, there will be a input event file node
in /dev/input/eventX

• Check event type

cat /proc/bus/input/devices

23

Testing
User buttons

• Test key event

cat /dev/input/event0

24

Press SW2 & SW4
See what does it happen in terminal?

What is that?
Don’t worry. We will talk about it later.
Make sure there is something shown when you
press both keys.

Press ctrl+z exit

Testing
LEDs

• The LED devices are located at /sys/class/leds

• Three LEDs have been integrated

• LED functions
• brightness: on/off LED

• trigger: trigger mode. Use cat to check what modes are supported

25

Testing
LEDs

• Turn on RED LED
echo 1 >> /sys/class/leds/red/brightness

• Turn off RED LED
echo 0 >> /sys/class/leds/red/brightness

• Stop BLUE trigger
echo none >> /sys/class/leds/blue/trigger

• Enable heartbeat trigger with BLUE
echo heartbeat >> /sys/class/leds/blue/trigger

26

Generate Linux Kernel Patch
• Using git command to compare the different what we modified

• This patch can be released to others or used when building
buildroot image

// in kernel folder

$ git add -A

$ git diff --cached >> PATCH_FILENAME

https://github.com/s887432/sam9x60_hobby-
patch/blob/main/0000_sam9x60_hobby_linux_dt.oatch

27

https://github.com/s887432/sam9x60_hobby-patch/blob/main/0000_sam9x60_hobby_linux_dt.oatch

Build Buildroot Image

28

Linux4Sam Buildroot
• https://www.linux4sam.org/bin/view/Linux4SAM/BuildRoot

• Download source code
$ git clone https://github.com/linux4sam/buildroot-at91.git -b sam9x60-

curiosity-2022.07

$ git clone https://github.com/linux4sam/buildroot-external-microchip.git
-b sam9x60-curiosity-2022.07

• Apply kernel patch
$ mkdir -p buildroot-external-microchip/patches/linux

$ cp PATCH_FILENAME buildroot-external-microchip/patches/linux

https://www.linux4sam.org/bin/view/Linux4SAM/BuildRoot

Linux4Sam Buildroot
• Build image

$ cd buildroot-at91
$ BR2_EXTERNAL=../buildroot-external-microchip make

sam9x60_curiosity_graphics_defconfig
$ make -jn

where n could be double of CPU core

• When build successed, the SD card image will be generated at
buildroot-at91/output/images/sdcard.img

• You can use etcher or Linux command to flash SD card
$ sudo dd if=output/images/sdcard.img of=/dev/sdb bs=4M

It will take long time to
build image depends on
CPU and network
performance.

Customize your Buildroot
manuconfig and defconfig

• Manuconfig is used in Buildroot which provides an easy and
simple way to configure your environment.

• The defconfig file describes the default setting and selected
packages.

• Using arrow key
to move cursor

• Use space to select
or deselect

$ make menuconfig

31

Host name and welcome message

• Solution 1: defconfig
• https://github.com/linux4sam/buildroot-external-

microchip/blob/master/configs/sam9x60_curiosity_graphics_defconfig
BR2_TARGET_GENERIC_HOSTNAME="sam9x60_curiosity"

BR2_TARGET_GENERIC_ISSUE="Welcome to the Microchip SAM9X60 CURIOSITY Demo“

• Solution 2: menuconfig
• Host name: [System configuration]➔[System hostname]

• Welcome message: [System configuration]➔[System banner]

32

Welcome message

Host Name

https://github.com/linux4sam/buildroot-external-microchip/blob/master/configs/sam9x60_curiosity_graphics_defconfig

Add Game: ascii invaders
• An ASCII-art game like Space Invaders using Curses.
• https://github.com/macdice/ascii-invaders

• Manuconfig
[Target packages]➔[Games]➔[ascii_invaders]

ascii_invaders

33

https://github.com/macdice/ascii-invaders

Build Application

34

Cross Compiler
• Prebuilt cross compilers are workable. Check Linux4Sam for

more detail.
https://www.linux4sam.org/bin/view/Linux4SAM/Sam9x60Curi
osityMainPage#Setup_ARM_Cross_Compiler

• More suitable is using the cross compiler which built by
buildroot.
• Location: buildroot-at91/output/host

• When added extra libraries, the header files and libraries will be
installed. No need to build cross compiler version in your host

35

https://www.linux4sam.org/bin/view/Linux4SAM/Sam9x60CuriosityMainPage#Setup_ARM_Cross_Compiler

Cross Compiler
• For example. The buildroot folder is located at

/home/user/buildroot-at91

• Export cross compiler
$ gedit ~/.bachrc

Add following item in end of file

export PATH=$PATH:/home/user/buildroot-at91/output/host/bin

Test

$ arm-buildroot-linux-gnueabi-gcc

36

Hello World: Cross-Compile

37

• Hello World
#include <stdio.h>
int main(int argc, char **argv)
{

printf(“Hello World!!!\r\n”);
return 0;

}

• compile
$ arm-buildroot-linux-gnueabi-gcc -o helloworld helloworld.c

Download file to board
• There are several ways to download compiled binary for files to

board.
• via ethernet/WiFi

• USB mass storage

38

Host
Insert USB disk to host
Copy helloworld to SD card
Ex.
$ cp helloworld /media/USER_NAME/MyDisk

Buildroot won’t mount USB disk automatically in
default. We need to do it manually.
Will introduce how to do auto-mount in coming
training.
~ means current user folder

Device
Insert USB disk to USB host slot
Mount USB disk
mount –t vfat /dev/sdb1 /mnt
Copy file to root folder
cp /mnt/helloworld ~
Umount USB disk
umount /mntUbuntu will mount USB mass storage automatically.

The mount point will be located at
/media/USER_NAME/DISK_LABEL

Launch your application in board
• When you want to launch program, you need to identify the

program location unless it is located at /usr/bin or /sbin

• Launch application in current folder

./helloworld

• Launch application by absoluted filename

/root/helloworld

39

The root folder is located at /root

./ means current path

Summary
• In this training, we learned
• Make a customize board from official EVK.

• Modify Linux Kernel device tree for customize board

• Build buildroot image and apply Kernel patch

• Customize buildroot packages

• Make an application with cross compiler

40

	投影片 2: SAM9x60 Hobby Porting Guide
	投影片 3: Goals
	投影片 4: Before Start
	投影片 5: Make your board design based on official EVK
	投影片 6: Customer Board
	投影片 7: SAM9X60 Curiosity Board
	投影片 8: Comparison
	投影片 9: Differentiation
	投影片 10: Differentiation
	投影片 11: Modify Linux Kernel Device Tree for your board
	投影片 12: Linux Kernel Device Tree & Device Tree Overlay
	投影片 13: SAM9x60 Kernel Resource
	投影片 14: Preprocessing
	投影片 15: SD Card Detect
	投影片 16: SD Card Detect
	投影片 17: User Buttons
	投影片 18: User Buttons
	投影片 19: How to Build Linux Kernel
	投影片 20: How to Build Device Tree Overlay
	投影片 21: Preparing SD Card Image
	投影片 22: Bootup
	投影片 23: Testing
	投影片 24: Testing
	投影片 25: Testing
	投影片 26: Testing
	投影片 27: Generate Linux Kernel Patch
	投影片 28: Build Buildroot Image
	投影片 29: Linux4Sam Buildroot
	投影片 30: Linux4Sam Buildroot
	投影片 31: Customize your Buildroot
	投影片 32: Host name and welcome message
	投影片 33: Add Game: ascii invaders
	投影片 34: Build Application
	投影片 35: Cross Compiler
	投影片 36: Cross Compiler
	投影片 37: Hello World: Cross-Compile
	投影片 38: Download file to board
	投影片 39: Launch your application in board
	投影片 40: Summary

