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Class Objectives 

When you walk out of this class you will… 

 

 know the available peripherals on 8 bit 

MCUs for SMPS applications 

 be able to implement a variety of SMPS 

topologies using Core Independent 

Peripherals. 

 be able to protect you power using Core 

Independent Peripherals. 
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Class Objectives 

(Design Example) 
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Agenda 

 Analog Design Review 

 Plant Transfer Function 

 Analyze stability & Design Compensator 

 Analog control vs. full digital control 

 Different topologies and control strategies 

using the core independent peripherals 

 Protection functions examples 

 Summary 
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Analog World:  Buck Converter - Voltage Mode 

Analog Design Review 
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Typical Voltage Mode Analog PSU 

 Typically we tune the 

compensator by 

selecting the position of 

poles and zeros so as to 

achieve the desirable 

gain and phase margins 

 

 To do this we need the 

Transfer Functions 

Hc(s) & Hp(s) 

 Plant in fact includes 

PWM but for simplicity 

we have separated them 

Ref  Vout 
error 

+ 
- 

Hc(s) 
(controller) 
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H(s) of a 2nd Order System 

 Our generic Buck converter @ full load: 

 L = 22H C = 440F & R = 1.8 

 ESR is assumed to be 0 for now! 

 Cap’s equivalent Series Resistance 

 Transfer Function Hp(s): 

 

 

 

 The denominator of Hp(s) is a 2nd order polynomial 

 It has 2 poles* @** 

 
 

 This is the resonance frequency Fr of our system 

 At resonance we “may” see a bump on our gain plot. The size of the 

bump is dependent on the load resistor (as well as other things) 

 We have two poles so we call this a 2nd order system 
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Gain Plot of the 2nd Order LC Circuit 

 Exercise: Calculate Fr + estimate “roll-off” in dB/decade after Fr 

 What is the maximum phase? Is it leading or lagging?   
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Phase Plot of the 2nd Order LC Circuit 
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PWM Gain of Our Analog PSU 

 Consider our generic Buck converter with Vin = 12V 

 In analog PWM, we typically compare our reference with a ramp; 
for simplicity let’s assume that the height of this ramp is 1V 

 

 

 

 

 When input to the PWM (i.e. our reference) = 0, then PWM duty = 0% & 
Vout = 0V 

 When input to the PWM = 1V, PWM duty = 100% & Vout = 12V which is 
= it’s maximum value i.e. = Vin 

 Gain = Output/Input, so in our case 

 

 

 IMPORTANT: In decibels a gain of 12 equates to 21.58dB; this 
means that our bode plot is shifted up from 0dB to 21.58dB  We 
have now accounted for the effects of our PWM 

+ 

- 
O/P PWM 

Vramp = 1 V pk-pk 
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PWM Gain of Our Analog PSU 

 Consider a generic Buck converter  Vin = 12V 

Inverting Op-

Amp  

H(s) -Z2/Z1 

For now let’s 

assume that our 

controller's gain 

is 1 (0 dB); i.e. 

there is no 

compensator 

1 V pk-pk 

When duty = 0  Vout = 0V 

When duty = 1  Vout = Vin = 12V  

GainPWM = (Vin / Vramp) 
 

 GainPWM =  (12/1) =  20 log(12) = 21.58 dB 

Standard LC filter as per 

previous slides 

GainLC @ low frequencies = 

0dB 

Total dc Gain  = |H(s)| = 0 dB + 21.58 dB + 0 dB = 21.58 dB 



©  2016 Microchip Technology Incorporated. All Rights Reserved.  Slide  13 

Putting It All into Practice 

 The previous equations are from a real life power supply with 

the following specification: 

 L = 22H, C = 440F & R = 1.8 

 Vin = 12V, Vout = 3.3V & Iout = 2.0A 

 For now we are ignoring the ESR (equivalent series resistance of 

the capacitor  

 Let us consider what the Bode plot will look like for the plant of 

this power supply 

 It will have: 

 A dc gain 

 A double pole (complex conjugate pair of poles) 
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Open Loop Bode Plot of Buck  

without a Compensator 
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Vin = 12V; L = 22 µH 

C= 440µF; CapESR = assumed 0 now! 

  

DC Gain = 21.58dB  

Cross over frequency Fx 

i.e. frequency at which gain 

crosses 0 dB   6kHz 

Important:  

       Slope @ Fx = -40 dB/decade 

Gain Margin (GM) = How much 

the gain is below 0 dB when 

Phase = 180o 

In this theoretical example 

Phase does not get to 180o 

Phase Margin (M)  
i.e. Phase left before reaching 

-180o when the gain = 0 dB 

In this case  10o 
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Effects of Cap ESR 
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Double pole 

PWM Gain = 21.58dB 

High frequency phase: 

2 poles and 1 zero 

(-180o + 90o) = -90o  

ESR Zero 
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Modeling - Boost 

Derive small signal model 

Calculate input to output relationship for 

each mode of operation 

At equilibrium the volt-second balance for 

the inductor has to be equal 

Remove DC components and 2nd order 

effects 

Convert to s-domain taking Laplace 

transform 
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Modeling - Boost 
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Modeling - Boost 

)()()()()()( siZsvsGsdsGsv loadoutgvgvd






©  2016 Microchip Technology Incorporated. All Rights Reserved.  Slide  19 

Modeling - Boost 
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Modeling - Boost 
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Modeling - Boost 
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Modeling - Boost 
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Modeling - Boost 
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Modeling - Boost 
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Modeling - Boost 
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Modeling - Boost 
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Modeling - Boost 
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Modeling 

Buck Converter Transfer Function 

Control to Output Line to Output  Output Impedance 
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Modeling 

Boost Converter Transfer Function 

Control to Output Line to Output  Output Impedance 
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 Right-Half Plane Zero 

 Output voltage drop deeply when load increase. 

 Can not counteract via pole 

 Feedback Bandwidth will be limited 

 

Modeling 
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Agenda 

 Analog Design Review 

 Plant Transfer Function 

 Analyze stability & Design Compensator 

 Analog control vs. full digital control 

 Different topologies and control strategies 

using the core independent peripherals 

 Protection functions examples 

 Summary 
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Phase and Gain margin 
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Stability 

 Phase Margin 

 How much can the phase change before the system 

becomes unstable? 

 <45o of phase margin exhibits ringing (under damped) 

 

 Gain Margin 

 How much can the gain change before AFB > 1 and the 

system becomes unstable. 
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Stability 

 Phase Margin 

 Design for at least 45o of phase margin. 

 

 Gain Margin 

 Design for a gain margin of at least 3dB (gain of 2x) 
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Compensators for Analog PSUs 

 In order to meet the stability criteria, analog PSU designers add a 

controller/compensator circuit to the system 

 For Analog PSUs we typically only use two different types of compensators: 

Type II & Type III 

 The transfer function for these is represented as Hc(s) in the block diagram of the 

overall system 

 The component values set the poles and zeros of Hc(s) 

 Analog designers select these values such that they meet the criteria in the 

previous slide 
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Type II Compensator 

 Type II: 

 2 poles & 1 zero 

 Most commonly used for 

current mode control 

 Not suitable for voltage 

mode Buck converters 

(need type III) 

 Transfer function: 

 

 

 

 

 

 Where: 
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Type III Compensator 

 Type III: 

 3 poles & 2 zeros 

 Used for voltage mode Buck  

 Transfer function: 

 

 

 

 

 

 

 

 

 Where: 
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Compensator Summary 

 Analog Type II / Digital 2P2Z   

 Required Phase boost up to 90o 

 System-Plant dominant pole is of first order  (Example: Rload x 

Cout) 

 Current-mode converters 

 Analog Type III / Digital 3P3Z 

 Required Phase boost greater than 90o 

 System-Plant dominant pole is of second order (Example: Lout * 

Cout) 

 Voltage-mode buck or boost-derived converters 

 Proportional Integral Derivative (PID) 

 Most common compensator type in industrial control 

applications, although not ideal for SMPS applications 

 Only uses three coefficients and is possible to boost phase > 90o 
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Analog Compensator Design Example 

 Place two zeros at 

 Fr i.e. @ 1617Hz  

 Place one pole at Fesr 

 i.e. 11668.25 Hz 

 Place second pole at Fs/2 

 i.e. 100 kHz 

 Place pole at origin at: 

 

 
 i.e. for a Vramp of 1V, Vin = 12 and Fx of 

10kHz  fp0 = 833Hz 

in

xramp

p
V

FV
f


0

 Type III controller: quick and simple but not exact 

 You typically get ~70o of phase margin 

Important: If you need more phase margin, say ~75o (e.g. a digital PSU) then reduce one of the zeros and 

the pole@ origin by 25%; i.e. one of the zero @ 1617x0.75 = 1.2kHz, & pole @ origin = 833x0.75 = 625Hz  
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A Generic Buck Converter  

in Analog World 
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Measurement of Power Supply 

Stability – Network Analyzer 
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Analog Injection Example 

 Measure the voltage loop 

 Buck converter using average CMC 

𝑻𝟐 =
𝑽𝑩

𝑽𝑨
 

The loop gain T2 is: 



©  2016 Microchip Technology Incorporated. All Rights Reserved.  Slide  43 

Analog Injection Example 

 Measure the current loop 

 Buck converter using average CMC 

𝑻𝟑 =
𝑽𝑩

𝑽𝑨
 

The loop gain T3 is: 



©  2016 Microchip Technology Incorporated. All Rights Reserved.  Slide  44 

A Generic Buck Converter  

in Analog World 
 Red (dotted) Trace  Original power stage without compensation 

 Blue (solid) Trace  Open loop gain after compensation 

 Using the transfer function 
and component values our 
analog type III compensator 
poles and zeros are selected 
such that: 

 Very high gain at DC, i.e. 
pole at origin 

 Fx = 10kHz as desired 

 M  75o 

 Slope of gain plot at Fx = 
20dB/decade 

 GM better than 40dB 

This power supply is 

stable  All we need to do is 

to convert our Hc(s) from 

analog (continuous time) to 

digital (discrete time) 
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Analog Compensator  

Time Domain Operation 

VEA 

Vout 

Iout 

VEA 

VEA increases to react to load 

step – increasing VEA increases 

duty cycle 

VEA decreases  to react to load 

drop – decreasing VEA decreases 

duty cycle 
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Analog Compensator 

Time Domain Response 

RED – Lower loop BW  

VEA 

Vout 

Iout 

Stable, lower 

bandwidth loop 

(RED) 

Optimized loop, fast 

transient response, 

stable (GOLD) 

Unstable loop, load step 

triggers oscillation 

(BROWN) – inadequate 

stability margin 
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Agenda 

 Analog Design Review 

 Plant Transfer Function 

 Analyze stability & Design Compensator 

 Analog control vs. full digital control 

 Different topologies and control strategies 

using the core independent peripherals 

 Protection functions examples 

 Summary 
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PWM 
Output 

 mode 
Oscillator 

Control 

Protection functions 

Basic SMPS Controllers 

SMPS drive 

Output control 

Vout/Iout 

Icoil 
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SMPS drive 

It generates one or more square waves to 

drive the power converter 

 One single PWM for Buck, Boost, Flyback, 

Sepic …   

 Two PWMs for synchronous Buck, half bridge 

… 

 Four PWMs for full bridge… 

 Dead times/blanking 



©  2016 Microchip Technology Incorporated. All Rights Reserved.  Slide  50 

Control 

 Measure the output 

 Compare it with a reference value 

 Interact with PWM in order to bring the 

output as close as possible to the 

reference 
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Protection Functions 

 Over-voltage shutdown 

 Monitors Vin and Vout & shuts down PWM if over  voltage 

 Under-voltage lockout 

 Monitors Vin & holds PWM off until Vin-min 

 Current Limit 
 Limits output current/inductor current to Imax  

 Thermal Shutdown 

 Monitor temperature and shutdown PWMs if over  temp 

 Soft-Start 

 At start-up it slowly bring to output to the reference 

 value  
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Additional Functions 

 Slope Compensation (external transistor + 

RC) 

 Continuous/Discontinuous switching 

 Programmable output voltage/current 

 Programmable current limit 

 Programmable max duty cycle limit 

 Over-temperature current limit/derating 

 Power-up/down sequencing 

 Switching Frequency dithering 
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ASIC vs. MCU 

 ASIC 

 ASICs provide the basic functions 

 Most levels/timing are set with external 

components 

 Output modes were on-chip 

 Special functions used a mix of on chip and 

external 
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ASIC vs. MCU 

 MCU + Core independent peripherals 

 Core Independent Peripherals (CIP) provide all 

control functions  

 Output modes are programmable via CIPs 

 Configuration are under real time control via 

software 

 Special functions use a mix of CIPs and software 

for complex, intelligent automated functions 

 

 MCU only – Full digital 

 All the application is implemented in software 
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Additional functions  

with a Microcontroller 

 Monitoring/Protections 

 Measurement of current, voltage, 

efficiency measurement & user interface 

 Communications 

 Talking to a controlling host 
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PWM 
Output 

 mode 
Oscillator 

Control 

Protection functions 

Full digital Controllers 

SMPS drive 

Output control 

Vout/Iout 

Icoil ADC 
Compensator 

firmware 

ADC 
Protection 

functions 

firmware 



©  2016 Microchip Technology Incorporated. All Rights Reserved.  Slide  57 

Resources for full digital control 

 High resolution PWM  Output accuracy 

 Fast ADC converter  Closed loop 

performances 

 CPU speed  Closed loop performances 
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Processing Delay 

Delay from sample time to actuation tends to Ts  

as system is pushed to its limits Period  

Start 

Next 

Period  

Start 

ADC 

Sampling 

ADC 

Conversion 
Calculation 

PWM 

Update 

PWM 

Rate 

Delay 

Reduced as loop speed 

is increased 

Fixed delay 

Fcrossover   Fcontrol/20   Rule of thumb   
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Additional challenges 

 Phase margin loss: 

 

 

 Max PWM resolution is: 

      
      (8 bit with 32MHz and 100 kHz PWM) 

 

 No digital current mode 
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Analog World:  Buck Converter - Voltage Mode 

Analog Design Review 
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Core Independent Peripherals 
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Agenda 

 Analog Design Review 

 Plant Transfer Function 

 Analyze stability & Design Compensator 

 Analog control vs. full digital control 

 Different topologies and control strategies 

using the core independent peripherals 

 Protection functions examples 

 Summary 
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SMPS Modes of Operation 

 Voltage Mode 
 Uses error voltage to control duty cycle 

 Current Mode 
 Uses error voltage to control inductor current 

 Hysteretic Control 
 On/Off control of fixed PWM based on output voltage 

 Proportional Control 
 Proportional control of variable PWM based on output 

voltage and an active feedback filter (compensator) 
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Voltage Mode Hysteretic 

 Control Blocks required 

for feedback control 

 A fixed duty cycle PWM  

 Reference Voltage 

 Comparator 

Gating for control of on/off 

PWM 
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PIC Microcontroller 

+ 

- Comp 

10-bit 

PWM 

DAC 

Output Voltage Feedback 
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CCP 

 10-bit PWM 

 Uses TMR2,4,6 

 8-bit period register 

 8 bit duty cycle in 

CCPRxL 

 2 bit duty cycle in 

CCPxCON 
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MCC - CCP 
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HS Comparators 

 Programmable input selection 

 Programmable output polarity 

 Programmable speed/power/Hyst 

 Programmable and fixed voltage 

references 

 Internal connections to PWM/COG/ 

PRG/CLC/Op Amp/TMRs/DSM 

 Interrupt on change 

 External output 
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Comparators 
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MCC - Comparator 
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Configurable Logic Cells CLC 

 Combinational logic 

 AND/NAND/AND-OR/AND-OR-INVERT/OR-

XOR/OR-XNOR 

 Latches 

 J-K w/RST, S-R, D latch w/SR, D Flop w/SR 

 38 selectable inputs 

 Connections to CIPs, Clocks, Timers, 

GPIO, COGs, & each other 

 Can be used for debug purposes 
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MCC - CLC 
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DAC & Fixed Voltage Reference (FVR) 
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Voltage/Current Mode 

 PWM is turned on by a timer and turned of by a 
comparator  same duty cycle resolution of an 
analog PWM 

 Control loop is implemented using the internal 
opamp with an external compensation network  no 
need for high performance MCU for high speed 
calculations, and for high speed ADC 

 Slope compensation for current mode uses an 
internal ramp generator + comparator  no external 
components  

 Comparator measures the instantaneous current  
no need for high speed ADC or  fast CPU for digital 
slope compensation 

 With an analog controller the crossover frequency 
my be in the range of Fsw/10 
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Type III compensator 

Voltage mode implementation  
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Type III compensator 

Voltage mode implementation  
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Op Amps 

 Low leakage inputs 

 2 MHz GBWP, CMRR 70dB typ 

 Programmable inverting & non-inverting 

input selection 

 Unity gain & output tristate over-ride 

 Multiple over-ride sources 
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Op Amp 



©  2016 Microchip Technology Incorporated. All Rights Reserved.  Slide  79 

MCC - OPA 
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Programmable Ramp Generator (PRG) 

 Linear positive & negative ramp 

 Programmable current source/sink 

 Int/ext reference voltage select 

 Int/ext timing source select 

 3 modes 

 Falling voltage (slope compensation) 

 Rising voltage (for voltage mode) 

 Alternating rising/falling voltage  
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Programmable Ramp Generator (PRG) 
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MCC - PRG 
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Complimentary output generator 

(COG) 
 Six mode:  

1. Steered mode 

2. Synced steered mode 

3. Half Bridge 

4. Full Bridge (for/rev) 

5. Push Pull 

 Independent rise/fall events with 

edge/level select 

 Phase delay, Dead time, Blanking 

 Auto-shutdown with pin override, high, 

low, or high-Z 
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COG 
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MCC - COG 
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Current Mode 

In addition to Voltage mode: 

 A inner current loop need to 

be added 

 Slope compensation is 

needed because the current 

loop is instable if the DC is 

greater than 50% 

 Ramp generator to implement 

slope compensation 
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Type II compensator 

Current mode implementation 
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Sub Harmonic Oscillations  

in the Time Domain 
DAC Reference 
Inductor Current 
Output Voltage 

Duty Cycle 
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Sub Harmonic Oscillation Phenomenon 

 During steady state operation the average 

output voltage/current still looks constant 

from outside and no/very little regulation is 

available 
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Determining Slope Factors 

 The slopes of the perturbed current waveform can 
be considered to be parallel to the expected, ideal 
waveform 

 So the ratios between I0 and I1, TON and TOFF 
and m1 and m2 can be set in fixed relations 

IDC 

IL 

IPK 

t 

I0 

I1 

TSW 

m1 

-m2 

TON TOFF 

TON 
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Determining Slope Factors 

 – Inductor Current – 

 Ideally balanced 

waveform: 
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 In Steady State: 

 

 

 

 Perturbed waveform: 
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Determining Slope Factors 

 – Compensation Ramp – 
 To bring the current back in balance, the reference 

voltage will be decreased over time (subtractive 
compensation) 

 The required VREF de-rating slope  –mSC has to be 
derived from the rising and falling current slopes m1 
and –m2  
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Determining Slope Factors 

 – Compensation Ramp – 
 The number of cycles n required to reach its maximum amplitude 

can be determined by  

 

 

 

 By introducing the compensation ramp –mSC, we get 
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Determining Slope Factors 

 Assuming a constant inductance L, the 

slopes are proportional to the voltage 

across the inductor 

 For different types of converters we can 

therefore determine the following slope 

ratios 
Converter Type m1L m2L mSCL 

Buck VIN - VOUT VOUT > VOUT - 0.5 VIN 

Boost VIN VOUT - VIN > 0.5 VOUT - VIN 

Buck-Boost VIN VOUT > 0.5 (VOUT – VIN) 
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Sub Harmonic Oscillations in the 

Frequency Domain 

 Control to Output Transfer Function: 
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Sub Harmonic Oscillation 

Peak Current Mode Controlled 

systems develop a significant 

double pole at 

 

 

 

When this peak exceeds -20dB, 

sub harmonic oscillations will 

occur at/around this peak 

frequency 
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Real Case Study 
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Real Case Study 
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16-bit PWM 

 16-bit PMW with Phase, duty cycle, period, 

and offset event controls 

 Four modes of operation 

 Standard, Set on Match, Toggle on Match, 

Center Aligned 

 Four offset modes 

 Independent, Slave run on Sync start, One-

shot with Sync Start, Continuous run with 

Sync start & TMR reset 
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16-bit PWM 
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Operation Mode 

 Standard 
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Operation Mode 

 Set on Match 
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Operation Mode 

 Toggle on Match 
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Operation Mode 

 Center Aligned 



©  2016 Microchip Technology Incorporated. All Rights Reserved.  Slide  106 

Offset Mode 

 Independent Run Mode 
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Offset Mode 

 Slave Run Mode with Sync Start 
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Offset Mode 

 One-Shot Slave Mode With Sync Start 
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Offset Mode 

 Con. Run Slave Mode With Sync Start And 

Timer Reset 
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MCC – 16bit PWM 
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The Power of Peripheral Pin Select 

 Move functions 

 For improved layout 

 For improved noise isolation 

 Switch drive peripherals on the fly 

 Add new digital connections 

 Generation of virtual test points 

 Swap output drivers for topology change 

Move resources between SMPS channels 
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Agenda 

 Analog Design Review 

 Plant Transfer Function 

 Analyze stability & Design Compensator 

 Analog control vs. full digital control 

 Different topologies and control strategies 

using the core independent peripherals 

 Protection functions examples 

 Summary 
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Type II compensator 
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Type III compensator 
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Type III compensator 
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Type III compensator 
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Type III compensator 
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 DAC is set to a value 

very close to 0 

 The control loop is 

turned on 

 Using a timer or just a 

for loop, DAC is slowly 

increased up to the 

reference value 
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ILED 

VLED 

Soft-Start – LED Current  
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VLED ILED 

Dimming Control 
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Frequency Dithering 

 Timer 0 generates a periodic interrupt 

 On the interrupt a pseudo random number 

is generated 

 The random number is loaded into the 

OSCTUNE register  
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On Board Testing without PWM Dithering 

LED Current 

FFT of LED Current 

Frequency Dithering 
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On Board Testing with PWM Dithering 

LED Current 

FFT of LED Current 

Frequency Dithering 
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Frequency Dithering 
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Monitoring Performance 

 10-bit ADC with connections to all of the 

analog signals 

 Comparator interrupts on change 

 Timer 1 gate for measuring pulse width, 

duty cycle, event timing 

 8-bit processor with advanced 

PIC16F1XXX processor 

 Enhanced instruction set for data 

manipulation 
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Battery Charger Application 
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CIP Block Diagram 
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Charger Test Waveform 
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PIC16F1765 
14KB / HEF / 1KB 

PIC16F1764 
7KB / HEF / 512B 

8x10b ADC, 5b DAC,  
10b DAC, 2xHSComp, 

OPA, PRG, 3xHLT, 
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COG, 3xCLC, PPS,  
2x100mA I/O, TEMP, 

SPI/I2C, EUSART 

PIC16F1769 
14KB / HEF / 1KB 

 

PIC16F1768 
7KB / HEF / 512B 
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Core Independent Peripherals Integration  

Quick Reference Guide 
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DS30010068B 
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Summary 
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