/IVIAS TERs 2012

LAB Manual for 1658 BTL

Bootloading, Application Mapping and
Loading Techniques on PIC32

Table of Contents

Lab 1 Instructions 2
Lab 2 Instructions 9
Lab 3 Instructions 28

Appendix A 38
Appendix B 41
Appendix C 42

MICROCHIP
\ MASTERs Conference

LAB Manual for 1658 BTL

LAB 1:
Getting to know the PIC32 Linker Scripts

Purpose:

This lab helps you to understand the followings.

o Arrangement of PIC32 linker script files.

o selecting the right linker script for the chosen PIC32 device part number and
o contents of the linker scripts

Overview:

In this lab you will walk through the PIC32 linker script files and understand the con-
tents of linker script files. At the end of this lab there is an exercise where you will an-
swer some objective questions.

Procedure :
1. Locating procdefs.ld file

The procdefs.Id file is device specific linker script file and is found inside the folder
where PIC32 compiler tools are installed.

In this step you will go to the following path where procdefs.Id file for various
PI1C32 part numbers are located inside their respective folders.

C:\Program Files\Microchip\xc32\v1.00\pic32mx\lib\proc
2. Open the correct procdefs.ld file

In the subsequent labs of this class, we will be using PIC32MX795F512L. There-
fore; the right linker script file for us is the one that is located in the folder
32MX795F512L. Open the procdefs.ld file in MPLAB X.

To open a file in MPLAB X, in the menu choose File -> Open File and then browse to
the folder where procdefs.ld file is located.

3. Understanding the contents of procdefs.ld file

You will go through the contents of procdefs.ld file. Procdefs.Id file contains follow-
ing categories.
« Inclusion of Processor-Specific Object File(s)
e Inclusion of Peripheral Libraries
« Base Exception Vector Address and Vector Spacing Symbols
o Memory Address Equates
« Memory Regions
o Configuration Words Input/Output Section Map

Page 2

LAB Manual for 1658 BTL

Inclusion of processor specific Object File
This section of the processor definitions linker script ensures that the processor spe-
cific object file(s) get included in the link. The “processor.o0” contains SFR definitions.

f#ﬁﬁﬁﬁﬁﬁtﬁﬁﬁﬁﬁﬁﬁtﬁﬁﬁﬁﬁﬁﬁﬁ#ﬁWWﬁﬁﬁtﬁﬁﬁﬁﬁﬁﬁtﬁﬁﬁﬁﬁﬁt#ﬁWﬁﬁﬁﬁtﬁﬁﬁﬁﬁﬁ

Processor-specific cbject file. Contains 5FR definitions.
i e e i e e e e i e e e i e e i el e i e i i el e e

INPUT ("processor.o™)

The INPUT line specifies that processor.o should be included in the link as if this file
were named on the command line. The linker attempts to find this file in the current
directory. If it is not found, the linker searches through the library search paths (i.e., the
paths specified with the -L command line option for the linker).

Inclusion of processor-specific peripheral libraries

This section of the processor definitions linker script ensures that the processor spe-
cific peripheral libraries get included.

ft#******t#******t*******t#******t#*****t#******t#******t#******t*

* Procegsor-specific peripheral libraries are optional

o o e el i e e i e e e i i e e i e e el i e e el e e e e e e
OFTIONAL ("libmchp peripheral.a™)

OPTIONAL ("libmchp peripheral 32MKT95FS51ZEL.a™)

Base Exception Vector Address and Vector Spacing Symbols

This section of the processor definitions linker script defines values for the base excep-
tion vector address and vector spacing.

f*###***t#******t####***t####***t####***tt####***t####***t#******t#**

* For interrupt wector handling

el o el e e el el e e e i el i el e el ol e el e el ol e
PROVIDE (_wector spacing = 0x00000001) ;
_ebaze_address = 0x5FCO1000;

The _ebase_address specifies the base address of the interrupt vector table (IVT). By
default the IVT is mapped to the address value of 0x9FC071000 in KSEGO region.
PI1C32 device supports 64 interrupt vectors. The linker keyword _vector _spacing de-
fines the space between any two vectors of IVT. By default it is set to 32 bytes by set-
ting the value of _vector_spacing to 1. The vector spacing is calculated using the be-
low formula.

Vector spacing = (_vector_spacing << 5) = (0x00000001 << 5) = 32 bytes

Page 3

LAB Manual for 1658 BTL

Memory Address Equates

This section of the linker script provides information about certain memory addresses
required by the default linker script.

J,-'***?r?r***1‘**##******t#******t#***1;1:*1:1:#******t#******t#******t
* Memory Address Equates
* _FEGZET_ATDER -- Reset Wector
* BEV _EXCPT ADDE -- Boot exception Vector
* DEG_EXCPT ADDE -- In-circuit Debugging Exception Vector
* _DEG_CODE_ADDE -- In-circuit Debug Executiwve address
* DEG_CODE_SIZE -- In-circuit Debug Executiwve size
* GEN EXCPT _ADDER -- General Exception Vector
b e il e i e ol e e e e e i e e i e e e el e i e e i i el e el e e e e e e e i
_RESET_ADLDE = OxBFCO0000;
_BEV_EXCPFT_ADDE = OxBFCO0350;
_DEG_EXCPFT_ADDE = OxBFCO04350;
_DEG_CODE_ADDE = OxBFCOZ000;
_DBG_CODE_SIZE = OxFF0 ;
_GEN_EXCPT_ADDER = ehase_address + 0x180;

The RESET ADDR defines the processor's Reset address. This is the address from
where an application begins running.

On all forms of reset the processor enters into Bootstrap mode. While the processor is
in Bootstrap mode, all interrupts are disabled and all general exceptions are redirected
to one interrupt vector address, 0OxBFC00380. The BEV EXCPT_ ADDR defines this
bootstrap exception address.

The DBG EXCPT_ ADDR defines the address that the processor jumps to when a de-
bug exception is encountered, when using the debugger.

The DBG CODE ADDR defines the start address of the debug executive. The debug
executive is a small program downloaded into the target device by the debugger along
with the user program and is responsible for debugging the user program.

The DBG CODE SIZE defines the flash size reserved for debug executive.

The _GEN EXCPT ADDR defines the address that the processor jumps to when a gen-
eral exception is encountered and when the processor is not in bootstrap mode.

(Note: Once the interrupt controller of PIC32 is configured for desired mode of opera-
tion, The bootstrap mode is exited by setting the control bit BEV to 0)

Page 4

LAB Manual for 1658 BTL

Memory Regions

This section of the procdefs.ld file provides information about the memory regions that
are available on the device.

.I,I'***

* Memory PRegions

Memory regions without attributes canhot bhe used for orphatned sections.
Only sections specifically assigned to these regions can be allaocated

+ 4 o+ 4

into these regions.
1.-**J{'

MEMORT

{
ksegl program mem lrx) : ORIGIN = Ox3D000000, LENGTH = O0x80000
kzegl_boot mem : ORIGIN = OxSFCO0420, LENCGTH = 0x570
exception mem : ORIGIN = O0x3FCOl1000, LENGTH = Ox1000
ksegl boot _mem : ORIGIN = OxEFCO0C00, LENGTH = 0Oxd430
debug_ exec_mem : ORIGIN = OxBFCOZ000, LENGTH = 0OxFFO
configs : ORIGIN = OxBFCOZFFO, LENGTH = Oxd
config:z : ORIGIN = OxBFCOZFF4, LENGTH = Oxd
configl : ORIGIN = OxBFCOZFFS, LENGTH = Oxd
configl : ORIGIN = OxBFCOZFFC, LENGTH = Oxd
kzegl data mem fwlx) @ OBIGIN = OxAOQOO000O0C, LEMNGTH = Oxz0000
=fr= : ORIGIN = OxEBF200000, LENGTH = O0xl00000
configsfrs : ORIGIN = OxEBFCOZFFO, LENGTH = 0x10

Following memory regions are defined with an associated start address and length.

1. Program memory region for application code (kseg0_ program mem)

2. C startup code (ksegl boot mem)
Any application will begin running from its C start-up code. Therefore; the
address value assigned to RESET_ ADDR and the value of
ksegl boot mem origin must be same.

3. Interrupt vector table (exception mem).
The exception_mem must align on a 4KB address boundary. Note that
the base address of exception mem and the address assigned to
_ebase address must be same.

4. Data memory region (ksegl data mem)

5. Memory region reserved for debugger code (debug exec mem)

6. Individual configuration words (config0, configl, config2 and con-
fig3).

Configuration word memory region (configsfrs).

Special function registers — peripheral registers (sfrs)

© N

The kseg0_boot mem is not used and is reserved for future use.

Page 5

LAB Manual for 1658 BTL

It is to be noted that kseg0 program mem, kseg0 boot mem and excep-
tion mem are mapped into KSEGO address space. All other memory regions are
mapped into KSEG1 address space.

The attributes (rx) specify that read-only sections or executable sections can be lo-
cated into the program memory regions. Similarly, the attributes (w! x) specify that sec-
tions that are not read-only and not executable can be located in the data memory re-
gion. Since no attributes are specified for the boot memory region, the configuration
memory regions, or the SFR memory region, only specified sections may be located in
these regions.

(i.e., orphaned sections may not be located in the boot memory regions, the exception
memory region, the configuration memory regions, the debug executive memory
region, or the SFR memory region).

CONFIGURATION WORDS INPUT/OUTPUT SECTION MAP

This section in procdefs.ld is not important for the application mapping. This section is
input/output section map for Configuration Words. It defines how input sections for
Configuration Words are mapped to output sections for Configuration Words. Note that
input sections are portions of an application that are defined in source code, while out-
put sections are created by the linker. All output sections are specified within a SEC-
TIONS command in the linker script.

f***tt*******t*******t*******t*******t*******t*******t*i

* Configquration-word sections
e o o o o o o o o e i i e e e e e o o o o o o o o o i e e e e e e o i e o e e e o e o

SECTIONE
{
.config BFCOZFFO @ |
EEEP (*{.config BFCOZFFO)
} = configl
-config EFCOZFF4 @ |
EEETP (* (. config EFCOZFF4))
} = configz
-config EFCOZFFS - |
EEEP(*{.config EFCOZFFZ))
} ¥+ configl
.config BFCOZFFC @ |
EEEP (*{.config BFCOZFFC)
} * configl

b

For each Configuration Word that exists on the specific processor, a distinct output
section named .config address exists, where address is the location of the
Configuration Word in memory. Each of these sections contains the data created by
the #pragma config directive for that Configuration Word in the source code. Each

section is assigned to their respective memory region (confign).

Page 6

LAB Manual for 1658 BTL

4. Locating elf32pic32mx.x file

The elf32pic32mx.x contains the template of the main linker script file. This is located
in the following path where XC32 compiler is installed. Note that this is only a template
of the actual linker script. The main linker script which linker uses is internal to the
linker.

C:\Program Files\Microchip\xc32\v1.00\pic32mx\lib\ldscripts\elf32pic32mx.x
5. Inclusion of Procdefs.ld file in elf32pic32mx.x
Open the file elf32pic32mx.x file in an editor (say MPLAB X). See how the file

procdefs.ld file is included into the elf32pic32mx.x using the linker command INCLUDE
at line 17.

EXTEFN (_min stack_size _min heap size)
PROVIDE(min stack_size = 0x400) ;
PROVIDE(min heap size
INCLUDE procdefs. 1d

oy ;

PROVILE(DEG CODE_ATDER
PROVILE: DEG_CODE SIZE
SECTIONS
{
#* Boot Sections *f
-reset. _RESET_ADDE :

OxBEFCOZ000)
axFFO)

6. Other contents of elf32pic32mx.x

This file mainly contains the input/output section map, where code sections are
mapped into the memory regions defined in procdefs.ld file. The rest of the contents of
elf32pic32mx.x is not important for this class and for application/bootloader mapping.
However, after this class, it is recommended to read the document “MPLAB C32 User
Guide.pdf” to understand more about these sections. The document comes as part of
the XC32 installation package and is found in the following path.

C:\Program Files\Microchip\xc32\v1.00\doc\MPLAB-XC32-Users-Guide.pdf

Page 7

LAB Manual for 1658 BTL

Exercise: Try to answer these questions

1) Which of the following memory regions contain C-Startup code?
a) kseg0_program_mem c) kseg0_boot_mem
b) kseg1_boot_mem d) exception_mem
2) Which of the following memory regions contain interrupt vector table?

a) kseg0_program_mem c) kseg0_boot_mem
b) kseg1_boot_mem d) exception_mem

3) The reset address of an application is defined by

a) RESET _ADDR. c) ebase_address
b) BEV_EXCPT_ADDR d) DBG_EXCPT_ADDR

4) The _ebase_address must point to base address of

a) kseg0_program_mem c) kseg0_boot_mem
b) kseg1_boot_mem d) exception_mem

5) The text and data sections (all C files) of an application are mapped in

a) kseg0_program_mem c) kseg0_boot_mem
b) kseg1_boot_mem d) exception_mem

Page 8

LAB Manual for 1658 BTL

LAB 2:
Application Mapping and Bootloader Mapping

Purpose:
Map bootloader and application into non-overlapping memory regions

Overview:
In this lab you will learn how to modify the linker scripts of bootloader and application
projects to map the resulting image into non-overlapping memory regions.

Following are the objectives of this lab

« Edit the linker script of the application project to map the application.
« Edit the linker script of the bootloader project to map the bootloader
o Build and program the bootloader into PIC32 starter kit.

e Program the application using the bootloader

The bootloader is a USB HID bootloader and the application is a small application
which blinks two LEDs on the starter Kkit.

Procedure :

1. The Hardware Setup

The hardware setup for this class is shown in figure 2.1.

Setup the hardware as per the arrangement shown in figure 2.1

Page 9

LAB Manual for 1658 BTL

dIHI0EIYY

W

Snivis

I T3y .
= e

Figure 2.1: Hardware Setup for this Class

PI1C32 1/0O Expansion Board

PIC32 USB Starter Kit Il

RJ11 cable connecting Real ICE and the hardware.

USB A to Micro B Cable connecting PC to starter kit (for USB communica-
tion). The hardware is powered by this USB connection.

MPLAB REAL ICE (Debugger)

USB A to B cable (connecting PC and Real ICE)

PC

sON =

No O

Page 10

LAB Manual for 1658 BTL

2. Copy the correct procdefs.ld file into the Application project

m CHOOSING THE CORRECT LINKER SCRIPT

The “PIC32 starter kit” is mounted with “PIC32MX795F512L". The linker
script header file “procdefs.ld” for this part number is found in the following
path.

C:\Program Files\Microchip\xc32\v1.00\pic32mx\lib\proc\32MX795F512L

m PROCEDURE

Copy the procdefs.ld file into the application project “LABZ2/application/
application.x”. The LAB2 folder can be found inside 1658 BTL class folder.

3. Application Mapping Scheme for this Lab

There are no procedures in this step. Read the following information.

m APPLICATION MAPPING SCHEME

Figure 2.2 in the next page shows the application mapping scheme.

The bootloader chosen for this lab is a USB HID bootloader. The size of the USB
HID bootloader is considerably large and cannot be fit entirely inside 12KB boot
flash. Hence, the bootloader is split into two parts. One part is mapped into boot
flash and the other part is mapped in to lower 24KB of program flash.

The application must be mapped into the remaining part of the program flash,
not overlapping with the bootloader. Recall: To remap the application you need
to rearrange its memory regions kseg1 _boot mem, exception_mem and
kseg0_program_mem.

In the subsequent steps of this lab, you will be editing the linker script to
map the application image as per the scheme shown in the figure 2.2.

m RULES

Follow these rules while mapping the memory regions of the application.

1. exception_mem must align on a 4KB flash page. This is very important for
the interrupts to work.

2. Itis recommended not to alter the length of exception_mem and
kseg1_boot_mem as they contain the interrupt vector table and C-start up
code for the application.

3. The rearranged memory regions must not overlap with other memory re-
gions defined in procdefs.ld

Page 11

LAB Manual for 1658 BTL

0x9FCO1FFF

0x9FC00000

0x9DO7FFFF

0x9D007490

0xBDO00748F

0xBD007000

0x9DO006FFF
0x9D006000

0x9DO0O0SFFF

0x9D000000

™ Bl D e e e L L
™ e e e e e S S R S e
[e N N N e S N L M N N R e N N
™ R e L e e L L R L
e e e e e e e e e S e e e e e S e
e e e e e e e e e e e e e e e
™ Akl
o i
3
=] Space Reserved [
fEalE LVl
™ =t f -
2™ =y akeal
T or =3
= o
3
et Bootloader e
o™ oy Lo ad
1™ n Akl
™ fr" n™e
™ -
R T L T ek
™ B e L L e L

mmmmmmmmmmmmmmmmmm

Reserved

SFRs

Reserved

kseg0_program_mem
(Application Text and
Data Section)

kseg1_boot_mem
(Application C Startup
code)

/

exception_mem
(Application IVT)

e e e T e T T T T T T T
ﬂﬁuﬁuﬁuﬂuﬁuﬁuﬁuﬂuﬁuﬁuﬁuﬂﬂﬁuﬁuﬁuﬂuﬁ

= F2
3] Space Reserved for [:i-
™ e
] Bootloader Lo
™ =t el
™ ot b o™
™ ot .ﬂ-\.ﬂ-
::u mu‘-wm-.ﬁ-.ﬁww-.ﬁv‘-u‘-u‘-mw~

P Ty
e o™ e e e e e e o e T o e R T T
™ e e e e e T T T T T T T T T T T

/

> Boot Flash

Application
Reset address

> Program Flash

Figure 2.2: Application mapping scheme

Page 12

LAB Manual for 1658 BTL

4. Mapping the application’s IVT

Mapping the IVT involves following two steps.
e Mapping “exception_mem”
e Changing the value of exception base address

Mapping exception mem

You will map the exception_mem as per the application mapping scheme
shown in figure 2.2. Go to the folder ““LAB2/application/application.x””. Open
the procdefs.ld file in MPLAB X and change the ORIGIN value of excep-
tion_mem to 0x9D006000. Do not change the value of LENGTH. You will

need this length to support all the 64 interrupt vectors.

41 MEMORY

4z

43 ksegll program mem (r=) : ORIGIN = 0x9Dp000000, LENGTH = 0x50000
44 ksegl hoot mem : ORIGIN = 0Ox9FCO0490, LENGTH = 0x970
45 exception mem : ORIGIN = 0x9Dp006000, LENGTH = 0x1000
46 ksegl hoot mem : CORIGIN = OxBFCO0000, LENGTH = 0x430

Changing the value of exception base address

The _ebase _address must point to the base address of the exception_mem.
The value assigned to _ebase_address will be loaded into controller's EBASE
register by C-startup code as part of the IVT initialization. Change the value of
_ebase_address to 0x9D006000.

11

1z J-"I***

13 * For interrupt wector handling

14 LR E R R R R S EE SRR R SR S R RS S R XS R X S EE SRR EEEEE R ES]
15 PROVIDE(_wector spacing = 0x00000001) ;

16 ehase address = 0x9p00e000;

17

Page 13

LAB Manual for 1658 BTL

5. Mapping the C-Startup code

C-startup code is mapped into kseg1_boot_mem. As per the application map-
ping scheme shown in figure 2.2, change the ORIGIN of kseg1_boot_mem to

0xBD007000. Note that the address 0xBD007000 falls in KSEG1 region. Keep
the value of LENGTH to its default value 0x490.

41| MEMORY

4z

43 ksegl program rmem fex) ¢ ORIGIN = O0x9D000000, LENGTH = Ox80000
4 4 ksegll boot mem : ORIGIN = 0Ox9FC00420, LENGTH = 0x270
45 exception mem : ORIGIN = Ox9D006000, LENGTH = O=x1000
45 ksegl boot mem : ORIGIN = OxEBDOO7000, LENGTH = 0x490
47 debug exec mermn : ORIGIN = OxEBFCOZ000, LENGTH = OxFFO

6. Changing the reset vector

The application always begins running from its C-startup code. After remapping the C-
startup code it is necessary to change the reset address value to the base address of
remapped kseg1_boot_mem.

Change the value of RESET_ADDR to base address of kseg1_boot_mem
i.e. 0XBD007000.

25 * _GEN EXCPT ADDR -- General Exception Vector

26 LR R R R R R R R R
27 _RESET ADDR = OxEBDOOTOO00;

28 _BEV _EXCPT ADDE = OxBFCO0380;

29 DBG EXCPT ADDR = OxBFCO0480;

30 _DBEG CODE ADDE = OxBFCOZ000;

Page 14

LAB Manual for 1658 BTL

7. Changing the bootstrap exception vector address and debug exception ad-
dress

The bootstrap exception vector address must always be at an offset of 0x380 to reset
address and must be with in kseg1_boot_mem region. Similarly, the debug exception
address must be at an offset of 0x480 to reset address. These are requirements for
linker. Linker generates an error if these requirements are not met.

o Change the value of _BEV_EXCPT_ADDR to _RESET_ADDR + 0x380.

« Change the value of DBG_EXCPT ADDR to RESET ADDR + 0x480.

25 * GEN EXCPT ADDRE -—- General Exception Vector

25 AR R R R EEE R R R EE R EE R R R R R R R R R R R R R
27| REZET ADDR = 0xEDOO7T000;

25 _BEV_EXCPT ADDR = 0xBDOO7380;

29 _DBG EXCPT ADDR = OxBDOOT7480;

30 _DBG_CODE_ADDR = OxBFCO2000;

31 _DEG CODE SIZE = OxFFO ;

3& _GEN_EXCPT ALDR = _ehase_address + 0x180;

8. Mapping the kseqg0 program mem

The text and data sections of the application is mapped into kseg0_program_mem.

As per the application mapping scheme shown in figure 2.2, change the origin
and length of kseg0 program_mem to 0x9D007490 and 0x78B70 respec-
tively.

qD FEEFFEEFEIEFIEEFEIEFIEEFEEF IR A I EF I A AT EEF IR AT A I A A A EE TR AT LTS
41 MEMORY

4z

43 ksegl program mem fEx) : ORIGIN = 0x9DO07420, LENGTH = Ox7EE7TO0
44 ksegl _boot_mem : ORIGIN = 0x9FC00490, LENGTH = 0x970
45 exception mem : ORIGIN = Ox9Dp006000, LENGTH = Ox1000
45 ksegl boot_mem : ORIGIN = OxEDOOTO00, LENGTH = 0x490
47 debug exec mem : ORIGIN = OxEFCO0Z2000, LENGTH = OxFFO

Page 15

LAB Manual for 1658 BTL

9. Copy the main linker script template file and rename it

The main linker script template file is found in the following path.
C:\Program Files\Microchip\xc32\v1.00\pic32mx\lib\ldscripts\elf32pic32mx.x

Copy elf32pic32mx.x file into the application project folder “LAB2/application/
application.x” found inside the class folder. After copying the file rename the file
to elf32pic32mx.ld.

10. Add the linker script file into the project workspace

Open MPLAB X IDE. Close any open projects by selecting File -> Close All Pro-
jects from the IDE menu. Open the application project “LAB2/application/
application.x”.

« To open a project, from the IDE menu select File -> Open Project.
« Navigate to the directory “LAB2/application” and select the project directory
“application.x”

To add the linker scripts you will have to follow the below mentioned steps.

« In the projects view, select “Linker Files” and right click.

e In the pop-up menu, choose “Add Existing Item”.

e In the subsequent window that appears, browse to “LAB2/application/
application.x”. Select and add the files “elf32pic32mx.Id” and “procdefs.ld”.

application - MPLAB X IDE »1.00

File Edit “iew MNavigate Source Ref
5 @
& W

application - MPLAB X IDE v1.00

File Edik Wiew MNavigate Source Refackor
Na & 5 @\l |75 &

w || Projects 0 X|JServices |
% Elﬁ application

| Projects

0 40 = | | Bervices
lﬁ =6 application

-- Header Files

-- Library Files

__ . [

#-[[F 1 Mew Logical Folder

add Exisking Item..,

add Exisking Items from Fo

Cimd

Page 16

-- Header Files
-- Library Files
E} Linker Files

'D elF3Zpic3z2m::, [d
D procdefs.1d
&[5 Object Files
-- Source Files
ﬁ‘ Important Files

LAB Manual for 1658 BTL

11. Clean and build application project

in the MPLAB X IDE.

Clean and build the application project by pressing
Make sure the project builds with no errors.

12. Verify the application map

Open the “.map” file in the path “LAB2/application/application.x/
application.map”. Verify the mapping of remapped memory regions

kseg0_program_mem, exception_mem and kseg0_program_mem. Make sure
they are generated as per our application mapping scheme shown in figure

2.2.

132
133
134
135
136
137
138
139
140
141
142
1435
144
145
146
147
145

149

|| application.map x

Memory Configuration

MNarme

ksegl program mem 0x24007420
ksegl _boot _mem
exception mem
kzegl boot mem
delbug exec mem

configs
config:z
configl
configl

ksegl data mem

sfrs
configsfrs
*defanlt®

Origin

O0xS9£fc00450
0x2d00&s000
Oxkbd007000
Oxkfc02000
OxbfcO2££0
Oxbfo02ff4d
Oxbfc02££8
OxbfciOZffo
Ox=0000000
Oxb£E00000
Oxbfc02££0
OxOooooooo

Length
0x00075kh70

Ox00000970
Ox00001000
Ox00000420
Ox00000££0
Ox00000004
Ox00000004
Ox00000004
Ox00000004
Ox000Z0000
Ox00100000
Ox00000010
Oxff£f£f£EEf

Attributes
xr

Page 17

LAB Manual for 1658 BTL

m CONGRATULATIONS: You just Completed Application Mapping

You just completed the application mapping. In the subsequent section of this
lab you will be performing bootloader mapping. Bootloader must be mapped
such that it does not overlap with the application in the PIC32 flash. To map
the bootloader you shall repeat most of the steps followed for the application

mapping.

13. Copy the procdefs.ld file into the bootloader project

Copy the procdefs.ld file into the bootloader project folder “LAB2/bootloader/
bootloader.x” found inside the class folder from the following path

C:\Program Files\Microchip\xc32\v1.00\pic32mx\lib\proc\32MX795F512L

14. Bootloader Mapping Scheme

There are no procedures in this step. Read the following information.

Page 18

m BOOTLOADER MAPPING SCHEME

Figure 2.3 shows the mapping scheme for bootloader. You need to map the
bootloader such that it does not overlap on the application.

Since the USB HID bootloader is considerably large, the bootloader cannot be
entirely fit into the boot flash. The bootloader C startup code and IVT is
mapped into the boot flash. The text and data sections of the bootloader is
mapped into the 24kB of program flash (in the lower address range).

The origin and length of kseg?1 _boot mem and exception_mem memory re-
gions are not altered. Only the length of kseg1 program mem is shrunk, so
that it does not overlap with the memory region reserved for the application.

In the subsequent steps of this lab you will map the bootloader as per the
scheme shown in the figure 2.3

LAB Manual for 1658 BTL

0x9FCO1FFF

0x9FC01000

0xBFCO0048F

0xBFC00000

0x9DO7FFFF

0x9D006000

0x9DO00SFFF

0x9D000000

exception_mem
(Bootloader IVT)

kseg1 boot_mem
(Bootloader C Startup Code)

o
e e e e e e T e e T e T T e T
e e e e e e T e T e e e e T
e e e e T e T T T T T
e e e e e e e e e e e e e T

e e e e e e e e e e e e T

7| Space Reserved EZ
= for application ==

kseg0 _program_mem
(Bootloader Text and Data
Section)

> Boot Flash

. Bootloader

Reset address

> Program Flash

/

Figure 2.3: Bootloader mapping scheme

Page 19

LAB Manual for 1658 BTL

15. Shrink the length of kseg1 program mem

Do not alter the origin and length of kseg1_boot_mem and exception_mem. Alter only
the length of kseg0_program_mem.

Go to the folder ““LAB2/bootloader/bootloader.x”. Open the procdefs.Id file in
MPLAB X. Change length of kseg0_program_mem to 0x6000 as per the boot-
loader mapping scheme shown in figure 2.3.

37| * Memory regions without attributes cannot be used for orphaned secti
38 * Only sections specifically assigned to these regions can be allocatb
39| * into these regions.

40 *EEFEEEEEEEEEEEEEEEEEIEEIEEEEEEE LSS E L
41 MEMORY

4z |

43 ksegll program mem [r=x) : ORIZIN = Ox290000000, LENETH = Ox6000

44 ksegl hoot mem : ORIGIN = Ox9Fc00490, LENGTH = O0x970

45 exception mem : ORIGIN = 0Ox9FC01000, LENGTH = 0x1000

16. Copy the main linker script template file and rename it

The main linker script template file is found in the following path.
C:\Program Files\Microchip\xc32\v1.00\pic32mx\lib\ldscripts\elf32pic32mx.x

Copy elf32pic32mx.x file into the bootloader project directory “LAB2/
bootloader/bootloader.x”. The LAB2 folder is located inside the MASTERs
class directory.

After copying the file rename the file to elf32pic32mx.ld.

Page 20

LAB Manual for 1658 BTL

17. Add the linker script file into the project workspace

Open MPLAB X IDE. Close any open projects by selecting File -> Close All Pro-
jects from the IDE menu. Open the bootloader project “LAB2/bootloader/
bootloader.x”.

o To open the project, from the IDE menu select File ->Open Project.
« Navigate to the directory “LAB2/bootloader” and select the project directory
“bootloader.x”

To add the linker scripts you will have to follow these steps.

« In the projects view, select and right click on “Linker Files”

e In the pop-up menu, choose “Add Existing Item”.

e In the subsequent window that appears browse to “LAB2/bootloader/
bootloader.x”. Select and add the files “elf32pic32mx.Id” and “procdefs.ld”.

bootloader - MPLAB X IDE ¥1.00

File Edit Wwiew Mavigate Source Refackor Run D

"‘IJF_“I % 5 g Ibuntlnader:del
= L]
bootloader - MPLAE X IDE ¥1.00
v | | Projects L] X| File Edit Wiew Mawigate Source Refactor Run
iC -
-l bootloader £ L SN I :
IN o [f= - I]JF_“_I % |—':__ -.___I—l bootloader ;
Header Files
.. Library Files w | Projects @ x|
WI-NEW Iﬁ =5 bootloader
" Objec . -- Header Files
- Mew Logical Folder i
" ™ T ——— -3 Lbrary Fies
(- Irnpor AT ARl oo 2 Linker B
Add Exisking Items from Folders. E} " r
Find. .. L B -
Cut - [EF] Object Files
oy -- Source Files
Paste ﬁ‘ Impartant Files
Remove
Rename...
— Brrmerhies
I : 1

Page 21

LAB Manual for 1658 BTL

18. Inform the bootloader about the location of the application in program flash

Bootloader needs to know the location of the application to perform the erase and pro-
gram operations. The macros APP_FLASH_BASE_ADDRESS and
APP_FLASH_END_ADDRESS in the bootloader code defines the base and end ad-
dresses of the memory region reserved for the application. As per the bootloader map-
ping scheme shown in figure 2.3, application occupies the flash address range from
0x9D006000 to Ox9DO7FFFF respectively.

In the “bootloader.h” file, set the value of macros
APP_FLASH BASE_ADDRESS and APP_FLASH END _ ADDRESS to
0x9D006000 to 0x9DO7FFFF respectively.

MPLAB X IDE ¥1.20 - bootloader : defaul

File Edit Wiew MNawvigate Source Refactor

P %D ¢

| @ x||Fles [lser. [lbost.. ||
- bootloader
E] Header Files

Framewiork,
HardwareProfile
TransportLaver
& UsB_stack
- @a BookLoader.b

[Linker Files
EE}-- Source Files
i A= . . R

|FE BootLoader.h =]

35| | /+ APP FLASH BASE ADDRESS and APP FLASH END ADDRESS reserves progy
Fall=] /* Rule:

37 1) The mewory regions ksegl progream merm, ksegl boof
35 ksegl boot mem of the application linker script my
39 and APP FLAZH END ALDRESS

40

41 21The hase address and end address must align on
4z

43 #define APP FLASH EASE ADDREZZ Ox5D0006000
44 #define AFF FLASH END ADDRESS 0=<9DO7FFFF

A

Page 22

LAB Manual for 1658 BTL

19. Inform the bootloader about the reset address of the application

The bootloader must jump to the reset address of the application when there is a con-
dition to run the application. You have to inform the bootloader about this reset ad-
dress by setting the macro USER_APP_RESET_ ADDRESS. The reset address of the
application must point to the base address of its kseg?_boot mem as it contains C
startup code. Refer to the application mapping scheme shown in figure-2.2, the base
address of the application kseg1_boot_mem is 0xBD007000.

In the “bootloader.h” file, set the value of USER_APP_RESET ADDRESS to
0xBD007000.

(1] BootLoader.h x|
45
46 /* Address of the Flash from where the application starts execut
47 /¥ Rule: 3et APF FLASH BASE ADDREESS to REIET ADDE wvalue of appli
45 #define USEER AFPP RESET ADDEESS OxBDOO700O0
49

20. Clean and build bootloader project

Clean and build the bootloader project by pressing in the MPLAB X IDE.
Make sure the project builds with no errors.

Page 23

LAB Manual for 1658 BTL

21. Program the bootloader into the Hardware setup

In this step, you will use Real ICE to program the bootloader into the hardware.

Before programming the hardware, make sure of the followings....

e Real ICE is connected to PC and the hardware.

o Make sure that the USB A to micro B cable is connected between the PC
and USB starter Kit-Il. The hardware must be powered by this USB con-
nection.

[!
Program the Bootloader by clicking on MPLAB X IDE. Make sure that the
bootloader is programmed into the hardware with no errors.

Note: Programming may take some time.

22. Reset the device and put the bootloader in firmware upgrade mode

In this step you will reset the device and put the bootloader in firmware upgrade mode.

Follow these procedures to put the bootloader in firmware upgrade mode.

« Remove the Real ICE connection from the hardware.

e Unplug the USB cable from the PIC32 starter kit.

« Keeping the switch SW3 on PIC32 USB starter kit pressed, plug the USB
cable back to the starter kit. This will put the bootloader in firmware up-
grade mode.

e On successfully entering the firmware upgrade mode, the bootloader blinks
the LEDS3 on starter kit.

Page 24

LAB Manual for 1658 BTL

23. Program the application using the bootloader

In this step you will program the application using the bootloader.

Double click and run the PC application PIC32UBL.exe. The PC application
can be found in the path “LAB2/pc_application/” inside the class folder.

In the PC application, enable USB under the communication settings.

54 PIC3Z Bootloader Application ¥1.2

— Cammunication Setkings

— Serial Part Bootlnader Yer | [load Hex File
Com Pork Baud Rate E | ot
Fograr et
fcomt ~| [115200] [T Enable 2 4
Erase-Frogram:-yerity
— 5B
VIO PID
IIZIx4D8 IIIIxIIISC ¥ Enable
—Ethernet
IP Address
|192.153.1.11
LDP Pork
|6234 [Enable

Connect to the bootloader by clicking on “Connect” in the PC application.

Page 25

LAB Manual for 1658 BTL

On successful connection the PC application reads the bootloader version as

shown in the screenshot below.

oader Application ¥1.2

Bootloader Wer | Load Hex: File

X

Progranm |

Erase |
Run &pplication |

|
Wity |
|

Erase-Frogranm-yerify

Disconneck I

an Sekkings
Baud Rate
1 [0 =] 1 Enatl
PID
IDXSC v Enable
35
cles L1 .11
[~ Enable

|

Device connecked ;I
Bookloader Firmware Mersion: 1.0

he

Erase the application memory region by clicking on “Erase”. Erase will take
some time before the console updates the result of erase operation. On suc-
cessful erase you will see “Flash Erased” message on the PC application con-

sole.

You will be loading the application hex file into the PC application. Click on the

“Load Hex File”.

Browse to “LAB2/application/application.x/dist/default/production” and load the

“application.x.production.hex” file.

Page 26

LAB Manual for 1658 BTL

Now program the loaded application hex file by clicking “Program”. On suc-

cessful programming you will see “Programming Completed” message on the
PC.

After the completion of programming, click “Verify”. Verification succeeds if ap-
plication is programmed correctly.

Click on “Run Application” to begin running the application. The application
causes LED1 and LED2 to blink on the starter kit.

Try resetting the hardware. To reset the hardware unplug and plug the USB
cable back to PIC32 starter kit. You will see that bootloader directly jumps to
application without going into the firmware upgrade mode.

To put the bootloader back into firmware upgrade mode, reset the hardware
keeping the switch SW3 on PIC32 starter kit pressed. You will see the LED
LEDS3 blinking, which indicates that the bootloader is in firmware upgrade
mode. Once in firmware upgrade mode, you can again program the applica-
tion.

Conclusion

In this lab you learnt how to map the application and bootloader
images in to different non-overlapping memory regions. You also
learnt how to program an application using the bootloader.

Page 27

LAB Manual for 1658 BTL

LAB 3:
Run Time Library Loading

Purpose:
Using Run Time Library Loading (RTLL) technique link a simple math library to an ap-
plication.

Overview:
In this lab you will understand how to use Microchip provided framework to link a li-
brary with an application at run time.

Following are the objectives of this lab

o Export the APIs from a simple Math Library.

o Compile and program the library and application separately.

e Open the library and call the library APIls from application using RTLL technique.

The hardware setup for this class is same as lab-2 shown in figure 2.1.

Procedure :

1. Application and Library Mapping

The “application” and “library” must be mapped into non overlapping flash memory re-
gions. This is similar to bootloader and application mapping procedure that we learnt in
Lab-2. The library and application must have custom linker scripts to map them into
different memory locations.

The library is mapped in the program flash address region from 0x9D0G6EO0QOQ to
0x9DO7FFFF. The application occupies the remaining portion of the memory region
as shown in Figure 3.1.

Since you have already learnt the mapping technique in the previous lab, you will skip
those steps in this lab. This lab will focus on RTLL technique only.

Page 28

LAB Manual for 1658 BTL

0x9FCO1FFF

0x9FC01000

0x9DO7FFFF

0x9D06E000

0x9D06DFFF

0x9D000000

Page 29

IVT and C Startup
code of the
Application

Reserved

SFRs

Reserved

Math Library

Module Header Structure

Application

> Boot Flash

> Program Flash

J

Figure 3.1: Application and Library mapping

LAB Manual for 1658 BTL

2. Get to know the Math Library

In this step you will open the math library project and observe the functions imple-
mented in the library.

You may have to close any open projects by selecting File -> Close All Pro-
jects in MPLAB X. Open the library project.

« To open the project, from the IDE menu select File -> Open Project.

« Navigate to the directory “\LAB3\Demo\my_lib”, select and open the pro-
ject “my_lib.x”

m OBSERVE THE LIBRARY FUNCTIONS

In the project view, under the source files, open the “my_math_lib.c” file. Ob-
serve the functions implemented in this file. The file contains two functions.
e myAdd(): Adds two parameters.

o myMul(): Multiplies two parameters.

The function myAdd() takes two arguments and returns its sum.

II,.-"-k:k-k-.k-A-Tk-k7!-:-):Tk-k-.k-A-Tk-kﬂ:-k-k-k-k-k:k--k***********************

Library Add Function.

'k-k'k:'\'-k'k?k'k'J:-k'k:'\'-k'k?k'k'J:-k'k:'\'-k'k?k'k***********************f

int myAdd{int fArg, int skhrg)
{
// Return the sum.

return |{fArg + sArg);

Page 30

LAB Manual for 1658 BTL

m OBSERVE THE LIBRARY FUNCTIONS

The function myMul() takes three arguments, two arguments are pointers to
operand and the third argument is pointer to the result.

II,.-"Tk-k-k-k-k-k-k-A-Tk-k7!-:-):Tk-k-.k-A-Tk-k7!-:-):Tk-k-.k******ﬂ:*******ﬂ:***fk***

Library Multiply Function

EEHEFFEFIEFEETEFTET T I T AT EFT T T T AT E T T T T T T T T T T T T T T T T T EE

vold myMul {int *fArg, int *shrg, int *sRes)
{

// Return the multiplication result.
*zRes = (*fArg) * (*sArqg;;

3. Add Module Header Name in to the Library

In this step you will embed a unique string into the library. You will have to re-
member this string as it is needed to open the library from the application.

« In the project view, under source files-> RTLL Framework, open the file
“lib_services.c”.

e Inthe “lib_services.c” there is a macro “* MODULE_NAME _". You will have
to assign a string to this macro. For example; you can give a name like
‘@MyMathLibrary”. This should be a string, put it in quotes.

Page 31

LAB Manual for 1658 BTL

Proje.. 41 X |Files

|JSE|

= my_lib

-- Header Files
-- Library Files
-- Linker Files
&[5 Obiect Files
E} Source Files
; El RTLL Framework

L k= lib_startup.5
B my math b

45

48

46| // TODO:
47 #define MODULE NAME

Cefine the library name here

"ArMyMathLibrary™

4. Exporting the procedures from the library

This step will expose the procedures myAdd() and myMul() of the library to the

application.

e In“lib_services.c” there is an array of structure “ exportProcTbl[[’ that
contains the procedure name (as string) and handle to the procedure. To
export the procedures you have to initialize this array with procedure name
and procedure handle. Note; Procedure name must be a string enclosed in

quotes.

50
51
52
53
54
435
56
57
58

const T PROC DCPT exportProcThl[]

{
E // ToDO: Add Procedure Name and
// Procedure Handle to be exported.

//Proc Name,
{ "y Edd",
{ "roy MUl

Eroc Handle
{wvold *)myhdd
{void *)myMul

b
;

Page 32

LAB Manual for 1658 BTL

5. Clean and Build the Library Project

Clean and build the library project “my_lib” by pressing in the MPLAB X
IDE. Make sure the project builds with no errors.

You can ignore the warning “cannot find entry symbol reset; not
setting start address”.

6. Program the library hex file into the hardware

In this step you will program the library image into the hardware.

Before programming the hardware, make sure of the followings....

e Real ICE is connected to PC and the hardware.

« Make sure that the USB A to micro B cable is connected to PC and USB
starter Kit-1l. The hardware must be powered by this USB connection.

Program the library hex file by clicking =L in MPLAB X IDE.
Make sure that the library is programmed into the hardware with no errors.

You can ignore the warning “cannot find entry symbol reset; not
setting start address’.

7. Open the application project

In this step you will open the application project. In the subsequent steps you will call
the library APIs from the application.

Open the application project in MPLAB X IDE. Note that you may have to
close the library project by selecting File -> Close All Projects.

« To open the project, from the IDE menu select File -> Open Project.

« Navigate to the directory “A\LAB3\Demo\main_app”, select and open the
project “MainApp.X”

Page 33

LAB Manual for 1658 BTL

8. Declare the prototypes of library function

There is nothing to do in this step. Just observe how the prototype of the library func-
tions are declared in the application.

m OBSERVE LIBRARY FUNCTION PROTOTYPES

The application must know the prototypes of library function. In the project
view, under the source files, open the “main.c” file. Observe how the prototype
of the “add()” and “mul()” functions are declared just before the main().The pro-
totype must match the functions defined in the library.

52 #include "main services.h"

53 #include "RTLL/app services.h"

54

55 //Declare the prototypes of the librat
56 int {(*add) {int , int };

57 vold {(*mul) {int * , int *, int * };

C o

9. Opening the Library from the application

This step shows the usage of dlopen() function provided by RTLL framework. This step
is a coding step, where you will open the library using dlopen().

The dlopen() function is already included in the main.c file. The dlopen() func-
tion returns a valid handle to the library if library exists.

You just have to pass math library name and library address to dlopen() func-

tion as parameters.

o Library name is the string assigned to the macro _MODULE_NAME in step
-3 of this lab. This is case sensitive.

« The library address is the address location of the “Library Module Header”.
Refer Figure3.1: Application and Library Mapping in step 1. The Mod-
ule Header is placed at address 0x9D06EQOQO.

Page 34

79 £/ get the library handle using dlopen() function.

g0 A4 TODO: Input library name and library address to dlopeni)
g1 hMyLik = dlopen("EMyMathLibrary™ , [(void*)0xSDOGEDDD); /7
g2

LAB Manual for 1658 BTL

10. Get the handle to “add” function of the library

This step shows the usage of dlsym() function provided by RTLL framework. The
dIsym() function is already included in the main.c file. The dIsym() function returns a
valid handle to “add” function of the library.

You just have to pass library handle and function name as string to dlsym().
o Library handle is the handle returned from dlopen() in step 9.
e Function name is the name given to myAdd() function inside

“ exportProcTbl[]”in step 4. This is case sensitive.

=1 // get the handle to add function using dls
87 //TODO: Input the string name of the add fu
8% add = dlsym (hMyLik, "myadd”); // Pass L1
a9

20 // Make sure handle is not NULL.

Page 35

LAB Manual for 1658 BTL

11. Get the handle to “mul” function of the library

Similar to previous step, get the handle to “mul” function.

94
95
96
=

93 [

// get the handle to add function using
//TODO: Input the string name of the muy
mul = dlsym{hMyLik, "myMul®™ y; // Pas
ASSERT (mul L= 07 ;

12. Clean and build the application project

Clean and build the application project “MainApp” by pressing in the
MPLAB X IDE. Make sure the project builds with no errors.

Page 36

LAB Manual for 1658 BTL

13. Program and Debug the application project

In this step you will program and debug the application project to realize how the appli-
cation opens the library and call its functions using RTLL technique.

m PROCEDURE

Before programming the hardware, make sure of the followings....

e Real ICE is connected to PC and the hardware.

o Make sure that the USB A to micro B cable is connected to PC and USB
starter Kit-1l. The hardware must be powered by this USB connection.

Set Breakpoints
Set breakpoints on the following lines in main.c. Note that you can toggle
breakpoint on a selected line by pressing “Ctrl+F8”.

« The line where “dlopen()” function is called.
e The lines where “dlsym()” function are called.

Debug the project Er

To debug the project click on % in the MPLAB X IDE. Make sure that the
debugger programs the hardware with no errors. You can also debug the pro-
gram step by step by pressing function key F8. Verify the result of add and
multiplication operation.

Conclusion

In this lab you learnt ...

. Build and program application and library images separately.

. Making use of Microchip’s RTLL framework to link application
and library at run time.

m DO NOT FORGET TO READ THE APPENDICES

After this lab, take sometime to read the Appendices found in the subsequent
sections of this lab material.

Page 37

LAB Manual for 1658 BTL

Appendix A: Library Project Settings for the
RTLL technique

This appendix describes the project settings for the library. These settings were al-
ready saved in the workspace (my_lib.x) and hence were not included in the lab. How-
ever, if you wish to create a new library project you must not forget to add these set-
tings.

Disable gp-relative adressing in the library

The C compiler supports global-pointer relative (gp-rel) addressing. By using gp-
relative addressing, microcontroller saves an instruction cycle to access global data.
The gp-relative addressing uses gp register of the microcontroller. If both application
and library try to use the gp-relative addressing, the gp register will have to be shared
between application and library. This will complicate the RTLL design since the gp reg-
ister has to be saved during every context switch.

To keep the design simple, gp-relative addressing is disabled in the library. The gp-
relative addressing is disabled by setting the compiler option —GO in the library project
properties (my_lib.x).

Project Properties - my_lib

Categories: ot i 2 .
o General ptions For xc32-goc (w1000
B- < Conf: [default] Option categaries: IGBnBrEﬂ j
v @ Real ICE N
@ Loading Hawe symbals in production boild rd
zo @ Libraries
5 Buiding Friable &pp IO I
= @ ¥C32 (Global Options) Isolate each Function in a section I
' 9 xc3z-as Flace data into its own section [
e D PG
P —— Lse indirect calls I
senerate 16-bit code I
E:cclude floating-point library: I
Freprocessar macros MIPS
Trrhide direrkariec i Mireachind Trcld='R T o W

Additional opfions: |-&0

Option Description mmand Line |

Manage Configurations. ..

Page 38

LAB Manual for 1658 BTL

Disable Garbage Collection

The library does not contain main(). Hence, linker treats most of the functions inside
the library as unreferenced code sections. The “Garbage Collection” feature of the

linker eliminates them at the time of linking. In order to retain all the code sections, you
need to disable “Garbage Collection” feature by setting the linker option “—no-gc-
sections” in the project properties.

Project Properties - my_lib

Categories:

s @ General
E| @ Conf: [default]
e @ RealICE
Loading
Libraries
Building
#C32 (Global Options)

Page 39

Options For xc32-1d {w1.00)

Cpkion categorias: ILibraries

j Reset |

Opkirnization level of Standard Libraries

Maone

System Libraries

Library directories

JC:iProgram FilesMicrochip/MPLAE C32/pic3Zm ...

Exclude Standard Libraries

Do not link startup code

Generate 16-bit code

E:chude floating-point library

1 A

Additional options: I--nD-gC-sectiDns

Opkion Description I Generake

ommand Line I

LAB Manual for 1658 BTL

Delink startup code from library project

The library does not contain main(). Therefore you will have to delink the C-Startup
code from library project. To delink the C-startup code, in the project properties win-
dow, under the categories select XC32 -> xc32-ld. In the option categories select
“Libraries” from the drop down list. Tick the checkbox, “Do not link startup code”.

Project Properties - my_lib

Zategories:

oo @ General
Iél---O Conf; [default]
L 0 Real ICE

@ Loading
e @ Libraries
> @ Building
B © ¥C32 (Global Options)
@ ®ESZ-as5
@ we32-goc
© wme3z-id

Page 40

COptions For xc32-1d (v1.00)

Option categories: | WelEES

Optimization level of Standard Libraries

-!None LI

System Libraries

Library directories

12 /Program Files/Microchip/MPLAE C32(pic32m ...

Fxclude Standard Libraries

Do ot link skartup code

fzenerate 16-bit code

=
)
=

R:\

Exclude Floating-point library

-

Additional options: I--no-gc-sections

Option Description I Generated Command Line |

LAB Manual for 1658 BTL

Appendix B: Application Project Settings for the
RTLL technique

In the RTLL lab (LAB-3), “library” is programmed first followed by the “application”.
While programming the application, you need to make sure that the application doesn’t
erase/overwrite the memory region occupied by the library. You need to configure the
Real-ICE to preserve the memory region reserved for the library. In the project settings
for “MainApp”, under the Categories, select Conf->Real ICE. Select “Memories to Pro-
gram” in the option categories. Tick the check box “Preserve Program Memory”. Set
preserve program memory start and preserve program memory end addresses to the
memory range occupied by the library. These must be physical memory addresses.

Project Properties - MainApp

Cateqaries: Ontions For Fueal ICE
@ General ptions For Rea
- @ Conf: [default] Option categories: IMemDries ko Progran ;I
= 2 Real ICE
’ @ Loading Aubo select merories and ranges Allow Real ICE to Seleck Me
b @ Libraries
& Buiding Program Memary ¥
B @ ¥C32 {(Global Options) Program Memory Skart (hex) T 1d000000
e @ wedZ-as Program Memory End (hex) 03 1d07FFEF
e @ wC32-goc
o weard Preserve Program Memoty v
Preserve Program Memary Start (hex) D 1d0EENDD \
Preserye Program Memory End (hex) \ O 1d07FFFF /'
Opkion Descripkion
|

Page 41

LAB Manual for 1658 BTL

Appendix C: Placing the Library Module
Header in the absolute address

The “Library Module Header” structure is initialized in the source file RTLL.c. You can
use compiler provided address attribute to place the module header structure in the
required address location. Make sure that this address is in the memory region re-
served for the library.

FF Btandard header which must be exposed Wf the library.
const T MODULE DYN HDR attribute ((gddress(0x3D0O&E0COO))} ModuleLoadHdr =
{

_MODULE_NAME | S name of the Module
_libInit, fF Btart up code

_nProcs, FF Number of proceduares
_exportProcThl FF Export Procedure Table

Page 42

