
Table of Contents

Lab 1 Instructions 2
Lab 2 Instructions 9
Lab 3 Instructions 28

Appendix A 38
Appendix B 41
Appendix C 42

MASTERs 2012
LAB Manual for 1658 BTL
Bootloading, Application Mapping and
Loading Techniques on PIC32

LAB Manual for 1658 BTL

Page 2

LAB 1:
Getting to know the PIC32 Linker Scripts

Purpose:
This lab helps you to understand the followings.
 Arrangement of PIC32 linker script files.
 selecting the right linker script for the chosen PIC32 device part number and
 contents of the linker scripts

Overview:
In this lab you will walk through the PIC32 linker script files and understand the con-
tents of linker script files. At the end of this lab there is an exercise where you will an-
swer some objective questions.

Procedure :

1. Locating procdefs.ld file

 The procdefs.ld file is device specific linker script file and is found inside the folder
where PIC32 compiler tools are installed.
 In this step you will go to the following path where procdefs.ld file for various
PIC32 part numbers are located inside their respective folders.

C:\Program Files\Microchip\xc32\v1.00\pic32mx\lib\proc

2. Open the correct procdefs.ld file

 In the subsequent labs of this class, we will be using PIC32MX795F512L. There-
fore; the right linker script file for us is the one that is located in the folder
32MX795F512L. Open the procdefs.ld file in MPLAB X.
To open a file in MPLAB X, in the menu choose File -> Open File and then browse to
the folder where procdefs.ld file is located.

3. Understanding the contents of procdefs.ld file

 You will go through the contents of procdefs.ld file. Procdefs.ld file contains follow-
ing categories.

 Inclusion of Processor-Specific Object File(s)
 Inclusion of Peripheral Libraries
 Base Exception Vector Address and Vector Spacing Symbols
 Memory Address Equates
 Memory Regions
 Configuration Words Input/Output Section Map

LAB Manual for 1658 BTL

Page 3

Inclusion of processor specific Object File
This section of the processor definitions linker script ensures that the processor spe-
cific object file(s) get included in the link. The ―processor.o‖ contains SFR definitions.

The INPUT line specifies that processor.o should be included in the link as if this file
were named on the command line. The linker attempts to find this file in the current
directory. If it is not found, the linker searches through the library search paths (i.e., the
paths specified with the -L command line option for the linker).

Inclusion of processor-specific peripheral libraries

This section of the processor definitions linker script ensures that the processor spe-
cific peripheral libraries get included.

Base Exception Vector Address and Vector Spacing Symbols

This section of the processor definitions linker script defines values for the base excep-
tion vector address and vector spacing.

The _ebase_address specifies the base address of the interrupt vector table (IVT). By
default the IVT is mapped to the address value of 0x9FC01000 in KSEG0 region.
PIC32 device supports 64 interrupt vectors. The linker keyword _vector_spacing de-
fines the space between any two vectors of IVT. By default it is set to 32 bytes by set-
ting the value of _vector_spacing to 1. The vector spacing is calculated using the be-
low formula.
 Vector spacing = (_vector_spacing << 5) = (0x00000001 << 5) = 32 bytes

LAB Manual for 1658 BTL

Page 4

Memory Address Equates

This section of the linker script provides information about certain memory addresses
required by the default linker script.

The _RESET_ADDR defines the processor’s Reset address. This is the address from

where an application begins running.

On all forms of reset the processor enters into Bootstrap mode. While the processor is
in Bootstrap mode, all interrupts are disabled and all general exceptions are redirected
to one interrupt vector address, 0xBFC00380. The _BEV_EXCPT_ADDR defines this

bootstrap exception address.

The _DBG_EXCPT_ADDR defines the address that the processor jumps to when a de-

bug exception is encountered, when using the debugger.

The _DBG_CODE_ADDR defines the start address of the debug executive. The debug

executive is a small program downloaded into the target device by the debugger along
with the user program and is responsible for debugging the user program.

The _DBG_CODE_SIZE defines the flash size reserved for debug executive.

The _GEN_EXCPT_ADDR defines the address that the processor jumps to when a gen-

eral exception is encountered and when the processor is not in bootstrap mode.

(Note: Once the interrupt controller of PIC32 is configured for desired mode of opera-
tion, The bootstrap mode is exited by setting the control bit BEV to 0)

LAB Manual for 1658 BTL

Page 5

Memory Regions

This section of the procdefs.ld file provides information about the memory regions that
are available on the device.

 Following memory regions are defined with an associated start address and length.

1. Program memory region for application code (kseg0_program_mem)

2. C startup code (kseg1_boot_mem)

 Any application will begin running from its C start-up code. Therefore; the
 address value assigned to _RESET_ADDR and the value of

 kseg1_boot_mem origin must be same.

3. Interrupt vector table (exception_mem).

The exception_mem must align on a 4KB address boundary. Note that
the base address of exception_mem and the address assigned to

_ebase_address must be same.

4. Data memory region (kseg1_data_mem)

5. Memory region reserved for debugger code (debug_exec_mem)

6. Individual configuration words (config0, config1, config2 and con-

fig3).

7. Configuration word memory region (configsfrs).

8. Special function registers – peripheral registers (sfrs)

The kseg0_boot_mem is not used and is reserved for future use.

LAB Manual for 1658 BTL

Page 6

It is to be noted that kseg0_program_mem, kseg0_boot_mem and excep-

tion_mem are mapped into KSEG0 address space. All other memory regions are

mapped into KSEG1 address space.

The attributes (rx) specify that read-only sections or executable sections can be lo-

cated into the program memory regions. Similarly, the attributes (w!x) specify that sec-

tions that are not read-only and not executable can be located in the data memory re-
gion. Since no attributes are specified for the boot memory region, the configuration
memory regions, or the SFR memory region, only specified sections may be located in
these regions.
(i.e., orphaned sections may not be located in the boot memory regions, the exception
memory region, the configuration memory regions, the debug executive memory
region, or the SFR memory region).

CONFIGURATION WORDS INPUT/OUTPUT SECTION MAP

This section in procdefs.ld is not important for the application mapping. This section is
input/output section map for Configuration Words. It defines how input sections for
Configuration Words are mapped to output sections for Configuration Words. Note that
input sections are portions of an application that are defined in source code, while out-
put sections are created by the linker. All output sections are specified within a SEC-
TIONS command in the linker script.

For each Configuration Word that exists on the specific processor, a distinct output
section named .config_address exists, where address is the location of the

Configuration Word in memory. Each of these sections contains the data created by
the #pragma config directive for that Configuration Word in the source code. Each

section is assigned to their respective memory region (confign).

LAB Manual for 1658 BTL

Page 7

4. Locating elf32pic32mx.x file

The elf32pic32mx.x contains the template of the main linker script file. This is located
in the following path where XC32 compiler is installed. Note that this is only a template
of the actual linker script. The main linker script which linker uses is internal to the
linker.

C:\Program Files\Microchip\xc32\v1.00\pic32mx\lib\ldscripts\elf32pic32mx.x

5. Inclusion of Procdefs.ld file in elf32pic32mx.x

Open the file elf32pic32mx.x file in an editor (say MPLAB X). See how the file
procdefs.ld file is included into the elf32pic32mx.x using the linker command INCLUDE
at line 17.

6. Other contents of elf32pic32mx.x

This file mainly contains the input/output section map, where code sections are
mapped into the memory regions defined in procdefs.ld file. The rest of the contents of
elf32pic32mx.x is not important for this class and for application/bootloader mapping.
However, after this class, it is recommended to read the document ―MPLAB C32 User
Guide.pdf‖ to understand more about these sections. The document comes as part of
the XC32 installation package and is found in the following path.
C:\Program Files\Microchip\xc32\v1.00\doc\MPLAB-XC32-Users-Guide.pdf

LAB Manual for 1658 BTL

Page 8

Exercise: Try to answer these questions

1) Which of the following memory regions contain C-Startup code?

a) kseg0_program_mem c) kseg0_boot_mem
b) kseg1_boot_mem d) exception_mem

2) Which of the following memory regions contain interrupt vector table?

a) kseg0_program_mem c) kseg0_boot_mem
b) kseg1_boot_mem d) exception_mem

3) The reset address of an application is defined by

 a) _RESET_ADDR. c) _ebase_address
 b) _BEV_EXCPT_ADDR d) _DBG_EXCPT_ADDR

4) The _ebase_address must point to base address of ________________

a) kseg0_program_mem c) kseg0_boot_mem
b) kseg1_boot_mem d) exception_mem

5) The text and data sections (all C files) of an application are mapped in

a) kseg0_program_mem c) kseg0_boot_mem
b) kseg1_boot_mem d) exception_mem

LAB Manual for 1658 BTL

Page 9

LAB 2:
Application Mapping and Bootloader Mapping

Purpose:
Map bootloader and application into non-overlapping memory regions

Overview:
In this lab you will learn how to modify the linker scripts of bootloader and application
projects to map the resulting image into non-overlapping memory regions.

Following are the objectives of this lab
 Edit the linker script of the application project to map the application.
 Edit the linker script of the bootloader project to map the bootloader
 Build and program the bootloader into PIC32 starter kit.
 Program the application using the bootloader

The bootloader is a USB HID bootloader and the application is a small application
which blinks two LEDs on the starter kit.

Procedure :

1. The Hardware Setup

The hardware setup for this class is shown in figure 2.1.

Setup the hardware as per the arrangement shown in figure 2.1

PROCEDURE

LAB Manual for 1658 BTL

Page 10

1. PIC32 I/O Expansion Board
2. PIC32 USB Starter Kit II
3. RJ11 cable connecting Real ICE and the hardware.
4. USB A to Micro B Cable connecting PC to starter kit (for USB communica-

tion). The hardware is powered by this USB connection.
5. MPLAB REAL ICE (Debugger)
6. USB A to B cable (connecting PC and Real ICE)
7. PC

1
2

3

4

5

6 7

Figure 2.1: Hardware Setup for this Class

LAB Manual for 1658 BTL

Page 11

3. Application Mapping Scheme for this Lab

There are no procedures in this step. Read the following information.

Figure 2.2 in the next page shows the application mapping scheme.
The bootloader chosen for this lab is a USB HID bootloader. The size of the USB
HID bootloader is considerably large and cannot be fit entirely inside 12KB boot
flash. Hence, the bootloader is split into two parts. One part is mapped into boot
flash and the other part is mapped in to lower 24KB of program flash.

The application must be mapped into the remaining part of the program flash,
not overlapping with the bootloader. Recall: To remap the application you need
to rearrange its memory regions kseg1_boot_mem, exception_mem and
kseg0_program_mem.

In the subsequent steps of this lab, you will be editing the linker script to
map the application image as per the scheme shown in the figure 2.2.

APPLICATION MAPPING SCHEME

Follow these rules while mapping the memory regions of the application.

1. exception_mem must align on a 4KB flash page. This is very important for

the interrupts to work.
2. It is recommended not to alter the length of exception_mem and

kseg1_boot_mem as they contain the interrupt vector table and C-start up
code for the application.

3. The rearranged memory regions must not overlap with other memory re-
gions defined in procdefs.ld

RULES

2. Copy the correct procdefs.ld file into the Application project

The ―PIC32 starter kit‖ is mounted with ―PIC32MX795F512L‖. The linker
script header file ―procdefs.ld‖ for this part number is found in the following
path.

C:\Program Files\Microchip\xc32\v1.00\pic32mx\lib\proc\32MX795F512L

CHOOSING THE CORRECT LINKER SCRIPT

Copy the procdefs.ld file into the application project ―LAB2/application/
application.x‖. The LAB2 folder can be found inside 1658 BTL class folder.

PROCEDURE

LAB Manual for 1658 BTL

Page 12

Figure 2.2: Application mapping scheme

Reserved

SFRs

kseg0_program_mem
(Application Text and

Data Section)

Reserved

0x9FC00000

0x9D07FFFF

0x9D006000

0x9D005FFF

0x9D000000

Boot Flash

Application
Reset address

Program Flash

0x9FC01FFF

Space Reserved
for

Bootloader

exception_mem
(Application IVT)

kseg1_boot_mem
(Application C Startup

code)

0x9D006FFF

Space Reserved for
Bootloader

0xBD007000

0xBD00748F

0x9D007490

LAB Manual for 1658 BTL

Page 13

4. Mapping the application’s IVT

Mapping the IVT involves following two steps.
 Mapping ―exception_mem‖
 Changing the value of exception base address

Mapping exception_mem

You will map the exception_mem as per the application mapping scheme
shown in figure 2.2. Go to the folder ――LAB2/application/application.x””. Open
the procdefs.ld file in MPLAB X and change the ORIGIN value of excep-
tion_mem to 0x9D006000. Do not change the value of LENGTH. You will
need this length to support all the 64 interrupt vectors.

PROCEDURE

Changing the value of exception base address

The _ebase_address must point to the base address of the exception_mem.
The value assigned to _ebase_address will be loaded into controller’s EBASE
register by C-startup code as part of the IVT initialization. Change the value of
_ebase_address to 0x9D006000.

PROCEDURE

LAB Manual for 1658 BTL

Page 14

5. Mapping the C-Startup code

.

C-startup code is mapped into kseg1_boot_mem. As per the application map-
ping scheme shown in figure 2.2, change the ORIGIN of kseg1_boot_mem to
0xBD007000. Note that the address 0xBD007000 falls in KSEG1 region. Keep
the value of LENGTH to its default value 0x490.

6. Changing the reset vector

The application always begins running from its C-startup code. After remapping the C-
startup code it is necessary to change the reset address value to the base address of
remapped kseg1_boot_mem.

Change the value of _RESET_ADDR to base address of kseg1_boot_mem
i.e. 0XBD007000.

PROCEDURE

PROCEDURE

LAB Manual for 1658 BTL

Page 15

7. Changing the bootstrap exception vector address and debug exception ad-
dress

The bootstrap exception vector address must always be at an offset of 0x380 to reset
address and must be with in kseg1_boot_mem region. Similarly, the debug exception
address must be at an offset of 0x480 to reset address. These are requirements for
linker. Linker generates an error if these requirements are not met.

 Change the value of _BEV_EXCPT_ADDR to _RESET_ADDR + 0x380.

 Change the value of _DBG_EXCPT_ADDR to _RESET_ADDR + 0x480.

PROCEDURE

8. Mapping the kseg0_program_mem

The text and data sections of the application is mapped into kseg0_program_mem.

As per the application mapping scheme shown in figure 2.2, change the origin
and length of kseg0_program_mem to 0x9D007490 and 0x78B70 respec-
tively.

PROCEDURE

LAB Manual for 1658 BTL

Page 16

10. Add the linker script file into the project workspace

9. Copy the main linker script template file and rename it

The main linker script template file is found in the following path.
C:\Program Files\Microchip\xc32\v1.00\pic32mx\lib\ldscripts\elf32pic32mx.x

Copy elf32pic32mx.x file into the application project folder ―LAB2/application/
application.x‖ found inside the class folder. After copying the file rename the file
to elf32pic32mx.ld.

PROCEDURE

Open MPLAB X IDE. Close any open projects by selecting File -> Close All Pro-
jects from the IDE menu. Open the application project ―LAB2/application/
application.x‖.

 To open a project, from the IDE menu select File -> Open Project.
 Navigate to the directory “LAB2/application” and select the project directory

“application.x”

PROCEDURE

To add the linker scripts you will have to follow the below mentioned steps.
 In the projects view, select ―Linker Files‖ and right click.
 In the pop-up menu, choose ―Add Existing Item‖.
 In the subsequent window that appears, browse to ―LAB2/application/

application.x”. Select and add the files ―elf32pic32mx.ld‖ and ―procdefs.ld‖.

PROCEDURE

LAB Manual for 1658 BTL

Page 17

Clean and build the application project by pressing in the MPLAB X IDE.
Make sure the project builds with no errors.

PROCEDURE

11. Clean and build application project

12. Verify the application map

Open the ―.map‖ file in the path “LAB2/application/application.x/
application.map”. Verify the mapping of remapped memory regions
kseg0_program_mem, exception_mem and kseg0_program_mem. Make sure
they are generated as per our application mapping scheme shown in figure
2.2.

PROCEDURE

LAB Manual for 1658 BTL

Page 18

13. Copy the procdefs.ld file into the bootloader project

You just completed the application mapping. In the subsequent section of this
lab you will be performing bootloader mapping. Bootloader must be mapped
such that it does not overlap with the application in the PIC32 flash. To map
the bootloader you shall repeat most of the steps followed for the application
mapping.

Copy the procdefs.ld file into the bootloader project folder ―LAB2/bootloader/
bootloader.x‖ found inside the class folder from the following path

C:\Program Files\Microchip\xc32\v1.00\pic32mx\lib\proc\32MX795F512L

14. Bootloader Mapping Scheme

There are no procedures in this step. Read the following information.

Figure 2.3 shows the mapping scheme for bootloader. You need to map the
bootloader such that it does not overlap on the application.

Since the USB HID bootloader is considerably large, the bootloader cannot be
entirely fit into the boot flash. The bootloader C startup code and IVT is
mapped into the boot flash. The text and data sections of the bootloader is
mapped into the 24kB of program flash (in the lower address range).

The origin and length of kseg1_boot_mem and exception_mem memory re-
gions are not altered. Only the length of kseg1_program_mem is shrunk, so
that it does not overlap with the memory region reserved for the application.

In the subsequent steps of this lab you will map the bootloader as per the
scheme shown in the figure 2.3

CONGRATULATIONS: You just Completed Application Mapping

PROCEDURE

BOOTLOADER MAPPING SCHEME

LAB Manual for 1658 BTL

Page 19

exception_mem
(Bootloader IVT)

kseg1_boot_mem
(Bootloader C Startup Code)

Reserved

SFRs

kseg0_program_mem
(Bootloader Text and Data

Section)

Reserved

Space Reserved
for application

0x9FC01FFF

0xBFC0048F

0xBFC00000

0x9FC01000

0x9D07FFFF

0x9D006000

0x9D005FFF

0x9D000000

Figure 2.3: Bootloader mapping scheme

Boot Flash

Bootloader
Reset address

Program Flash

LAB Manual for 1658 BTL

Page 20

Go to the folder ――LAB2/bootloader/bootloader.x‖. Open the procdefs.ld file in
MPLAB X. Change length of kseg0_program_mem to 0x6000 as per the boot-
loader mapping scheme shown in figure 2.3.

15. Shrink the length of kseg1_program_mem

Do not alter the origin and length of kseg1_boot_mem and exception_mem. Alter only
the length of kseg0_program_mem.

PROCEDURE

16. Copy the main linker script template file and rename it

The main linker script template file is found in the following path.
C:\Program Files\Microchip\xc32\v1.00\pic32mx\lib\ldscripts\elf32pic32mx.x

Copy elf32pic32mx.x file into the bootloader project directory ―LAB2/
bootloader/bootloader.x‖. The LAB2 folder is located inside the MASTERs
class directory.

PROCEDURE

After copying the file rename the file to elf32pic32mx.ld.

PROCEDURE

LAB Manual for 1658 BTL

Page 21

17. Add the linker script file into the project workspace

Open MPLAB X IDE. Close any open projects by selecting File -> Close All Pro-
jects from the IDE menu. Open the bootloader project ―LAB2/bootloader/
bootloader.x‖.

 To open the project, from the IDE menu select File ->Open Project.
 Navigate to the directory “LAB2/bootloader” and select the project directory

“bootloader.x”

PROCEDURE

To add the linker scripts you will have to follow these steps.
 In the projects view, select and right click on ―Linker Files‖
 In the pop-up menu, choose ―Add Existing Item‖.
 In the subsequent window that appears browse to ―LAB2/bootloader/

bootloader.x”. Select and add the files ―elf32pic32mx.ld‖ and ―procdefs.ld‖.

PROCEDURE

LAB Manual for 1658 BTL

Page 22

18. Inform the bootloader about the location of the application in program flash

Bootloader needs to know the location of the application to perform the erase and pro-
gram operations. The macros APP_FLASH_BASE_ADDRESS and
APP_FLASH_END_ADDRESS in the bootloader code defines the base and end ad-
dresses of the memory region reserved for the application. As per the bootloader map-
ping scheme shown in figure 2.3, application occupies the flash address range from
0x9D006000 to 0x9D07FFFF respectively.

In the ―bootloader.h‖ file, set the value of macros
APP_FLASH_BASE_ADDRESS and APP_FLASH_END_ADDRESS to
0x9D006000 to 0x9D07FFFF respectively.

PROCEDURE

LAB Manual for 1658 BTL

Page 23

19. Inform the bootloader about the reset address of the application

The bootloader must jump to the reset address of the application when there is a con-
dition to run the application. You have to inform the bootloader about this reset ad-
dress by setting the macro USER_APP_RESET_ADDRESS. The reset address of the
application must point to the base address of its kseg1_boot_mem as it contains C
startup code. Refer to the application mapping scheme shown in figure-2.2, the base
address of the application kseg1_boot_mem is 0xBD007000.

In the ―bootloader.h‖ file, set the value of USER_APP_RESET_ADDRESS to
0xBD007000.

PROCEDURE

20. Clean and build bootloader project

Clean and build the bootloader project by pressing in the MPLAB X IDE.
Make sure the project builds with no errors.

PROCEDURE

LAB Manual for 1658 BTL

Page 24

21. Program the bootloader into the Hardware setup

In this step, you will use Real ICE to program the bootloader into the hardware.

Before programming the hardware, make sure of the followings….
 Real ICE is connected to PC and the hardware.
 Make sure that the USB A to micro B cable is connected between the PC

and USB starter Kit-II. The hardware must be powered by this USB con-
nection.

Program the Bootloader by clicking on MPLAB X IDE. Make sure that the

bootloader is programmed into the hardware with no errors.

Note: Programming may take some time.

PROCEDURE

22. Reset the device and put the bootloader in firmware upgrade mode

In this step you will reset the device and put the bootloader in firmware upgrade mode.

Follow these procedures to put the bootloader in firmware upgrade mode.

 Remove the Real ICE connection from the hardware.
 Unplug the USB cable from the PIC32 starter kit.
 Keeping the switch SW3 on PIC32 USB starter kit pressed, plug the USB

cable back to the starter kit. This will put the bootloader in firmware up-
grade mode.

 On successfully entering the firmware upgrade mode, the bootloader blinks
the LED3 on starter kit.

PROCEDURE

LAB Manual for 1658 BTL

Page 25

23. Program the application using the bootloader

In this step you will program the application using the bootloader.

Double click and run the PC application PIC32UBL.exe. The PC application
can be found in the path ―LAB2/pc_application/‖ inside the class folder.

PROCEDURE

In the PC application, enable USB under the communication settings.

PROCEDURE

Connect to the bootloader by clicking on ―Connect‖ in the PC application.

PROCEDURE

LAB Manual for 1658 BTL

Page 26

On successful connection the PC application reads the bootloader version as
shown in the screenshot below.

PROCEDURE

Erase the application memory region by clicking on ―Erase‖. Erase will take
some time before the console updates the result of erase operation. On suc-
cessful erase you will see ―Flash Erased‖ message on the PC application con-
sole.

PROCEDURE

You will be loading the application hex file into the PC application. Click on the
―Load Hex File‖.
Browse to ―LAB2/application/application.x/dist/default/production‖ and load the
―application.x.production.hex‖ file.

PROCEDURE

LAB Manual for 1658 BTL

Page 27

Now program the loaded application hex file by clicking ―Program‖. On suc-
cessful programming you will see ―Programming Completed‖ message on the
PC.

PROCEDURE

After the completion of programming, click ―Verify‖. Verification succeeds if ap-
plication is programmed correctly.

PROCEDURE

Click on ―Run Application‖ to begin running the application. The application
causes LED1 and LED2 to blink on the starter kit.

Try resetting the hardware. To reset the hardware unplug and plug the USB
cable back to PIC32 starter kit. You will see that bootloader directly jumps to
application without going into the firmware upgrade mode.

To put the bootloader back into firmware upgrade mode, reset the hardware
keeping the switch SW3 on PIC32 starter kit pressed. You will see the LED
LED3 blinking, which indicates that the bootloader is in firmware upgrade
mode. Once in firmware upgrade mode, you can again program the applica-
tion.

PROCEDURE

Conclusion

In this lab you learnt how to map the application and bootloader
images in to different non-overlapping memory regions. You also
learnt how to program an application using the bootloader.

LAB Manual for 1658 BTL

Page 28

LAB 3:
Run Time Library Loading

Purpose:
Using Run Time Library Loading (RTLL) technique link a simple math library to an ap-
plication.

Overview:
In this lab you will understand how to use Microchip provided framework to link a li-
brary with an application at run time.

Following are the objectives of this lab
 Export the APIs from a simple Math Library.
 Compile and program the library and application separately.
 Open the library and call the library APIs from application using RTLL technique.

The hardware setup for this class is same as lab-2 shown in figure 2.1.

Procedure :

1. Application and Library Mapping

The ―application‖ and ―library‖ must be mapped into non overlapping flash memory re-
gions. This is similar to bootloader and application mapping procedure that we learnt in
Lab-2. The library and application must have custom linker scripts to map them into
different memory locations.

The library is mapped in the program flash address region from 0x9D06E000 to
0x9D07FFFF. The application occupies the remaining portion of the memory region
as shown in Figure 3.1.

Since you have already learnt the mapping technique in the previous lab, you will skip
those steps in this lab. This lab will focus on RTLL technique only.

LAB Manual for 1658 BTL

Page 29

IVT and C Startup
code of the
Application

Reserved

SFRs

Math Library

Reserved

Application

Boot Flash

0x9FC01FFF

0x9FC01000

0x9D07FFFF

0x9D000000

0x9D06E000

0x9D06DFFF

Program Flash

Figure 3.1: Application and Library mapping

Module Header Structure

LAB Manual for 1658 BTL

Page 30

In the project view, under the source files, open the ―my_math_lib.c‖ file. Ob-
serve the functions implemented in this file. The file contains two functions.
 myAdd(): Adds two parameters.
 myMul(): Multiplies two parameters.

The function myAdd() takes two arguments and returns its sum.

OBSERVE THE LIBRARY FUNCTIONS

2. Get to know the Math Library

In this step you will open the math library project and observe the functions imple-
mented in the library.

You may have to close any open projects by selecting File -> Close All Pro-
jects in MPLAB X. Open the library project.

 To open the project, from the IDE menu select File -> Open Project.
 Navigate to the directory “\LAB3\Demo\my_lib”, select and open the pro-

ject “my_lib.x”

PROCEDURE

LAB Manual for 1658 BTL

Page 31

The function myMul() takes three arguments, two arguments are pointers to
operand and the third argument is pointer to the result.

OBSERVE THE LIBRARY FUNCTIONS

3. Add Module Header Name in to the Library

In this step you will embed a unique string into the library. You will have to re-
member this string as it is needed to open the library from the application.

 In the project view, under source files-> RTLL Framework, open the file

―lib_services.c‖.
 In the ―lib_services.c‖ there is a macro ―_MODULE_NAME_‖. You will have

to assign a string to this macro. For example; you can give a name like
―@MyMathLibrary‖. This should be a string, put it in quotes.

PROCEDURE

LAB Manual for 1658 BTL

Page 32

4. Exporting the procedures from the library

This step will expose the procedures myAdd() and myMul() of the library to the
application.
 In ―lib_services.c‖ there is an array of structure “_exportProcTbl[]‖ that

contains the procedure name (as string) and handle to the procedure. To
export the procedures you have to initialize this array with procedure name
and procedure handle. Note; Procedure name must be a string enclosed in
quotes.

PROCEDURE

LAB Manual for 1658 BTL

Page 33

5. Clean and Build the Library Project

Clean and build the library project ―my_lib‖ by pressing in the MPLAB X
IDE. Make sure the project builds with no errors.
You can ignore the warning ―cannot find entry symbol _reset; not

setting start address‖.

PROCEDURE

6. Program the library hex file into the hardware

In this step you will program the library image into the hardware.

Before programming the hardware, make sure of the followings….
 Real ICE is connected to PC and the hardware.
 Make sure that the USB A to micro B cable is connected to PC and USB

starter Kit-II. The hardware must be powered by this USB connection.

Program the library hex file by clicking in MPLAB X IDE.

Make sure that the library is programmed into the hardware with no errors.
You can ignore the warning ―cannot find entry symbol _reset; not

setting start address‖.

PROCEDURE

7. Open the application project

In this step you will open the application project. In the subsequent steps you will call
the library APIs from the application.

Open the application project in MPLAB X IDE. Note that you may have to
close the library project by selecting File -> Close All Projects.

 To open the project, from the IDE menu select File -> Open Project.
 Navigate to the directory “\LAB3\Demo\main_app”, select and open the

project “MainApp.X”

PROCEDURE

LAB Manual for 1658 BTL

Page 34

8. Declare the prototypes of library function

There is nothing to do in this step. Just observe how the prototype of the library func-
tions are declared in the application.

The application must know the prototypes of library function. In the project
view, under the source files, open the ―main.c‖ file. Observe how the prototype
of the ―add()‖ and ―mul()‖ functions are declared just before the main().The pro-
totype must match the functions defined in the library.

OBSERVE LIBRARY FUNCTION PROTOTYPES

9. Opening the Library from the application

This step shows the usage of dlopen() function provided by RTLL framework. This step
is a coding step, where you will open the library using dlopen().

The dlopen() function is already included in the main.c file. The dlopen() func-
tion returns a valid handle to the library if library exists.

You just have to pass math library name and library address to dlopen() func-
tion as parameters.
 Library name is the string assigned to the macro _MODULE_NAME in step

-3 of this lab. This is case sensitive.
 The library address is the address location of the ―Library Module Header‖.

Refer Figure3.1: Application and Library Mapping in step 1. The Mod-
ule Header is placed at address 0x9D06E000.

PROCEDURE

LAB Manual for 1658 BTL

Page 35

10. Get the handle to “add” function of the library

This step shows the usage of dlsym() function provided by RTLL framework. The
dlsym() function is already included in the main.c file. The dlsym() function returns a
valid handle to ―add‖ function of the library.

You just have to pass library handle and function name as string to dlsym().
 Library handle is the handle returned from dlopen() in step 9.
 Function name is the name given to myAdd() function inside

“_exportProcTbl[]” in step 4. This is case sensitive.

PROCEDURE

LAB Manual for 1658 BTL

Page 36

11. Get the handle to “mul” function of the library

12. Clean and build the application project

Clean and build the application project ―MainApp‖ by pressing in the
MPLAB X IDE. Make sure the project builds with no errors.

PROCEDURE

Similar to previous step, get the handle to ―mul‖ function.

PROCEDURE

LAB Manual for 1658 BTL

Page 37

13. Program and Debug the application project

In this step you will program and debug the application project to realize how the appli-
cation opens the library and call its functions using RTLL technique.

Before programming the hardware, make sure of the followings….
 Real ICE is connected to PC and the hardware.
 Make sure that the USB A to micro B cable is connected to PC and USB

starter Kit-II. The hardware must be powered by this USB connection.

Set Breakpoints
Set breakpoints on the following lines in main.c. Note that you can toggle
breakpoint on a selected line by pressing ―Ctrl+F8‖.

 The line where ―dlopen()‖ function is called.
 The lines where ―dlsym()‖ function are called.

Debug the project
To debug the project click on in the MPLAB X IDE. Make sure that the
debugger programs the hardware with no errors. You can also debug the pro-
gram step by step by pressing function key F8. Verify the result of add and
multiplication operation.

PROCEDURE

Conclusion

In this lab you learnt ...
 Build and program application and library images separately.
 Making use of Microchip’s RTLL framework to link application

and library at run time.

After this lab, take sometime to read the Appendices found in the subsequent
sections of this lab material.

DO NOT FORGET TO READ THE APPENDICES

LAB Manual for 1658 BTL

Page 38

Appendix A: Library Project Settings for the
RTLL technique

This appendix describes the project settings for the library. These settings were al-
ready saved in the workspace (my_lib.x) and hence were not included in the lab. How-
ever, if you wish to create a new library project you must not forget to add these set-
tings.

Disable gp-relative adressing in the library
The C compiler supports global-pointer relative (gp-rel) addressing. By using gp-
relative addressing, microcontroller saves an instruction cycle to access global data.
The gp-relative addressing uses gp register of the microcontroller. If both application
and library try to use the gp-relative addressing, the gp register will have to be shared
between application and library. This will complicate the RTLL design since the gp reg-
ister has to be saved during every context switch.

To keep the design simple, gp-relative addressing is disabled in the library. The gp-
relative addressing is disabled by setting the compiler option –G0 in the library project
properties (my_lib.x).

LAB Manual for 1658 BTL

Page 39

Disable Garbage Collection

The library does not contain main(). Hence, linker treats most of the functions inside
the library as unreferenced code sections. The ―Garbage Collection‖ feature of the
linker eliminates them at the time of linking. In order to retain all the code sections, you
need to disable ―Garbage Collection‖ feature by setting the linker option ―—no-gc-
sections‖ in the project properties.

LAB Manual for 1658 BTL

Page 40

Delink startup code from library project

The library does not contain main(). Therefore you will have to delink the C-Startup
code from library project. To delink the C-startup code, in the project properties win-
dow, under the categories select XC32 -> xc32-ld. In the option categories select
―Libraries‖ from the drop down list. Tick the checkbox, ―Do not link startup code‖.

LAB Manual for 1658 BTL

Page 41

Appendix B: Application Project Settings for the
RTLL technique

In the RTLL lab (LAB-3), ―library‖ is programmed first followed by the ―application‖.
While programming the application, you need to make sure that the application doesn’t
erase/overwrite the memory region occupied by the library. You need to configure the
Real-ICE to preserve the memory region reserved for the library. In the project settings
for ―MainApp‖, under the Categories, select Conf->Real ICE. Select ―Memories to Pro-
gram‖ in the option categories. Tick the check box ―Preserve Program Memory‖. Set
preserve program memory start and preserve program memory end addresses to the
memory range occupied by the library. These must be physical memory addresses.

LAB Manual for 1658 BTL

Page 42

Appendix C: Placing the Library Module
Header in the absolute address

The ―Library Module Header‖ structure is initialized in the source file RTLL.c. You can
use compiler provided address attribute to place the module header structure in the
required address location. Make sure that this address is in the memory region re-
served for the library.

