
© 2008 Microchip Technology Inc. DS51284G

MPLAB® C COMPILER
FOR PIC24 MCUs
AND dsPIC® DSCs

USER�S GUIDE

Note the following details of the code protection feature on Microchip devices:
� Microchip products meet the specification contained in their particular Microchip Data Sheet.

� Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.

� There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip�s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

� Microchip is willing to work with the customer who is concerned about the integrity of their code.

� Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as �unbreakable.�

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip�s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer�s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights.
DS51284G-page ii
Trademarks

The Microchip name and logo, the Microchip logo, Accuron,
dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro,
PICSTART, PRO MATE, rfPIC and SmartShunt are registered
trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.

FilterLab, Linear Active Thermistor, MXDEV, MXLAB,
SEEVAL, SmartSensor and The Embedded Control Solutions
Company are registered trademarks of Microchip Technology
Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard,
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,
ECONOMONITOR, FanSense, In-Circuit Serial
Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB
Certified logo, MPLIB, MPLINK, mTouch, PICkit, PICDEM,
PICDEM.net, PICtail, PIC32 logo, PowerCal, PowerInfo,
PowerMate, PowerTool, REAL ICE, rfLAB, Select Mode, Total
Endurance, UNI/O, WiperLock and ZENA are trademarks of
Microchip Technology Incorporated in the U.S.A. and other
countries.

SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2008, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.

 Printed on recycled paper.
© 2008 Microchip Technology Inc.

Microchip received ISO/TS-16949:2002 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company�s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip�s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

MPLAB® C COMPILER FOR
PIC24 MCUs AND dsPIC® DSCs

USER�S GUIDE
Table of Contents
Preface ... 1
Chapter 1. Compiler Overview

1.1 Introduction ... 7
1.2 Highlights .. 7
1.3 Compiler Description and Documentation .. 7
1.4 Compiler and Other Development Tools .. 8
1.5 Compiler Feature Set ... 9

Chapter 2. Differences Between 16-Bit Device C and ANSI C
2.1 Introduction ... 11
2.2 Highlights .. 11
2.3 Keyword Differences .. 11
2.4 Statement Differences .. 30
2.5 Expression Differences .. 32

Chapter 3. Using the Compiler on the Command Line
3.1 Introduction ... 33
3.2 Highlights .. 33
3.3 Overview .. 33
3.4 File Naming Conventions ... 34
3.5 Options ... 34
3.6 Environment Variables ... 59
3.7 Predefined Macro Names ... 60
3.8 Compiling a Single File on the Command Line .. 60
3.9 Compiling Multiple Files on the Command Line ... 61
3.10 Notable Symbols .. 62

Chapter 4. Run Time Environment
4.1 Introduction ... 63
4.2 Highlights .. 63
4.3 Address Spaces ... 63
4.4 Startup and Initialization ... 64
4.5 Memory Spaces ... 65
4.6 Memory Models .. 66
4.7 Locating Code and Data ... 68
4.8 Software Stack ... 69
4.9 The C Stack Usage .. 70
4.10 The C Heap Usage ... 72
4.11 Function Call Conventions ... 73
4.12 Register Conventions ... 75
© 2008 Microchip Technology Inc. DS51284G-page iii

16-Bit C Compiler User�s Guide
4.13 Bit Reversed and Modulo Addressing .. 76
4.14 Program Space Visibility (PSV) Usage .. 76

Chapter 5. Data Types
5.1 Introduction ... 79
5.2 Highlights .. 79
5.3 Data Representation .. 79
5.4 Integer .. 79
5.5 Floating Point ... 80
5.6 Pointers .. 80

Chapter 6. Additional C Pointer Types
6.1 Introduction ... 81
6.2 Managed PSV Pointers .. 81
6.3 PMP Pointers ... 83
6.4 External Pointers .. 85

Chapter 7. Device Support Files
7.1 Introduction ... 91
7.2 Highlights .. 91
7.3 Processor Header Files .. 91
7.4 Register Definition Files ... 92
7.5 Using SFRs .. 93
7.6 Using Macros ... 95
7.7 Accessing EEDATA from C Code - dsPIC30F dSCs only 96

Chapter 8. Interrupts
8.1 Introduction ... 99
8.2 Highlights .. 99
8.3 Writing an Interrupt Service Routine .. 100
8.4 Writing the Interrupt Vector .. 102
8.5 Interrupt Service Routine Context Saving .. 103
8.6 Latency ... 103
8.7 Nesting Interrupts ... 103
8.8 Enabling/Disabling Interrupts ... 104
8.9 Sharing Memory Between Interrupt Service Routines and Mainline Code 105
8.10 PSV Usage with Interrupt Service Routines ... 108

Chapter 9. Mixing Assembly Language and C Modules
9.1 Introduction ... 109
9.2 Highlights .. 109
9.3 Mixing Assembly Language and C Variables and Functions 109
9.4 Using Inline Assembly Language ... 111
DS51284G-page iv © 2008 Microchip Technology Inc.

Table of Contents
Appendix A. Implementation-Defined Behavior
A.1 Introduction .. 119
A.2 Highlights ... 119
A.3 Translation ... 120
A.4 Environment ... 120
A.5 Identifiers ... 121
A.6 Characters ... 121
A.7 Integers .. 122
A.8 Floating Point ... 122
A.9 Arrays and Pointers ... 123
A.10 Registers .. 123
A.11 Structures, Unions, Enumerations and Bit fields 124
A.12 Qualifiers .. 124
A.13 Declarators ... 124
A.14 Statements ... 124
A.15 Preprocessing Directives ... 125
A.16 Library Functions ... 126
A.17 Signals ... 127
A.18 Streams and Files .. 127
A.19 tmpfile .. 128
A.20 errno ... 128
A.21 Memory .. 128
A.22 abort ... 128
A.23 exit ... 128
A.24 getenv .. 129
A.25 system .. 129
A.26 strerror ... 129

Appendix B. Built-in Functions
B.1 Introduction .. 131
B.2 Built-In Function List .. 132

Appendix C. Diagnostics
C.1 Introduction .. 153
C.2 Errors ... 153
C.3 Warnings .. 172

Appendix D. MPLAB C Compiler for PIC18 MCUs vs. 16-Bit Devices
D.1 Introduction .. 193
D.2 Highlights ... 193
D.3 Data Formats ... 194
D.4 Pointers .. 194
D.5 Storage Classes .. 194
D.6 Stack Usage .. 194
D.7 Storage Qualifiers .. 195
D.8 Predefined Macro Names .. 195
D.9 Integer Promotions .. 195
© 2008 Microchip Technology Inc. DS51284G-page v

16-Bit C Compiler User�s Guide
D.10 String Constants .. 195
D.11 Access Memory ... 195
D.12 Inline Assembly .. 195
D.13 Pragmas .. 196
D.14 Memory Models ... 197
D.15 Calling Conventions ... 197
D.16 Startup Code .. 197
D.17 Compiler-Managed Resources .. 197
D.18 Optimizations ... 198
D.19 Object Module Format ... 198
D.20 Implementation-Defined Behavior ... 198
D.21 Bit fields ... 199

Appendix E. Deprecated Features
E.1 Introduction .. 201
E.2 Highlights ... 201
E.3 Predefined Constants .. 201

Appendix F. ASCII Character Set ...203
Appendix G. GNU Free Documentation License

G.1 Preamble ... 205
G.2 Applicability and Definitions ... 205
G.3 Verbatim Copying .. 207
G.4 Copying in Quantity ... 207
G.5 Modifications .. 207
G.6 Combining Documents .. 209
G.7 Collections of Documents .. 209
G.8 Aggregation with Independent Works .. 209
G.9 Translation ... 210
G.10 Termination .. 210
G.11 Future Revisions of this License .. 210

Glossary ...211
Index ...219
Worldwide Sales and Service ...228
DS51284G-page vi © 2008 Microchip Technology Inc.

MPLAB® C COMPILER FOR
PIC24 MCUs AND dsPIC® DSCs

USER�S GUIDE
Preface
INTRODUCTION
This chapter contains general information that will be useful to know before using the
MPLAB C Compiler for PIC24 MCUs and dsPIC DSCs. Items discussed include:
� Document Layout
� Conventions Used in this Guide
� Recommended Reading
� The Microchip Web Site
� Development Systems Customer Change Notification Service
� Customer Support

NOTICE TO CUSTOMERS

All documentation becomes dated, and this manual is no exception. Microchip tools and
documentation are constantly evolving to meet customer needs, so some actual dialogs
and/or tool descriptions may differ from those in this document. Please refer to our web site
(www.microchip.com) to obtain the latest documentation available.

Documents are identified with a �DS� number. This number is located on the bottom of each
page, in front of the page number. The numbering convention for the DS number is
�DSXXXXXA�, where �XXXXX� is the document number and �A� is the revision level of the
document.

For the most up-to-date information on development tools, see the MPLAB® IDE on-line help.
Select the Help menu, and then Topics to open a list of available on-line help files.
© 2008 Microchip Technology Inc. DS51284G-page 1

16-Bit C Compiler User�s Guide
DOCUMENT LAYOUT
This document describes how to use GNU language tools to write code for 16-bit
applications. The document layout is as follows:

� Chapter 1: Compiler Overview � describes the compiler, development tools and
feature set.

� Chapter 2: Differences between 16-Bit Device C and ANSI C � describes the
differences between the C language supported by the compiler syntax and the
standard ANSI-89 C.

� Chapter 3: Using the Compiler on the Command Line � describes how to use
the compiler from the command line.

� Chapter 4: Run Time Environment � describes the compiler run-time model,
including information on sections, initialization, memory models, the software stack
and much more.

� Chapter 5: Data Types � describes the compiler integer, floating point and pointer
data types.

� Chapter 6: Additional C Pointers � describes additional C pointers available.
� Chapter 7: Device Support Files � describes the compiler header and register

definition files, as well as how to use with SFR�s.
� Chapter 8: Interrupts � describes how to use interrupts.
� Chapter 9: Mixing Assembly Language and C Modules � provides guidelines to

using the compiler with 16-bit assembly language modules.
� Appendix A: Implementation-Defined Behavior � details compiler-specific

parameters described as implementation-defined in the ANSI standard.

� Appendix B: Built-in Functions � lists the built-in functions of the C compiler.

� Appendix C: Diagnostics � lists error and warning messages generated by the
compiler.

� Appendix D: MPLAB C Compiler for PIC18 MCUs vs. 16-Bit Devices � highlights
the differences between the PIC18 MCU C compiler and the 16-bit C compiler.

� Appendix E: Deprecated Features � details features that are considered
obsolete.

� Appendix F: ASCII Character Set � contains the ASCII character set.

� Appendix G: GNU Free Documentation License � usage license for the Free
Software Foundation.
DS51284G-page 2 © 2008 Microchip Technology Inc.

Preface
CONVENTIONS USED IN THIS GUIDE
The following conventions may appear in this documentation:

DOCUMENTATION CONVENTIONS
Description Represents Examples

Arial font:
Italic characters Referenced books MPLAB® IDE User�s Guide

Emphasized text ...is the only compiler...
Initial caps A window the Output window

A dialog the Settings dialog
A menu selection select Enable Programmer

Quotes A field name in a window or
dialog

�Save project before build�

Underlined, italic text with
right angle bracket

A menu path File>Save

Bold characters A dialog button Click OK
A tab Click the Power tab

Text in angle brackets < > A key on the keyboard Press <Enter>, <F1>
Courier font:
Plain Courier Sample source code #define START

Filenames autoexec.bat

File paths c:\mcc18\h

Keywords _asm, _endasm, static

Command-line options -Opa+, -Opa-

Bit values 0, 1

Constants 0xFF, �A�

Italic Courier A variable argument file.o, where file can be
any valid filename

Square brackets [] Optional arguments mpasmwin [options]
file [options]

Curly brackets and pipe
character: { | }

Choice of mutually exclusive
arguments; an OR selection

errorlevel {0|1}

Ellipses... Replaces repeated text var_name [,
var_name...]

Represents code supplied by
user

void main (void)
{ ...
}

Icon
This feature supported only in
the full version of the soft-
ware, i.e., not supported in
academic or demo versions.

This feature is not supported
on all devices. Devices sup-
ported will be listed in the title
or text.
© 2008 Microchip Technology Inc. DS51284G-page 3

16-Bit C Compiler User�s Guide
RECOMMENDED READING
This documentation describes how to use the MPLAB C Compiler for PIC24 MCUs and
dsPIC DSCs. Other useful documents are listed below. The following Microchip
documents are available and recommended as supplemental reference resources.
Readme Files
For the latest information on Microchip tools, read the associated Readme files (HTML
files) included with the software.
16-Bit Language Tools Getting Started (DS70094)
A guide to installing and working with the Microchip language tools for 16-bit devices.
Examples using the 16-bit simulator SIM30 (a component of MPLAB SIM) are
provided.
MPLAB® Assembler, Linker and Utilities for PIC24 MCUs and dsPIC® DSCs
User�s Guide (DS51317)
A guide to using the 16-bit assembler, object linker, object archiver/librarian and various
utilities.
16-Bit Language Tools Libraries (DS51456)
A descriptive listing of libraries available for Microchip 16-bit devices. This includes
standard (including math) libraries and C compiler built-in functions. DSP and 16-bit
peripheral libraries are described in Readme files provided with each peripheral library
type.
Device-Specific Documentation
The Microchip website contains many documents that describe 16-bit device functions
and features. Among these are:
� Individual and family data sheets
� Family reference manuals
� Programmer�s reference manuals
C Standards Information
American National Standard for Information Systems � Programming Language � C.

American National Standards Institute (ANSI), 11 West 42nd. Street, New York,
New York, 10036.

This standard specifies the form and establishes the interpretation of programs
expressed in the programming language C. Its purpose is to promote portability,
reliability, maintainability and efficient execution of C language programs on a
variety of computing systems.
DS51284G-page 4 © 2008 Microchip Technology Inc.

Preface
C Reference Manuals
Harbison, Samuel P. and Steele, Guy L., C A Reference Manual, Fourth Edition,

Prentice-Hall, Englewood Cliffs, N.J. 07632.

Kernighan, Brian W. and Ritchie, Dennis M., The C Programming Language, Second
Edition. Prentice Hall, Englewood Cliffs, N.J. 07632.

Kochan, Steven G., Programming In ANSI C, Revised Edition. Hayden Books,
Indianapolis, Indiana 46268.

Plauger, P.J., The Standard C Library, Prentice-Hall, Englewood Cliffs, N.J. 07632.

Van Sickle, Ted., Programming Microcontrollers in C, First Edition. LLH Technology
Publishing, Eagle Rock, Virginia 24085.

THE MICROCHIP WEB SITE
Microchip provides online support via our web site at www.microchip.com. This web
site is used as a means to make files and information easily available to customers.
Accessible by using your favorite Internet browser, the web site contains the following
information:
� Product Support � Data sheets and errata, application notes and sample

programs, design resources, user�s guides and hardware support documents,
latest software releases and archived software

� General Technical Support � Frequently Asked Questions (FAQs), technical
support requests, online discussion groups, Microchip consultant program
member listing

� Business of Microchip � Product selector and ordering guides, latest Microchip
press releases, listing of seminars and events, listings of Microchip sales offices,
distributors and factory representatives
© 2008 Microchip Technology Inc. DS51284G-page 5

http://www.microchip.com

16-Bit C Compiler User�s Guide
DEVELOPMENT SYSTEMS CUSTOMER CHANGE NOTIFICATION SERVICE
Microchip�s customer notification service helps keep customers current on Microchip
products. Subscribers will receive e-mail notification whenever there are changes,
updates, revisions or errata related to a specified product family or development tool of
interest.
To register, access the Microchip web site at www.microchip.com, click on Customer
Change Notification and follow the registration instructions.
The Development Systems product group categories are:
� Compilers � The latest information on Microchip C compilers, assemblers, linkers

and other language tools. These include all MPLAB C compilers; all MPLAB
assemblers (including MPASM� assembler); all MPLAB linkers (including
MPLINK� object linker); and all MPLAB librarians (including MPLIB� object
librarian).

� Emulators � The latest information on Microchip in-circuit emulators.These
include the MPLAB REAL ICE�, MPLAB ICE 2000 and MPLAB ICE 4000
in-circuit emulators

� In-Circuit Debuggers � The latest information on Microchip in-circuit debuggers.
These include the MPLAB ICD 2 in-circuit debugger and PICkit� 2 debug
express.

� MPLAB® IDE � The latest information on Microchip MPLAB IDE, the Windows®
Integrated Development Environment for development systems tools. This list is
focused on the MPLAB IDE, MPLAB IDE Project Manager, MPLAB Editor and
MPLAB SIM simulator, as well as general editing and debugging features.

� Programmers � The latest information on Microchip programmers. These include
the MPLAB PM3 and PRO MATE® II device programmers and the PICSTART®
Plus and PICkit 1and 2 development programmers.

CUSTOMER SUPPORT
Users of Microchip products can receive assistance through several channels:
� Distributor or Representative
� Local Sales Office
� Field Application Engineer (FAE)
� Technical Support
Customers should contact their distributor, representative or field application engineer
(FAE) for support. Local sales offices are also available to help customers. A listing of
sales offices and locations is included in the back of this document.
Technical support is available through the web site at: http://support.microchip.com
DS51284G-page 6 © 2008 Microchip Technology Inc.

http://support.microchip.com
http://www.microchip.com

MPLAB® C COMPILER FOR
PIC24 MCUs AND dsPIC® DSCs

USER�S GUIDE
Chapter 1. Compiler Overview
1.1 INTRODUCTION
The dsPIC® family of Digital Signal Controllers (dsPIC30F and dsPIC33F DSCs) com-
bines the high performance required in DSP applications with standard microcontroller
features needed for embedded applications. PIC24 MCUs are identical to the dsPIC
DSCs with the exception that they do not have the digital signal controller module or
that subset of instructions. They are a subset and are high-performance micro-
controllers intended for applications that do not require the power of the DSC
capabilities.
All of these devices are fully supported by a complete set of software development
tools, including an optimizing C compiler, an assembler, a linker and an archiver/
librarian.
This chapter provides an overview of these tools and introduces the features of the
optimizing C compiler, including how it works with the assembler and linker. The
assembler and linker are discussed in detail in the �MPLAB® Assembler, Linker and
Utilities for PIC24 MCUs and dsPIC® DSCs User�s Guide� (DS51317).

1.2 HIGHLIGHTS
Items discussed in this chapter are:
� Compiler Description and Documentation
� Compiler and Other Development Tools
� Compiler Feature Set

1.3 COMPILER DESCRIPTION AND DOCUMENTATION
There are three compilers that support Microchip 16-bit devices. The first compiler,
previously called MPLAB C30, is now called:
1. MPLAB C Compiler for PIC24 MCUs and dsPIC® DSCs � supports all 16-bit

devices
Two additional compilers, subsets of the first, are:
2. MPLAB C Compiler for dsPIC DSCs - supports dsPIC30F/33F DSC devices
3. MPLAB C Compiler for PIC24 MCUs - supports PIC24F/H MCU devices
Each compiler is an ANSI x3.159-1989-compliant, optimizing C compiler. Each com-
piler is a Windows® console application that provides a platform for developing C code.
Each compiler is a port of the GCC compiler from the Free Software Foundation.
The first and second compilers include language extensions for dsPIC DSC
embedded-control applications.
This manual describes the first compiler, as the second and third compilers are subsets
of the first. Features that are unique to specific devices, and therefore specific compil-
ers, are noted in the text with a star in the column (see Preface) and text identifying the
devices to which the text applies.
© 2008 Microchip Technology Inc. DS51284G-page 7

16-Bit C Compiler User�s Guide
1.4 COMPILER AND OTHER DEVELOPMENT TOOLS
MPLAB C Compiler for PIC24 MCUs and dsPIC DSCs compiles C source files,
producing assembly language files. These compiler-generated files are assembled and
linked with other object files and libraries to produce the final application program in
executable COFF or ELF file format. The COFF or ELF file can be loaded into the
MPLAB IDE, where it can be tested and debugged, or the conversion utility can be used
to convert the COFF or ELF file to Intel® hex format, suitable for loading into the com-
mand-line simulator or a device programmer. See Figure 1-1 for an overview of the
software development data flow.

FIGURE 1-1: SOFTWARE DEVELOPMENT TOOLS DATA FLOW

Object File Libraries
(*.a)

Assembler

Linker

C Source Files
(*.c)

C Compiler

Source Files (*.s)

Assembly Source
Files (*.s)

COFF/ELF Object Files
(*.o)

Executable File
(*.exe)

Archiver (Librarian)

Command-Line
Simulator

Compiler
Driver
Program

MPLAB® IDE
Debug Tool
DS51284G-page 8 © 2008 Microchip Technology Inc.

Compiler Overview
1.5 COMPILER FEATURE SET
The compiler is a full-featured, optimizing compiler that translates standard ANSI C
programs into 16-bit device assembly language source. The compiler also supports
many command-line options and language extensions that allow full access to the
16-bit device hardware capabilities, and affords fine control of the compiler code gen-
erator. This section describes key features of the compiler.

1.5.1 ANSI C Standard
The compiler is a fully validated compiler that conforms to the ANSI C standard as
defined by the ANSI specification and described in Kernighan and Ritchie�s The C Pro-
gramming Language (second edition). The ANSI standard includes extensions to the
original C definition that are now standard features of the language. These extensions
enhance portability and offer increased capability.

1.5.2 Optimization
The compiler uses a set of sophisticated optimization passes that employ many
advanced techniques for generating efficient, compact code from C source. The
optimization passes include high-level optimizations that are applicable to any C code,
as well as 16-bit device-specific optimizations that take advantage of the particular
features of the device architecture.

1.5.3 ANSI Standard Library Support
The compiler is distributed with a complete ANSI C standard library. All library functions
have been validated, and conform to the ANSI C library standard. The library includes
functions for string manipulation, dynamic memory allocation, data conversion, time-
keeping and math functions (trigonometric, exponential and hyperbolic). The standard
I/O functions for file handling are also included, and, as distributed, they support full
access to the host file system using the command-line simulator. The fully functional
source code for the low-level file I/O functions is provided in the compiler distribution,
and may be used as a starting point for applications that require this capability.

1.5.4 Flexible Memory Models
The compiler supports both large and small code and data models. The small code
model takes advantage of more efficient forms of call and branch instructions, while the
small data model supports the use of compact instructions for accessing data in SFR
space.
The compiler supports two models for accessing constant data. The �constants in data�
model uses data memory, which is initialized by the run-time library. The �constants in
code� model uses program memory, which is accessed through the Program Space
Visibility (PSV) window.

1.5.5 Compiler Driver
The compiler includes a powerful command-line driver program. Using the driver
program, application programs can be compiled, assembled and linked in a single step
(see Figure 1-1).
© 2008 Microchip Technology Inc. DS51284G-page 9

16-Bit C Compiler User�s Guide
NOTES:
DS51284G-page 10 © 2008 Microchip Technology Inc.

MPLAB® C COMPILER FOR
PIC24 MCUs AND dsPIC® DSCs

USER�S GUIDE
Chapter 2. Differences Between 16-Bit Device C and ANSI C
2.1 INTRODUCTION
This section discusses the differences between the C language supported by MPLAB
C Compiler for PIC24 MCUs and dsPIC® DSCs (formerly MPLAB C30) syntax and the
1989 standard ANSI C.

2.2 HIGHLIGHTS
Items discussed in this chapter are:
� Keyword Differences
� Statement Differences
� Expression Differences

2.3 KEYWORD DIFFERENCES
This section describes the keyword differences between plain ANSI C and the C
accepted by the 16-bit device compiler. The new keywords are part of the base GCC
implementation, and the discussion in this section is based on the standard GCC docu-
mentation, tailored for the specific syntax and semantics of the 16-bit compiler port of
GCC.
� Specifying Attributes of Variables
� Specifying Attributes of Functions
� Inline Functions
� Variables in Specified Registers
� Complex Numbers
� Double-Word Integers
� Referring to a Type with typeof
© 2008 Microchip Technology Inc. DS51284G-page 11

16-Bit C Compiler User�s Guide
2.3.1 Specifying Attributes of Variables
The compiler keyword __attribute__ allows you to specify special attributes of
variables or structure fields. This keyword is followed by an attribute specification inside
double parentheses. The following attributes are currently supported for variables:
� address (addr)
� aligned (alignment)
� boot
� deprecated
� fillupper
� far
� mode (mode)
� near
� noload
� packed
� persistent
� reverse (alignment)
� section ("section-name")
� secure
� sfr (address)
� space (space)
� transparent_union
� unordered
� unused
� weak

You may also specify attributes with __ (double underscore) preceding and following
each keyword (e.g., __aligned__ instead of aligned). This allows you to use them
in header files without being concerned about a possible macro of the same name.
To specify multiple attributes, separate them by commas within the double
parentheses, for example:
 __attribute__ ((aligned (16), packed)).

address (addr)
The address attribute specifies an absolute address for the variable. This attribute
can be used in conjunction with a section attribute. This can be used to start a group
of variables at a specific address:
int foo __attribute__((section("mysection"),address(0x900)));
int bar __attribute__((section("mysection")));
int baz __attribute__((section("mysection")));

A variable with the address attribute cannot be placed into the auto_psv space (see
the space() attribute or the -mconst-in-code option); attempts to do so will cause
a warning and the compiler will place the variable into the PSV space. If the variable is
to be placed into a PSV section, the address should be a program memory address.
int var __attribute__ ((address(0x800)));

Note: It is important to use variable attributes consistently throughout a project.
For example, if a variable is defined in file A with the far attribute, and
declared extern in file B without far, then a link error may result.
DS51284G-page 12 © 2008 Microchip Technology Inc.

Differences Between 16-Bit Device C and ANSI C
aligned (alignment)
This attribute specifies a minimum alignment for the variable, measured in bytes. The
alignment must be a power of two. For example, the declaration:
int x __attribute__ ((aligned (16))) = 0;

causes the compiler to allocate the global variable x on a 16-byte boundary. On the
dsPIC DSC device, this could be used in conjunction with an asm expression to access
DSP instructions and addressing modes that require aligned operands.
As in the preceding example, you can explicitly specify the alignment (in bytes) that you
wish the compiler to use for a given variable. Alternatively, you can leave out the
alignment factor and just ask the compiler to align a variable to the maximum useful
alignment for the dsPIC DSC device. For example, you could write:
short array[3] __attribute__ ((aligned));

Whenever you leave out the alignment factor in an aligned attribute specification, the
compiler automatically sets the alignment for the declared variable to the largest
alignment for any data type on the target machine � which in the case of the dsPIC DSC
device is two bytes (one word).
The aligned attribute can only increase the alignment; but you can decrease it by
specifying packed (see below). The aligned attribute conflicts with the reverse
attribute. It is an error condition to specify both.
The aligned attribute can be combined with the section attribute. This will allow the
alignment to take place in a named section. By default, when no section is specified,
the compiler will generate a unique section for the variable. This will provide the linker
with the best opportunity for satisfying the alignment restriction without using internal
padding that may happen if other definitions appear within the same aligned section.

boot

This attribute can be used to define protected variables in Boot Segment (BS) RAM:
int __attribute__((boot)) boot_dat[16];

Variables defined in BS RAM will not be initialized on startup. Therefore all variables in
BS RAM must be initialized using inline code. A diagnostic will be reported if initial
values are specified on a boot variable.
An example of initialization is as follows:
int __attribute__((boot)) time = 0; /* not supported */
int __attribute__((boot)) time2;
void __attribute__((boot)) foo()
{
 time2 = 55; /* initial value must be assigned explicitly */
}

deprecated

The deprecated attribute causes the declaration to which it is attached to be specially
recognized by the compiler. When a deprecated function or variable is used, the
compiler will emit a warning.
A deprecated definition is still defined and, therefore, present in any object file. For
example, compiling the following file:
int __attribute__((__deprecated__)) i;
int main() {
 return i;
}

will produce the warning:
© 2008 Microchip Technology Inc. DS51284G-page 13

16-Bit C Compiler User�s Guide
deprecated.c:4: warning: `i� is deprecated (declared
 at deprecated.c:1)

i is still defined in the resulting object file in the normal way.

fillupper

This attribute can be used to specify the upper byte of a variable stored into a
space(prog) section.
For example:
int foo[26] __attribute__((space(prog),fillupper(0x23))) = { 0xDEAD };

will fill the upper bytes of array foo with 0x23, instead of 0x00. foo[0] will still be
initialized to 0xDEAD.
The command line option -mfillupper=0x23 will perform the same function.

far

The far attribute tells the compiler that the variable will not necessarily be allocated in
near (first 8 KB) data space, (i.e., the variable can be located anywhere in data
memory).

mode (mode)
This attribute specifies the data type for the declaration as whichever type corresponds
to the mode mode. This in effect lets you request an integer or floating point type
according to its width. Valid values for mode are as follows:

This attribute is useful for writing code that is portable across all supported compiler tar-
gets. For example, the following function adds two 32-bit signed integers and returns a
32-bit signed integer result:
typedef int __attribute__((__mode__(SI))) int32;
int32
add32(int32 a, int32 b)
 {
 return(a+b);
 }

You may also specify a mode of byte or __byte__ to indicate the mode correspond-
ing to a one-byte integer, word or __word__ for the mode of a one-word integer, and
pointer or __pointer__ for the mode used to represent pointers.

near

The near attribute tells the compiler that the variable is allocated in near data space
(the first 8 KB of data memory). Such variables can sometimes be accessed more
efficiently than variables not allocated (or not known to be allocated) in near data
space.
int num __attribute__ ((near));

Mode Width Compiler Type
QI 8 bits char

HI 16 bits int

SI 32 bits long

DI 64 bits long long

SF 32 bits float

DF 64 bits long double
DS51284G-page 14 © 2008 Microchip Technology Inc.

Differences Between 16-Bit Device C and ANSI C
noload

The noload attribute indicates that space should be allocated for the variable, but that
initial values should not be loaded. This attribute could be useful if an application is
designed to load a variable into memory at run time, such as from a serial EEPROM.
int table1[50] __attribute__ ((noload)) = { 0 };

packed

The packed attribute specifies that a variable or structure field should have the
smallest possible alignment � one byte for a variable and one bit for a field, unless you
specify a larger value with the aligned attribute.
Here is a structure in which the field x is packed, so that it immediately follows a:
struct foo
{
 char a;
 int x[2] __attribute__ ((packed));
};

persistent

The persistent attribute specifies that the variable should not be initialized or
cleared at startup. A variable with the persistent attribute could be used to store state
information that will remain valid after a device reset.
int last_mode __attribute__ ((persistent));

Persistent data is not normally initialized by the C run-time. However, from a
cold-restart, persistent data may not have any meaningful value. This code example
shows how to safely initialize such data:
#include "p24Fxxxx.h"

int last_mode __attribute__((persistent));

int main()
{
 if ((RCONbits.POR == 0) &&
 (RCONbits.BOR == 0)) {
 /* last_mode is valid */
 } else {
 /* initialize persistent data */
 last_mode = 0;
 }
}

reverse (alignment)
The reverse attribute specifies a minimum alignment for the ending address of a
variable, plus one. The alignment is specified in bytes and must be a power of two.
Reverse-aligned variables can be used for decrementing modulo buffers in dsPIC DSC
assembly language. This attribute could be useful if an application defines variables in
C that will be accessed from assembly language.
int buf1[128] __attribute__ ((reverse(256)));

Note: The device architecture requires that words be aligned on even byte
boundaries, so care must be taken when using the packed attribute to
avoid run-time addressing errors.
© 2008 Microchip Technology Inc. DS51284G-page 15

16-Bit C Compiler User�s Guide
The reverse attribute conflicts with the aligned and section attributes. An attempt
to name a section for a reverse-aligned variable will be ignored with a warning. It is an
error condition to specify both reverse and aligned for the same variable. A variable
with the reverse attribute cannot be placed into the auto_psv space (see the
space() attribute or the -mconst-in-code option); attempts to do so will cause a
warning and the compiler will place the variable into the PSV space.

section ("section-name")
By default, the compiler places the objects it generates in sections such as .data and
.bss. The section attribute allows you to override this behavior by specifying that a
variable (or function) lives in a particular section.
struct array {int i[32];}
struct array buf __attribute__ ((section("userdata"))) = {0};

The section attribute conflicts with the address and reverse attributes. In both
cases, the section name will be ignored with a warning. This attribute may also conflict
with the space attribute. See the space attribute description for more information.

secure

This attribute can be used to define protected variables in Secure Segment (SS) RAM:
int __attribute__((secure)) secure_dat[16];

Variables defined in SS RAM will not be initialized on startup. Therefore all variables in
SS RAM must be initialized using inline code. A diagnostic will be reported if initial
values are specified on a secure variable.
String literals can be assigned to secure variables using inline code, but they require
extra processing by the compiler. For example:
char *msg __attribute__((secure)) = "Hello!\n"; /* not supported */
char *msg2 __attribute__((secure));
void __attribute__((secure)) foo2()
{
 msg2 = "Goodbye..\n"; / value assigned explicitly */
}

In this case, storage must be allocated for the string literal in a memory space which is
accessible to the enclosing secure function. The compiler will allocate the string in a
psv constant section designated for the secure segment.

sfr (address)
The sfr attribute tells the compiler that the variable is an SFR and also specifies the
run-time address of the variable, using the address parameter.
extern volatile int __attribute__ ((sfr(0x200)))u1mod;

The use of the extern specifier is required in order to not produce an error.

Note: By convention, the sfr attribute is used only in processor header files. To
define a general user variable at a specific address use the address
attribute in conjunction with near or far to specify the correct addressing
mode.
DS51284G-page 16 © 2008 Microchip Technology Inc.

Differences Between 16-Bit Device C and ANSI C
space (space)
Normally, the compiler allocates variables in general data space. The space attribute
can be used to direct the compiler to allocate a variable in specific memory spaces.
Memory spaces are discussed further in Section 4.5 �Memory Spaces�. The
following arguments to the space attribute are accepted:

data

Allocate the variable in general data space. Variables in general data space can
be accessed using ordinary C statements. This is the default allocation.
xmemory - dsPIC30F/33F DSCs only
Allocate the variable in X data space. Variables in X data space can be accessed
using ordinary C statements. An example of xmemory space allocation is:
int x[32] __attribute__ ((space(xmemory)));

ymemory - dsPIC30F/33F DSCs only
Allocate the variable in Y data space. Variables in Y data space can be accessed
using ordinary C statements. An example of ymemory space allocation is:
int y[32] __attribute__ ((space(ymemory)));

prog

Allocate the variable in program space, in a section designated for executable
code. Variables in program space can not be accessed using ordinary C
statements. They must be explicitly accessed by the programmer, usually using
table-access inline assembly instructions, or using the program space visibility
window.
auto_psv

Allocate the variable in program space, in a compiler-managed section
designated for automatic program space visibility window access. Variables in
auto_psv space can be read (but not written) using ordinary C statements, and
are subject to a maximum of 32K total space allocated. When specifying
space(auto_psv), it is not possible to assign a section name using the sec-
tion attribute; any section name will be ignored with a warning. A variable in the
auto_psv space cannot be placed at a specific address or given a reverse
alignment.

dma - PIC24H MCUs, dsPIC33F DSCs only
Allocate the variable in DMA memory. Variables in DMA memory can be
accessed using ordinary C statements and by the DMA peripheral.
__builtin_dmaoffset() (see �16-Bit Language Tools Libraries�, DS51456)
can be used to find the correct offset for configuring the DMA peripheral.

 #include <p24Hxxxx.h>
 unsigned int BufferA[8] __attribute__((space(dma)));
 unsigned int BufferB[8] __attribute__((space(dma)));

 int main()
 {
 DMA1STA = __builtin_dmaoffset(BufferA);
 DMA1STB = __builtin_dmaoffset(BufferB);
 /* ... */
 }

Note: Variables placed in the auto_psv section are not loaded into data
memory at startup. This attribute may be useful for reducing RAM
usage.
© 2008 Microchip Technology Inc. DS51284G-page 17

16-Bit C Compiler User�s Guide
psv

Allocate the variable in program space, in a section designated for program space
visibility window access. The linker will locate the section so that the entire vari-
able can be accessed using a single setting of the PSVPAG register. Variables in
PSV space are not managed by the compiler and can not be accessed using ordi-
nary C statements. They must be explicitly accessed by the programmer, usually
using table-access inline assembly instructions, or using the program space
visibility window.
eedata - dsPIC30F DSCs only
Allocate the variable in EEData space. Variables in EEData space can not be
accessed using ordinary C statements. They must be explicitly accessed by the
programmer, usually using table-access inline assembly instructions, or using
the program space visibility window.
pmp

Allocate the variable in off chip memory associated with the PMP peripheral. For
complete details please see Section 6.3 �PMP Pointers�.
external

Allocate the variable in a user defined memory space. For complete details
please see Section 6.4 �External Pointers�.

transparent_union

This attribute, attached to a function parameter which is a union, means that the
corresponding argument may have the type of any union member, but the argument is
passed as if its type were that of the first union member. The argument is passed to the
function using the calling conventions of the first member of the transparent union, not
the calling conventions of the union itself. All members of the union must have the same
machine representation; this is necessary for this argument passing to work properly.

unordered

The unordered attribute indicates that the placement of this variable may move
relative to other variables within the current C source file.
const int __attribute__ ((unordered)) i;

unused

This attribute, attached to a variable, means that the variable is meant to be possibly
unused. The compiler will not produce an unused variable warning for this variable.

weak

The weak attribute causes the declaration to be emitted as a weak symbol. A weak
symbol may be superseded by a global definition. When weak is applied to a reference
to an external symbol, the symbol is not required for linking. For example:
extern int __attribute__((__weak__)) s;
int foo() {
 if (&s) return s;
 return 0; /* possibly some other value */
}

In the above program, if s is not defined by some other module, the program will still
link but s will not be given an address. The conditional verifies that s has been defined
(and returns its value if it has). Otherwise �0� is returned. There are many uses for this
feature, mostly to provide generic code that can link with an optional library.
DS51284G-page 18 © 2008 Microchip Technology Inc.

Differences Between 16-Bit Device C and ANSI C
The weak attribute may be applied to functions as well as variables:
extern int __attribute__((__weak__)) compress_data(void *buf);
int process(void *buf) {
 if (compress_data) {
 if (compress_data(buf) == -1) /* error */
 }
 /* process buf */
}

In the above code, the function compress_data will be used only if it is linked in from
some other module. Deciding whether or not to use the feature becomes a link-time
decision, not a compile time decision.
The affect of the weak attribute on a definition is more complicated and requires
multiple files to describe:
 /* weak1.c */
 int __attribute__((__weak__)) i;

 void foo() {
 i = 1;
 }

 /* weak2.c */
 int i;
 extern void foo(void);

 void bar() {
 i = 2;
 }

 main() {
 foo();
 bar();
 }

Here the definition in weak2.c of i causes the symbol to become a strong definition.
No link error is emitted and both i�s refer to the same storage location. Storage is
allocated for weak1.c�s version of i, but this space is not accessible.
There is no check to ensure that both versions of i have the same type; changing i in
weak2.c to be of type float will still allow a link, but the behavior of function foo will
be unexpected. foo will write a value into the least significant portion of our 32-bit float
value. Conversely, changing the type of the weak definition of i in weak1.c to type
float may cause disastrous results. We will be writing a 32-bit floating point value into
a 16-bit integer allocation, overwriting any variable stored immediately after our i.
In the cases where only weak definitions exist, the linker will choose the storage of the
first such definition. The remaining definitions become in-accessible.
The behavior is identical, regardless of the type of the symbol; functions and variables
behave in the same manner.
© 2008 Microchip Technology Inc. DS51284G-page 19

16-Bit C Compiler User�s Guide
2.3.2 Specifying Attributes of Functions
In the compiler, you declare certain things about functions called in your program which
help the compiler optimize function calls and check your code more carefully.
The keyword __attribute__ allows you to specify special attributes when making a
declaration. This keyword is followed by an attribute specification inside double
parentheses. The following attributes are currently supported for functions:
� address (addr)
� alias ("target")
� auto_psv, no_auto_psv
� boot
� const
� deprecated
� far
� format (archetype, string-index, first-to-check)
� format_arg (string-index)
� interrupt [([save(list)] [, irq(irqid)] [,
altirq(altirqid)] [, preprologue(asm)])]

� near
� no_instrument_function
� noload
� noreturn
� section ("section-name")
� secure
� shadow
� unused
� user_init
� weak

You may also specify attributes with __ (double underscore) preceding and following
each keyword (e.g., __shadow__ instead of shadow). This allows you to use them in
header files without being concerned about a possible macro of the same name.
You can specify multiple attributes in a declaration by separating them by commas
within the double parentheses or by immediately following an attribute declaration with
another attribute declaration.

address (addr)
The address attribute specifies an absolute address for the function. This attribute
cannot be used in conjunction with a section attribute; the address attribute will take
precedence.
void __attribute__ ((address(0x100))) foo() {
...
}

Alternatively, you may define the address in the function prototype:
void foo() __attribute__ ((address(0x100)));

alias ("target")
The alias attribute causes the declaration to be emitted as an alias for another symbol,
which must be specified.
Use of this attribute results in an external reference to target, which must be resolved
during the link phase.
DS51284G-page 20 © 2008 Microchip Technology Inc.

Differences Between 16-Bit Device C and ANSI C
auto_psv, no_auto_psv

The auto_psv attribute, when combined with the interrupt attribute, will cause the
compiler to generate additional code in the function prologue to set the PSVPAG SFR
to the correct value for accessing space(auto_psv) (or constants in the con-
stants-in-code memory model) variables. Use this option when using 24-bit pointers
and an interrupt may occur while the PSVPAG has been modified and the interrupt rou-
tine, or a function it calls, uses an auto_psv variable. Compare this with
no_auto_psv. If neither auto_psv nor no_auto_psv option is specified for an
interrupt routine, the compiler will issue a warning and select this option.
The no_auto_psv attribute, when combined with the interrupt attribute, will cause the
compiler to not generate additional code for accessing space(auto_psv) (or con-
stants in the constants-in-code memory model) variables. Use this option if none of the
conditions under auto_psv hold true. If neither auto_psv nor no_auto_psv option
is specified for an interrupt routine, the compiler will issue a warning and assume
auto_psv.

boot

This attribute directs the compiler to allocate a function in the boot segment of program
Flash.
For example, to declare a protected function:
void __attribute__((boot)) func();

An optional argument can be used to specify a protected access entry point within the
boot segment. The argument may be a literal integer in the range 0 to 31 (except 16),
or the word unused. Integer arguments correspond to 32 instruction slots in the seg-
ment access area, which occupies the lowest address range of each secure segment.
The value 16 is excluded because access entry 16 is reserved for the secure segment
interrupt vector. The value unused is used to specify a function for all of the unused
slots in the access area.
Access entry points facilitate the creation of application segments from different ven-
dors that are combined at run time. They can be specified for external functions as well
as locally defined functions. For example:
/* an external function that we wish to call */
extern void __attribute__((boot(3))) boot_service3();
/* local function callable from other segments */
void __attribute__((secure(4))) secure_service4()
{
 boot_service3();
}

To specify a secure interrupt handler, use the boot attribute in combination with the
interrupt attribute:
void __attribute__((boot,interrupt)) boot_interrupts();

When an access entry point is specified for an external secure function, that function
need not be included in the project for a successful link. All references to that function
will be resolved to a fixed location in Flash, depending on the security model selected
at link time.
When an access entry point is specified for a locally defined function, the linker will
insert a branch instruction into the secure segment access area. The exception is for
access entry 16, which is represented as a vector (i.e, an instruction address) rather
than an instruction. The actual function definition will be located beyond the access
area; therefore the access area will contain a jump table through which control can be
transferred from another security segment to functions with defined entry points.
© 2008 Microchip Technology Inc. DS51284G-page 21

16-Bit C Compiler User�s Guide
Automatic variables are owned by the enclosing function and do not need the boot
attribute. They may be assigned initial values, as shown:
void __attribute__((boot)) chuck_cookies()
{
 int hurl;
 int them = 55;
 char *where = "far";
 splat(where);
 /* ... */
}

Note that the initial value of where is based on a string literal which is allocated in the
PSV constant section .boot_const. The compiler will set PSVPAG to the correct
value upon entrance to the function. If necessary, the compiler will also restore PSV-
PAG after the call to splat().

const

Many functions do not examine any values except their arguments, and have no effects
except the return value. Such a function can be subject to common subexpression
elimination and loop optimization just as an arithmetic operator would be. These
functions should be declared with the attribute const. For example:
int square (int) __attribute__ ((const int));

says that the hypothetical function square is safe to call fewer times than the program
says.
Note that a function that has pointer arguments and examines the data pointed to must
not be declared const. Likewise, a function that calls a non-const function usually
must not be const. It does not make sense for a const function to have a void return
type.

deprecated

See Section 2.3.1 �Specifying Attributes of Variables� for information on the
deprecated attribute.

far

The far attribute tells the compiler that the function should not be called using a more
efficient form of the call instruction.

format (archetype, string-index, first-to-check)
The format attribute specifies that a function takes printf, scanf or strftime
style arguments which should be type-checked against a format string. For example,
consider the declaration:
extern int
my_printf (void *my_object, const char *my_format, ...)
 __attribute__ ((format (printf, 2, 3)));

This causes the compiler to check the arguments in calls to my_printf for
consistency with the printf style format string argument my_format.
The parameter archetype determines how the format string is interpreted, and should
be one of printf, scanf or strftime. The parameter string-index specifies
which argument is the format string argument (arguments are numbered from the left,
starting from 1), while first-to-check is the number of the first argument to check
against the format string. For functions where the arguments are not available to be
checked (such as vprintf), specify the third parameter as zero. In this case, the
compiler only checks the format string for consistency.
DS51284G-page 22 © 2008 Microchip Technology Inc.

Differences Between 16-Bit Device C and ANSI C
In the example above, the format string (my_format) is the second argument of the
function my_print, and the arguments to check start with the third argument, so the
correct parameters for the format attribute are 2 and 3.
The format attribute allows you to identify your own functions that take format strings
as arguments, so that the compiler can check the calls to these functions for errors. The
compiler always checks formats for the ANSI library functions printf, fprintf,
sprintf, scanf, fscanf, sscanf, strftime, vprintf, vfprintf and
vsprintf, whenever such warnings are requested (using -Wformat), so there is no
need to modify the header file stdio.h.

format_arg (string-index)
The format_arg attribute specifies that a function takes printf or scanf style
arguments, modifies it (for example, to translate it into another language), and passes
it to a printf or scanf style function. For example, consider the declaration:
extern char *
my_dgettext (char *my_domain, const char *my_format)
 __attribute__ ((format_arg (2)));

This causes the compiler to check the arguments in calls to my_dgettext, whose
result is passed to a printf, scanf or strftime type function for consistency with
the printf style format string argument my_format.
The parameter string-index specifies which argument is the format string
argument (starting from 1).
The format-arg attribute allows you to identify your own functions which modify
format strings, so that the compiler can check the calls to printf, scanf or
strftime function, whose operands are a call to one of your own functions.

interrupt [([save(list)] [, irq(irqid)]
[, altirq(altirqid)] [, preprologue(asm)])]

Use this option to indicate that the specified function is an interrupt handler. The compiler
will generate function prologue and epilogue sequences suitable for use in an inter-
rupt handler when this attribute is present. The optional parameter save specifies a list
of variables to be saved and restored in the function prologue and epilogue, respectively.
The optional parameters irq and altirq specify interrupt vector table ID�s to be used.
The optional parameter preprologue specifies assembly code that is to be emitted
before the compiler-generated prologue code. See Chapter 8. �Interrupts� for a full
description, including examples.
When using the interrupt attribute, please specify either auto_psv or
no_auto_psv. If none is specified a warning will be produced and auto_psv will be
assumed.

near

The near attribute tells the compiler that the function can be called using a more
efficient form of the call instruction.

no_instrument_function

If the command line option -finstrument-function is given, profiling function calls
will be generated at entry and exit of most user-compiled functions. Functions with this
attribute will not be so instrumented.
© 2008 Microchip Technology Inc. DS51284G-page 23

16-Bit C Compiler User�s Guide
noload

The noload attribute indicates that space should be allocated for the function, but that
the actual code should not be loaded into memory. This attribute could be useful if an
application is designed to load a function into memory at run time, such as from a serial
EEPROM.
void bar() __attribute__ ((noload)) {
...
}

noreturn

 A few standard library functions, such as abort and exit, cannot return. The com-
piler knows this automatically. Some programs define their own functions that never
return. You can declare them noreturn to tell the compiler this fact. For example:
void fatal (int i) __attribute__ ((noreturn));

void
fatal (int i)
{
 /* Print error message. */
 exit (1);
}

The noreturn keyword tells the compiler to assume that fatal cannot return. It can
then optimize without regard to what would happen if fatal ever did return. This
makes slightly better code. Also, it helps avoid spurious warnings of uninitialized
variables.
It does not make sense for a noreturn function to have a return type other than void.

section ("section-name")
Normally, the compiler places the code it generates in the .text section. Sometimes,
however, you need additional sections, or you need certain functions to appear in
special sections. The section attribute specifies that a function lives in a particular
section. For example, consider the declaration:
extern void foobar (void) __attribute__ ((section (".libtext")));

This puts the function foobar in the .libtext section.
The section attribute conflicts with the address attribute. The section name will be
ignored with a warning.

secure

This attribute directs the compiler to allocate a function in the secure segment of
program Flash.
For example, to declare a protected function:
void __attribute__((secure)) func();

An optional argument can be used to specify a protected access entry point within the
secure segment. The argument may be a literal integer in the range 0 to 31 (except
16), or the word unused. Integer arguments correspond to 32 instruction slots in the
segment access area, which occupies the lowest address range of each secure seg-
ment. The value 16 is excluded because access entry 16 is reserved for the secure
segment interrupt vector. The value unused is used to specify a function for all of the
unused slots in the access area.
DS51284G-page 24 © 2008 Microchip Technology Inc.

Differences Between 16-Bit Device C and ANSI C
Access entry points facilitate the creation of application segments from different ven-
dors that are combined at run time. They can be specified for external functions as well
as locally defined functions. For example:
/* an external function that we wish to call */
extern void __attribute__((boot(3))) boot_service3();
/* local function callable from other segments */
void __attribute__((secure(4))) secure_service4()
{
 boot_service3();
}

To specify a secure interrupt handler, use the secure attribute in combination with the
interrupt attribute:
void __attribute__((secure,interrupt)) secure_interrupts();

When an access entry point is specified for an external secure function, that function
need not be included in the project for a successful link. All references to that function
will be resolved to a fixed location in Flash, depending on the security model selected
at link time.
When an access entry point is specified for a locally defined function, the linker will
insert a branch instruction into the secure segment access area. The exception is for
access entry 16, which is represented as a vector (i.e, an instruction address) rather
than an instruction. The actual function definition will be located beyond the access
area; therefore the access area will contain a jump table through which control can be
transferred from another security segment to functions with defined entry points.
Automatic variables are owned by the enclosing function and do not need the secure
attribute. They may be assigned initial values, as shown:
void __attribute__((secure)) chuck_cookies()
{
 int hurl;
 int them = 55;
 char *where = "far";
 splat(where);
 /* ... */
}

Note that the initial value of where is based on a string literal which is allocated in the
PSV constant section .secure_const. The compiler will set PSVPAG to the correct
value upon entrance to the function. If necessary, the compiler will also restore
PSVPAG after the call to splat().

shadow

The shadow attribute causes the compiler to use the shadow registers rather than the
software stack for saving registers. This attribute is usually used in conjunction with the
interrupt attribute.
void __attribute__ ((interrupt, shadow)) _T1Interrupt (void);

unused

This attribute, attached to a function, means that the function is meant to be possibly
unused. The compiler will not produce an unused function warning for this function.

user_init

The user_init attribute may be applied to any non-interrupt function with void
parameter and return types. Applying this attribute will cause default C start-up mod-
ules to call this function before the user main is executed. There is no guarantee of
© 2008 Microchip Technology Inc. DS51284G-page 25

16-Bit C Compiler User�s Guide
ordering, so these functions cannot rely on other user_init functions having been
previously run; these functions will be called after PSV and data initialization. A
user_init may still be called by the executing program. For example:
 void __attribute__((user_init)) initialize_me(void) {
 // perform initalization sequence alpha alpha beta
 }

weak

See Section 2.3.1 �Specifying Attributes of Variables� for information on the weak
attribute.

2.3.3 Inline Functions
By declaring a function inline, you can direct the compiler to integrate that function�s
code into the code for its callers. This usually makes execution faster by eliminating the
function-call overhead. In addition, if any of the actual argument values are constant,
their known values may permit simplifications at compile time, so that not all of the
inline function�s code needs to be included. The effect on code size is less predictable.
Machine code may be larger or smaller with inline functions, depending on the
particular case.

To declare a function inline, use the inline keyword in its declaration, like this:
inline int
inc (int *a)
{
 (*a)++;
}

(If you are using the -traditional option or the -ansi option, write __inline__
instead of inline.) You can also make all �simple enough� functions inline with the
command-line option -finline-functions. The compiler heuristically decides
which functions are simple enough to be worth integrating in this way, based on an
estimate of the function�s size.

Certain usages in a function definition can make it unsuitable for inline substitution.
Among these usages are: use of varargs, use of alloca, use of variable-sized data,
use of computed goto and use of nonlocal goto. Using the command-line option
-Winline will warn when a function marked inline could not be substituted, and will
give the reason for the failure.
In compiler syntax, the inline keyword does not affect the linkage of the function.
When a function is both inline and static, if all calls to the function are integrated
into the caller and the function�s address is never used, then the function�s own
assembler code is never referenced. In this case, the compiler does not actually output
assembler code for the function, unless you specify the command-line option
-fkeep-inline-functions. Some calls cannot be integrated for various reasons
(in particular, calls that precede the function�s definition cannot be integrated and
neither can recursive calls within the definition). If there is a nonintegrated call, then the
function is compiled to assembler code as usual. The function must also be compiled

Note: Function inlining will only take place when the function�s definition is visible
(not just the prototype). In order to have a function inlined into more than
one source file, the function definition may be placed into a header file that
is included by each of the source files.

Note: The inline keyword will only be recognized with -finline or
optimizations enabled.
DS51284G-page 26 © 2008 Microchip Technology Inc.

Differences Between 16-Bit Device C and ANSI C
as usual if the program refers to its address, because that can�t be inlined. The compiler
will only eliminate inline functions if they are declared to be static and if the function
definition precedes all uses of the function.
When an inline function is not static, then the compiler must assume that there
may be calls from other source files. Since a global symbol can be defined only once
in any program, the function must not be defined in the other source files, so the calls
therein cannot be integrated. Therefore, a non-static inline function is always
compiled on its own in the usual fashion.
If you specify both inline and extern in the function definition, then the definition is
used only for inlining. In no case is the function compiled on its own, not even if you
refer to its address explicitly. Such an address becomes an external reference, as if you
had only declared the function and had not defined it.
This combination of inline and extern has a similar effect to a macro. Put a function
definition in a header file with these keywords and put another copy of the definition
(lacking inline and extern) in a library file. The definition in the header file will cause
most calls to the function to be inlined. If any uses of the function remain, they will refer
to the single copy in the library.

2.3.4 Variables in Specified Registers
The compiler allows you to put a few global variables into specified hardware registers.

You can also specify the register in which an ordinary register variable should be
allocated.
� Global register variables reserve registers throughout the program. This may be

useful in programs such as programming language interpreters which have a
couple of global variables that are accessed very often.

� Local register variables in specific registers do not reserve the registers. The
compiler�s data flow analysis is capable of determining where the specified
registers contain live values, and where they are available for other uses. Stores
into local register variables may be deleted when they appear to be unused.
References to local register variables may be deleted, moved or simplified.

These local variables are sometimes convenient for use with the extended inline
assembly (see Chapter 9. �Mixing Assembly Language and C Modules�), if you
want to write one output of the assembler instruction directly into a particular register.
(This will work provided the register you specify fits the constraints specified for that
operand in the inline assembly statement).

2.3.4.1 DEFINING GLOBAL REGISTER VARIABLES

You can define a global register variable like this:
register int *foo asm ("w8");

Here w8 is the name of the register which should be used. Choose a register that is
normally saved and restored by function calls (W8-W13), so that library routines will not
clobber it.
Defining a global register variable in a certain register reserves that register entirely for
this use, at least within the current compilation. The register will not be allocated for any
other purpose in the functions in the current compilation. The register will not be saved
and restored by these functions. Stores into this register are never deleted even if they
would appear to be dead, but references may be deleted, moved or simplified.

Note: Using too many registers, in particular register W0, may impair the ability of
the 16-bit compiler to compile.
© 2008 Microchip Technology Inc. DS51284G-page 27

16-Bit C Compiler User�s Guide
It is not safe to access the global register variables from signal handlers, or from more
than one thread of control, because the system library routines may temporarily use the
register for other things (unless you recompile them especially for the task at hand).
It is not safe for one function that uses a global register variable to call another such
function foo by way of a third function lose that was compiled without knowledge of
this variable (i.e., in a source file in which the variable wasn�t declared). This is because
lose might save the register and put some other value there. For example, you can�t
expect a global register variable to be available in the comparison-function that you
pass to qsort, since qsort might have put something else in that register. This
problem can be avoided by recompiling qsort with the same global register variable
definition.
If you want to recompile qsort or other source files that do not actually use your global
register variable, so that they will not use that register for any other purpose, then it
suffices to specify the compiler command-line option -ffixed-reg. You need not
actually add a global register declaration to their source code.
A function that can alter the value of a global register variable cannot safely be called
from a function compiled without this variable, because it could clobber the value the
caller expects to find there on return. Therefore, the function that is the entry point into
the part of the program that uses the global register variable must explicitly save and
restore the value that belongs to its caller.
The library function longjmp will restore to each global register variable the value it
had at the time of the setjmp.
All global register variable declarations must precede all function definitions. If such a
declaration appears after function definitions, the register may be used for other
purposes in the preceding functions.
Global register variables may not have initial values, because an executable file has no
means to supply initial contents for a register.

2.3.4.2 SPECIFYING REGISTERS FOR LOCAL VARIABLES

You can define a local register variable with a specified register like this:
register int *foo asm ("w8");

Here w8 is the name of the register that should be used. Note that this is the same
syntax used for defining global register variables, but for a local variable it would appear
within a function.
Defining such a register variable does not reserve the register; it remains available for
other uses in places where flow control determines the variable�s value is not live.
Using this feature may leave the compiler too few available registers to compile certain
functions.
This option does not ensure that the compiler will generate code that has this variable
in the register you specify at all times. You may not code an explicit reference to this
register in an asm statement and assume it will always refer to this variable.
Assignments to local register variables may be deleted when they appear to be
unused. References to local register variables may be deleted, moved or simplified.
DS51284G-page 28 © 2008 Microchip Technology Inc.

Differences Between 16-Bit Device C and ANSI C
2.3.5 Complex Numbers
The compiler supports complex data types. You can declare both complex integer
types and complex floating types, using the keyword __complex__.
For example, __complex__ float x; declares x as a variable whose real part and
imaginary part are both of type float. __complex__ short int y; declares y to
have real and imaginary parts of type short int.
To write a constant with a complex data type, use the suffix �i� or �j� (either one; they
are equivalent). For example, 2.5fi has type __complex__ float and 3i has type
__complex__ int. Such a constant is a purely imaginary value, but you can form
any complex value you like by adding one to a real constant.
To extract the real part of a complex-valued expression exp, write __real__ exp.
Similarly, use __imag__ to extract the imaginary part. For example;
 __complex__ float z;
 float r;
 float i;

 r = __real__ z;
 i = __imag__ z;

The operator �~� performs complex conjugation when used on a value with a complex
type.
The compiler can allocate complex automatic variables in a noncontiguous fashion; it�s
even possible for the real part to be in a register while the imaginary part is on the stack
(or vice-versa). The debugging information format has no way to represent noncontig-
uous allocations like these, so the compiler describes noncontiguous complex
variables as two separate variables of noncomplex type. If the variable�s actual name
is foo, the two fictitious variables are named foo$real and foo$imag.

2.3.6 Double-Word Integers
The compiler supports data types for integers that are twice as long as long int.
Simply write long long int for a signed integer, or unsigned long long int
for an unsigned integer. To make an integer constant of type long long int, add the
suffix LL to the integer. To make an integer constant of type unsigned long long
int, add the suffix ULL to the integer.
You can use these types in arithmetic like any other integer types. Addition, subtraction
and bitwise boolean operations on these types are open-coded, but division and shifts
are not open-coded. The operations that are not open-coded use special library
routines that come with the compiler.

2.3.7 Referring to a Type with typeof
Another way to refer to the type of an expression is with the typeof keyword. The
syntax for using this keyword looks like sizeof, but the construct acts semantically like
a type name defined with typedef.
There are two ways of writing the argument to typeof: with an expression or with a
type. Here is an example with an expression:
typeof (x[0](1))

This assumes that x is an array of functions; the type described is that of the values of
the functions.
Here is an example with a typename as the argument:
typeof (int *)
© 2008 Microchip Technology Inc. DS51284G-page 29

16-Bit C Compiler User�s Guide
Here the type described is a pointer to int.
If you are writing a header file that must work when included in ANSI C programs, write
__typeof__ instead of typeof.
A typeof construct can be used anywhere a typedef name could be used. For
example, you can use it in a declaration, in a cast, or inside of sizeof or typeof.
� This declares y with the type of what x points to:
typeof (*x) y;

� This declares y as an array of such values:
typeof (*x) y[4];

� This declares y as an array of pointers to characters:
typeof (typeof (char *)[4]) y;
It is equivalent to the following traditional C declaration:
char *y[4];

To see the meaning of the declaration using typeof, and why it might be a useful way
to write, let�s rewrite it with these macros:
#define pointer(T) typeof(T *)
#define array(T, N) typeof(T [N])

Now the declaration can be rewritten this way:
array (pointer (char), 4) y;

Thus, array (pointer (char), 4) is the type of arrays of four pointers to char.

2.4 STATEMENT DIFFERENCES
This section describes the statement differences between plain ANSI C and the C
accepted by the compiler. The statement differences are part of the base GCC
implementation, and the discussion in the section is based on the standard GCC
documentation, tailored for the specific syntax and semantics of the 16-bit compiler port
of GCC.
� Labels as Values
� Conditionals with Omitted Operands
� Case Ranges

2.4.1 Labels as Values
You can get the address of a label defined in the current function (or a containing
function) with the unary operator �&&�. The value has type void *. This value is a
constant and can be used wherever a constant of that type is valid. For example:
void *ptr;
...
ptr = &&foo;

To use these values, you need to be able to jump to one. This is done with the
computed goto statement, goto *exp;. For example:
goto *ptr;

Any expression of type void * is allowed.
DS51284G-page 30 © 2008 Microchip Technology Inc.

Differences Between 16-Bit Device C and ANSI C
One way of using these constants is in initializing a static array that will serve as a jump
table:
static void *array[] = { &&foo, &&bar, &&hack };

Then you can select a label with indexing, like this:
goto *array[i];

Such an array of label values serves a purpose much like that of the switch
statement. The switch statement is cleaner and therefore preferable to an array.
Another use of label values is in an interpreter for threaded code. The labels within the
interpreter function can be stored in the threaded code for fast dispatching.
This mechanism can be misused to jump to code in a different function. The compiler
cannot prevent this from happening, so care must be taken to ensure that target
addresses are valid for the current function.

2.4.2 Conditionals with Omitted Operands
The middle operand in a conditional expression may be omitted. Then if the first
operand is nonzero, its value is the value of the conditional expression.
Therefore, the expression:
x ? : y

has the value of x if that is nonzero; otherwise, the value of y.
This example is perfectly equivalent to:
x ? x : y

In this simple case, the ability to omit the middle operand is not especially useful. When
it becomes useful is when the first operand does, or may (if it is a macro argument),
contain a side effect. Then repeating the operand in the middle would perform the side
effect twice. Omitting the middle operand uses the value already computed without the
undesirable effects of recomputing it.

2.4.3 Case Ranges
You can specify a range of consecutive values in a single case label, like this:
case low ... high:

This has the same effect as the proper number of individual case labels, one for each
integer value from low to high, inclusive.
This feature is especially useful for ranges of ASCII character codes:
case 'A' ... 'Z':

Be careful: Write spaces around the ..., otherwise it may be parsed incorrectly when
you use it with integer values. For example, write this:
case 1 ... 5:

rather than this:
case 1...5:

Note: This does not check whether the subscript is in bounds. (Array indexing in
C never does.)
© 2008 Microchip Technology Inc. DS51284G-page 31

16-Bit C Compiler User�s Guide
2.5 EXPRESSION DIFFERENCES
This section describes the expression differences between plain ANSI C and the C
accepted by the compiler.

2.5.1 Binary Constants
A sequence of binary digits preceded by 0b or 0B (the numeral �0� followed by the letter
�b� or �B�) is taken to be a binary integer. The binary digits consist of the numerals �0�
and �1�. For example, the (decimal) number 255 can be written as 0b11111111.
Like other integer constants, a binary constant may be suffixed by the letter �u� or �U�,
to specify that it is unsigned. A binary constant may also be suffixed by the letter �l� or
�L�, to specify that it is long. Similarly, the suffix �ll� or �LL� denotes a long long binary
constant.
DS51284G-page 32 © 2008 Microchip Technology Inc.

MPLAB® C COMPILER FOR
PIC24 MCUs AND dsPIC® DSCs

USER�S GUIDE
Chapter 3. Using the Compiler on the Command Line
3.1 INTRODUCTION
This chapter discusses using the MPLAB C Compiler for PIC24 MCUs and dsPIC®
DSCs (formerly MPLAB C30) on the command line. For information on using the com-
piler with MPLAB IDE, please refer to the �16-bit Language Tools Getting Started�
(DS70094).

3.2 HIGHLIGHTS
Items discussed in this chapter are:
� Overview
� File Naming Conventions
� Options
� Environment Variables
� Predefined Macro Names
� Compiling a Single File on the Command Line
� Compiling Multiple Files on the Command Line
� Notable Symbols

3.3 OVERVIEW
The compilation driver program (pic30-gcc) compiles, assembles and links C and
assembly language modules and library archives. Most of the compiler command-line
options are common to all implementations of the GCC toolset. A few are specific to
the compiler.
The basic form of the compiler command line is:
pic30-gcc [options] files

The available options are described in Section 3.5 �Options�.

For example, to compile, assemble and link the C source file hello.c, creating the
absolute executable hello.exe.
pic30-gcc -o hello.exe hello.c

Note: This executable name applies for all 16-bit compilers, i.e., MPLAB C Com-
piler for PIC24 MCUs and dsPIC® DSCs, MPLAB C Compiler for dsPIC®
DSCs, and MPLAB C Compiler for PIC24 MCUs.

Note: Command line options and file name extensions are case-sensitive.
© 2008 Microchip Technology Inc. DS51284G-page 33

16-Bit C Compiler User�s Guide
3.4 FILE NAMING CONVENTIONS
The compilation driver recognizes the following file extensions, which are
case-sensitive.

3.5 OPTIONS
The compiler has many options for controlling compilation, all of which are
case-sensitive.
� Options Specific to dsPIC DSC Devices
� Options for Controlling the Kind of Output
� Options for Controlling the C Dialect
� Options for Controlling Warnings and Errors
� Options for Debugging
� Options for Controlling Optimization
� Options for Controlling the Preprocessor
� Options for Assembling
� Options for Linking
� Options for Directory Search
� Options for Code Generation Conventions

TABLE 3-1: FILE NAMES
Extensions Definition

file.c A C source file that must be preprocessed.
file.h A header file (not to be compiled or linked).
file.i A C source file that should not be preprocessed.
file.o An object file.
file.p A pre procedural-abstraction assembly language file.
file.s Assembler code.
file.S Assembler code that must be preprocessed.
other A file to be passed to the linker.
DS51284G-page 34 © 2008 Microchip Technology Inc.

Using the Compiler on the Command Line
3.5.1 Options Specific to dsPIC DSC Devices
For more information on the memory models, see Section 4.6 �Memory Models�.
TABLE 3-2: dsPIC® DSC DEVICE-SPECIFIC OPTIONS

Option Definition

-mconst-in-code Put constants in the auto_psv space. The compiler will access these
constants using the PSV window. (This is the default.)

-mconst-in-data Put constants in the data memory space.
-merrata=
id[,id]*

This option enables specific errata work arounds identified by id. Valid
values for id change from time to time and may not be required for a
particular variant. An id of list will display the currently supported
errata identifiers along with a brief description of the errata. An id of
all will enable all currently supported errata work arounds.

-mlarge-code Compile using the large code model. No assumptions are made about
the locality of called functions.
When this option is chosen, single functions that are larger than 32k
are not supported and may cause assembly-time errors since all
branches inside of a function are of the short form.

-mlarge-data Compile using the large data model. No assumptions are made about
the location of static and external variables.

-mcpu=
 target

This option selects the target processor ID (and communicates it to the
assembler and linker if those tools are invoked). This option affects how
some predefined constants are set; see Section 3.7 �Predefined
Macro Names� for more information. A full list of accepted targets can
be seen in the Readme.htm file that came with the release.

-mpa(1) Enable the procedure abstraction optimization. There is no limit on the
nesting level.

-mpa=n(1) Enable the procedure abstraction optimization up to level n. If n is zero,
the optimization is disabled. If n is 1, first level of abstraction is allowed;
that is, instruction sequences in the source code may be abstracted
into a subroutine. If n is 2, a second level of abstraction is allowed; that
is, instructions that were put into a subroutine in the first level may be
abstracted into a subroutine one level deeper. This pattern continues
for larger values of n.
The net effect is to limit the subroutine call nesting depth to a maximum
of n.

-mno-pa(1) Do not enable the procedure abstraction optimization.
(This is the default.)

Note 1: The procedure abstractor behaves as the inverse of inlining functions. The pass is
designed to extract common code sequences from multiple sites throughout a
translation unit and place them into a common area of code. Although this option
generally does not improve the run-time performance of the generated code, it can
reduce the code size significantly. Programs compiled with -mpa can be harder to
debug; it is not recommended that this option be used while debugging using the
COFF object format.
The procedure abstractor is invoked as a separate phase of compilation, after the
production of an assembly file. This phase does not optimize across translation
units. When the procedure-optimizing phase is enabled, inline assembly code must
be limited to valid machine instructions. Invalid machine instructions or instruction
sequences, or assembler directives (sectioning directives, macros, include files,
etc.) must not be used, or the procedure abstraction phase will fail, inhibiting the
creation of an output file.
© 2008 Microchip Technology Inc. DS51284G-page 35

16-Bit C Compiler User�s Guide
-mno-isr-warn By default the compiler will produce a warning if the __interrupt__
is not attached to a recognized interrupt vector name. This option will
disable that feature.

-momf=omf Selects the OMF (Object Module Format) to be used by the compiler.
The omf specifier can be one of the following:
coff Produce COFF object files. (This is the default.)
elf Produce ELF object files.
The debugging format used for ELF object files is DWARF 2.0.

-msmall-code Compile using the small code model. Called functions are assumed to
be proximate (within 32 Kwords of the caller). (This is the default.)

-msmall-data Compile using the small data model. All static and external variables
are assumed to be located in the lower 8 KB of data memory space.
(This is the default.)

-msmall-scalar Like -msmall-data, except that only static and external scalars are
assumed to be in the lower 8 KB of data memory space. (This is the
default.)

-mtext=name Specifying -mtext=name will cause text (program code) to be placed
in a section named name rather than the default .text section. No
white spaces should appear around the =.

-msmart-io
[=0|1|2]

This option attempts to statically analyze format strings passed to
printf, scanf and the �f� and �v� variations of these functions. Uses of
nonfloating point format arguments will be converted to use an
integer-only variation of the library functions.
-msmart-io=0 disables this option, while -msmart-io=2 causes the
compiler to be optimistic and convert function calls with variable or
unknown format arguments. -msmart-io=1 is the default and will
only convert the literal values it can prove.

TABLE 3-2: dsPIC® DSC DEVICE-SPECIFIC OPTIONS (CONTINUED)
Option Definition

Note 1: The procedure abstractor behaves as the inverse of inlining functions. The pass is
designed to extract common code sequences from multiple sites throughout a
translation unit and place them into a common area of code. Although this option
generally does not improve the run-time performance of the generated code, it can
reduce the code size significantly. Programs compiled with -mpa can be harder to
debug; it is not recommended that this option be used while debugging using the
COFF object format.
The procedure abstractor is invoked as a separate phase of compilation, after the
production of an assembly file. This phase does not optimize across translation
units. When the procedure-optimizing phase is enabled, inline assembly code must
be limited to valid machine instructions. Invalid machine instructions or instruction
sequences, or assembler directives (sectioning directives, macros, include files,
etc.) must not be used, or the procedure abstraction phase will fail, inhibiting the
creation of an output file.
DS51284G-page 36 © 2008 Microchip Technology Inc.

Using the Compiler on the Command Line
3.5.2 Options for Controlling the Kind of Output
The following options control the kind of output produced by the compiler.
TABLE 3-3: KIND-OF-OUTPUT CONTROL OPTIONS

Option Definition

-c Compile or assemble the source files, but do not link. The default file
extension is .o.

-E Stop after the preprocessing stage, i.e., before running the compiler
proper. The default output file is stdout.

-o file Place the output in file.
-S Stop after compilation proper (i.e., before invoking the assembler). The

default output file extension is .s.
-v Print the commands executed during each stage of compilation.
-x You can specify the input language explicitly with the -x option:

-x language
Specify explicitly the language for the following input files (rather than
letting the compiler choose a default based on the file name suffix).
This option applies to all following input files until the next -x option.
The following values are supported by the compiler:
c c-header cpp-output
assembler assembler-with-cpp

-x none
Turn off any specification of a language, so that subsequent files are
handled according to their file name suffixes. This is the default
behavior but is needed if another -x option has been used.
For example:
pic30-gcc -x assembler foo.asm bar.asm -x none
main.c mabonga.s

Without the -x none, the compiler will assume all the input files are for
the assembler.

--help Print a description of the command line options.
© 2008 Microchip Technology Inc. DS51284G-page 37

16-Bit C Compiler User�s Guide
3.5.3 Options for Controlling the C Dialect
The following options define the kind of C dialect used by the compiler.
TABLE 3-4: C DIALECT CONTROL OPTIONS

Option Definition

-ansi Support all (and only) ANSI-standard C programs.
-aux-info filename Output to the given filename prototyped declarations for all

functions declared and/or defined in a translation unit,
including those in header files. This option is silently
ignored in any language other than C. Besides
declarations, the file indicates, in comments, the origin of
each declaration (source file and line), whether the declara-
tion was implicit, prototyped or unprototyped (I, N for new
or O for old, respectively, in the first character after the line
number and the colon), and whether it came from a
declaration or a definition (C or F, respectively, in the
following character). In the case of function definitions, a
K&R-style list of arguments followed by their declarations is
also provided, inside comments, after the declaration.

-ffreestanding Assert that compilation takes place in a freestanding
environment. This implies -fno-builtin. A freestanding
environment is one in which the standard library may not
exist, and program startup may not necessarily be at main.
The most obvious example is an OS kernel. This is
equivalent to -fno-hosted.

-fno-asm Do not recognize asm, inline or typeof as a keyword,
so that code can use these words as identifiers. You can
use the keywords __asm__, __inline__ and
__typeof__ instead.
-ansi implies -fno-asm.

-fno-builtin
-fno-builtin-function

Don�t recognize built-in functions that do not begin with
__builtin_ as prefix.

-fsigned-char Let the type char be signed, like signed char.
(This is the default.)

-fsigned-bitfields
-funsigned-bitfields
-fno-signed-bitfields
-fno-unsigned-bitfields

These options control whether a bit field is signed or
unsigned, when the declaration does not use either signed
or unsigned. By default, such a bit field is signed, unless
-traditional is used, in which case bit fields are always
unsigned.

-funsigned-char Let the type char be unsigned, like unsigned char.
-fwritable-strings Store strings in the writable data segment and don�t make

them unique.
DS51284G-page 38 © 2008 Microchip Technology Inc.

Using the Compiler on the Command Line
3.5.4 Options for Controlling Warnings and Errors
Warnings are diagnostic messages that report constructions that are not inherently
erroneous but that are risky or suggest there may have been an error.
You can request many specific warnings with options beginning -W, for example,
-Wimplicit, to request warnings on implicit declarations. Each of these specific
warning options also has a negative form beginning -Wno- to turn off warnings, for
example, -Wno-implicit. This manual lists only one of the two forms, whichever is
not the default.
The following options control the amount and kinds of warnings produced by the com-
piler.
TABLE 3-5: WARNING/ERROR OPTIONS IMPLIED BY -WALL

Option Definition

-fsyntax-only Check the code for syntax, but don�t do anything beyond that.
-pedantic Issue all the warnings demanded by strict ANSI C; reject all

programs that use forbidden extensions.
-pedantic-errors Like -pedantic, except that errors are produced rather than

warnings.
-w Inhibit all warning messages.
-Wall All of the -W options listed in this table combined. This

enables all the warnings about constructions that some users
consider questionable, and that are easy to avoid (or modify
to prevent the warning), even in conjunction with macros.

-Wchar-subscripts Warn if an array subscript has type char.
-Wcomment
-Wcomments

Warn whenever a comment-start sequence /* appears in a
/* comment, or whenever a Backslash-Newline appears in a
// comment.

-Wdiv-by-zero Warn about compile-time integer division by zero. To inhibit
the warning messages, use -Wno-div-by-zero. Floating
point division by zero is not warned about, as it can be a
legitimate way of obtaining infinities and NaNs.
(This is the default.)

-Werror-implicit-
 function-declaration

Give an error whenever a function is used before being
declared.

-Wformat Check calls to printf and scanf, etc., to make sure that
the arguments supplied have types appropriate to the format
string specified.

-Wimplicit Equivalent to specifying both -Wimplicit-int and
-Wimplicit-function-declaration.

-Wimplicit-function-
 declaration

Give a warning whenever a function is used before being
declared.

-Wimplicit-int Warn when a declaration does not specify a type.
-Wmain Warn if the type of main is suspicious. main should be a

function with external linkage, returning int, taking either
zero, two or three arguments of appropriate types.

-Wmissing-braces Warn if an aggregate or union initializer is not fully bracketed.
In the following example, the initializer for a is not fully
bracketed, but that for b is fully bracketed.
int a[2][2] = { 0, 1, 2, 3 };
int b[2][2] = { { 0, 1 }, { 2, 3 } };
© 2008 Microchip Technology Inc. DS51284G-page 39

16-Bit C Compiler User�s Guide
-Wmultichar
-Wno-multichar

Warn if a multi-character character constant is used.
Usually, such constants are typographical errors. Since they
have implementation-defined values, they should not be
used in portable code. The following example illustrates the
use of a multi-character character constant:
char
xx(void)
{
return('xx');
}

-Wparentheses Warn if parentheses are omitted in certain contexts, such as
when there is an assignment in a context where a truth value
is expected, or when operators are nested whose
precedence people often find confusing.

-Wreturn-type Warn whenever a function is defined with a return-type that
defaults to int. Also warn about any return statement with
no return-value in a function whose return-type is not void.

-Wsequence-point Warn about code that may have undefined semantics
because of violations of sequence point rules in the C
standard.
The C standard defines the order in which expressions in a C
program are evaluated in terms of sequence points, which
represent a partial ordering between the execution of parts of
the program: those executed before the sequence point and
those executed after it. These occur after the evaluation of a
full expression (one which is not part of a larger expression),
after the evaluation of the first operand of a &&, ||, ? : or ,
(comma) operator, before a function is called (but after the
evaluation of its arguments and the expression denoting the
called function), and in certain other places. Other than as
expressed by the sequence point rules, the order of
evaluation of subexpressions of an expression is not
specified. All these rules describe only a partial order rather
than a total order, since, for example, if two functions are
called within one expression with no sequence point between
them, the order in which the functions are called is not
specified. However, the standards committee has ruled that
function calls do not overlap.
It is not specified, when, between sequence points
modifications to the values of objects take effect. Programs
whose behavior depends on this have undefined behavior;
the C standard specifies that �Between the previous and next
sequence point, an object shall have its stored value
modified, at most once, by the evaluation of an expression.
Furthermore, the prior value shall be read only to determine
the value to be stored.� If a program breaks these rules, the
results on any particular implementation are entirely
unpredictable.
Examples of code with undefined behavior are a = a++;,
a[n] = b[n++] and a[i++] = i;. Some more
complicated cases are not diagnosed by this option, and it
may give an occasional false positive result, but in general it
has been found fairly effective at detecting this sort of
problem in programs.

TABLE 3-5: WARNING/ERROR OPTIONS IMPLIED BY -WALL (CONTINUED)
Option Definition
DS51284G-page 40 © 2008 Microchip Technology Inc.

Using the Compiler on the Command Line
-Wswitch Warn whenever a switch statement has an index of
enumeral type and lacks a case for one or more of the named
codes of that enumeration. (The presence of a default label
prevents this warning.) case labels outside the enumeration
range also provoke warnings when this option is used.

-Wsystem-headers Print warning messages for constructs found in system
header files. Warnings from system headers are normally
suppressed, on the assumption that they usually do not
indicate real problems and would only make the compiler
output harder to read. Using this command line option tells
the compiler to emit warnings from system headers as if they
occurred in user code. However, note that using -Wall in
conjunction with this option will not warn about unknown
pragmas in system headers; for that, -Wunknown-pragmas
must also be used.

-Wtrigraphs Warn if any trigraphs are encountered (assuming they are
enabled).

-Wuninitialized Warn if an automatic variable is used without first being
initialized.
These warnings are possible only when optimization is
enabled, because they require data flow information that is
computed only when optimizing.
These warnings occur only for variables that are candidates
for register allocation. Therefore, they do not occur for a
variable that is declared volatile, or whose address is
taken, or whose size is other than 1, 2, 4 or 8 bytes. Also,
they do not occur for structures, unions or arrays, even when
they are in registers.
Note that there may be no warning about a variable that is
used only to compute a value that itself is never used,
because such computations may be deleted by data flow
analysis before the warnings are printed.

-Wunknown-pragmas Warn when a #pragma directive is encountered which is not
understood by the compiler. If this command line option is
used, warnings will even be issued for unknown pragmas in
system header files. This is not the case if the warnings were
only enabled by the -Wall command line option.

-Wunused Warn whenever a variable is unused aside from its
declaration, whenever a function is declared static but never
defined, whenever a label is declared but not used, and
whenever a statement computes a result that is explicitly not
used.
In order to get a warning about an unused function
parameter, both -W and -Wunused must be specified.
Casting an expression to void suppresses this warning for an
expression. Similarly, the unused attribute suppresses this
warning for unused variables, parameters and labels.

-Wunused-function Warn whenever a static function is declared but not defined
or a non-inline static function is unused.

-Wunused-label Warn whenever a label is declared but not used. To suppress
this warning, use the unused attribute (see
Section 2.3.1 �Specifying Attributes of Variables�).

TABLE 3-5: WARNING/ERROR OPTIONS IMPLIED BY -WALL (CONTINUED)
Option Definition
© 2008 Microchip Technology Inc. DS51284G-page 41

16-Bit C Compiler User�s Guide
The following -W options are not implied by -Wall. Some of them warn about construc-
tions that users generally do not consider questionable, but which occasionally you
might wish to check for. Others warn about constructions that are necessary or hard to
avoid in some cases, and there is no simple way to modify the code to suppress the
warning.

-Wunused-parameter Warn whenever a function parameter is unused aside from its
declaration. To suppress this warning, use the unused
attribute (see Section 2.3.1 �Specifying Attributes of
Variables�).

-Wunused-variable Warn whenever a local variable or non-constant static
variable is unused aside from its declaration. To suppress this
warning, use the unused attribute (see
Section 2.3.1 �Specifying Attributes of Variables�).

-Wunused-value Warn whenever a statement computes a result that is
explicitly not used. To suppress this warning, cast the
expression to void.

TABLE 3-5: WARNING/ERROR OPTIONS IMPLIED BY -WALL (CONTINUED)
Option Definition
DS51284G-page 42 © 2008 Microchip Technology Inc.

Using the Compiler on the Command Line
TABLE 3-6: WARNING/ERROR OPTIONS NOT IMPLIED BY -WALL
Option Definition

-W Print extra warning messages for these events:
� A nonvolatile automatic variable might be changed by a

call to longjmp. These warnings are possible only in
optimizing compilation. The compiler sees only the calls
to setjmp. It cannot know where longjmp will be called;
in fact, a signal handler could call it at any point in the
code. As a result, a warning may be generated even
when there is in fact no problem, because longjmp
cannot in fact be called at the place that would cause a
problem.

� A function could exit both via return value; and
return;. Completing the function body without passing
any return statement is treated as return;.

� An expression-statement or the left-hand side of a
comma expression contains no side effects. To suppress
the warning, cast the unused expression to void. For
example, an expression such as x[i,j] will cause a
warning, but x[(void)i,j] will not.

� An unsigned value is compared against zero with < or <=.
� A comparison like x<=y<=z appears; this is equivalent to
(x<=y ? 1 : 0) <= z, which is a different interpretation
from that of ordinary mathematical notation.

� Storage-class specifiers like static are not the first
things in a declaration. According to the C Standard, this
usage is obsolescent.

� If -Wall or -Wunused is also specified, warn about
unused arguments.

� A comparison between signed and unsigned values could
produce an incorrect result when the signed value is
converted to unsigned. (But don�t warn if
-Wno-sign-compare is also specified.)

� An aggregate has a partly bracketed initializer. For
example, the following code would evoke such a warning,
because braces are missing around the initializer for x.h:
struct s { int f, g; };
struct t { struct s h; int i; };
struct t x = { 1, 2, 3 };

� An aggregate has an initializer that does not initialize all
members. For example, the following code would cause
such a warning, because x.h would be implicitly
initialized to zero:
struct s { int f, g, h; };
struct s x = { 3, 4 };

-Waggregate-return Warn if any functions that return structures or unions are
defined or called.

-Wbad-function-cast Warn whenever a function call is cast to a non-matching type.
For example, warn if int foof() is cast to anything *.

-Wcast-align Warn whenever a pointer is cast, such that the required
alignment of the target is increased. For example, warn if a
char * is cast to an int * .

-Wcast-qual Warn whenever a pointer is cast, so as to remove a type
qualifier from the target type. For example, warn if a
const char * is cast to an ordinary char *.
© 2008 Microchip Technology Inc. DS51284G-page 43

16-Bit C Compiler User�s Guide
-Wconversion Warn if a prototype causes a type conversion that is different
from what would happen to the same argument in the
absence of a prototype. This includes conversions of fixed
point to floating and vice versa, and conversions changing the
width or signedness of a fixed point argument, except when
the same as the default promotion.
Also, warn if a negative integer constant expression is
implicitly converted to an unsigned type. For example, warn
about the assignment x = -1 if x is unsigned. But do not
warn about explicit casts like (unsigned) -1.

-Werror Make all warnings into errors.
-Winline Warn if a function can not be inlined, and either it was

declared as inline, or else the -finline-functions option
was given.

-Wlarger-than-len Warn whenever an object of larger than len bytes is defined.
-Wlong-long
-Wno-long-long

Warn if long long type is used. This is default. To inhibit the
warning messages, use -Wno-long-long. Flags
-Wlong-long and -Wno-long-long are taken into account
only when -pedantic flag is used.

-Wmissing-declarations Warn if a global function is defined without a previous
declaration. Do so even if the definition itself provides a
prototype.

-Wmissing-
 format-attribute

If -Wformat is enabled, also warn about functions that might
be candidates for format attributes. Note these are only possi-
ble candidates, not absolute ones. This option has no effect
unless -Wformat is enabled.

-Wmissing-noreturn Warn about functions that might be candidates for attribute
noreturn. These are only possible candidates, not absolute
ones. Care should be taken to manually verify functions.
Actually, do not ever return before adding the noreturn
attribute; otherwise subtle code generation bugs could be
introduced.

-Wmissing-prototypes Warn if a global function is defined without a previous
prototype declaration. This warning is issued even if the
definition itself provides a prototype. (This option can be used
to detect global functions that are not declared in header files.)

-Wnested-externs Warn if an extern declaration is encountered within a
function.

-Wno-deprecated-
 declarations

Do not warn about uses of functions, variables and types
marked as deprecated by using the deprecated attribute.

-Wpadded Warn if padding is included in a structure, either to align an
element of the structure or to align the whole structure.

-Wpointer-arith Warn about anything that depends on the size of a function
type or of void. The compiler assigns these types a size of 1,
for convenience in calculations with void * pointers and
pointers to functions.

-Wredundant-decls Warn if anything is declared more than once in the same
scope, even in cases where multiple declaration is valid and
changes nothing.

-Wshadow Warn whenever a local variable shadows another local
variable.

TABLE 3-6: WARNING/ERROR OPTIONS NOT IMPLIED BY -WALL
Option Definition
DS51284G-page 44 © 2008 Microchip Technology Inc.

Using the Compiler on the Command Line
-Wsign-compare
-Wno-sign-compare

Warn when a comparison between signed and unsigned
values could produce an incorrect result when the signed
value is converted to unsigned. This warning is also enabled
by -W; to get the other warnings of -W without this warning,
use -W -Wno-sign-compare.

-Wstrict-prototypes Warn if a function is declared or defined without specifying the
argument types. (An old-style function definition is permitted
without a warning if preceded by a declaration which specifies
the argument types.)

-Wtraditional Warn about certain constructs that behave differently in
traditional and ANSI C.
� Macro arguments occurring within string constants in the

macro body. These would substitute the argument in
traditional C, but are part of the constant in ANSI C.

� A function declared external in one block and then used
after the end of the block.

� A switch statement has an operand of type long.
� A nonstatic function declaration follows a static one. This

construct is not accepted by some traditional C compilers.
-Wundef Warn if an undefined identifier is evaluated in an #if

directive.
-Wunreachable-code Warn if the compiler detects that code will never be executed.

It is possible for this option to produce a warning even though
there are circumstances under which part of the affected line
can be executed, so care should be taken when removing
apparently-unreachable code. For instance, when a function is
inlined, a warning may mean that the line is unreachable in
only one inlined copy of the function.

-Wwrite-strings Give string constants the type const char[length] so that
copying the address of one into a non-const char * pointer
will get a warning. These warnings will help you find at
compile time code that you can try to write into a string
constant, but only if you have been very careful about using
const in declarations and prototypes. Otherwise, it will just be
a nuisance, which is why -Wall does not request these
warnings.

TABLE 3-6: WARNING/ERROR OPTIONS NOT IMPLIED BY -WALL
Option Definition
© 2008 Microchip Technology Inc. DS51284G-page 45

16-Bit C Compiler User�s Guide
3.5.5 Options for Debugging
The following options are used for debugging.

3.5.6 Options for Controlling Optimization
The following options control compiler optimizations.

TABLE 3-7: DEBUGGING OPTIONS
Option Definition

-g Produce debugging information.
The compiler supports the use of -g with -O making it possible
to debug optimized code. The shortcuts taken by optimized code
may occasionally produce surprising results:
� Some declared variables may not exist at all;
� Flow of control may briefly move unexpectedly;
� Some statements may not be executed because they

compute constant results or their values were already at
hand;

� Some statements may execute in different places because
they were moved out of loops.

Nevertheless it proves possible to debug optimized output. This
makes it reasonable to use the optimizer for programs that might
have bugs.

-Q Makes the compiler print out each function name as it is
compiled, and print some statistics about each pass when it
finishes.

-save-temps Don�t delete intermediate files. Place them in the current direc-
tory and name them based on the source file. Thus, compiling
foo.c with -c -save-temps would produce the following
files:
foo.i (preprocessed file)
foo.p (pre procedure abstraction assembly language file)
foo.s (assembly language file)
foo.o (object file)

TABLE 3-8: GENERAL OPTIMIZATION OPTIONS
Option Definition

-O0 Do not optimize. (This is the default.)
Without -O, the compiler�s goal is to reduce the cost of compi-
lation and to make debugging produce the expected results.
Statements are independent: if you stop the program with a
breakpoint between statements, you can then assign a new
value to any variable or change the program counter to any
other statement in the function and get exactly the results you
would expect from the source code.
The compiler only allocates variables declared register in
registers.

-O
-O1

Optimize. Optimizing compilation takes somewhat longer, and
a lot more host memory for a large function.
With -O, the compiler tries to reduce code size and execution
time.
When -O is specified, the compiler turns on
-fthread-jumps and
 -fdefer-pop. The compiler turns on
-fomit-frame-pointer.
DS51284G-page 46 © 2008 Microchip Technology Inc.

Using the Compiler on the Command Line
The following options control specific optimizations. The -O2 option turns on all of
these optimizations except -funroll-loops, -funroll-all-loops and
-fstrict-aliasing.
You can use the following flags in the rare cases when �fine-tuning� of optimizations to
be performed is desired.

-O2 Optimize even more. The compiler performs nearly all
supported optimizations that do not involve a space-speed
trade-off. -O2 turns on all optional optimizations except for
loop unrolling (-funroll-loops), function inlining
(-finline-functions), and strict aliasing optimizations
(-fstrict-aliasing). It also turns on force copy of
memory operands (-fforce-mem) and Frame Pointer elimi-
nation (-fomit-frame-pointer). As compared to -O, this
option increases both compilation time and the performance of
the generated code.

-O3 Optimize yet more. -O3 turns on all optimizations specified by
-O2 and also turns on the inline-functions option.

-Os Optimize for size. -Os enables all -O2 optimizations that do
not typically increase code size. It also performs further
optimizations designed to reduce code size.

TABLE 3-9: SPECIFIC OPTIMIZATION OPTIONS
Option Definition

-falign-functions
-falign-functions=n

Align the start of functions to the next power-of-two greater
than n, skipping up to n bytes. For instance,
-falign-functions=32 aligns functions to the next
32-byte boundary, but -falign-functions=24 would align
to the next 32-byte boundary only if this can be done by
skipping 23 bytes or less.
-fno-align-functions and -falign-functions=1 are
equivalent and mean that functions will not be aligned.
The assembler only supports this flag when n is a power of
two; so n is rounded up. If n is not specified, use a
machine-dependent default.

-falign-labels
-falign-labels=n

Align all branch targets to a power-of-two boundary, skipping
up to n bytes like -falign-functions. This option can
easily make code slower, because it must insert dummy
operations for when the branch target is reached in the usual
flow of the code.
If -falign-loops or -falign-jumps are applicable and
are greater than this value, then their values are used instead.
If n is not specified, use a machine-dependent default which is
very likely to be 1, meaning no alignment.

-falign-loops
-falign-loops=n

Align loops to a power-of-two boundary, skipping up to n bytes
like -falign-functions. The hope is that the loop will be
executed many times, which will make up for any execution of
the dummy operations.
If n is not specified, use a machine-dependent default.

-fcaller-saves Enable values to be allocated in registers that will be
clobbered by function calls, by emitting extra instructions to
save and restore the registers around such calls. Such
allocation is done only when it seems to result in better code
than would otherwise be produced.

TABLE 3-8: GENERAL OPTIMIZATION OPTIONS (CONTINUED)
Option Definition
© 2008 Microchip Technology Inc. DS51284G-page 47

16-Bit C Compiler User�s Guide
-fcse-follow-jumps In common subexpression elimination, scan through jump
instructions when the target of the jump is not reached by any
other path. For example, when CSE encounters an if
statement with an else clause, CSE will follow the jump when
the condition tested is false.

-fcse-skip-blocks This is similar to -fcse-follow-jumps, but causes CSE to
follow jumps which conditionally skip over blocks. When CSE
encounters a simple if statement with no else clause,
-fcse-skip-blocks causes CSE to follow the jump around
the body of the if.

-fexpensive-
 optimizations

Perform a number of minor optimizations that are relatively
expensive.

-ffunction-sections
-fdata-sections

Place each function or data item into its own section in the
output file. The name of the function or the name of the data
item determines the section�s name in the output file.
Only use these options when there are significant benefits for
doing so. When you specify these options, the assembler and
linker may create larger object and executable files and will
also be slower.

-fgcse Perform a global common subexpression elimination pass.
This pass also performs global constant and copy
propagation.

-fgcse-lm When -fgcse-lm is enabled, global common subexpression
elimination will attempt to move loads which are only killed by
stores into themselves. This allows a loop containing a
load/store sequence to be changed to a load outside the loop,
and a copy/store within the loop.

-fgcse-sm When -fgcse-sm is enabled, a store motion pass is run after
global common subexpression elimination. This pass will
attempt to move stores out of loops. When used in conjunction
with -fgcse-lm, loops containing a load/store sequence can
be changed to a load before the loop and a store after the
loop.

-fmove-all-movables Forces all invariant computations in loops to be moved outside
the loop.

-fno-defer-pop Always pop the arguments to each function call as soon as
that function returns. The compiler normally lets arguments
accumulate on the stack for several function calls and pops
them all at once.

-fno-peephole
-fno-peephole2

Disable machine specific peephole optimizations. Peephole
optimizations occur at various points during the compilation.
-fno-peephole disables peephole optimization on machine
instructions, while -fno-peephole2 disables high level
peephole optimizations. To disable peephole entirely, use both
options.

-foptimize-
 register-move
-fregmove

Attempt to reassign register numbers in move instructions and
as operands of other simple instructions in order to maximize
the amount of register tying.
-fregmove and -foptimize-register-moves are the
same optimization.

TABLE 3-9: SPECIFIC OPTIMIZATION OPTIONS (CONTINUED)
Option Definition
DS51284G-page 48 © 2008 Microchip Technology Inc.

Using the Compiler on the Command Line
-freduce-all-givs Forces all general-induction variables in loops to be
strength-reduced.
These options may generate better or worse code; results are
highly dependent on the structure of loops within the source
code.

-frename-registers Attempt to avoid false dependencies in scheduled code by
making use of registers left over after register allocation. This
optimization will most benefit processors with lots of registers.
It can, however, make debugging impossible, since variables
will no longer stay in a �home register�.

-frerun-cse-after-
 loop

Rerun common subexpression elimination after loop
optimizations has been performed.

-frerun-loop-opt Run the loop optimizer twice.
-fschedule-insns Attempt to reorder instructions to eliminate dsPIC® DSC

Read-After-Write stalls (see the �dsPIC30F Family Reference
Manual� (DS70046) for more details). Typically improves
performance with no impact on code size.

-fschedule-insns2 Similar to -fschedule-insns, but requests an additional
pass of instruction scheduling after register allocation has
been done.

-fstrength-reduce Perform the optimizations of loop strength reduction and
elimination of iteration variables.

-fstrict-aliasing Allows the compiler to assume the strictest aliasing rules
applicable to the language being compiled. For C, this
activates optimizations based on the type of expressions. In
particular, an object of one type is assumed never to reside at
the same address as an object of a different type, unless the
types are almost the same. For example, an unsigned int
can alias an int, but not a void* or a double. A character
type may alias any other type.
Pay special attention to code like this:
union a_union {
 int i;
 double d;
};

int f() {
 union a_union t;
 t.d = 3.0;
 return t.i;
}
The practice of reading from a different union member than
the one most recently written to (called �type-punning�) is
common. Even with -fstrict-aliasing, type-punning is
allowed, provided the memory is accessed through the union
type. So, the code above will work as expected. However, this
code might not:
int f() {
 a_union t;
 int* ip;
 t.d = 3.0;
 ip = &t.i;
 return *ip;
}

TABLE 3-9: SPECIFIC OPTIMIZATION OPTIONS (CONTINUED)
Option Definition
© 2008 Microchip Technology Inc. DS51284G-page 49

16-Bit C Compiler User�s Guide
Options of the form -fflag specify machine-independent flags. Most flags have both
positive and negative forms; the negative form of -ffoo would be -fno-foo. In the
table below, only one of the forms is listed (the one that is not the default.)

-fthread-jumps Perform optimizations where a check is made to see if a jump
branches to a location where another comparison subsumed
by the first is found. If so, the first branch is redirected to either
the destination of the second branch or a point immediately
following it, depending on whether the condition is known to
be true or false.

-funroll-loops Perform the optimization of loop unrolling. This is only done
for loops whose number of iterations can be determined at
compile time or run time. -funroll-loops implies both
-fstrength-reduce and -frerun-cse-after-loop.

-funroll-all-loops Perform the optimization of loop unrolling. This is done for all
loops and usually makes programs run more slowly.
-funroll-all-loops implies -fstrength-reduce, as
well as -frerun-cse-after-loop.

TABLE 3-10: MACHINE-INDEPENDENT OPTIMIZATION OPTIONS
Option Definition

-fforce-mem Force memory operands to be copied into registers
before doing arithmetic on them. This produces better
code by making all memory references potential common
subexpressions. When they are not common subexpres-
sions, instruction combination should eliminate the
separate register-load. The -O2 option turns on this
option.

-finline-functions Integrate all simple functions into their callers. The
compiler heuristically decides which functions are simple
enough to be worth integrating in this way. If all calls to a
given function are integrated, and the function is declared
static, then the function is normally not output as
assembler code in its own right.

-finline-limit=n By default, the compiler limits the size of functions that
can be inlined. This flag allows the control of this limit for
functions that are explicitly marked as inline (i.e., marked
with the inline keyword). n is the size of functions that
can be inlined in number of pseudo instructions (not
counting parameter handling). The default value of n is
10000. Increasing this value can result in more inlined
code at the cost of compilation time and memory
consumption.
Decreasing usually makes the compilation faster and less
code will be inlined (which presumably means slower
programs). This option is particularly useful for programs
that use inlining.

Note: Pseudo instruction represents, in this particular
context, an abstract measurement of function�s size. In no
way does it represent a count of assembly instructions
and as such, its exact meaning might change from one
release of the compiler to an another.

TABLE 3-9: SPECIFIC OPTIMIZATION OPTIONS (CONTINUED)
Option Definition
DS51284G-page 50 © 2008 Microchip Technology Inc.

Using the Compiler on the Command Line
3.5.7 Options for Controlling the Preprocessor
The following options control the compiler preprocessor.

-fkeep-inline-functions Even if all calls to a given function are integrated, and the
function is declared static, output a separate run time
callable version of the function. This switch does not
affect extern inline functions.

-fkeep-static-consts Emit variables declared static const when optimization
isn�t turned on, even if the variables aren�t referenced.
The compiler enables this option by default. If you want to
force the compiler to check if the variable was referenced,
regardless of whether or not optimization is turned on,
use the -fno-keep-static-consts option.

-fno-function-cse Do not put function addresses in registers; make each
instruction that calls a constant function contain the
function�s address explicitly.
This option results in less efficient code, but some
strange hacks that alter the assembler output may be
confused by the optimizations performed when this option
is not used.

-fno-inline Do not pay attention to the inline keyword. Normally
this option is used to keep the compiler from expanding
any functions inline. If optimization is not enabled, no
functions can be expanded inline.

-fomit-frame-pointer Do not keep the Frame Pointer in a register for functions
that don�t need one. This avoids the instructions to save,
set up and restore Frame Pointers; it also makes an extra
register available in many functions.

-foptimize-sibling-calls Optimize sibling and tail recursive calls.

TABLE 3-11: PREPROCESSOR OPTIONS
Option Definition

-Aquestion (answer) Assert the answer answer for question question, in case it is
tested with a preprocessing conditional such as #if
#question(answer). -A- disables the standard assertions
that normally describe the target machine.
For example, the function prototype for main might be declared
as follows:
#if #environ(freestanding)
int main(void);
#else
int main(int argc, char *argv[]);
#endif
A -A command-line option could then be used to select
between the two prototypes. For example, to select the first of
the two, the following command-line option could be used:
-Aenviron(freestanding)

-A -predicate =answer Cancel an assertion with the predicate predicate and answer
answer.

-A predicate =answer Make an assertion with the predicate predicate and answer
answer. This form is preferred to the older form
-A predicate(answer), which is still supported, because it
does not use shell special characters.

TABLE 3-10: MACHINE-INDEPENDENT OPTIMIZATION OPTIONS
Option Definition
© 2008 Microchip Technology Inc. DS51284G-page 51

16-Bit C Compiler User�s Guide
-C Tell the preprocessor not to discard comments. Used with the
-E option.

-dD Tell the preprocessor to not remove macro definitions into the
output, in their proper sequence.

-Dmacro Define macro macro with the string 1 as its definition.
-Dmacro=defn Define macro macro as defn. All instances of -D on the

command line are processed before any -U options.
-dM Tell the preprocessor to output only a list of the macro

definitions that are in effect at the end of preprocessing. Used
with the -E option.

-dN Like -dD except that the macro arguments and contents are
omitted. Only #define name is included in the output.

-fno-show-column Do not print column numbers in diagnostics. This may be
necessary if diagnostics are being scanned by a program that
does not understand the column numbers, such as dejagnu.

-H Print the name of each header file used, in addition to other
normal activities.

-I- Any directories you specify with -I options before the -I-
options are searched only for the case of #include "file";
they are not searched for #include <file>.
If additional directories are specified with -I options after the
-I-, these directories are searched for all #include
directives. (Ordinarily all -I directories are used this way.)
In addition, the -I- option inhibits the use of the current
directory (where the current input file came from) as the first
search directory for #include "file". There is no way to
override this effect of -I-. With -I. you can specify searching
the directory that was current when the compiler was invoked.
That is not exactly the same as what the preprocessor does by
default, but it is often satisfactory.
-I- does not inhibit the use of the standard system directories
for header files. Thus, -I- and -nostdinc are independent.

-Idir Add the directory dir to the head of the list of directories to be
searched for header files. This can be used to override a
system header file, substituting your own version, since these
directories are searched before the system header file
directories. If you use more than one -I option, the directories
are scanned in left-to-right order; the standard system
directories come after.

-idirafter dir Add the directory dir to the second include path. The
directories on the second include path are searched when a
header file is not found in any of the directories in the main
include path (the one that -I adds to).

-imacros file Process file as input, discarding the resulting output, before
processing the regular input file. Because the output generated
from the file is discarded, the only effect of -imacros file is
to make the macros defined in file available for use in the main
input.
Any -D and -U options on the command line are always
processed before -imacros file, regardless of the order in
which they are written. All the -include and -imacros
options are processed in the order in which they are written.

TABLE 3-11: PREPROCESSOR OPTIONS (CONTINUED)
Option Definition
DS51284G-page 52 © 2008 Microchip Technology Inc.

Using the Compiler on the Command Line
-include file Process file as input before processing the regular input file. In
effect, the contents of file are compiled first. Any -D and -U
options on the command line are always processed before
-include file, regardless of the order in which they are
written. All the -include and -imacros options are
processed in the order in which they are written.

-iprefix prefix Specify prefix as the prefix for subsequent -iwithprefix
options.

-isystem dir Add a directory to the beginning of the second include path,
marking it as a system directory, so that it gets the same special
treatment as is applied to the standard system directories.

-iwithprefix dir Add a directory to the second include path. The directory�s
name is made by concatenating prefix and dir, where prefix
was specified previously with -iprefix. If a prefix has not yet
been specified, the directory containing the installed passes of
the compiler is used as the default.

-iwithprefixbefore
dir

Add a directory to the main include path. The directory�s name
is made by concatenating prefix and dir, as in the case of
-iwithprefix.

-M Tell the preprocessor to output a rule suitable for make describ-
ing the dependencies of each object file. For each source file,
the preprocessor outputs one make-rule whose target is the
object file name for that source file and whose dependencies
are all the #include header files it uses. This rule may be a
single line or may be continued with \-newline if it is long. The
list of rules is printed on standard output instead of the prepro-
cessed C program.
-M implies -E (see Section 3.5.2 �Options for Controlling
the Kind of Output�).

-MD Like -M but the dependency information is written to a file and
compilation continues. The file containing the dependency
information is given the same name as the source file with a .d
extension.

-MF file When used with -M or -MM, specifies a file in which to write the
dependencies. If no -MF switch is given, the preprocessor
sends the rules to the same place it would have sent
preprocessed output.
When used with the driver options, -MD or -MMD, -MF,
overrides the default dependency output file.

-MG Treat missing header files as generated files and assume they
live in the same directory as the source file. If -MG is specified,
then either -M or -MM must also be specified. -MG is not
supported with -MD or -MMD.

-MM Like -M but the output mentions only the user header files
included with #include �file�. System header files included
with #include <file> are omitted.

-MMD Like -MD except mention only user header files, not system
header files.

TABLE 3-11: PREPROCESSOR OPTIONS (CONTINUED)
Option Definition
© 2008 Microchip Technology Inc. DS51284G-page 53

16-Bit C Compiler User�s Guide
3.5.8 Options for Assembling
The following options control assembler operations.

-MP This option instructs CPP to add a phony target for each depen-
dency other than the main file, causing each to depend on noth-
ing. These dummy rules work around errors make gives if you
remove header files without updating the make-file to match.
This is typical output:
test.o: test.c test.h
test.h:

-MQ Same as -MT, but it quotes any characters which are special to
make.
-MQ '$(objpfx)foo.o' gives $$(objpfx)foo.o:
foo.c
The default target is automatically quoted, as if it were given
with -MQ.

-MT target Change the target of the rule emitted by dependency
generation. By default, CPP takes the name of the main input
file, including any path, deletes any file suffix such as .c, and
appends the platform�s usual object suffix. The result is the
target.
An -MT option will set the target to be exactly the string you
specify. If you want multiple targets, you can specify them as a
single argument to -MT, or use multiple -MT options.
For example:
-MT '$(objpfx)foo.o' might give $(objpfx)foo.o:
foo.c

-nostdinc Do not search the standard system directories for header files.
Only the directories you have specified with -I options (and the
current directory, if appropriate) are searched. (See
Section 3.5.10 �Options for Directory Search�) for
information on -I.
By using both -nostdinc and -I-, the include-file search
path can be limited to only those directories explicitly specified.

-P Tell the preprocessor not to generate #line directives. Used
with the -E option (see Section 3.5.2 �Options for
Controlling the Kind of Output�).

-trigraphs Support ANSI C trigraphs. The -ansi option also has this
effect.

-Umacro Undefine macro macro. -U options are evaluated after all -D
options, but before any -include and -imacros options.

-undef Do not predefine any nonstandard macros (including
architecture flags).

TABLE 3-12: ASSEMBLY OPTIONS
Option Definition

-Wa,option Pass option as an option to the assembler. If option contains
commas, it is split into multiple options at the commas.

TABLE 3-11: PREPROCESSOR OPTIONS (CONTINUED)
Option Definition
DS51284G-page 54 © 2008 Microchip Technology Inc.

Using the Compiler on the Command Line
3.5.9 Options for Linking
If any of the options -c, -S or -E are used, the linker is not run and object file names
should not be used as arguments.
TABLE 3-13: LINKING OPTIONS

Option Definition

-Ldir Add directory dir to the list of directories to be searched for libraries
specified by the command-line option -l.

-llibrary Search the library named library when linking.
The linker searches a standard list of directories for the library, which is
actually a file named liblibrary.a. The linker then uses this file as if
it had been specified precisely by name.
It makes a difference where in the command you write this option; the
linker processes libraries and object files in the order they are specified.
Thus, foo.o -lz bar.o searches library z after file foo.o but before
bar.o. If bar.o refers to functions in libz.a, those functions may not
be loaded.
The directories searched include several standard system directories,
plus any that you specify with -L.
Normally the files found this way are library files (archive files whose
members are object files). The linker handles an archive file by scanning
through it for members which define symbols that have so far been
referenced but not defined. But if the file that is found is an ordinary
object file, it is linked in the usual fashion. The only difference between
using an -l option (e.g., -lmylib) and specifying a file name (e.g.,
libmylib.a) is that -l searches several directories, as specified.
By default the linker is directed to search:
<install-path>\lib
for libraries specified with the -l option. For a compiler installed into the
default location, this would be:
c:\Program Files\Microchip\MPLAB C30\lib
This behavior can be overridden using the environment variables
defined in Section 3.6 �Environment Variables�.

-nodefaultlibs Do not use the standard system libraries when linking. Only the libraries
you specify will be passed to the linker. The compiler may generate calls
to memcmp, memset and memcpy. These entries are usually resolved by
entries in the standard compiler libraries. These entry points should be
supplied through some other mechanism when this option is specified.

-nostdlib Do not use the standard system startup files or libraries when linking. No
startup files and only the libraries you specify will be passed to the
linker. The compiler may generate calls to memcmp, memset and
memcpy. These entries are usually resolved by entries in standard
compiler libraries. These entry points should be supplied through some
other mechanism when this option is specified.

-s Remove all symbol table and relocation information from the
executable.

-u symbol Pretend symbol is undefined to force linking of library modules to
define the symbol. It is legitimate to use -u multiple times with different
symbols to force loading of additional library modules.

-Wl,option Pass option as an option to the linker. If option contains commas, it
is split into multiple options at the commas.

-Xlinker option Pass option as an option to the linker. You can use this to supply
system-specific linker options that the compiler does not know how to
recognize.
© 2008 Microchip Technology Inc. DS51284G-page 55

16-Bit C Compiler User�s Guide
3.5.10 Options for Directory Search
The following options specify to the compiler where to find directories and files to
search.

3.5.11 Options for Code Generation Conventions
Options of the form -fflag specify machine-independent flags. Most flags have both
positive and negative forms; the negative form of -ffoo would be -fno-foo. In the
table below, only one of the forms is listed (the one that is not the default.)

TABLE 3-14: DIRECTORY SEARCH OPTIONS
Option Definition

-Bprefix This option specifies where to find the executables, libraries,
include files and data files of the compiler itself.
The compiler driver program runs one or more of the
sub-programs pic30-cpp, pic30-cc1, pic30-as and
pic30-ld. It tries prefix as a prefix for each program it tries to
run.
For each sub-program to be run, the compiler driver first tries the
-B prefix, if any. If the sub-program is not found, or if -B was not
specified, the driver uses the value held in the
PIC30_EXEC_PREFIX environment variable, if set. See
Section 3.6 �Environment Variables�, for more information.
Lastly, the driver will search the current PATH environment
variable for the subprogram.
-B prefixes that effectively specify directory names also apply to
libraries in the linker, because the compiler translates these
options into -L options for the linker. They also apply to include
files in the preprocessor, because the compiler translates these
options into -isystem options for the preprocessor. In this case,
the compiler appends include to the prefix. Another way to
specify a prefix much like the -B prefix is to use the environment
variable PIC30_EXEC_PREFIX.

-specs=file Process file after the compiler reads in the standard specs file, in
order to override the defaults that the pic30-gcc driver program
uses when determining what switches to pass to pic30-cc1,
pic30-as, pic30-ld, etc. More than one -specs=file can be
specified on the command line, and they are processed in order,
from left to right.

TABLE 3-15: CODE GENERATION CONVENTION OPTIONS
Option Definition

-fargument-alias
-fargument-noalias
-fargument-
 noalias-global

Specify the possible relationships among parameters and between
parameters and global data.
-fargument-alias specifies that arguments (parameters) may
alias each other and may alias global storage.
-fargument-noalias specifies that arguments do not alias
each other, but may alias global storage.
-fargument-noalias-global specifies that arguments do not
alias each other and do not alias global storage.
Each language will automatically use whatever option is required
by the language standard. You should not need to use these
options yourself.
DS51284G-page 56 © 2008 Microchip Technology Inc.

Using the Compiler on the Command Line
-fcall-saved-reg Treat the register named reg as an allocatable register saved by
functions. It may be allocated even for temporaries or variables
that live across a call. Functions compiled this way will save and
restore the register reg if they use it.
It is an error to used this flag with the Frame Pointer or Stack
Pointer. Use of this flag for other registers that have fixed perva-
sive roles in the machine�s execution model will produce disas-
trous results.
A different sort of disaster will result from the use of this flag for a
register in which function values may be returned.
This flag should be used consistently through all modules.

-fcall-used-reg Treat the register named reg as an allocatable register that is
clobbered by function calls. It may be allocated for temporaries or
variables that do not live across a call. Functions compiled this way
will not save and restore the register reg.
It is an error to use this flag with the Frame Pointer or Stack
Pointer. Use of this flag for other registers that have fixed perva-
sive roles in the machine�s execution model will produce disas-
trous results.
This flag should be used consistently through all modules.

-ffixed-reg Treat the register named reg as a fixed register; generated code
should never refer to it (except perhaps as a Stack Pointer, Frame
Pointer or in some other fixed role).
reg must be the name of a register, e.g., -ffixed-w3.

-finstrument-
 functions

Generate instrumentation calls for entry and exit to functions. Just
after function entry and just before function exit, the following
profiling functions will be called with the address of the current
function and its call site.
void __cyg_profile_func_enter
 (void *this_fn, void *call_site);
void __cyg_profile_func_exit
 (void *this_fn, void *call_site);
The first argument is the address of the start of the current
function, which may be looked up exactly in the symbol table.
The profiling functions should be provided by the user.
Function instrumentation requires the use of a Frame Pointer.
Some optimization levels disable the use of the Frame Pointer.
Using -fno-omit-frame-pointer will prevent this.
This instrumentation is also done for functions expanded inline in
other functions. The profiling calls will indicate where, conceptu-
ally, the inline function is entered and exited. This means that
addressable versions of such functions must be available. If all
your uses of a function are expanded inline, this may mean an
additional expansion of code size. If you use extern inline in
your C code, an addressable version of such functions must be
provided.
A function may be given the attribute
no_instrument_function, in which case this instrumentation
will not be done.

-fno-ident Ignore the #ident directive.

TABLE 3-15: CODE GENERATION CONVENTION OPTIONS (CONTINUED)
Option Definition
© 2008 Microchip Technology Inc. DS51284G-page 57

16-Bit C Compiler User�s Guide
-fpack-struct Pack all structure members together without holes. Usually you
would not want to use this option, since it makes the code
sub-optimal, and the offsets of structure members won�t agree with
system libraries.
The dsPIC® DSC device requires that words be aligned on even
byte boundaries, so care must be taken when using the packed
attribute to avoid run time addressing errors.

-fpcc-struct-
 return

Return short struct and union values in memory like longer
ones, rather than in registers. This convention is less efficient, but
it has the advantage of allowing capability between the 16-bit com-
piler compiled files and files compiled with other compilers.
Short structures and unions are those whose size and alignment
match that of an integer type.

-fno-short-double By default, the compiler uses a double type equivalent to float.
This option makes double equivalent to long double. Mixing
this option across modules can have unexpected results if
modules share double data either directly through argument
passage or indirectly through shared buffer space. Libraries
provided with the product function with either switch setting.

-fshort-enums Allocate to an enum type only as many bytes as it needs for the
declared range of possible values. Specifically, the enum type will
be equivalent to the smallest integer type which has enough room.

-fverbose-asm
-fno-verbose-asm

Put extra commentary information in the generated assembly code
to make it more readable.
-fno-verbose-asm, the default, causes the extra information to
be omitted and is useful when comparing two assembler files.

-fvolatile Consider all memory references through pointers to be volatile.
-fvolatile-global Consider all memory references to external and global data items

to be volatile. The use of this switch has no effect on static data.
-fvolatile-static Consider all memory references to static data to be volatile.

TABLE 3-15: CODE GENERATION CONVENTION OPTIONS (CONTINUED)
Option Definition
DS51284G-page 58 © 2008 Microchip Technology Inc.

Using the Compiler on the Command Line
3.6 ENVIRONMENT VARIABLES
The variables in this section are optional, but, if defined, they will be used by the
compiler. The compiler driver, or other subprogram, may choose to determine an
appropriate value for some of the following environment variables if they are unset. The
driver, or other subprogram, takes advantage of internal knowledge about the
installation of the compiler. As long as the installation structure remains intact, with all
subdirectories and executables remaining in the same relative position, the driver or
subprogram will be able to determine a usable value.
TABLE 3-16: COMPILER-RELATED ENVIRONMENTAL VARIABLES

Option Definition

PIC30_C_INCLUDE_
PATH

This variable�s value is a semicolon-separated list of directories, much
like PATH. When the compiler searches for header files, it tries the
directories listed in the variable, after the directories specified with -I
but before the standard header file directories.
If the environment variable is undefined, the preprocessor chooses an
appropriate value based on the standard installation. By default, the
following directories are searched for include files:
<install-path>\include and
<install-path>\support\h

PIC30_COMPILER_
PATH

The value of PIC30_COMPILER_PATH is a semicolon-separated list of
directories, much like PATH. The compiler tries the directories thus
specified when searching for subprograms, if it can�t find the
subprograms using PIC30_EXEC_PREFIX.

PIC30_EXEC_
PREFIX

If PIC30_EXEC_PREFIX is set, it specifies a prefix to use in the
names of subprograms executed by the compiler. No directory
delimiter is added when this prefix is combined with the name of a
subprogram, but you can specify a prefix that ends with a slash if you
wish. If the compiler cannot find the subprogram using the specified
prefix, it tries looking in your PATH environment variable.
If the PIC30_EXEC_PREFIX environment variable is unset or set to
an empty value, the compiler driver chooses an appropriate value
based on the standard installation. If the installation has not been
modified, this will result in the driver being able to locate the required
subprograms.
Other prefixes specified with the -B command line option take
precedence over the user- or driver-defined value of
PIC30_EXEC_PREFIX.
Under normal circumstances it is best to leave this value undefined
and let the driver locate subprograms itself.

PIC30_LIBRARY_
PATH

This variable�s value is a semicolon-separated list of directories, much
like PATH. This variable specifies a list of directories to be passed to
the linker. The driver�s default evaluation of this variable is:
<install-path>\lib; <install-path>\support\gld.

PIC30_OMF Specifies the OMF (Object Module Format) to be used by the compiler.
By default, the tools create COFF object files. If the environment
variable PIC30_OMF has the value elf, the tools will create ELF
object files.

TMPDIR If TMPDIR is set, it specifies the directory to use for temporary files.
The compiler uses temporary files to hold the output of one stage of
compilation that is to be used as input to the next stage: for example,
the output of the preprocessor, which is the input to the compiler
proper.
© 2008 Microchip Technology Inc. DS51284G-page 59

16-Bit C Compiler User�s Guide
3.7 PREDEFINED MACRO NAMES
The compiler predefines several macros which can be tested by conditional directives
in source code.
The following preprocessing symbols are defined by the compiler being used.

The following symbols define the target family.

In addition, the compiler defines a symbol based on the target device set with -mcpu=.
For example, -mcpu=30F6014, which defines the symbol __dsPIC30F6014__.
The compiler will define the constant __C30_VERSION__, giving a numeric value to
the version identifier. This can be used to take advantage of new compiler features
while still remaining backward compatible with older versions.
The value is based upon the major and minor version numbers of the current release.
For example, release version 2.00 will have a __C30_VERSION__ definition of 200.
This macro can be used, in conjunction with standard preprocessor comparison state-
ments, to conditionally include/exclude various code constructs.
The current definition of __C30_VERSION__ can be discovered by adding
--version to the command line, or by inspecting the README.html file that came
with the release.
Constants that have been deprecated may be found in Appendix E. �Deprecated
Features�.

3.8 COMPILING A SINGLE FILE ON THE COMMAND LINE
This section demonstrates how to compile and link a single file. For the purpose of this
discussion, it is assumed the compiler is installed on your c: drive in the standard
directory location. Therefore, the following will apply:
� c:\Program Files\Microchip\MPLAB C30\include - Include directory for

ANSI C header file. This directory is where the compiler stores the standard C
library system header files. The PIC30_C_INCLUDE_PATH environment variable
can point to that directory. (From the DOS command prompt, type set to check
this.)

� c:\Program Files\Microchip\MPLAB C30\support\dsPIC30F\h -
Include directory for dsPIC® DSC device-specific header files. This directory is
where the compiler stores the dsPIC DSC device-specific header files.

Compiler Symbol Defined with -ansi command-line option?

16-Bit Compiler C30 No
__C30 Yes
__C30__ Yes

ELF-specific C30ELF No
__C30ELF Yes
__C30ELF__ Yes

COFF-specific C30COFF No
__C30COFF Yes
__C30COFF__ Yes

Symbol Defined with -ansi command-line option?

__dsPIC30F__ Yes
__dsPIC33F__ Yes
__PIC24F__ Yes
__PIC24H__ Yes
DS51284G-page 60 © 2008 Microchip Technology Inc.

Using the Compiler on the Command Line
� c:\Program Files\Microchip\MPLAB C30\lib - Library directory: this
directory is where the libraries and precompiled object files reside.

� c:\Program Files\Microchip\MPLAB C30\support\dsPIC30F\gld -
Linker script directory: this directory is where device-specific linker script files may
be found.

� c:\Program Files\Microchip\MPLAB C30\bin - Executables directory:
this directory is where the compiler programs are located. Your PATH environment
variable should include this directory.

The following is a simple C program that adds two numbers.
Create the following program with any text editor and save it as ex1.c.
#include <p30f2010.h>
int main(void);
unsigned int Add(unsigned int a, unsigned int b);
unsigned int x, y, z;
int
main(void)
{
 x = 2;
 y = 5;
 z = Add(x,y);
 return 0;
}
unsigned int
Add(unsigned int a, unsigned int b)
{
 return(a+b);
}

The first line of the program includes the header file p30f2010.h, which provides
definitions for all special function registers on that part. For more information on header
files, see Chapter 7. �Device Support Files�.
Compile the program by typing the following at a DOS prompt:
C:\> pic30-gcc -o ex1.o ex1.c

The command-line option -o ex1.o names the output COFF executable file (if the -o
option is not specified, then the output file is named a.exe). The COFF executable file
may be loaded into the MPLAB IDE.
If a hex file is required, for example to load into a device programmer, then use the
following command:
C:\> pic30-bin2hex ex1.o

This creates an Intel hex file named ex1.hex.

3.9 COMPILING MULTIPLE FILES ON THE COMMAND LINE
Move the Add() function into a file called add.c to demonstrate the use of multiple
files in an application. That is:
File 1
/* ex1.c */
#include <p30f2010.h>
int main(void);
unsigned int Add(unsigned int a, unsigned int b);
unsigned int x, y, z;
int main(void)
{
 x = 2;
 y = 5;
© 2008 Microchip Technology Inc. DS51284G-page 61

16-Bit C Compiler User�s Guide
 z = Add(x,y);
 return 0;
}
File 2
/* add.c */
#include <p30f2010.h>
unsigned int
Add(unsigned int a, unsigned int b)
{
 return(a+b);
}

Compile both files by typing the following at a DOS prompt:
C:\> pic30-gcc -o ex1.o ex1.c add.c

This command compiles the modules ex1.c and add.c. The compiled modules are
linked with the compiler libraries and the executable file ex1.o is created.

3.10 NOTABLE SYMBOLS
The 16-bit linker defines several symbols that may be used in your C code develop-
ment. Please see the MPLAB Assembler, Linker and Utilities for PIC24 MCUs and
dsPIC® DSCs User�s Guide (DS51317) for more information.
A useful address symbol, _PROGRAM_END, is defined in program memory to mark the
highest address used by a CODE or PSV section. It should be referenced with the
address operator (&) in a built-in function call that accepts the address of an object in
program memory. This symbol can be used by applications as an end point for check-
sum calculations.
For example:
 __builtin_tblpage(&_PROGRAM_END)
 __builtin_tbloffset(&_PROGRAM_END)

 _prog_addressT big_addr;
 _init_prog_address(big_addr, _PROGRAM_END)
DS51284G-page 62 © 2008 Microchip Technology Inc.

MPLAB® C COMPILER FOR
PIC24 MCUs AND dsPIC® DSCs

USER�S GUIDE
Chapter 4. Run Time Environment
4.1 INTRODUCTION
This section discusses the MPLAB C Compiler for PIC24 MCUs and dsPIC® DSCs
(formerly MPLAB C30) run-time environment.

4.2 HIGHLIGHTS
Items discussed in this chapter are:
� Address Spaces
� Startup and Initialization
� Memory Spaces
� Memory Models
� Locating Code and Data
� Software Stack
� The C Stack Usage
� The C Heap Usage
� Function Call Conventions
� Register Conventions
� Bit Reversed and Modulo Addressing
� Program Space Visibility (PSV) Usage

4.3 ADDRESS SPACES
The dsPIC Digital Signal Controller (DSC) devices are a combination of traditional PIC®
Microcontroller (MCU) features (peripherals, Harvard architecture, RISC) and new
DSP capabilities. The dsPIC DSC devices have two distinct memory regions:
� Program Memory contains executable code and optionally constant data.
� Data Memory contains external variables, static variables, the system stack and

file registers. Data memory consists of near data, which is memory in the first 8
KB of the data memory space, and far data, which is in the upper 56 KB of data
memory space.

Although the program and data memory regions are distinctly separate, the compiler
can access constant data in program memory through the program space visibility
window.
© 2008 Microchip Technology Inc. DS51284G-page 63

16-Bit C Compiler User�s Guide
4.4 STARTUP AND INITIALIZATION
Two C run-time startup modules are included in the libpic30.a archive/library. The
entry point for both startup modules is __reset. The linker scripts construct a GOTO
__reset instruction at location 0 in program memory, which transfers control upon
device reset.
The primary startup module (crt0.o) is linked by default and performs the following:
1. The Stack Pointer (W15) and Stack Pointer Limit register (SPLIM) are initialized,

using values provided by the linker or a custom linker script. For more
information, see Section 4.8 �Software Stack�.

2. If a .const section is defined, it is mapped into the program space visibility
window by initializing the PSVPAG and CORCON registers. Note that a .const
section is defined when the �Constants in code space� option is selected in
MPLAB IDE, or the default -mconst-in-code option is specified on the
compiler command line.

3. The data initialization template in section .dinit is read, causing all
uninitialized sections to be cleared, and all initialized sections to be initialized
with values read from program memory. The data initialization template is
created by the linker, and supports the standard sections listed in
Section 4.3 �Address Spaces�, as well as the user-defined sections.

4. If the application has defined user_init functions, these are invoked. The
order of execution depends on link order.

5. The function main is called with no parameters.
6. If main returns, the processor will reset.
The alternate startup module (crt1.o) is linked when the -Wl, --no-data-init
option is specified. It performs the same operations, except for step (3), which is
omitted. The alternate startup module is smaller than the primary module, and can be
selected to conserve program memory if data initialization is not required.
Source code (in dsPIC DSC assembly language) for both modules is provided in the
c:\Program Files\Microchip\MPLAB C30\src directory. The startup modules
may be modified if necessary. For example, if an application requires main to be called
with parameters, a conditional assembly directive may be changed to provide this
support.

Note: The persistent data section .pbss is never cleared or initialized.
DS51284G-page 64 © 2008 Microchip Technology Inc.

Run Time Environment
4.5 MEMORY SPACES
Static and external variables are normally allocated in general purpose data memory.
Const-qualified variables will be allocated in general purpose data memory if the
constants-in-data memory model is selected, or in program memory if the
constants-in-code memory model is selected.
The compiler defines several special purpose memory spaces to match architectural
features of 16-bit devices. Static and external variables may be allocated in the special
purpose memory spaces through use of the space attribute, described in
Section 2.3.1 �Specifying Attributes of Variables�:

data

General data space. Variables in general data space can be accessed using ordinary
C statements. This is the default allocation.

xmemory - dsPIC30F/dsPIC33F devices only

X data address space. Variables in X data space can be accessed using ordinary C
statements. X data address space has special relevance for DSP-oriented libraries
and/or assembly language instructions.

ymemory - dsPIC30F/dsPIC33F devices only

Y data address space. Variables in Y data space can be accessed using ordinary C
statements. Y data address space has special relevance for DSP-oriented libraries
and/or assembly language instructions.

prog

General program space, which is normally reserved for executable code. Variables in
program space can not be accessed using ordinary C statements. They must be
explicitly accessed by the programmer, usually using table-access inline assembly
instructions, or using the program space visibility window.

auto_psv

A compiler-managed area in program space, designated for program space visibility
window access. Variables in this space can be read (but not written) using ordinary C
statements and are subject to a maximum of 32K total space allocated.

psv

Program space, designated for program space visibility window access. Variables in
PSV space are not managed by the compiler and can not be accessed using ordinary
C statements. They must be explicitly accessed by the programmer, usually using
table-access inline assembly instructions, or using the program space visibility window.
Variables in PSV space can be accessed using a single setting of the PSVPAG register.

eedata - dsPIC30F/dsPIC33F devices only

Data EEPROM space, a region of 16-bit wide non-volatile memory located at high
addresses in program memory. Variables in eedata space can not be accessed using
ordinary C statements. They must be explicitly accessed by the programmer, usually
using table-access inline assembly instructions, or using the program space visibility
window.

dma - PIC24H MCUs, dsPIC33F DSCs only

DMA memory. Variables in DMA memory can be accessed using ordinary C statements
and by the DMA peripheral.
© 2008 Microchip Technology Inc. DS51284G-page 65

16-Bit C Compiler User�s Guide
4.6 MEMORY MODELS
The compiler supports several memory models. Command-line options are available
for selecting the optimum memory model for your application, based on the specific
dsPIC DSC device part that you are using and the type of memory usage.

TABLE 4-1: MEMORY MODEL COMMAND LINE OPTIONS

The command-line options apply globally to the modules being compiled. Individual
variables and functions can be declared as near or far to better control the code
generation. For information on setting individual variable or function attributes, see
Section 2.3.1 �Specifying Attributes of Variables� and Section 2.3.2 �Specifying
Attributes of Functions�.

4.6.1 Near and Far Data
If variables are allocated in the near data section, the compiler is often able to generate
better (more compact) code than if the variables are not allocated in the near data
section. If all variables for an application can fit within the 8 KB of near data, then the
compiler can be requested to place them there by using the default -msmall-data
command line option when compiling each module. If the amount of data consumed
by scalar types (no arrays or structures) totals less than 8 KB, the default
-msmall-scalar may be used. This requests that the compiler arrange to have just
the scalars for an application allocated in the near data section.
If neither of these global options is suitable, then the following alternatives are
available.

Option Memory Definition Description

-msmall-data Up to 8 KB of data memory.
This is the default.

Permits use of PIC18 like instructions
for accessing data memory.

-msmall-scalar Up to 8 KB of data memory.
This is the default.

Permits use of PIC18 like instructions
for accessing scalars in data memory.

-mlarge-data Greater than 8 KB of data
memory.

Uses indirection for data references.

-msmall-code Up to 32 Kwords of program
memory. This is the default.

Function pointers will not go through a
jump table. Function calls use RCALL
instruction.

-mlarge-code Greater than 32 Kwords of
program memory.

Function pointers might go through a
jump table. Function calls use CALL
instruction.

-mconst-in-data Constants located in data
memory.

Values copied from program memory
by startup code.

-mconst-in-code Constants located in program
memory. This is the default.

Values are accessed via Program
Space Visibility (PSV) data window.
DS51284G-page 66 © 2008 Microchip Technology Inc.

Run Time Environment
1. It is possible to compile some modules of an application using the
-mlarge-data or -mlarge-scalar command line options. In this case, only
the variables used by those modules will be allocated in the far data section. If
this alternative is used, then care must be taken when using externally defined
variables. If a variable that is used by modules compiled using one of these
options is defined externally, then the module in which it is defined must also be
compiled using the same option, or the variable declaration and definition must
be tagged with the far attribute.

2. If the command line options -mlarge-data or -mlarge-scalar have been
used, then an individual variable may be excluded from the far data space by
tagging it with the near attribute.

3. Instead of using command-line options, which have module scope, individual
variables may be placed in the far data section by tagging them with the far
attribute.

The linker will produce an error message if all near variables for an application cannot
fit in the 8K near data space.

4.6.2 Near and Far Code
Functions that are near (within a radius of 32 Kwords of each other) may call each other
more efficiently that those which are not. If it is known that all functions in an application
are near, then the default -msmall-code command line option can be used when
compiling each module to direct the compiler to use a more efficient form of the function
call.
If this default option is not suitable, then the following alternatives are available:
1. It is possible to compile some modules of an application using the

-msmall-code command line option. In this case, only function calls in those
modules will use a more efficient form of the function call.

2. If the -msmall-code command-line option has been used, then the compiler
may be directed to use the long form of the function call for an individual function
by tagging it with the far attribute.

3. Instead of using command-line options, which have module scope, the compiler
may be directed to call individual functions using a more efficient form of the
function call by tagging their declaration and definition with the near attribute.

The -msmall-code command-line option differs from the -msmall-data
command-line option in that in the former case, the compiler does nothing special to
ensure that functions are allocated near one another, whereas in the latter case, the
compiler will allocate variables in a special section.
The linker will produce an error message if the function declared to be near cannot be
reached by one of its callers using a more efficient form of the function call.
© 2008 Microchip Technology Inc. DS51284G-page 67

16-Bit C Compiler User�s Guide
4.7 LOCATING CODE AND DATA
As described in Section 4.3 �Address Spaces�, the compiler arranges for code to be
placed in the .text section, and data to be placed in one of several named sections,
depending on the memory model used and whether or not the data is initialized. When
modules are combined at link time, the linker determines the starting addresses of the
various sections based on their attributes.
Cases may arise when a specific function or variable must be located at a specific
address, or within some range of addresses. The easiest way to accomplish this is by
using the address attribute, described in Section 2.3 �Keyword Differences�. For
example, to locate function PrintString at address 0x8000 in program memory:
int __attribute__ ((address(0x8000))) PrintString (const char *s);

Likewise, to locate variable Mabonga at address 0x1000 in data memory:
int __attribute__ ((address(0x1000))) Mabonga = 1;

Another way to locate code or data is by placing the function or variable into a
user-defined section, and specifying the starting address of that section in a custom
linker script. This is done as follows:
1. Modify the code or data declaration in the C source to specify a user-defined

section.
2. Add the user-defined section to a custom linker script file to specify the starting

address of the section.
For example, to locate the function PrintString at address 0x8000 in program
memory, first declare the function as follows in the C source:
int __attribute__((__section__(".myTextSection")))
PrintString(const char *s);

The section attribute specifies that the function should be placed in a section named
.myTextSection, rather than the default .text section. It does not specify where
the user-defined section is to be located. That must be done in a custom linker script,
as follows. Using the device-specific linker script as a base, add the following section
definition:
.myTextSection 0x8000 :
 {
 *(.myTextSection);
 } >program

This specifies that the output file should contain a section named .myTextSection
starting at location 0x8000 and containing all input sections named.myTextSection.
Since, in this example, there is a single function PrintString in that section, then the
function will be located at address 0x8000 in program memory.
Similarly, to locate the variable Mabonga at address 0x1000 in data memory, first
declare the variable as follows in the C source:
int __attribute__((__section__(".myDataSection"))) Mabonga =
1;
DS51284G-page 68 © 2008 Microchip Technology Inc.

Run Time Environment
The section attribute specifies that the function should be placed in a section
named.myDataSection, rather than the default .data section. It does not specify
where the user-defined section is to be located. Again, that must be done in a custom
linker script, as follows. Using the device-specific linker script as a base, add the fol-
lowing section definition:
.myDataSection 0x1000 :
 {
 *(.myDataSection);
 } >data

This specifies that the output file should contain a section named.myDataSection
starting at location 0x1000 and containing all input sections named.myDataSection.
Since, in this example, there is a single variable Mabonga in that section, then the
variable will be located at address 0x1000 in data memory.

4.8 SOFTWARE STACK
The dsPIC DSC device dedicates register W15 for use as a software Stack Pointer. All
processor stack operations, including function calls, interrupts and exceptions, use the
software stack. The stack grows upward, towards higher memory addresses.
The dsPIC DSC device also supports stack overflow detection. If the Stack Pointer
Limit register, SPLIM, is initialized, the device will test for overflow on all stack opera-
tions. If an overflow should occur, the processor will initiate a stack error exception. By
default, this will result in a processor reset. Applications may also install a stack error
exception handler by defining an interrupt function named _StackError. See Chap-
ter 8. �Interrupts� for details.
The C run-time startup module initializes the Stack Pointer (W15) and the Stack Pointer
Limit register during the startup and initialization sequence. The initial values are
normally provided by the linker, which allocates the largest stack possible from unused
data memory. The location of the stack is reported in the link map output file.
Applications can ensure that at least a minimum-sized stack is available with the
--stack linker command-line option. See the �MPLAB® Assembler, Linker and
Utilities for PIC24 MCUs and dsPIC® DSCs User�s Guide� (DS51317) for details.
Alternatively, the stack of specific size may be allocated with a user-defined section in
a custom linker script. In the following example, 0x100 bytes of data memory are
reserved for the stack. Two symbols are declared, __SP_init and __SPLIM_init,
for use by the C run-time startup module:
.stack :
 {
 __SP_init = .;
 . += 0x100;
 __SPLIM_init = .;
 . += 8;
 } >data

__SP_init defines the initial value for the Stack Pointer (W15) and __SPLIM_init
defines the initial value for the Stack Pointer Limit register (SPLIM). The value of
__SPLIM_init should be at least 8 bytes less than the physical stack limit, to allow
for stack error exception processing. This value should be decreased further to account
for stack usage by the interrupt handler itself, if a stack error interrupt handler is
installed. The default interrupt handler does not require additional stack usage.
© 2008 Microchip Technology Inc. DS51284G-page 69

16-Bit C Compiler User�s Guide
4.9 THE C STACK USAGE
The C compiler uses the software stack to:
� Allocate automatic variables
� Pass arguments to functions
� Save the processor status in interrupt functions
� Save function return address
� Store temporary results
� Save registers across function calls
The run-time stack grows upward from lower addresses to higher addresses. The
compiler uses two working registers to manage the stack:
� W15 � This is the Stack Pointer (SP). It points to the top of stack which is defined

to be the first unused location on the stack.
� W14 � This is the Frame Pointer (FP). It points to the current function�s frame.

Each function, if required, creates a new frame at the top of the stack from which
automatic and temporary variables are allocated. The compiler option
-fomit-frame-pointer can be used to restrict the use of the FP.

FIGURE 4-1: STACK AND FRAME POINTERS

The C run-time startup modules (crt0.o and crt1.o in libpic30.a) initialize the
Stack Pointer W15 to point to the bottom of the stack and initialize the Stack Pointer
Limit register to point to the top of the stack. The stack grows up and if it should grow
beyond the value in the Stack Pointer Limit register, then a stack error trap will be taken.
The user may initialize the Stack Pointer Limit register to further restrict stack growth.
The following diagrams illustrate the steps involved in calling a function. Executing a
CALL or RCALL instruction pushes the return address onto the software stack. See
Figure 4-2.

Stack grows
toward
greater
addresses

SP (W15)

FP (W14)Function Frame
DS51284G-page 70 © 2008 Microchip Technology Inc.

Run Time Environment
FIGURE 4-2: CALL OR RCALL

The called function (callee) can now allocate space for its local context (Figure 4-3).

FIGURE 4-3: CALLEE SPACE ALLOCATION

Stack grows
toward
greater
addresses

SP (W15)

FP (W14)

Return addr [23:16]

Return addr [15:0]

Parameter 1

:

Parameter n-1

Parameter n

Caller�s Frame

Stack grows
toward
greater
addresses

SP (W15)

FP (W14)Local Variables

Return addr [15:0]

Parameter 1

:

Parameter n-1

Parameter n

Caller�s Frame

Return addr [23:16]

and Temporaries

Previous FP
© 2008 Microchip Technology Inc. DS51284G-page 71

16-Bit C Compiler User�s Guide
Finally, any callee-saved registers that are used in the function are pushed
(Figure 4-4).

FIGURE 4-4: PUSH CALLEE-SAVED REGISTERS

4.10 THE C HEAP USAGE
The C run-time heap is an uninitialized area of data memory that is used for dynamic
memory allocation using the standard C library dynamic memory management
functions, calloc, malloc and realloc. If you do not use any of these functions,
then you do not need to allocate a heap. By default, a heap is not created.
If you do want to use dynamic memory allocation, either directly, by calling one of the
memory allocation functions, or indirectly, by using a standard C library input/output
function, then a heap must be created. A heap is created by specifying its size on the
linker command line, using the --heap linker command-line option. An example of
allocating a heap of 512 bytes using the command line is:
pic30-gcc foo.c -Wl,--heap=512

The linker allocates the heap immediately below the stack.
If you use a standard C library input/output function, then a heap must be allocated. If
stdout is the only file that you use, then the heap size can be zero, that is, use the
command-line option:
-Wl,--heap=0

If you open files, then the heap size must include 40 bytes for each file that is simulta-
neously open. If there is insufficient heap memory, then the open function will return an
error indicator. For each file that should be buffered, 514 bytes of heap space is
required. If there is insufficient heap memory for the buffer, then the file will be opened
in unbuffered mode.

Stack grows
toward
greater
addresses

SP (W15)

FP (W14)

Callee-Saved

Return addr [15:0]

Parameter 1

:

Parameter n-1

Parameter n

Caller�s Frame

Return addr [23:16]

Registers

Previous FP

Local Variables
and Temporaries

[W14+n] accesses
local context

[W14-n] accesses

function parameters
stack-based
DS51284G-page 72 © 2008 Microchip Technology Inc.

Run Time Environment
4.11 FUNCTION CALL CONVENTIONS
When calling a function:
� Registers W0-W7 are caller saved. The calling function must push these values

onto the stack for the register values to be preserved.
� Registers W8-W14 are callee saved. The function being called must save any of

these registers it will modify.
� Registers W0-W4 are used for function return values.

TABLE 4-2: REGISTERS REQUIRED

Parameters are placed in the first aligned contiguous register(s) that are available. The
calling function must preserve the parameters, if required. Structures do not have any
alignment restrictions; a structure parameter will occupy registers if there are enough
registers to hold the entire structure. Function results are stored in consecutive
registers, beginning with W0.

4.11.1 Function Parameters
The first eight working registers (W0-W7) are used for function parameters.Parameters
are allocated to registers in left-to-right order, and a parameter is assigned to the first
available register that is suitably aligned.
In the following example, all parameters are passed in registers, although not in the
order that they appear in the declaration. This format allows the compiler to make the
most efficient use of the available parameter registers.

EXAMPLE 4-1: FUNCTION CALL MODEL

void
params0(short p0, long p1, int p2, char p3, float p4, void *p5)
{
 /*
 ** W0 p0
 ** W1 p2
 ** W3:W2 p1
 ** W4 p3
 ** W5 p5
 ** W7:W6 p4
 */
 ...
}

The next example demonstrates how structures are passed to functions. If the
complete structure can fit in the available registers, then the structure is passed via
registers; otherwise the structure argument will be placed onto the stack.

Data Type Number of Registers Required

char 1
int 1
short 1
pointer 1
long 2 (contiguous � aligned to even numbered register)
float 2 (contiguous � aligned to even numbered register)
double* 2 (contiguous � aligned to even numbered register)
long double 4 (contiguous � aligned to quad numbered register)
structure 1 register per 2 bytes in structure
* double is equivalent to long double if -fno-short-double is used.
© 2008 Microchip Technology Inc. DS51284G-page 73

16-Bit C Compiler User�s Guide
EXAMPLE 4-2: FUNCTION CALL MODEL, PASSING STRUCTURES

typedef struct bar {
 int i;
 double d;
} bar;

void
params1(int i, bar b) {
 /*
 ** W0 i
 ** W1 b.i
 ** W5:W2 b.d
 */

}

Parameters corresponding to the ellipses (...) of a variable-length argument list are not
allocated to registers. Any parameter not allocated to registers is pushed onto the
stack, in right-to-left order.
In the next example, the structure parameter cannot be placed in registers because it
is too large. However, this does not prevent the next parameter from using a register
spot.

EXAMPLE 4-3: FUNCTION CALL MODEL, STACK BASED ARGUMENTS

typedef struct bar {
 double d,e;
} bar;

void
params2(int i, bar b, int j) {
 /*
 ** W0 i
 ** stack b
 ** W1 j
 */
}

Accessing arguments that have been placed onto the stack depends upon whether or
not a Frame Pointer has been created. Generally the compiler will produce a Frame
Pointer (unless otherwise told not to do so), and stack-based parameters will be
accessed via the Frame Pointer register (W14). The above example, b will be
accessed from W14-22. The Frame Pointer offset of negative 22 has been calculated
(refer to Figure 4-4) by removing 2 bytes for the previous FP, 4 bytes for the return
address, followed by 16 bytes for b.
When no Frame Pointer is used, the assembly programmer must know how much stack
space has been used since entry to the procedure. If no further stack space is used,
the calculation is similar to the above. b would be accessed via W15-20; 4 bytes for the
return address and 16 bytes to access the start of b.

4.11.2 Return Value
Function return values are returned in W0 for 8- or 16-bit scalars, W1:W0 for 32-bit
scalars, and W3:W2:W1:W0 for 64-bit scalars. Aggregates are returned indirectly
through W0, which is set up by the function caller to contain the address of the
aggregate value.

4.11.3 Preserving Registers Across Function Calls
DS51284G-page 74 © 2008 Microchip Technology Inc.

Run Time Environment
The compiler arranges for registers W8-W15 to be preserved across ordinary function
calls. Registers W0-W7 are available as scratch registers. For interrupt functions, the
compiler arranges for all necessary registers to be preserved, namely W0-W15 and
RCOUNT.

4.12 REGISTER CONVENTIONS
Specific registers play specific roles in the C run-time environment. Register variables
use one or more working registers, as shown in Table 4-3.

TABLE 4-3: REGISTER CONVENTIONS
Variable Working Register

char, signed char, unsigned char W0-W13, and W14 if not used as a Frame
Pointer.

short, signed short, unsigned
short

W0-W13, and W14 if not used as a Frame
Pointer.

int, signed int,unsigned int W0-W13, and W14 if not used as a Frame
Pointer.

void * (or any pointer) W0-W13, and W14 if not used as a Frame
Pointer.

long, signed long, unsigned long A pair of contiguous registers, the first of which
is a register from the set {W0, W2, W4, W6, W8,
W10, W12}. The lower-numbered register
contains the least significant 16-bits of the value.

long long, signed long long,
unsigned long long

A quadruplet of contiguous registers, the first of
which is a register from the set {W0, W4, W8}.
The lower-numbered register contains the least
significant 16-bits of the value. Successively
higher-numbered registers contain successively
more significant bits.

float A pair of contiguous registers, the first of which
is a register from the set {W0, W2, W4, W6, W8,
W10, W12}. The lower-numbered register
contains the least significant 16-bits of the
significant.

double* A pair of contiguous registers, the first of which
is a register from the set {W0, W2, W4, W6, W8,
W10, W12}. The lower-numbered register
contains the least significant 16-bits of the
significant.

long double A quadruplet of contiguous registers, the first of
which is a register from the set {W0, W4, W8}.
The lower-numbered register contains the least
significant 16-bits of the significant.

structure 1 contiguous register per 2 bytes in the
structure.

* double is equivalent to long double if -fno-short-double is used.
© 2008 Microchip Technology Inc. DS51284G-page 75

16-Bit C Compiler User�s Guide
4.13 BIT REVERSED AND MODULO ADDRESSING
The compiler does not directly support the use of bit reversed and modulo addressing.
If either of these addressing modes is enabled for a register, then it is the programmer�s
responsibility to ensure that the compiler does not use that register as a pointer.
Particular care must be exercised if interrupts can occur while one of these addressing
modes is enabled.
It is possible to define arrays in C that will be suitably aligned in memory for modulo
addressing by assembly language functions. The aligned attribute may be used to
define arrays that are positioned for use as incrementing modulo buffers. The reverse
attribute may be used to define arrays that are positioned for use as decrementing
modulo buffers. For more information on these attributes, see Section 2.3 �Keyword
Differences�. For more information on modulo addressing, see chapter 3 of the
�dsPIC30F Family Reference Manual� (DS70046).

4.14 PROGRAM SPACE VISIBILITY (PSV) USAGE
By default, the compiler will automatically arrange for strings and const-qualified
initialized variables to be allocated in the .const section, which is mapped into the
PSV window. Then PSV management is left up to compiler management, which does
not move it, limiting the size of accessible program memory to the size of the PSV
window itself.
Alternatively, an application may take control of the PSV window for its own purposes.
The advantage of directly controlling the PSV usage in an application is that it affords
greater flexibility than having a single .const section permanently mapped into the
PSV window. The disadvantage is that the application must manage the PSV control
registers and bits. Specify the -mconst-in-data option to direct the compiler not to
use the PSV window.
The space attribute can be used to define variables that are positioned for use in the
PSV window. To specify certain variables for allocation in the compiler-managed
section .const, use attribute space(auto_psv). To allocate variables for PSV
access in a section not managed by the compiler, use attribute space(psv). For more
information on these attributes, see Section 2.3 �Keyword Differences�.
For more on PSV usage, see the �MPLAB® Assembler, Linker and Utilities for PIC24
MCUs and dsPIC® DSCs User�s Guide� (DS51317).

4.14.1 Boot and Secure Constants
Two new psv constant sections will be defined: .boot_const and .secure_const.
These sections are analogous to the generic section .const, except that the compiler
uses them independently of the user-selectable constants memory model.
Regardless of whether you have selected the constants-in-code or constants-in-data
memory model, the compiler will create and manage psv constant sections as needed
for secure segments. Consequently, PSVPAG and CORCONbits.PSV must become
compiler managed resources. Support for user-managed PSV sections is maintained
through an object compatibility model explained below.
Upon entrance to a boot or secure function, PSVPAG will be set to the correct value.
This value will be restored after any external function call.
DS51284G-page 76 © 2008 Microchip Technology Inc.

Run Time Environment
4.14.2 String Literals as Arguments
In addition to being used as initializers, string literals may also be used as function
arguments. For example:
myputs("Enter the Dragon code:\n");

Here allocation of the string literal depends on the surrounding code. If the statement
appears in a boot or secure function, the literal will be allocated in a corresponding PSV
constant section. Otherwise it will be placed in general (non-secure) memory,
according to the constants memory model.
Recall that data stored in a secure segment can not be read by any other segment. For
example, it is not possible to call the standard C library function puts() with a string
that has been allocated in a secure segment. Therefore literals which appear as func-
tion arguments can only be passed to functions in the same security segment. This is
also true for objects referenced by pointers and arrays. Simple scalar types such as
char, int, and float, which are passed by value, may be passed to functions in
different segments.

4.14.3 Const-qualified Variables in Secure Flash
const-qualified variables with initializers can be supported in secure Flash segments
using PSV constant sections managed by the compiler. For example:
const int __attribute__((boot)) time_delay = 55;

If the const qualifier was omitted from the definition of time_delay, this statement
would be rejected with an error message. (Initialized variables in secure RAM are not
supported).
Since the const qualifier has been specified, variable time_delay can be allocated
in a PSV constant section that is owned by the boot segment. It is also possible to spec-
ify the PSV constant section explicitly with the space(auto_psv) attribute:
int __attribute__((boot,space(auto_psv))) bebop = 20;

Pointer variables initialized with string literals require special processing. For example:
char * const foo __attribute__((boot)) = "eek";

The compiler will recognize that string literal "eek" must be allocated in the same PSV
constant section as pointer variable foo. The logic for making that association is
already supported in the compiler for named PSV sections.

4.14.4 Object Compatibility Model
Since functions in secure segments set PSVPAG to their respective psv constant sec-
tions, a convention must be established for managing multiple values of the PSVPAG
register. In previous versions of the compiler, a single value of PSVPAG was set during
program startup if the default constants-in-code memory model was selected. The
compiler relied upon that preset value for accessing const variables and string literals,
as well as any variables specifically nominated with space(auto_psv).
Compiler v3.0 will provide automatic support for multiple values of PSVPAG. Variables
declared with space(auto_psv) may be combined with secure segment constant
variables and/or managed psv pointer variables in the same source file. Precompiled
objects that assume a single, pre-set value of PSVPAG will be link-compatible with
objects that define secure segment psv constants or managed psv variables.
Even though PSVPAG is now considered to be a compiler-managed resource, there is
no change to the function calling conventions. Objects and libraries created with earlier
versions are compatible with 3.0 objects, with the exception of some Interrupt Service
Routines as noted in Section 8.10 �PSV Usage with Interrupt Service Routines�.
© 2008 Microchip Technology Inc. DS51284G-page 77

16-Bit C Compiler User�s Guide
NOTES:
DS51284G-page 78 © 2008 Microchip Technology Inc.

MPLAB® C COMPILER FOR
PIC24 MCUs AND dsPIC® DSCs

USER�S GUIDE
Chapter 5. Data Types
5.1 INTRODUCTION
This section discusses the MPLAB C Compiler for PIC24 MCUs and dsPIC® DSCs
(formerly MPLAB C30) data types.

5.2 HIGHLIGHTS
Items discussed in this chapter are:
� Data Representation
� Integer
� Floating Point
� Pointers

5.3 DATA REPRESENTATION
Multibyte quantities are stored in �little endian� format, which means:
� The least significant byte is stored at the lowest address
� The least significant bit is stored at the lowest-numbered bit position
As an example, the long value of 0x12345678 is stored at address 0x100 as follows:

As another example, the long value of 0x12345678 is stored in registers w4 and w5:

5.4 INTEGER
Table 5-1 shows integer data types are supported in the compiler.

0x100 0x101 0x102 0X103

0x78 0x56 0x34 0x12

w4 w5
0x5678 0x1234

TABLE 5-1: INTEGER DATA TYPES
Type Bits Min Max

char, signed char 8 -128 127
unsigned char 8 0 255
short, signed short 16 -32768 32767
unsigned short 16 0 65535
int, signed int 16 -32768 32767
unsigned int 16 0 65535

long, signed long 32 -231 231 - 1

unsigned long 32 0 232 - 1

long long**, signed long long** 64 -263 263 - 1

unsigned long long** 64 0 264 - 1
** ANSI-89 extension
© 2008 Microchip Technology Inc. DS51284G-page 79

16-Bit C Compiler User�s Guide
For information on implementation-defined behavior of integers, see
Section A.7 �Integers�.

5.5 FLOATING POINT
The compiler uses the IEEE-754 format. Table 5-2 shows floating point data types are
supported.

For information on implementation-defined behavior of floating point numbers, see
section Section A.8 �Floating Point�.

5.6 POINTERS
All standard pointers are 16-bits wide. This is sufficient for full data space access
(64 KB) and the small code model (32 Kwords of code.) In the large code model
(>32 Kwords of code), pointers may resolve to �handles�; that is, the pointer is the
address of a GOTO instruction which is located in the first 32 Kwords of program space.
A set of special purpose, 32-bit data pointers are also available. See
Chapter 6. �Additional C Pointer Types� for more information.

TABLE 5-2: FLOATING POINT DATA TYPES
Type Bits E Min E Max N Min N Max

float 32 -126 127 2-126 2128

double* 32 -126 127 2-126 2128

long double 64 -1022 1023 2-1022 21024

E = Exponent
N = Normalized (approximate)
* double is equivalent to long double if -fno-short-double is used.
DS51284G-page 80 © 2008 Microchip Technology Inc.

MPLAB® C COMPILER FOR
PIC24 MCUs AND dsPIC® DSCs

USER�S GUIDE
Chapter 6. Additional C Pointer Types
6.1 INTRODUCTION
MPLAB C Compiler for PIC24 MCUs and dsPIC® DSCs (formerly MPLAB C30) offers
some extended pointer modes to help access more of the unique features of
Microchip�s 16-bit product architecture. Extended pointers and their use will be covered
in this chapter.
� Managed PSV Pointers - for reading more data through the PSV
� PMP Pointers - for accessing data via the PMP peripheral (where available)
� External Pointers - for accessing external memory in a user-defined fashion
Although the concentration will be on pointer access, defining variables and ensuring
that the data is allocated in the correct region of the 16-bit architectures (bi-polar) mem-
ory is also covered.
This chapter will make use of concepts introduced in Chapter 2. �Differences
Between 16-Bit Device C and ANSI C�.

6.2 MANAGED PSV POINTERS
The dsPIC30F/33F and PIC24F/H families of processors contain hardware support for
accessing data from within program Flash using a hardware feature that is commonly
called Program Space Visibility (PSV). More detail about how PSV works can be found
in device data sheets or family reference manuals. Also, see Section 4.14 �Program
Space Visibility (PSV) Usage� and Section 8.10 �PSV Usage with Interrupt Ser-
vice Routines�.
Briefly, the architecture allows the mapping of one 32K page of Flash into the upper
32K of the data address space via the Special Function Register (SFR) PSVPAG. By
default the compiler only supports direct access to one single PSV page, referred to as
the auto_psv space. In this model, 16-bit data pointers can be used. However, on
larger devices, this can make it difficult to manage large amounts of constant data
stored in Flash.
The extensions presented here allow the definition of a variable as being a �managed�
PSV variable. This means that the compiler will manipulate both the offset (within a
PSV page) and the page itself. As a consequence, data pointers must be 32 bits. The
compiler will probably generate more instructions than the single PSV page model, but
that is the price being paid to buy more flexibility and shorter coding time to access
larger amounts of data in Flash.

6.2.1 Defining Data for Managed PSV Access
Chapter 2. �Differences Between 16-Bit Device C and ANSI C� introduces C exten-
sions which allows the identification of extra information for a variable or function. The
compiler provides the space attribute to help place variables into different areas
(spaces) of memory.
© 2008 Microchip Technology Inc. DS51284G-page 81

16-Bit C Compiler User�s Guide
For example, to place a variable in the auto_psv space, which will cause storage to
be allocated in Flash in a convenient way to be access by a single PSVPAG setting,
specify:
 unsigned int FLASH_variable __attribute__((space(auto_psv)));

Other user spaces that relate to Flash are available:
� space(psv) - a PSV space that the compiler does not access automatically
� space(prog) - any location in Flash that the compiler does not access automatically
Note that both the psv and auto_psv spaces are appropriately blocked or aligned so
that a single PSVPAG setting is suitable for accessing the entire variable.

6.2.2 Managed PSV Access
Just placing something into Flash using the space attribute does not mean the compiler
will be able to manage the access. The compiler requires that you identify variables in
a special way. This is done because the managed PSV can be less efficient than man-
aging the PSVPAG by hand (though far less complicated).
The compiler introduces several new qualifiers (CV-qualifiers for the language lawyers
in the audience). Like const-volatile qualifier, the new qualifiers can be applied to
pointers or objects. These are:
� __psv__ for accessing objects that do not cross a PSV boundary, such as those

allocated in space(auto_psv) or space(psv)
� __prog__ for accessing objects that may cross a PSV boundary, specifically

those allocated in space(prog), but it may be applied to any object in Flash
Typically there is no need to specify __psv__ or __prog__ for an object placed in
space(auto_psv), though there is no reason why it could be not done.
Moving the FLASH_variable, from the previous section, into an normal Flash space
and requesting that the compiler manage the space is easy:
 __psv__ unsigned int FLASH_variable __attribute__((space(psv)));

Reading from the variable now will cause the compiler to generate code that adjusts
the PSVPAG SFR as necessary to access the variable correctly. These qualifiers can
equally decorate pointers:
 __psv__ unsigned int *pFLASH;

produces a pointer to something in PSV, which can be assigned to a managed PSV
object in the normal way. For example:
 pFLASH = &FLASH_variable;

6.2.3 ISR Considerations
A data access using managed PSV pointers is definitely not atomic, meaning it can
take several instructions to complete the access. Care should be taken if an access
should not be interrupted.
Furthermore an interrupt service routine (ISR) never really knows what the current
state of the PSVPAG register will be. Unfortunately the compiler is not really in any
position to determine whether or not this is important in all cases.
The compiler will make the simplifying assumption that the writer of the interrupt service
routine will know whether or not the automatic, compiler managed PSVPAG is required
by the ISR. This is required to access any constant data in the auto_psv space or any
string literals or constants when the default -mconst-in-code option is selected.
When defining an interrupt service routine, it is best to specify whether or not it is nec-
essary to assert the default setting of the PSVPAG SFR.
This is achieved by adding a further attribute to the interrupt function definition:
DS51284G-page 82 © 2008 Microchip Technology Inc.

Additional C Pointer Types
� auto_psv - the compiler will set the PSVPAG register to the correct value for
accessing the auto_psv space, ensuring that it is restored when exiting the ISR

� no_auto_psv - the compiler will not set the PSVPAG register
For example:
 void __attribute__((interrupt, no_auto_psv)) _T1Interrupt(void) {
 IFS0bits.T1IF = 0;
 }

Current code (that does not assert the auto_psv attribute) may not execute properly
unless recompiled. When recompiled, if no indication is made, the compiler will gener-
ate a warning message and select the auto_psv model.
The choice is provided so that, if you are especially conscious of interrupt latency, you
may select the best option. Saving and setting the PSVPAG will consume approxi-
mately 3 cycles at the entry to the function and one further cycle to restore the setting
upon exit from the function.
Note that boot or secure interrupt service routines will use a different setting of the
PSVPAG register for their constant data.

6.3 PMP POINTERS
Some devices contain a Parallel Master Port (PMP) peripheral which allows the con-
nection of various memory and non-memory devices directly to the device. Access to
the peripheral is controlled via a selection of peripherals. More information about this
peripheral can be found in the Family Reference Manual or device-specific data sheets.
PMP pointers are similar to managed PSV pointers as described in the previous sec-
tion. These pointers make it easier to read or write data using the PMP.
The peripheral can require a substantial amount of configuration, depending upon the
type and brand of memory device that is connected. This configuration is not done
automatically by the compiler.
The extensions presented here allow the definition of a variable as PMP. This means
that the compiler will communicate with the PMP peripheral in order to access the vari-
able.
To use this feature:
� Initialize PMP - define the initialization function: void __init_PMP(void)
� Declare a New Memory Space
� Define Variables within PMP Space

6.3.1 Initialize PMP
The PMP peripheral requires initialization before any access can be properly pro-
cessed. Consult the appropriate documentation for the device you are interfacing to
and the data sheet for 16-bit device you are using.
The toolsuite, if PMP is used, will call void __init_PMP(void) during normal C
run-time initialization. If a customized initialization is being used, please ensure that this
function is called.
This function should make the necessary settings in the PMMODE and PMCON SFRs.
In particular:
� The peripheral should not be configured to generate interrupts:
PMMODEbits.IRQM = 0

� The peripheral should not be configured to generate increments:
PMMODEbits.INCM = 0
The compiler will modify this setting during run-time as needed.
© 2008 Microchip Technology Inc. DS51284G-page 83

16-Bit C Compiler User�s Guide
� The peripheral should be initialized to 16-bit mode:
PMMODEbits.MODE16 = 1
The compiler will modify this setting during run-time as needed.

� The peripheral should be configured for one of the MASTER modes:
PMMODEbits.MODE = 2 or PMMODEbits.MODE = 3

� Set the wait-states PMMODEbits.WAITB, PMMODEbits.WAITM, and
PMMODEbits.WAITE as appropriate for the device being connected.

� The PMCON SFR should be configured as appropriate making sure that the chip
select function bits PMCONbits.CSF match the information communicated to the
compiler when defining memory spaces.

A partial example might be:
 void __init_PMP(void) {
 PMMODEbits.IRQM = 0;
 PMMODEbits.INCM = 0;
 PMMODEbits.MODE16 = 1;
 PMMODEbits.MODE = 3;
 /* device specific configuration of PMMODE and PMCCON follows */
 }

6.3.2 Declare a New Memory Space
The compiler toolsuite requires information about each additional memory being
attached via the PMP. In order for the 16-bit device linker to be able to properly assign
memory, information about the size of memory available and the number of
chip-selects needs to be provided.
In Chapter 2. �Differences Between 16-Bit Device C and ANSI C� the new pmp
memory space was introduced. This attribute serves two purposes: declaring extended
memory spaces and assigning C variable declarations to external memory (this will be
covered in the next subsection).
Declaring an extended memory requires providing the size of the memory. You may
optionally assign the memory to a particular chip-select pin; if none is assigned it will
be assumed that chip-selects are not being used. These memory declarations look like
normal external C declarations:
 extern int external_PMP_memory
__attribute__((space(pmp(size(1024),cs(0)))));

Above we defined an external memory of size 1024 bytes and there are no
chip-selects. The compiler only supports one PMP memory unless chip-selects are
being used:
 extern int PMP_bank1 __attribute__((space(pmp(size(1024),cs(1)))));
 extern int PMP_bank2 __attribute__((space(pmp(size(2048),cs(2)))));

Above PMP_bank1 will be activated using chip-select pin 1 (address pin 14 will be
asserted when accessing variables in this bank). PMP_bank2 will be activated using
chip-select pin 2 (address pin 15 will be asserted).
Note that when using chip-selects, the largest amount of memory is 16Kbytes per bank.
It is recommended that these declaration appear in a common header file so that the
declaration is available to all translation units.
DS51284G-page 84 © 2008 Microchip Technology Inc.

Additional C Pointer Types
6.3.3 Define Variables within PMP Space
The pmp space attribute is also used to assign individual variables to the space. This
requires that the memory space declaration to be present. Given the declarations in the
previous subsection, the following variable declarations can be made:
 __pmp__ int external_array[256]
 __attribute__((space(pmp(external_PMP_memory))));

external_array will be allocated in the previous declared memory
external_PMP_memory. If there is only one PMP memory, and chip-selects are not
being used, it is possible to leave out the explicit reference to the memory. It is good
practice, however, to always make the memory explicit which would lead to code that
is more easily maintained.
Note that, like managed PSV pointers, we have qualified the variable with a new type
qualifier __pmp__. When attached to a variable or pointer it instructs the compiler to
generate the correct sequence for accessing via the PMP peripheral.
Now that a variable has been declared it may be accessed using normal C syntax. The
compiler will generate code to correctly communicate with the PMP peripheral.

6.4 EXTERNAL POINTERS
Not all of Microchip�s 16-bit devices have a PMP peripheral, or not all memories are
suitable for attaching to a parallel port (serial memories sold by Microchip, for example).
The toolsuite provides a more general interface to any external memory, although, as
will be seen, the memory does not have to be external.
Like PMP memory space, the tool-chain needs to learn about external memories that
are being attached. Unlike PMP, however, the compiler does not know how to access
these memories. A mechanism is provided by which an application can specify how to
access such memories.
External pointers (and their addresses) consume 32 bits. The largest attachable mem-
ory is 64K (16 bits); the other 16 bits is used to uniquely identify the memory. A total of
64K (16 bits) of these may be (theoretically) attached.
To use this feature:
� Declare a New Memory Space
� Define Variables within an External Space
� Define How to Access Memory Spaces
As an example:
� An External Example

6.4.1 Declare a New Memory Space
This is very similar to declaring a new memory space for PMP access.
The 16-bit toolsuite requires information about each external memory. In order for
16-bit device linker to be able to properly assign memory, information about the size of
memory available and, optionally the origin of the memory, needs to be provided.
In Chapter 2. �Differences Between 16-Bit Device C and ANSI C� the new exter-
nal memory space was introduced. This attribute serves two purposes: declaring
extended memory spaces and assigning C variable declarations to external memory
(this will be covered in the next subsection).
Declaring an extended memory requires providing the size of the memory. You may
optionally specify an origin for this memory; if none is specified 0x0000 will be
assumed.
© 2008 Microchip Technology Inc. DS51284G-page 85

16-Bit C Compiler User�s Guide
 extern int external_memory
__attribute__((space(external(size(1024)))));

Above an external memory of size 1024 bytes is defined. This memory can be uniquely
identified by its given name of external_memory.

6.4.2 Define Variables within an External Space
The external space attribute is also used to assign individual variables to the space.
This requires that the memory space declaration to be present. Given the declarations
in the previous subsection, the following variable declarations can be made:
 __external__ int external_array[256]
 __attribute__((space(external(external_memory))));

external_array will be allocated in the previous declared memory
external_memory.
Note that, like managed PSV pointers, we have qualified the variable with a new type
qualifier __external__. When attached to a variable or pointer it instructs the com-
piler to generate the correct sequence for accessing.
Now that a variable has been declared it may be accessed using normal C syntax. The
compiler will generate code to access the variable via special helper functions that the
programmer must define. These are covered in the next subsection.

6.4.3 Define How to Access Memory Spaces
References to variables placed in external memories are controlled via the use of sev-
eral helper functions. Up to five (5) functions may be defined for reading and five (5) for
writing. One each of these is a generic function and will be called if any of the other four
is not defined but is required. If none of the functions are defined, the compiler will gen-
erate an error message. A brief example will be presented in the next subsection. Gen-
erally defining the individual functions will result in more efficient code generation.

6.4.3.1 FUNCTIONS FOR READING

read_external
void __read_external(unsigned int address,
 unsigned int memory_space,
 void *buffer,
 unsigned int len)
This function is a generic Read function and will be called if one of the next functions
are required but not defined. This function should perform the steps necessary to fill
len bytes of memory in the buffer from the external memory named memory_space
starting at address address.

read_external8
unsigned char __read_external8(unsigned int address,
 unsigned int memory_space)
Read 8 bits from external memory space memory_space starting from address
address. The compiler would like to call this function if trying to access an 8-bit sized
object.
DS51284G-page 86 © 2008 Microchip Technology Inc.

Additional C Pointer Types
read_external16
unsigned int __read_external16(unsigned int address,
 unsigned int memory_space)
Read 16 bits from external memory space memory_space starting from address
address. The compiler would like to call this function if trying to access an 16-bit sized
object.

read_external32
unsigned long __read_external32(unsigned int address,
 unsigned int memory_space)

Read 32 bits from external memory space memory_space starting from address
address. The compiler would like to call this function if trying to access a 32-bit sized
object, such as a long or float type.

read_external64
unsigned long long __read_external64(unsigned int address,
 unsigned int memory_space)
Read 64 bits from external memory space memory_space starting from address
address. The compiler would like to call this function if trying to access a 64-bit sized
object, such as a long long or long double type.

6.4.3.2 FUNCTIONS FOR WRITING

write_external
void __write_external(unsigned int address,
 unsigned int memory_space,
 void *buffer,
 unsigned int len)
This function is a generic Write function and will be called if one of the next functions
are required but not defined. This function should perform the steps necessary to write
len bytes of memory from the buffer to the external memory named memory_space
starting at address address.

write_external8
void __write_external8(unsigned int address,
 unsigned int memory_space,
 unsigned char data)
Write 8 bits of data to external memory space memory_space starting from address
address. The compiler would like to call this function if trying to write an 8-bit sized
object.

write_external16
void __write_external16(unsigned int address,
 unsigned int memory_space,
 unsigned int data)
Write 16 bits of data to external memory space memory_space starting from address
address. The compiler would like to call this function if trying to write an 16-bit sized
object.
© 2008 Microchip Technology Inc. DS51284G-page 87

16-Bit C Compiler User�s Guide
write_external32
void __write_external32(unsigned int address,
 unsigned int memory_space,
 unsigned long data)
Write 32 bits of data to external memory space memory_space starting from address
address. The compiler would like to call this function if trying to write a 32-bit sized
object, such as a long or float type.

write_external64
void __write_external64(unsigned int address,
 unsigned int memory_space,
 unsigned long long data)
Write 64 bits of data to external memory space memory_space starting from address
address. The compiler would like to call this function if trying to write a 64-bit sized
object, such as a long long or long double type.

6.4.4 An External Example
The following snippets of example come from a working example (in the Examples
folder.)
This example implements, using external memory, addressable bit memory. In this
case each bit is stored in real data memory, not off chip. The code will define an
external memory of 512 units and map accesses using the appropriate read and
write function to one of 64 bytes in local data memory.
First the external memory is defined:
 extern unsigned int bit_memory
__attribute__((space(external(size(512)))));

Next appropriate read and write functions are defined. These functions will make use
of an array of memory that is reserved in the normal way.
 static unsigned char real_bit_memory[64];
 unsigned char __read_external8(unsigned int address,
 unsigned int memory_space) {
 if (memory_space == bit_memory) {
 /* an address within our bit memory */
 unsigned int byte_offset, bit_offset;
 byte_offset = address / 8;
 bit_offset = address % 8;
 return (real_bit_memory[byte_offset] >> bit_offset) & 0x1;
 } else {
 fprintf(stderr,"I don't know how to access memory space: %d\n",
 memory_space);
 }
 return 0;
 }
 void __write_external8(unsigned int address,
 unsigned int memory_space,
 unsigned char data) {
 if (memory_space == bit_memory) {
 /* an address within our bit memory */
 unsigned int byte_offset, bit_offset;
 byte_offset = address / 8;
 bit_offset = address % 8;
 real_bit_memory[byte_offset] &= (~(1 << bit_offset));
 if (data & 0x1) real_bit_memory[byte_offset] |=
 (1 << bit_offset);
DS51284G-page 88 © 2008 Microchip Technology Inc.

Additional C Pointer Types
 } else {
 fprintf(stderr,"I don't know how to access memory space: %d\n",
 memory_space);
 }
 }

These functions work in a similar fashion:
� if accessing bit_memory, then

- determine the correct byte offset and bit offset
- read or write the appropriate place in the real_bit_memory

� otherwise access another memory (whose access is unknown)
With the two major pieces of the puzzle in place, generate some variables and
accesses:
 __external__ unsigned char bits[NUMBER_OF_BITS]
 __attribute__((space(external(bit_memory))));
 // inside main
 __external__ unsigned char *bit;
 bit = bits;
 for (i = 0; i < 512; i++) {
 printf("%d ",*bit++);
 }

Apart from the __external__ CV-qualifiers, ordinary C statements can be used to
define and access variables in the external memory space.
© 2008 Microchip Technology Inc. DS51284G-page 89

16-Bit C Compiler User�s Guide
NOTES:
DS51284G-page 90 © 2008 Microchip Technology Inc.

MPLAB® C COMPILER FOR
PIC24 MCUs AND dsPIC® DSCs

USER�S GUIDE
Chapter 7. Device Support Files
7.1 INTRODUCTION
This section discusses device support files used in support of compilation using the
MPLAB C Compiler for PIC24 MCUs and dsPIC® DSCs (formerly MPLAB C30).

7.2 HIGHLIGHTS
Items discussed in this chapter are:
� Processor Header Files
� Register Definition Files
� Using SFRs
� Using Macros
� Accessing EEDATA from C Code - dsPIC30F dSCs only

7.3 PROCESSOR HEADER FILES
The processor header files are distributed with the language tools. These header files
define the available Special Function Registers (SFR�s) for each dsPIC DSC device. To
use a header file in C, use;
#include <p30fxxxx.h>

where xxxx corresponds to the device part number. The C header files are distributed
in the support\h directory.
Inclusion of the header file is necessary in order to use SFR names
(e.g., CORCONbits).
For example, the following module, compiled for the dsPIC30F2010 part, includes two
functions: one for enabling the PSV window, and another for disabling the PSV window.
#include <p30f2010.h>
void
EnablePSV(void)
{
 CORCONbits.PSV = 1;
}
void
DisablePSV(void)
{
 CORCONbits.PSV = 0;
}

© 2008 Microchip Technology Inc. DS51284G-page 91

16-Bit C Compiler User�s Guide
The convention in the processor header files is that each SFR is named, using the
same name that appears in the data sheet for the part � for example, CORCON for the
Core Control register. If the register has individual bits that might be of interest, then
there will also be a structure defined for that SFR, and the name of the structure will be
the same as the SFR name, with �bits� appended. For example, CORCONbits for the
Core Control register. The individual bits (or bit fields) are named in the structure using
the names in the data sheet � for example PSV for the PSV bit of the CORCON
register. Here is the complete definition of CORCON (subject to change):
/* CORCON: CPU Mode control Register */
extern volatile unsigned int CORCON __attribute__((__near__));
typedef struct tagCORCONBITS {
 unsigned IF :1; /* Integer/Fractional mode */
 unsigned RND :1; /* Rounding mode */
 unsigned PSV :1; /* Program Space Visibility enable */
 unsigned IPL3 :1;
 unsigned ACCSAT :1; /* Acc saturation mode */
 unsigned SATDW :1; /* Data space write saturation enable */
 unsigned SATB :1; /* Acc B saturation enable */
 unsigned SATA :1; /* Acc A saturation enable */
 unsigned DL :3; /* DO loop nesting level status */
 unsigned :4;
} CORCONBITS;
extern volatile CORCONBITS CORCONbits __attribute__((__near__));

7.4 REGISTER DEFINITION FILES
The processor header files described in Section 7.3 �Processor Header Files� name
all SFR�s for each part, but they do not define the addresses of the SFR�s. A separate
set of device-specific linker script files, one per part, is distributed in the support\gld
directory. These linker script files define the SFR addresses. To use one of these files,
specify the linker command-line option:
-T p30fxxxx.gld

where xxxx corresponds to the device part number.
For example, assuming that there exists a file named app2010.c, which contains an
application for the dsPIC30F2010 part, then it may be compiled and linked using the
following command line:
pic30-gcc -o app2010.o -T p30f2010.gld app2010.c

The -o command-line option names the output COFF executable file, and the -T
option gives the name for the dsPIC30F2010 part. If p30f2010.gld is not found in the
current directory, the linker searches in its known library paths. For the default
installation, the linker scripts are included in the PIC30_LIBRARAY_PATH. For
reference see Section 3.6 �Environment Variables�.

Note: The symbols CORCON and CORCONbits refer to the same register and
will resolve to the same address at link time.
DS51284G-page 92 © 2008 Microchip Technology Inc.

Device Support Files
7.5 USING SFRS
There are three steps to follow when using SFR�s in an application.
1. Include the processor header file for the appropriate device. This provides the

source code with the SFR�s that are available for that device. For instance, the
following statement includes the header files for the dsPIC30F6014 part:
#include <p30f6014.h>

2. Access SFR�s like any other C variables. The source code can write to and/or
read from the SFR�s.
For example, the following statement clears all the bits to zero in the special
function register for Timer1.
TMR1 = 0;
This next statement represents the 15th bit in the T1CON register which is the
�timer on� bit. It sets the bit named TON to 1 which starts the timer.
T1CONbits.TON = 1;

3. Link with the register definition file or linker script for the appropriate device. The
linker provides the addresses of the SFR�s. (Remember the bit structure will have
the same address as the SFR at link time.) Example 6.1 would use:
p30f6014.gld

See �MPLAB® Assembler, Linker and Utilities for PIC24 MCUs and dsPIC® DSCs
User�s Guide� (DS51317) for more information on using linker scripts.
The following example is a sample real time clock. It uses several SFR�s. Descriptions
for these SFR�s are found in the p30f6014.h file. This file would be linked with the
device specific linker script which is p30f6014.gld.
© 2008 Microchip Technology Inc. DS51284G-page 93

16-Bit C Compiler User�s Guide
EXAMPLE 7-1: SAMPLE REAL-TIME CLOCK

/*
** Sample Real Time Clock for dsPIC
**
** Uses Timer1, TCY clock timer mode
** and interrupt on period match
*/

#include <p30f6014.h>

/* Timer1 period for 1 ms with FOSC = 20 MHz */
#define TMR1_PERIOD 0x1388

struct clockType
 {
 unsigned int timer; /* countdown timer, milliseconds */
 unsigned int ticks; /* absolute time, milliseconds */
 unsigned int seconds; /* absolute time, seconds */
 } volatile RTclock;

void reset_clock(void)
 {
 RTclock.timer = 0; /* clear software registers */
 RTclock.ticks = 0;
 RTclock.seconds = 0;

 TMR1 = 0; /* clear timer1 register */
 PR1 = TMR1_PERIOD; /* set period1 register */
 T1CONbits.TCS = 0; /* set internal clock source */
 IPC0bits.T1IP = 4; /* set priority level */
 IFS0bits.T1IF = 0; /* clear interrupt flag */
 IEC0bits.T1IE = 1; /* enable interrupts */

 SRbits.IPL = 3; /* enable CPU priority levels 4-7*/
 T1CONbits.TON = 1; /* start the timer*/
 }
void __attribute__((__interrupt__)) _T1Interrupt(void)
 { static int sticks=0;

 if (RTclock.timer > 0) /* if countdown timer is active */
 RTclock.timer -= 1; /* decrement it */
 RTclock.ticks++; /* increment ticks counter */
 if (sticks++ > 1000)
 { /* if time to rollover */
 sticks = 0; /* clear seconds ticks */
 RTclock.seconds++; /* and increment seconds */
 }

 IFS0bits.T1IF = 0; /* clear interrupt flag */
 return;
 }
DS51284G-page 94 © 2008 Microchip Technology Inc.

Device Support Files
7.6 USING MACROS
Processor header files define, in addition to special function registers, useful macros
for the 16-bit family of devices.
� Configuration Bits Setup Macros
� Inline Assembly Usage Macros
� Data Memory Allocation Macros
� ISR Declaration Macros

7.6.1 Configuration Bits Setup Macros
Macros are provided that can be used to set configuration bits. For example, to set the
FOSC bit using a macro, the following line of code can be inserted before the beginning
of your C source code:
 _FOSC(CSW_FSCM_ON & EC_PLL16);

This would enable the external clock with the PLL set to 16x and enable clock switching
and fail-safe clock monitoring.
Similarly, to set the FBORPOR bit:
 _FBORPOR(PBOR_ON & BORV_27 & PWRT_ON_64 & MCLR_DIS);

This would enable Brown-out Reset at 2.7 Volts and initialize the Power-up timer to 64
milliseconds and configure the use of the MCLR pin for I/O.
For a complete list of settings valid for each configuration bit, refer to the processor
header file.

7.6.2 Inline Assembly Usage Macros
Some Macros used to define assembly code in C are listed below:
#define Nop() {__asm__ volatile ("nop");}
#define ClrWdt() {__asm__ volatile ("clrwdt");}
#define Sleep() {__asm__ volatile ("pwrsav #0");}
#define Idle() {__asm__ volatile ("pwrsav #1");}

7.6.3 Data Memory Allocation Macros
Macros that may be used to allocate space in data memory are discussed below. There
are two types: those that require an argument and those that do not.
The following macros require an argument N that specifies alignment. N must be a
power of two, with a minimum value of 2.
#define _XBSS(N) __attribute__((space(xmemory), aligned(N)))
#define _XDATA(N) __attribute__((space(xmemory), aligned(N)))
#define _YBSS(N) __attribute__((space(ymemory), aligned(N)))
#define _YDATA(N) __attribute__((space(ymemory), aligned(N)))
#define _EEDATA(N) __attribute__((space(eedata), aligned(N)))

For example, to declare an uninitialized array in X memory that is aligned to a 32-byte
address:
int _XBSS(32) xbuf[16];

To declare an initialized array in data EEPROM without special alignment:
int _EEDATA(2) table1[] = {0, 1, 1, 2, 3, 5, 8, 13, 21};

The following macros do not require an argument. They can be used to locate a
variable in persistent data memory or in near data memory.
#define _PERSISTENT __attribute__((persistent))
#define _NEAR __attribute__((near))
© 2008 Microchip Technology Inc. DS51284G-page 95

16-Bit C Compiler User�s Guide
For example, to declare two variables that retain their values across a device reset:
int _PERSISTENT var1,var2;

7.6.4 ISR Declaration Macros
The following macros can be used to declare Interrupt Service Routines (ISRs):
#define _ISR __attribute__((interrupt))
#define _ISRFAST __attribute__((interrupt, shadow))

For example, to declare an ISR for the timer0 interrupt:
void _ISR _INT0Interrupt(void);

To declare an ISR for the SPI1 interrupt with fast context save:
void _ISRFAST _SPI1Interrupt(void);

7.7 ACCESSING EEDATA FROM C CODE - dsPIC30F DSCS ONLY
The compiler provides some convenience macro definitions to allow placement of data
into the devices EE data area. This can be done quite simply:
int _EEDATA(2) user_data[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };

user_data will be placed in the EE data space reserving 10 words with the given initial
values.
The dsPIC DSC device provides two ways for programmers to access this area of
memory. The first is via the program space visibility window. The second is by using
special machine instructions (TBLRDx).

7.7.1 Accessing EEDATA via the PSV
The compiler normally manages the PSV window to access constants stored in
program memory. If this is not the case, the PSV window can be used to access
EEDATA memory.
To use the PSV window:
� The PSVPAG register must be set to the appropriate address for the program

memory to be accessed. For EE data this will be 0xFF, but it is best to use the
__builtin_psvpage() function.

� The PSV window should also be enabled by setting the PSV bit in the CORCON
register. If this bit is not set, uses of the PSV window will always read 0x0000.

Note: ISRs will be installed into the interrupt vector tables automatically if the
reserved names listed in Section 8.4 �Writing the Interrupt Vector� are
used.
DS51284G-page 96 © 2008 Microchip Technology Inc.

Device Support Files
EXAMPLE 7-2: EEDATA ACCESS VIA PSV

#include <p30fxxxx.h>
int main(void) {
 PSVPAG = __builtin_psvpage(&user_data);
 CORCONbits.PSV = 1;

 /* ... */

 if (user_data[2]) ;/* do something */

 }

These steps need only be done once. Unless PSVPAG is changed, variables in EE
data space may be read by referring to them as normal C variables, as shown in the
example.

7.7.2 Accessing EEDATA using TBLRDx instructions
The TBLRDx instructions are not directly supported by the compiler, but they can be
used via inline assembly. Like PSV accesses, a 23-bit address is formed from an SFR
value and the address encoded as part of the instruction. To access the same memory
as given in the previous example, the following code may be used:
To use the TBLRDx instructions:
� The TBLPAG register must be set to the appropriate address for the program

memory to be accessed. For EE data, this will be 0x7F, but it is best to use the
__builtin_tblpage() function.

� The TBLRDx instruction can be accessed from an __asm__ statement or through
one of the __builtin_tblrd functions; refer to the �dsPIC30F/33F
Programmer�s Reference Manual� (DS70157) for information on this instruction.

EXAMPLE 7-3: EEDATA ACCESS VIA TABLE READ

#include <p30fxxxx.h>
#define eedata_read(src, offset, dest) { \
 register int eedata_addr; \
 register int eedata_val; \
 \
 eedata_addr = __builtin_tbloffset(&src)+offset; \
 __asm__("tblrdl [%1], %0" : "=r"(eedata_val) : "r"(eedata_addr)); \
 dest = eedata_val; \
 }

int main(void) {
 int value;

 TBLPAG = __builtin_tblpage(&user_data);

 eedata_read(user_data,2*sizeof(user_data[0]), value);
 if (value) ; /* do something */

 }

Note: This access model is not compatible with the compiler-managed PSV
(-mconst-in-code) model. You should be careful to prevent conflict.
© 2008 Microchip Technology Inc. DS51284G-page 97

16-Bit C Compiler User�s Guide
7.7.3 Additional Sources of Information
Section 5 of the �dsPIC30F Family Reference Manual� (DS70046) has an excellent
discussion on using the Flash program memory and EE data memory provided on the
dsPIC DSC devices. This section also has information on run-time programming of
both program memory and EE data memory.
DS51284G-page 98 © 2008 Microchip Technology Inc.

MPLAB® C COMPILER FOR
PIC24 MCUs AND dsPIC® DSCs

USER�S GUIDE
Chapter 8. Interrupts
8.1 INTRODUCTION
Interrupt processing is an important aspect of most microcontroller applications.
Interrupts may be used to synchronize software operations with events that occur in
real time. When interrupts occur, the normal flow of software execution is suspended
and special functions are invoked to process the event. At the completion of interrupt
processing, previous context information is restored and normal execution resumes.
The 16-bit devices support multiple interrupts from both internal and external sources.
In addition, the devices allow high-priority interrupts to override any low priority inter-
rupts that may be in progress.
The compiler provides full support for interrupt processing in C or inline assembly code.
This chapter presents an overview of interrupt processing.

8.2 HIGHLIGHTS
Items discussed in this chapter are:
� Writing an Interrupt Service Routine � You can designate one or more C

functions as Interrupt Service Routines (ISR�s) to be invoked by the occurrence of
an interrupt. For best performance in general, place lengthy calculations or opera-
tions that require library calls in the main application. This strategy optimizes
performance and minimizes the possibility of losing information when interrupt
events occur rapidly.

� Writing the Interrupt Vector � The 16-bit devices use interrupt vectors to transfer
application control when an interrupt occurs. An interrupt vector is a dedicated
location in program memory that specifies the address of an ISR. Applications
must contain valid function addresses in these locations to use interrupts.

� Interrupt Service Routine Context Saving � To handle returning from an
interrupt to code in the same conditional state as before the interrupt, context
information from specific registers must be saved.

� Latency � The time between when an interrupt is called and when the first ISR
instruction is executed is the latency of the interrupt.

� Nesting Interrupts � The compiler supports nested interrupts.
� Enabling/Disabling Interrupts � Enabling and disabling interrupt sources occurs

at two levels: globally and individually.
� Sharing Memory Between Interrupt Service Routines and Mainline Code �

How to mitigate potential hazards when this technique is used.
� PSV Usage with Interrupt Service Routines � Using ISRs with managed psv

pointers and CodeGuard Security psv constant sections.
© 2008 Microchip Technology Inc. DS51284G-page 99

16-Bit C Compiler User�s Guide
8.3 WRITING AN INTERRUPT SERVICE ROUTINE
Following the guidelines in this section, you can write all of your application code,
including your interrupt service routines, using only C language constructs.

8.3.1 Guidelines for Writing ISR�s
The guidelines for writing ISR�s are:
� declare ISR�s with no parameters and a void return type (mandatory)
� do not let ISR�s be called by main line code (mandatory)
� do not let ISR�s call other functions (recommended)
A 16-bit device ISR is like any other C function in that it can have local variables and
access global variables. However, an ISR needs to be declared with no parameters
and no return value. This is necessary because the ISR, in response to a hardware
interrupt or trap, is invoked asynchronously to the mainline C program (that is, it is not
called in the normal way, so parameters and return values don�t apply).
ISR�s should only be invoked through a hardware interrupt or trap and not from other
C functions. An ISR uses the return from interrupt (RETFIE) instruction to exit from the
function rather than the normal RETURN instruction. Using a RETFIE instruction out of
context can corrupt processor resources, such as the Status register.
Finally, ISR�s should not call other functions. This is recommended because of latency
issues. See Section 8.6 �Latency� for more information.

8.3.2 Syntax for Writing ISR�s
To declare a C function as an interrupt handler, tag the function with the interrupt attri-
bute (see § 2.3 for a description of the __attribute__ keyword). The syntax of the
interrupt attribute is:
__attribute__((interrupt [(
 [save(symbol-list)]
 [, irq(irqid)]
 [, altirq(altirqid)]
 [, preprologue(asm)]
)]
))

The interrupt attribute name and the parameter names may be written with a pair
of underscore characters before and after the name. Thus, interrupt and
__interrupt__ are equivalent, as are save and __save__.
The optional save parameter names a list of one or more variables that are to be saved
and restored on entry to and exit from the ISR. The list of names is written inside paren-
theses, with the names separated by commas.
You should arrange to save global variables that may be modified in an ISR if you do
not want the value to be exported. Global variables modified by an ISR should be
qualified volatile.
The optional irq parameter allows you to place an interrupt vector at a specific
interrupt, and the optional altirq parameter allows you to place an interrupt vector at
a specified alternate interrupt. Each parameter requires a parenthesized interrupt ID
number. (See Section 8.4 �Writing the Interrupt Vector� for a list of interrupt ID�s.)
The optional preprologue parameter allows you to insert assembly-language
statements into the generated code immediately before the compiler-generated
function prologue.
DS51284G-page 100 © 2008 Microchip Technology Inc.

Interrupts
When using the interrupt attribute, please specify either auto_psv or
no_auto_psv. If none is specified a warning will be produced and auto_psv will be
assumed.

8.3.3 Coding ISR�s
The following prototype declares function isr0 to be an interrupt handler:
void __attribute__((__interrupt__)) isr0(void);

As this prototype indicates, interrupt functions must not take parameters nor may they
return a value. The compiler arranges for all working registers to be preserved, as well
as the Status register and the Repeat Count register, if necessary. Other variables may
be saved by naming them as parameters of the interrupt attribute. For example, to
have the compiler automatically save and restore the variables, var1 and var2, use
the following prototype:
void __attribute__((__interrupt__(__save__(var1,var2))))
isr0(void);

To request the compiler to use the fast context save (using the push.s and pop.s
instructions), tag the function with the shadow attribute (see
Section 2.3.2 �Specifying Attributes of Functions�). For example:
void __attribute__((__interrupt__, __shadow__)) isr0(void);

8.3.4 Using Macros to Declare Simple ISRs
If an interrupt handler does not require any of the optional parameters of the interrupt
attribute, then a simplified syntax may be used. The following macros are defined in the
device-specific header files:
#define _ISR __attribute__((interrupt))
#define _ISRFAST __attribute__((interrupt, shadow))

For example, to declare an interrupt handler for the timer0 interrupt:
#include <p30fxxxx.h>
void _ISR _INT0Interrupt(void);

To declare an interrupt handler for the SPI1 interrupt with fast context save:
#include <p30fxxxx.h>
void _ISRFAST _SPI1Interrupt(void);
© 2008 Microchip Technology Inc. DS51284G-page 101

16-Bit C Compiler User�s Guide
8.4 WRITING THE INTERRUPT VECTOR
 devices have two interrupt vector tables � a primary and an alternate table � each con-
taining several exception vectors.
The exception sources have associated with them a primary and alternate exception
vector, each occupying a program word, as shown in the tables below. The alternate
vector name is used when the ALTIVT bit is set in the INTCON2 register.

To field an interrupt, a function�s address must be placed at the appropriate address in
one of the vector tables, and the function must preserve any system resources that it
uses. It must return to the foreground task using a RETFIE processor instruction.
Interrupt functions may be written in C. When a C function is designated as an interrupt
handler, the compiler arranges to preserve all the system resources which the compiler
uses, and to return from the function using the appropriate instruction. The compiler
can optionally arrange for the interrupt vector table to be populated with the interrupt
function�s address.
To arrange for the compiler to fill in the interrupt vector to point to the interrupt function,
name the function as denoted in the preceding table. For example, the stack error
vector will automatically be filled if the following function is defined:
void __attribute__((__interrupt__)) _StackError(void);

Note the use of the leading underscore. Similarly, the alternate stack error vector will
automatically be filled if the following function is defined:
void __attribute__((__interrupt__)) _AltStackError(void);

Again, note the use of the leading underscore.
For all interrupt vectors without specific handlers, a default interrupt handler will be
installed. The default interrupt handler is supplied by the linker and simply resets the
device. An application may also provide a default interrupt handler by declaring an
interrupt function with the name _DefaultInterrupt.
The last nine interrupt vectors in each table do not have predefined hardware functions.
The vectors for these interrupts may be filled by using the names indicated in the
preceding table, or, names more appropriate to the application may be used, while still
filling the appropriate vector entry by using the irq or altirq parameter of the
interrupt attribute. For example, to specify that a function should use primary interrupt
vector fifty-two, use the following:
void __attribute__((__interrupt__(__irq__(52)))) MyIRQ(void);

Similarly, to specify that a function should use alternate interrupt vector fifty-two, use
the following:
void __attribute__((__interrupt__(__altirq__(52)))) MyAltIRQ(void);

The irq/altirq number can be one of the interrupt request numbers 45 to 53. If the
irq parameter of the interrupt attribute is used, the compiler creates the external
symbol name __Interruptn, where n is the vector number. Therefore, the C
identifiers _Interrupt45 through _Interrupt53 are reserved by the compiler. In
the same way, if the altirq parameter of the interrupt attribute is used, the compiler
creates the external symbol name __AltInterruptn, where n is the vector number.
Therefore, the C identifiers _AltInterrupt45 through _AltInterrupt53 are
reserved by the compiler.

Note: A device reset is not handled through the interrupt vector table. Instead,
upon device reset, the program counter is cleared. This causes the
processor to begin execution at address zero. By convention, the linker
script constructs a GOTO instruction at that location which transfers control
to the C run-time startup module.
DS51284G-page 102 © 2008 Microchip Technology Inc.

Interrupts
8.5 INTERRUPT SERVICE ROUTINE CONTEXT SAVING
Interrupts, by their very nature, can occur at unpredictable times. Therefore, the
interrupted code must be able to resume with the same machine state that was present
when the interrupt occurred.
To properly handle a return from interrupt, the setup (prologue) code for an ISR function
automatically saves the compiler-managed working and special function registers on
the stack for later restoration at the end of the ISR. You can use the optional save
parameter of the interrupt attribute to specify additional variables and special
function registers to be saved and restored.
In certain applications, it may be necessary to insert assembly statements into the
interrupt service routine immediately prior to the compiler-generated function prologue.
For example, it may be required that a semaphore be incremented immediately on
entry to an interrupt service routine. This can be done as follows:
void
__attribute__((__interrupt__(__preprologue__("inc _semaphore"))))
 isr0(void);

8.6 LATENCY
There are two elements that affect the number of cycles between the time the interrupt
source occurs and the execution of the first instruction of your ISR code. These are:
� Processor Servicing of Interrupt � The amount of time it takes the processor to

recognize the interrupt and branch to the first address of the interrupt vector. To
determine this value refer to the processor data sheet for the specific processor
and interrupt source being used.

� ISR Code � The compiler saves the registers that it uses in the ISR. This includes
the working registers and the RCOUNT special function register. Moreover, if the
ISR calls an ordinary function, then the compiler will save all the working registers
and RCOUNT, even if they are not all used explicitly in the ISR itself. This must be
done, because the compiler cannot know, in general, which resources are used by
the called function.

8.7 NESTING INTERRUPTS
The 16-bit devices support nested interrupts. Since processor resources are saved on
the stack in an ISR, nested ISR�s are coded in just the same way as non-nested ones.
Nested interrupts are enabled by clearing the NSTDIS (nested interrupt disable) bit in
the INTCON1 register. Note that this is the default condition as the 16-bit device comes
out of reset with nested interrupts enabled. Each interrupt source is assigned a priority
in the Interrupt Priority Control registers (IPCn). If there is a pending Interrupt Request
(IRQ) with a priority level equal to or greater than the current processor priority level in
the Processor Status register (CPUPRI field in the ST register), an interrupt will be
presented to the processor.
© 2008 Microchip Technology Inc. DS51284G-page 103

16-Bit C Compiler User�s Guide
8.8 ENABLING/DISABLING INTERRUPTS
Each interrupt source can be individually enabled or disabled. One interrupt enable bit
for each IRQ is allocated in the Interrupt Enable Control registers (IECn). Setting an
interrupt enable bit to one (1) enables the corresponding interrupt; clearing the interrupt
enable bit to zero (0) disables the corresponding interrupt. When the device comes out
of reset, all interrupt enable bits are cleared to zero. In addition, the processor has a
disable interrupt instruction (DISI) that can disable all interrupts for a specified number
of instruction cycles.

The DISI instruction can be used in a C program through inline assembly. For
example, the inline assembly statement:
__asm__ volatile ("disi #16");

will emit the specified DISI instruction at the point it appears in the source program. A
disadvantage of using DISI in this way is that the C programmer cannot always be
sure how the C compiler will translate C source to machine instructions, so it may be
difficult to determine the cycle count for the DISI instruction. It is possible to get around
this difficulty by bracketing the code that is to be protected from interrupts by DISI
instructions, the first of which sets the cycle count to the maximum value, and the
second of which sets the cycle count to zero. For example,
__asm__ volatile("disi #0x3FFF"); /* disable interrupts */
/* ... protected C code ... */
__asm__ volatile("disi #0x0000"); /* enable interrupts */

An alternative approach is to write directly to the DISICNT register to enable interrupts.
The DISICNT register may be modified only after a DISI instruction has been issued
and if the contents of the DISICNT register are not zero.
__asm__ volatile("disi #0x3FFF"); /* disable interrupts */
/* ... protected C code ... */
DISICNT = 0x0000; /* enable interrupts */

For some applications, it may be necessary to disable level 7 interrupts as well. These
can only be disabled through the modification of the COROCON IPL field. The provided
support files contain some useful preprocessor macro functions to help you safely
modify the IPL value. These macros are:
SET_CPU_IPL(ipl)
SET_AND_SAVE_CPU_IPL(save_to, ipl)
RESTORE_CPU_IPL(saved_to)

For example, you may wish to protect a section of code from interrupt. The following
code will adjust the current IPL setting and restore the IPL to its previous value.
void foo(void) {
 int current_cpu_ipl;

 SET_AND_SAVE_CPU_IPL(current_cpu_ipl, 7); /* disable interrupts */
 /* protected code here */
 RESTORE_CPU_IPL(current_cpu_ipl);
}

Note: Traps, such as the address error trap, cannot be disabled. Only IRQs can
be disabled.
DS51284G-page 104 © 2008 Microchip Technology Inc.

Interrupts
8.9 SHARING MEMORY BETWEEN INTERRUPT SERVICE ROUTINES AND
MAINLINE CODE

Care must be taken when modifying the same variable within a main or low-priority
Interrupt Service Routine (ISR) and a high-priority ISR. Higher priority interrupts, when
enabled, can interrupt a multiple instruction sequence and yield unexpected results
when a low-priority function has created a multiple instruction Read-Modify-Write
sequence accessing the same variable. Therefore, embedded systems must imple-
ment an atomic operation to ensure that the intervening high-priority ISR will not write
to the same variable from which the low-priority ISR has just read, but has not yet
completed its write.
An atomic operation is one that cannot be broken down into its constituent parts - it
cannot be interrupted. Depending upon the particular architecture involved, not all C
expressions translate into an atomic operation. On dsPIC DSC devices, these expres-
sions mainly fall into the following categories: 32-bit expressions, floating point arithme-
tic, division, and operations on multi-bit bitfields. Other factors will determine whether
or not an atomic operation will be generated, such as memory model settings, optimi-
zation level and resource availability.
Consider the general expression:
 foo = bar op baz;

The operator (op) may or may not be atomic, based on device architecture. In any
event, the compiler may not be able to generate the atomic operation in all instances -
this will very much depend upon several factors:
� the availability of an appropriate atomic machine instruction
� the resource availability - special registers or other constraints
� the optimization level, and other options that affect data/code placement
Without knowledge of the architecture, it is reasonable to assume that the general
expression requires two reads, one for each operand and one write to store the result.
Several difficulties may arise in the presence of interrupt sequences; they very much
depend on the particular application.

8.9.1 Development Issues
Here are some examples:

EXAMPLE 8-1: BAR MUST MATCH BAZ

If it is required that bar and baz match, (i.e., are updated synchronously with each
other), there is a possible hazard if either bar or baz can be updated within a higher
priority interrupt expression. Here are some sample flow sequences:
1. Safe:

read bar
read baz
perform operation
write back result to foo
© 2008 Microchip Technology Inc. DS51284G-page 105

16-Bit C Compiler User�s Guide
2. Unsafe:
read bar
interrupt modifies baz
read baz
perform operation
write back result to foo

3. Safe:
read bar
read baz
interrupt modifies bar or baz
perform operation
write back result to foo

The first is safe because any interrupt falls outside the boundaries of the expression.
The second is unsafe because the application demands that bar and baz be updated
synchronously with each other. The third is probably safe; foo will possibly have an old
value, but the value will be consistent with the data that was available at the start of the
expression.

EXAMPLE 8-2: TYPE OF FOO, BAR AND BAZ

Another variation depends upon the type of foo, bar and baz. The operations, "read
bar", "read baz", or "write back result to foo", may not be atomic, depending upon the
architecture of the target processor. For example, dsPIC DSC devices can read or write
an 8-bit, 16-bit, or 32-bit quantity in 1 (atomic) instruction. But, a 32-bit quantity may
require two instructions depending upon instruction selection (which in turn will depend
upon optimization and memory model settings). Assume that the types are long and
the compiler is unable to choose atomic operations for accessing the data. Then the
access becomes:

read lsw bar
read msw bar
read lsw baz
read msw baz
perform operation (on lsw and on msw)
perform operation
write back lsw result to foo
write back msw result to foo

Now there are more possibilities for an update of bar or baz to cause unexpected data.

EXAMPLE 8-3: BIT FIELDS

A third cause for concern are bit fields. C allows memory to be allocated at the bit level,
but does not define any bit operations. In the purest sense, any operation on a bit will
be treated as an operation on the underlying type of the bit field and will usually require
some operations to extract the field from bar and baz or to insert the field into foo.
The important consideration to note is that (again depending upon instruction architec-
ture, optimization levels and memory settings) an interrupted routine that writes to any
portion of the bit field where foo resides may be corruptible. This is particularly appar-
ent in the case where one of the operands is also the destination.
The dsPIC DSC instruction set can operate on 1 bit atomically. The compiler may select
these instructions depending upon optimization level, memory settings and resource
availability.
DS51284G-page 106 © 2008 Microchip Technology Inc.

Interrupts
EXAMPLE 8-4: CACHED MEMORY VALUES IN REGISTERS

Finally, the compiler may choose to cache memory values in registers. These are often
referred to as register variables and are particularly prone to interrupt corruption, even
when an operation involving the variable is not being interrupted. Ensure that memory
resources shared between an ISR and an interruptible function are designated as
volatile. This will inform the compiler that the memory location may be updated
out-of-line from the serial code sequence. This will not protect against the effect of
non-atomic operations, but is never-the-less important.

8.9.2 Development Solutions
Here are some strategies to remove potential hazards:
� Design the software system such that the conflicting event cannot occur. Do not

share memory between ISRs and other functions. Make ISRs as simple as
possible and move the real work to main code.

� Use care when sharing memory and, if possible, avoid sharing bit fields which
contain multiple bits.

� Protect non-atomic updates of shared memory from interrupts as you would
protect critical sections of code. The following macro can be used for this purpose:

 #define INTERRUPT_PROTECT(x) { \
 char saved_ipl; \
 \
 SET_AND_SAVE_CPU_IPL(saved_ipl,7); \
 x; \
 RESTORE_CPU_IPL(saved_ipl); } (void) 0;

This macro disables interrupts by increasing the current priority level to 7,
performing the desired statement and then restoring the previous priority level.

8.9.3 Application Example
The following example highlights some of the points discussed in this section:
void __attribute__((interrupt))
 HigherPriorityInterrupt(void) {
 /* User Code Here */
 LATGbits.LATG15 = 1; /* Set LATG bit 15 */
 IPC0bits.INT0IP = 2; /* Set Interrupt 0
 priority (multiple
 bits involved) to 2 */
 }

int main(void) {
 /* More User Code */
 LATGbits.LATG10 ^= 1; /* Potential HAZARD -
 First reads LATG into a W reg,
 implements XOR operation,
 then writes result to LATG */

 LATG = 0x1238; /* No problem, this is a write
 only assignment operation */

 LATGbits.LATG5 = 1; /* No problem likely,
 this is an assignment of a
 single bit and will use a single
 instruction bit set operation */
© 2008 Microchip Technology Inc. DS51284G-page 107

16-Bit C Compiler User�s Guide
 LATGbits.LATG2 = 0; /* No problem likely,
 single instruction bit clear
 operation probably used */

 LATG += 0x0001; /* Potential HAZARD -
 First reads LATG into a W reg,
 implements add operation,
 then writes result to LATG */

 IPC0bits.T1IP = 5; /* HAZARD -
 Assigning a multiple bitfield
 can generate a multiple
 instruction sequence */

}

A statement can be protected from interrupt using the INTERRUPT_PROTECT macro
provided above. For this example:
INTERRUPT_PROTECT(LATGbits.LATG15 ^= 1); /* Not interruptible by
 level 1-7 interrupt
 requests and safe
 at any optimization
 level */

8.10 PSV USAGE WITH INTERRUPT SERVICE ROUTINES
The introduction of managed psv pointers and CodeGuard Security psv constant sec-
tions in compiler v3.0 means that Interrupt Service Routines (ISRs) cannot make any
assumptions about the setting of PSVPAG. This is a migration issue for existing appli-
cations with ISRs that reference the auto_psv constants section. In previous versions
of the compiler, the ISR could assume that the correct value of PSVPAG was set during
program startup (unless the programmer had explicitly changed it.)
To help mitigate this problem, two new function attributes will be introduced: auto_psv
and no_auto_psv. If an ISR references const variables or string literals using the
constants-in-code memory model, the auto_psv attribute should be added to the
function definition. This attribute will cause the compiler to preserve the previous con-
tents of PSVPAG and set it to section .const. Upon exit, the previous value of PSV-
PAG will be restored. For example:
void __attribute__((interrupt, auto_psv)) myISR()
{
 /* This function can reference const variables and
 string literals with the constants-in-code memory model. */
}

The no_auto_psv attribute is used to indicate that an ISR does not reference the
auto_psv constants section. If neither attribute is specified, the compiler will assume
auto_psv and will insert the necessary instructions to ensure correct operation at run
time. A warning diagnostic message will also be issued. The warning will help alert cus-
tomers to the migration issue, and to the possibility of reducing interrupt latency by
specifying the no_auto_psv attribute.
DS51284G-page 108 © 2008 Microchip Technology Inc.

MPLAB® C COMPILER FOR
PIC24 MCUs AND dsPIC® DSCs
USER�S GUIDE

Chapter 9. Mixing Assembly Language and C Modules
9.1 INTRODUCTION
This section describes how to use assembly language and C modules together. It gives
examples of using C variables and functions in assembly code and examples of using
assembly language variables and functions in C.

9.2 HIGHLIGHTS
Items discussed in this chapter are:
� Mixing Assembly Language and C Variables and Functions � Separate

assembly language modules may be assembled, then linked with compiled C
modules.

� Using Inline Assembly Language � Assembly language instructions may be
embedded directly into the C code. The inline assembler supports both simple
(non-parameterized) assembly language statement, as well as extended
(parameterized) statements, where C variables can be accessed as operands of
an assembler instruction.

9.3 MIXING ASSEMBLY LANGUAGE AND C VARIABLES AND FUNCTIONS
The following guidelines indicate how to interface separate assembly language
modules with C modules.
� Follow the register conventions described in Section 4.12 �Register

Conventions�. In particular, registers W0-W7 are used for parameter passing. An
assembly language function will receive parameters, and should pass arguments
to called functions, in these registers.

� Functions not called during interrupt handling must preserve registers W8-W15.
That is, the values in these registers must be saved before they are modified and
restored before returning to the calling function. Registers W0-W7 may be used
without restoring their values.

� Interrupt functions must preserve all registers. Unlike a normal function call, an
interrupt may occur at any point during the execution of a program. When return-
ing to the normal program, all registers must be as they were before the interrupt
occurred.

� Variables or functions declared within a separate assembly file that will be
referenced by any C source file should be declared as global using the assembler
directive.global. External symbols should be preceded by at least one
underscore. The C function main is named _main in assembly and conversely an
assembly symbol _do_something will be referenced in C as do_something.
Undeclared symbols used in assembly files will be treated as externally defined.

The following example shows how to use variables and functions in both assembly
language and C regardless of where they were originally defined.
The file ex1.c defines foo and cVariable to be used in the assembly language file.
The C file also shows how to call an assembly function, asmFunction, and how to
access the assembly defined variable, asmVariable.
© 2008 Microchip Technology Inc. DS51284G-page 109

16-Bit C Compiler User�s Guide
EXAMPLE 9-1: MIXING C AND ASSEMBLY

/*
** file: ex1.c
*/
extern unsigned int asmVariable;
extern void asmFunction(void);
unsigned int cVariable;
void foo(void)
{
 asmFunction();
 asmVariable = 0x1234;
}

The file ex2.s defines asmFunction and asmVariable as required for use in a
linked application. The assembly file also shows how to call a C function, foo, and how
to access a C defined variable, cVariable.
;
; file: ex2.s
;
 .text
 .global _asmFunction
_asmFunction:
 mov #0,w0
 mov w0,_cVariable
 return

 .global _begin
_main:
 call _foo
 return

 .bss
 .global _asmVariable
 .align 2
_asmVariable: .space 2
 .end

In the C file, ex1.c, external references to symbols declared in an assembly file are
declared using the standard extern keyword; note that asmFunction, or
_asmFunction in the assembly source, is a void function and is declared
accordingly.
In the assembly file, ex1.s, the symbols _asmFunction, _main and _asmVariable
are made globally visible through the use of the .global assembler directive and can
be accessed by any other source file. The symbol _main is only referenced and not
declared; therefore, the assembler takes this to be an external reference.
The following compiler example shows how to call an assembly function with two
parameters. The C function main in call1.c calls the asmFunction in call2.s
with two parameters.
DS51284G-page 110 © 2008 Microchip Technology Inc.

Mixing Assembly Language and C Modules
EXAMPLE 9-2: CALLING AN ASSEMBLY FUNCTION IN C

/*
** file: call1.c
*/
extern int asmFunction(int, int);
int x;
void
main(void)
{
 x = asmFunction(0x100, 0x200);
}

The assembly-language function sums its two parameters and returns the result.
;
; file: call2.s
;
 .global _asmFunction
_asmFunction:
 add w0,w1,w0
 return
 .end

Parameter passing in C is detailed in Section 4.11.2 �Return Value�. In the preceding
example, the two integer arguments are passed in the W0 and W1 registers. The
integer return result is transferred via register W0. More complicated parameter lists
may require different registers and care should be taken in the hand-written assembly
to follow the guidelines.

9.4 USING INLINE ASSEMBLY LANGUAGE
Within a C function, the asm statement may be used to insert a line of assembly
language code into the assembly language that the compiler generates. Inline
assembly has two forms: simple and extended.
In the simple form, the assembler instruction is written using the syntax:
asm ("instruction");

where instruction is a valid assembly-language construct. If you are writing inline
assembly in ANSI C programs, write __asm__ instead of asm.

In an extended assembler instruction using asm, the operands of the instruction are
specified using C expressions. The extended syntax is:
asm("template" [: ["constraint"(output-operand) [, ...]]
 [: ["constraint"(input-operand) [, ...]]
 ["clobber" [, ...]]
]
]);

You must specify an assembler instruction template, plus an operand constraint
string for each operand. The template specifies the instruction mnemonic, and
optionally placeholders for the operands. The constraint strings specify operand
constraints, for example, that an operand must be in a register (the usual case), or that
an operand must be an immediate value.
Constraint letters and modifiers supported by the compiler are listed in Table 9-1 and
Table 9-2 respectively.

Note: Only a single string can be passed to the simple form of inline
assembly.
© 2008 Microchip Technology Inc. DS51284G-page 111

16-Bit C Compiler User�s Guide
TABLE 9-1: CONSTRAINT LETTERS SUPPORTED BY THE COMPILER

TABLE 9-2: CONSTRAINT MODIFIERS SUPPORTED BY THE COMPILER

EXAMPLE 9-3: PASSING C VARIABLES

This example demonstrates how to use the swap instruction (which the compiler does
not generally use):
asm ("swap %0" : "+r"(var));

Here var is the C expression for the operand, which is both an input and an output
operand. The operand is constrained to be of type r, which denotes a register operand.
The + in +r indicates that the operand is both an input and output operand.
Each operand is described by an operand-constraint string followed by the C expres-
sion in parentheses. A colon separates the assembler template from the first output
operand, and another separates the last output operand from the first input, if any.
Commas separate output operands and separate inputs.

Letter Constraint

a Claims WREG
b Divide support register W1
c Multiply support register W2
d General purpose data registers W1 - W14
e Non-divide support registers W2 - W14
g Any register, memory or immediate integer operand is allowed, except for

registers that are not general registers.
i An immediate integer operand (one with constant value) is allowed. This

includes symbolic constants whose values will be known only at assembly time.
r A register operand is allowed provided that it is in a general register.
v AWB register W13
w Accumulator register A - B
x x prefetch registers W8 - W9
y y prefetch registers W10 - W11
z MAC prefetch registers W4 - W7
0, 1, � ,
9

An operand that matches the specified operand number is allowed. If a digit is
used together with letters within the same alternative, the digit should come last.
By default, %n represents the first register for the operand (n). To access the
second, third, or fourth register, use a modifier letter.

T A near or far data operand.
U A near data operand.

Letter Constraint

= Means that this operand is write-only for this instruction: the previous value is
discarded and replaced by output data.

+ Means that this operand is both read and written by the instruction.
& Means that this operand is an earlyclobber operand, which is modified

before the instruction is finished using the input operands. Therefore, this
operand may not lie in a register that is used as an input operand or as part of
any memory address.

d Second register for operand number n, i.e., %dn..
q Fourth register for operand number n, i.e., %qn..
t Third register for operand number n, i.e., %tn..
DS51284G-page 112 © 2008 Microchip Technology Inc.

Mixing Assembly Language and C Modules
If there are no output operands but there are input operands, then there must be two
consecutive colons surrounding the place where the output operands would go. The
compiler requires that the output operand expressions must be L-values. The input
operands need not be L-values. The compiler cannot check whether the operands
have data types that are reasonable for the instruction being executed. It does not
parse the assembler instruction template and does not know what it means, or whether
it is valid assembler input. The extended asm feature is most often used for machine
instructions that the compiler itself does not know exist. If the output expression cannot
be directly addressed (for example, it is a bit field), the constraint must allow a register.
In that case, the compiler will use the register as the output of the asm, and then store
that register into the output. If output operands are write-only, the compiler will assume
that the values in these operands before the instruction are dead and need not be
generated.

EXAMPLE 9-4: CLOBBERING REGISTERS

Some instructions clobber specific hard registers. To describe this, write a third colon
after the input operands, followed by the names of the clobbered hard registers (given
as strings separated by commas). Here is an example:
asm volatile ("mul.b %0"
: /* no outputs */
: "U" (nvar)
: "w2");

In this case, the operand nvar is a character variable declared in near data space, as
specified by the �U� constraint. If the assembler instruction can alter the flags (condition
code) register, add �cc� to the list of clobbered registers. If the assembler instruction
modifies memory in an unpredictable fashion, add �memory� to the list of clobbered
registers. This will cause the compiler to not keep memory values cached in registers
across the assembler instruction.

EXAMPLE 9-5: USING MULTIPLE ASSEMBLER INSTRUCTIONS

You can put multiple assembler instructions together in a single asm template,
separated with newlines (written as \n). The input operands and the output operands�
addresses are ensured not to use any of the clobbered registers, so you can read and
write the clobbered registers as many times as you like. Here is an example of multiple
instructions in a template; it assumes that the subroutine _foo accepts arguments in
registers W0 and W1:
asm ("mov %0,w0\nmov %1,W1\ncall _foo"
: /* no outputs */
: "g" (a), "g" (b)
: "W0", "W1");

In this example, the constraint strings �g� indicate a general operand.

EXAMPLE 9-6: USING �&� TO PREVENT INPUT REGISTER CLOBBERING

Unless an output operand has the & constraint modifier, the compiler may allocate it in
the same register as an unrelated input operand, on the assumption that the inputs are
consumed before the outputs are produced. This assumption may be false if the
assembler code actually consists of more than one instruction. In such a case, use &
for each output operand that may not overlap an input operand. For example, consider
the following function:
int
exprbad(int a, int b)
{
 int c;
© 2008 Microchip Technology Inc. DS51284G-page 113

16-Bit C Compiler User�s Guide
 __asm__("add %1,%2,%0\n sl %0,%1,%0"
 : "=r"(c) : "r"(a), "r"(b));

 return(c);
}

The intention is to compute the value (a + b) << a. However, as written, the value
computed may or may not be this value. The correct coding informs the compiler that
the operand c is modified before the asm instruction is finished using the input
operands, as follows:
int
exprgood(int a, int b)
{
 int c;

 __asm__("add %1,%2,%0\n sl %0,%1,%0"
 : "=&r"(c) : "r"(a), "r"(b));

 return(c);
}

EXAMPLE 9-7: MATCHING OPERANDS

When the assembler instruction has a read-write operand, or an operand in which only
some of the bits are to be changed, you must logically split its function into two separate
operands: one input operand and one write-only output operand. The connection
between them is expressed by constraints that say they need to be in the same location
when the instruction executes. You can use the same C expression for both operands
or different expressions. For example, here is the add instruction with bar as its
read-only source operand and foo as its read-write destination:
asm ("add %2,%1,%0"
: "=r" (foo)
: "0" (foo), "r" (bar));

The constraint �0� for operand 1 says that it must occupy the same location as operand
0. A digit in constraint is allowed only in an input operand and must refer to an output
operand. Only a digit in the constraint can ensure that one operand will be in the same
place as another. The mere fact that foo is the value of both operands is not enough
to ensure that they will be in the same place in the generated assembler code. The
following would not work:
asm ("add %2,%1,%0"
: "=r" (foo)
: "r" (foo), "r" (bar));

Various optimizations or reloading could cause operands 0 and 1 to be in different
registers. For example, the compiler might find a copy of the value of foo in one
register and use it for operand 1, but generate the output operand 0 in a different
register (copying it afterward to foo�s own address).

EXAMPLE 9-8: NAMING OPERANDS

It is also possible to specify input and output operands using symbolic names that can
be referenced within the assembler code template. These names are specified inside
square brackets preceding the constraint string, and can be referenced inside the
assembler code template using %[name] instead of a percentage sign followed by the
operand number. Using named operands, the above example could be coded as
follows:
asm ("add %[foo],%[bar],%[foo]"
DS51284G-page 114 © 2008 Microchip Technology Inc.

Mixing Assembly Language and C Modules
: [foo] "=r" (foo)
: "0" (foo), [bar] "r" (bar));

EXAMPLE 9-9: VOLATILE ASM STATEMENTS

You can prevent an asm instruction from being deleted, moved significantly, or
combined, by writing the keyword volatile after the asm. For example:
#define disi(n) \
asm volatile ("disi #%0" \
: /* no outputs */ \
: "i" (n))

In this case, the constraint letter �i� denotes an immediate operand, as required by the
disi instruction.

EXAMPLE 9-10: MAKING CONTROL FLOW CHANGES

There are special precautions that must be taken when making control flow changes
within inline assembly statements.
There is no way, for example, to tell the compiler that an inline asm statement may
result in a change of control flow. The control should enter the asm statement and
always proceed to the next statement.
Good control flow:
 asm("call _foo" : /* outputs */
 : /* inputs */
 : "w0", "w1", "w2", "w3", "w4", "w5",
 "w6", "w7");
 /* next statement */

This is acceptable because after calling foo, the next statement will be executed. The
code tells the compiler that some registers do not survive this statement; these
represent the registers that will not be preserved by foo.
Bad control flow:
 asm("bra OV, error");
 /* next statement */
 return 0;

 asm("error: ");
 return 1;

This is unacceptable as the compiler will assume that the next statement, return 0,
is executed when it may not be. In this case, the asm("error: ") and following state-
ments will be deleted because they are unreachable. See further information regarding
labels in asm statements.
© 2008 Microchip Technology Inc. DS51284G-page 115

16-Bit C Compiler User�s Guide
Acceptable control flow:
 asm("cp0 _foo\n\t"
 "bra nz, eek\n\t"
 "; some assembly\n\t"
 "bra eek_end\n\t"
 "eek:\n\t"
 "; more assembly\n"
 "eek_end:" : /* outputs */
 : /* inputs */
 : "cc");
 /* next statement */

This is acceptable, but may not function as expected, (i.e., the next statement is always
executed, regardless of any branch inside the asm statement). See further information
regarding labels in asm statements. Note that the code indicates that the status flags
are no longer valid in this statement by identifying cc as clobbered.
Lables and Control Flow:
Additionally, labels inside assembly statements can behave unexpectedly with certain
optimization options. The inliner may cause labels within asm statements to be defined
multiple times.
Also the procedural aggragator tool (-mpa) does not accept the local label syntax. See
the following example:
 inline void foo() {
 asm("do #6, loopend");
 /* some C code */
 asm("loopend: ");
 return;
 }

This is bad for a number of reasons. First, the asm statements introduce an implied
control flow that the compiler does not know about. Second, if foo() is inlined the label
loopend will be defined many times. Third, the C code could be badly optimized
because the compiler cannot see the loop structure. This example breaks the rule that
the asm statement should not interfere with the program flow; asm("loopend:") will
not always flow to the next statement.
A solution would be to use the local label syntax as described in the �MPLAB® Assem-
bler, Linker and Utilties for PIC24 MCUs and dsPIC® DSCs User�s Guide� (DS51317),
as in the following example:
 inline void foo() {
 asm("do #6, 0f");
 /* some C code */
 asm("0: ");
 return;
 }

The above form is slightly better; at least it will fix the multiply-defined label issue.
However the procedural aggregator tool (-mpa) does not accept the 0: form of label.
DS51284G-page 116 © 2008 Microchip Technology Inc.

Mixing Assembly Language and C Modules
EXAMPLE 9-11: USING REQUIRED REGISTERS

Some instructions in the dsPIC DSC instruction set require operands to be in a partic-
ular register or groups of registers. Table 9-1 lists some constraint letters that may be
appropriate to satisfy the constraints of the instruction that you wish to generate.
If the constraints are not sufficient or you wish to nominate particular registers for use
inside asm statements, you may use the register-nominating extensions provided by
the compiler to support you (and reduce the need to mark registers as clobbered) as
the following code snippet shows. This snippet uses a fictitious instruction that has
some odd register requirements:
 { register int in1 asm("w7");
 register int in2 asm("w9");
 register int out1 asm("w13");
 register int out2 asm("w0");

 in1 = some_input1;
 in2 = some_input2;
 __asm__ volatile ("funky_instruction %2,%3,%0; = %1" :
 /* outputs */ "=r"(out1), "=r"(out2) :
 /* inputs */ "r"(in1), "r"(in2));
 /* use out1 and out2 in normal C */
 }

In this example, funky_instruction has one explicit output, out1, and one implicit
output, out2. Both have been placed in the asm template so that the compiler can
track the register usage properly (though the implicit output is in a comment statement).
The input shown is normal. Otherwise, the extended register declarator syntax is used
to nominate particular hard registers which satisfy the constraints of our fictitious
funky_instruction.

EXAMPLE 9-12: HANDLING VALUES LARGER THAN INT

Constraint letters and modifiers may be used to identify various entities with which it is
acceptable to replace a particular operand, such as %0 in:
asm("mov %1, %0" : "r"(foo) : "r"(bar));

This example indicates that the value stored in foo should be moved into bar. The
example code performs this task unless foo or bar are larger than an int.
By default, %0 represents the first register for the operand (0). To access the second,
third, or fourth register, use a modifier letter specified in Table 9-2.
© 2008 Microchip Technology Inc. DS51284G-page 117

16-Bit C Compiler User�s Guide
NOTES:
DS51284G-page 118 © 2008 Microchip Technology Inc.

MPLAB® C COMPILER FOR
PIC24 MCUs AND dsPIC® DSCs

USER�S GUIDE
Appendix A. Implementation-Defined Behavior
A.1 INTRODUCTION
This section discusses implementation-defined behavior for the MPLAB C Compiler for
PIC24 MCUs and dsPIC® DSCs (formerly MPLAB C30). The ISO standard for C
requires that vendors document the specifics of �implementation defined� features of
the language.

A.2 HIGHLIGHTS
Items discussed in this chapter are:
� Translation
� Environment
� Identifiers
� Characters
� Integers
� Floating Point
� Arrays and Pointers
� Registers
� Structures, Unions, Enumerations and Bit fields
� Qualifiers
� Declarators
� Statements
� Preprocessing Directives
� Library Functions
� Signals
� Streams and Files
� tmpfile
� errno
� Memory
� abort
� exit
� getenv
� system
� strerror
© 2008 Microchip Technology Inc. DS51284G-page 119

16-Bit C Compiler User�s Guide
A.3 TRANSLATION
Implementation-Defined Behavior for Translation is covered in section G.3.1 of the
ANSI C Standard.
Is each non-empty sequence of white-space characters, other than new line, retained
or is it replaced by one space character? (ISO 5.1.1.2)
It is replaced by one space character.
How is a diagnostic message identified? (ISO 5.1.1.3)
Diagnostic messages are identified by prefixing them with the source file name and line
number corresponding to the message, separated by colon characters (�:�).
Are there different classes of message? (ISO 5.1.1.3)
Yes.
If yes, what are they? (ISO 5.1.1.3)
Errors, which inhibit production of an output file, and warnings, which do not inhibit
production of an output file.
What is the translator return status code for each class of message? (ISO 5.1.1.3)
The return status code for errors is 1; for warnings it is 0.
Can a level of diagnostic be controlled? (ISO 5.1.1.3)
Yes.
If yes, what form does the control take? (ISO 5.1.1.3)
Compiler command line options may be used to request or inhibit the generation of
warning messages.

A.4 ENVIRONMENT
Implementation-Defined Behavior for Environment is covered in section G.3.2 of the
ANSI C Standard.
What library facilities are available to a freestanding program? (ISO 5.1.2.1)
All of the facilities of the standard C library are available, provided that a small set of
functions is customized for the environment, as described in the �Run Time Libraries�
section.
Describe program termination in a freestanding environment. (ISO 5.1.2.1)
If the function main returns or the function exit is called, a HALT instruction is executed
in an infinite loop. This behavior is customizable.
Describe the arguments (parameters) passed to the function main? (ISO 5.1.2.2.1)
No parameters are passed to main.
Which of the following is a valid interactive device: (ISO 5.1.2.3)
Asynchronous terminalNo
Paired display and keyboardNo
Inter program connectionNo
Other, please describe?None
DS51284G-page 120 © 2008 Microchip Technology Inc.

Implementation-Defined Behavior
A.5 IDENTIFIERS
Implementation-Defined Behavior for Identifiers is covered in section G.3.3 of the ANSI
C Standard.
How many characters beyond thirty-one (31) are significant in an identifier without
external linkage? (ISO 6.1.2)
All characters are significant.
How many characters beyond six (6) are significant in an identifier with external
linkage? (ISO 6.1.2)
All characters are significant.
Is case significant in an identifier with external linkage? (ISO 6.1.2)
Yes.

A.6 CHARACTERS
Implementation-Defined Behavior for Characters is covered in section G.3.4 of the
ANSI C Standard.
Detail any source and execution characters which are not explicitly specified by the
Standard? (ISO 5.2.1)
None.
List escape sequence value produced for listed sequences. (ISO 5.2.2)

TABLE A-1: ESCAPE SEQUENCE CHARACTERS AND VALUES

How many bits are in a character in the execution character set? (ISO 5.2.4.2)
8.
What is the mapping of members of the source character sets (in character and string
literals) to members of the execution character set? (ISO 6.1.3.4)
The identity function.
What is the equivalent type of a plain char? (ISO 6.2.1.1)
Either (user defined). The default is signed char. A compiler command-line option
may be used to make the default unsigned char.

Sequence Value

\a 7
\b 8
\f 12
\n 10
\r 13
\t 9
\v 11
© 2008 Microchip Technology Inc. DS51284G-page 121

16-Bit C Compiler User�s Guide
A.7 INTEGERS
Implementation-Defined Behavior for Integers is covered in section G.3.5 of the ANSI
C Standard.
The following table describes the amount of storage and range of various types of
integers: (ISO 6.1.2.5)

What is the result of converting an integer to a shorter signed integer, or the result of
converting an unsigned integer to a signed integer of equal length, if the value cannot
be represented? (ISO 6.2.1.2)
There is a loss of significance. No error is signaled.
What are the results of bitwise operations on signed integers? (ISO 6.3)
Shift operators retain the sign. Other operators act as if the operand(s) are unsigned
integers.
What is the sign of the remainder on integer division? (ISO 6.3.5)
+
What is the result of a right shift of a negative-valued signed integral type? (ISO 6.3.7)
The sign is retained.

A.8 FLOATING POINT
Implementation-Defined Behavior for Floating Point is covered in section G.3.6 of the
ANSI C Standard.
Is the scaled value of a floating constant that is in the range of the representable value
for its type, the nearest representable value, or the larger representable value immedi-
ately adjacent to the nearest representable value, or the smallest representable value
immediately adjacent to the nearest representable value? (ISO 6.1.3.1)
The nearest representable value.

TABLE A-2: INTEGER TYPES
Designation Size (bits) Range

char 8 -128 � 127
signed char 8 -128 � 127
unsigned char 8 0 � 255
short 16 -32768 � 32767
signed short 16 -32768 � 32767
unsigned short 16 0 � 65535
int 16 -32768 � 32767
signed int 16 -32768 � 32767
unsigned int 16 0 � 65535
long 32 -2147483648 � 2147438647
signed long 32 -2147483648 � 2147438647
unsigned long 32 0 � 4294867295
DS51284G-page 122 © 2008 Microchip Technology Inc.

Implementation-Defined Behavior
The following table describes the amount of storage and range of various types of
floating point numbers: (ISO 6.1.2.5)

What is the direction of truncation, when an integral number is converted to a
floating-point number, that cannot exactly represent the original value? (ISO 6.2.1.3)
Down.
What is the direction of truncation, or rounding, when a floating-point number is
converted to a narrower floating-point number? (ISO 6.2.1.4)
Down.

A.9 ARRAYS AND POINTERS
Implementation-Defined Behavior for Arrays and Pointers is covered in section G.3.7
of the ANSI C Standard.
What is the type of the integer required to hold the maximum size of an array that is,
the type of the size of operator, size_t? (ISO 6.3.3.4, ISO 7.1.1)
unsigned int.
What is the size of integer required for a pointer to be converted to an integral type?
(ISO 6.3.4)
16 bits.
What is the result of casting a pointer to an integer, or vice versa? (ISO 6.3.4)
The mapping is the identity function.
What is the type of the integer required to hold the difference between two pointers to
members of the same array, ptrdiff_t? (ISO 6.3.6, ISO 7.1.1)
unsigned int.

A.10 REGISTERS
Implementation-Defined Behavior for Registers is covered in section G.3.8 of the ANSI
C Standard.
To what extent does the storage class specifier register actually effect the storage
of objects in registers? (ISO 6.5.1)
If optimization is disabled, an attempt will be made to honor the register storage
class; otherwise, it is ignored.

TABLE A-3: FLOATING-POINT TYPES
Designation Size (bits) Range

float 32 1.175494e-38 � 3.40282346e+38
double* 32 1.175494e-38 � 3.40282346e+38
long double 64 2.22507385e-308 � 1.79769313e+308
* double is equivalent to long double if -fno-short-double is used.
© 2008 Microchip Technology Inc. DS51284G-page 123

16-Bit C Compiler User�s Guide
A.11 STRUCTURES, UNIONS, ENUMERATIONS AND BIT FIELDS
Implementation-Defined Behavior for Structures, Unions, Enumerations and Bit Fields
is covered in sections A.6.3.9 and G.3.9 of the ANSI C Standard.
What are the results if a member of a union object is accessed using a member of a
different type? (ISO 6.3.2.3)
No conversions are applied.
Describe the padding and alignment of members of structures? (ISO 6.5.2.1)
Chars are byte-aligned. All other objects are word-aligned.
What is the equivalent type for a plain int bit field? (ISO 6.5.2.1)
User defined. By default, signed int bit field. May be made an unsigned int bit
field using a command line option.
What is the order of allocation of bit fields within an int? (ISO 6.5.2.1)
Bits are allocated from least-significant to most-significant.
Can a bit field straddle a storage-unit boundary? (ISO 6.5.2.1)
Yes.
Which integer type has been chosen to represent the values of an enumeration type?
(ISO 6.5.2.2)
int.

A.12 QUALIFIERS
Implementation-Defined Behavior for Qualifiers is covered in section G.3.10 of the
ANSI C Standard.
Describe what action constitutes an access to an object that has volatile-qualified type?
(ISO 6.5.3)
If an object is named in an expression, it has been accessed.

A.13 DECLARATORS
Implementation-Defined Behavior for Declarators is covered in section G.3.11 of the
ANSI C Standard.
What is the maximum number of declarators that may modify an arithmetic, structure,
or union type? (ISO 6.5.4)
No limit.

A.14 STATEMENTS
Implementation-Defined Behavior for Statements is covered in section G.3.12 of the
ANSI C Standard.
What is the maximum number of case values in a switch statement? (ISO 6.6.4.2)
No limit.
DS51284G-page 124 © 2008 Microchip Technology Inc.

Implementation-Defined Behavior
A.15 PREPROCESSING DIRECTIVES
Implementation-Defined Behavior for Preprocessing Directives is covered in section
G.3.13 of the ANSI C Standard.
Does the value of a single-character character constant in a constant expression, that
controls conditional inclusion, match the value of the same character constant in the
execution character set? (ISO 6.8.1)
Yes.
Can such a character constant have a negative value? (ISO 6.8.1)
Yes.
What method is used for locating includable source files? (ISO 6.8.2)
The preprocessor searches the current directory, followed by directories named using
command-line options.
How are headers identified, or the places specified? (ISO 6.8.2)
The headers are identified on the #include directive, enclosed between < and >
delimiters, or between � and � delimiters. The places are specified using command-line
options.
Are quoted names supported for includable source files? (ISO 6.8.2)
Yes.
What is the mapping between delimited character sequences and external source file
names? (ISO 6.8.2)
The identity function.
Describe the behavior of each recognized #pragma directive. (ISO 6.8.6)

What are the definitions for __ DATE __ and __ TIME __ respectively, when the date
and time of translation are not available? (ISO 6.8.8)
Not applicable. The compiler is not supported in environments where these functions
are not available.

TABLE A-4: #PRAGMA BEHAVIOR
Pragma Behavior

#pragma code section-name Names the code section.
#pragma code Resets the name of the code section to its default

(viz., .text).
#pragma idata section-name Names the initialized data section.
#pragma idata Resets the name of the initialized data section to its

default value (viz., .data).
#pragma udata section-name Names the uninitialized data section.
#pragma udata Resets the name of the uninitialized data section to

its default value (viz., .bss).
#pragma interrupt
 function-name

Designates function-name as an interrupt function.
© 2008 Microchip Technology Inc. DS51284G-page 125

16-Bit C Compiler User�s Guide
A.16 LIBRARY FUNCTIONS
Implementation-Defined Behavior for Library Functions is covered in section G.3.14 of
the ANSI C Standard.
What is the null pointer constant to which the macro NULL expands? (ISO 7.1.5)
0.
How is the diagnostic printed by the assert function recognized, and what is the
termination behavior of this function? (ISO 7.2)
The assert function prints the file name, line number and test expression, separated by
the colon character (�:�). It then calls the abort function.
What characters are tested for by the isalnum, isalpha, iscntrl, islower, isprint and
isupper functions? (ISO 7.3.1)

What values are returned by the mathematics functions after a domain errors?
(ISO 7.5.1)
NaN.
Do the mathematics functions set the integer expression errno to the value of the
macro ERANGE on underflow range errors? (ISO 7.5.1)
Yes.
Do you get a domain error or is zero returned when the fmod function has a second
argument of zero? (ISO 7.5.6.4)
Domain error.

TABLE A-5: CHARACTERS TESTED BY IS FUNCTIONS
Function Characters tested

isalnum One of the letters or digits: isalpha or isdigit.
isalpha One of the letters: islower or isupper.
iscntrl One of the five standard motion control characters, backspace and alert:

\f, \n, \r, \t, \v, \b, \a.
islower One of the letters �a� through �z�.
isprint A graphic character or the space character: isalnum or ispunct or

space.
isupper One of the letters �A� through �Z�.
ispunct One of the characters: ! " # % & ' () ; < = > ? [\] * + , - . / : ^
DS51284G-page 126 © 2008 Microchip Technology Inc.

Implementation-Defined Behavior
A.17 SIGNALS
What is the set of signals for the signal function? (ISO 7.7.1.1)

Describe the parameters and the usage of each signal recognized by the signal
function. (ISO 7.7.1.1)
Application defined.
Describe the default handling and the handling at program startup for each signal
recognized by the signal function? (ISO 7.7.1.1)
None.
If the equivalent of signal (sig,SIG_DFL) is not executed prior to the call of a signal han-
dler, what blocking of the signal is performed? (ISO 7.7.1.1)
None.
Is the default handling reset if a SIGILL signal is received by a handler specified to the
signal function? (ISO 7.7.1.1)
No.

A.18 STREAMS AND FILES
Does the last line of a text stream require a terminating new line character? (ISO 7.9.2)
No.
Do space characters, that are written out to a text stream immediately before a new line
character, appear when the stream is read back in? (ISO 7.9.2)
Yes.
How many null characters may be appended to data written to a binary stream?
(ISO 7.9.2)
None.
Is the file position indicator of an append mode stream initially positioned at the start or
end of the file? (ISO 7.9.3)
Start.
Does a write on a text stream cause the associated file to be truncated beyond that
point? (ISO 7.9.3)
Application defined.
Describe the characteristics of file buffering. (ISO 7.9.3)
Fully buffered.
Can zero-length file actually exist? (ISO 7.9.3)
Yes.

TABLE A-6: SIGNAL FUNCTION
Name Description

SIGABRT Abnormal termination.
SIGINT Receipt of an interactive attention signal.
SIGILL Detection of an invalid function image.
SIGFPE An erroneous arithmetic operation.
SIGSEGV An invalid access to storage.
SIGTERM A termination request sent to the program.
© 2008 Microchip Technology Inc. DS51284G-page 127

16-Bit C Compiler User�s Guide
What are the rules for composing a valid file name? (ISO 7.9.3)
Application defined.
Can the same file be open multiple times? (ISO 7.9.3)
Application defined.
What is the effect of the remove function on an open file? (ISO 7.9.4.1)
Application defined.
What is the effect if a file with the new name exists prior to a call to the rename function?
(ISO 7.9.4.2)
Application defined.
What is the form of the output for %p conversion in the fprintf function? (ISO 7.9.6.1)
A hexadecimal representation.
What form does the input for %p conversion in the fscanf function take? (ISO 7.9.6.2)
A hexadecimal representation.

A.19 TMPFILE
Is an open temporary file removed if the program terminates abnormally? (ISO 7.9.4.3)
Yes.

A.20 ERRNO
What value is the macro errno set to by the fgetpos or ftell function on failure?
(ISO 7.9.9.1, (ISO 7.9.9.4)
Application defined.
What is the format of the messages generated by the perror function? (ISO 7.9.10.4)
The argument to perror, followed by a colon, followed by a text description of the
value of errno.

A.21 MEMORY
What is the behavior of the calloc, malloc or realloc function if the size requested
is zero? (ISO 7.10.3)
A block of zero length is allocated.

A.22 ABORT
What happens to open and temporary files when the abort function is called?
(ISO 7.10.4.1)
Nothing.

A.23 EXIT
What is the status returned by the exit function if the value of the argument is other than
zero, EXIT_SUCCESS, or EXIT_FAILURE? (ISO 7.10.4.3)
The value of the argument.
DS51284G-page 128 © 2008 Microchip Technology Inc.

Implementation-Defined Behavior
A.24 GETENV
What limitations are there on environment names? (ISO 7.10.4.4)
Application defined.
Describe the method used to alter the environment list obtained by a call to the getenv
function. (ISO 7.10.4.4)
Application defined.

A.25 SYSTEM
Describe the format of the string that is passed to the system function. (ISO 7.10.4.5)
Application defined.
What mode of execution is performed by the system function? (ISO 7.10.4.5)
Application defined.

A.26 STRERROR
Describe the format of the error message output by the strerror function.
(ISO 7.11.6.2)
A plain character string.
List the contents of the error message strings returned by a call to the strerror
function. (ISO 7.11.6.2)

TABLE A-7: ERROR MESSAGE STRINGS
Errno Message

0 no error
EDOM domain error
ERANGE range error
EFPOS file positioning error
EFOPEN file open error
nnn error #nnn
© 2008 Microchip Technology Inc. DS51284G-page 129

16-Bit C Compiler User�s Guide
NOTES:
DS51284G-page 130 © 2008 Microchip Technology Inc.

MPLAB® C COMPILER FOR
PIC24 MCUs AND dsPIC® DSCs
USER�S GUIDE

Appendix B. Built-in Functions
B.1 INTRODUCTION
This appendix describes the built-in functions that are specific to MPLAB C Compiler
for PIC24 MCUs and dsPIC® DSCs (formerly MPLAB C30).
Built-in functions give the C programmer access to assembler operators or machine
instructions that are currently only accessible using inline assembly, but are sufficiently
useful that they are applicable to a broad range of applications. Built-in functions are
coded in C source files syntactically like function calls, but they are compiled to
assembly code that directly implements the function, and do not involve function calls
or library routines.
There are a number of reasons why providing built-in functions is preferable to
requiring programmers to use inline assembly. They include the following:
1. Providing built-in functions for specific purposes simplifies coding.
2. Certain optimizations are disabled when inline assembly is used. This is not the

case for built-in functions.
3. For machine instructions that use dedicated registers, coding inline assembly

while avoiding register allocation errors can require considerable care. The
built-in functions make this process simpler as you do not need to be concerned
with the particular register requirements for each individual machine instruction.

This chapter is organized as follows:

Built-In Function List

__builtin_addab __builtin_movsac __builtin_tbloffset
__builtin_add __builtin_mpy __builtin_tblrdh
__builtin_btg __builtin_mpyn __builtin_tblrdl
__builtin_clr __builtin_msc __builtin_tblwth
__builtin_clr_prefetch __builtin_mulss __builtin_tblwtl
__builtin_divf __builtin_mulsu __builtin_write_NVM
__builtin_divmodsd __builtin_mulus __builtin_write_OSCCONL
__builtin_divmodud __builtin_muluu __builtin_write_OSCCONH
__builtin_divsd __builtin_nop __builtin_write_RTCWEN
__builtin_divud __builtin_psvpage
__builtin_dmaoffset __builtin_psvoffset
__builtin_ed __builtin_readsfr
__builtin_edac __builtin_return_address
__builtin_fbcl __builtin_sac
__builtin_lac __builtin_sacr
__builtin_mac __builtin_sftac
__builtin_modsd __builtin_subab
__builtin_modud __builtin_tblpage
© 2008 Microchip Technology Inc. DS51284G-page 131

16-Bit C Compiler User�s Guide
B.2 BUILT-IN FUNCTION LIST
This section describes the programmer interface to the compiler built-in functions.
Since the functions are �built in�, there are no header files associated with them. Simi-
larly, there are no command-line switches associated with the built-in functions � they
are always available. The built-in function names are chosen such that they belong to
the compiler�s namespace (they all have the prefix __builtin_), so they will not con-
flict with function or variable names in the programmer�s namespace.

__builtin_addab
Description: Add accumulators A and B with the result written back to the specified

accumulator. For example:
 register int result asm("A");
 result = __builtin_addab();
will generate:
 add A

Prototype: int __builtin_addab(void);
Argument: None
Return Value: Returns the addition result to an accumulator.
Assembler Opera-
tor / Machine
Instruction:

addad

Error Messages An error message will be displayed if the result is not an accumulator
register.

__builtin_add
Description: Add value to the accumulator specified by result with a shift

specified by literal shift. For example:
 register int result asm("A");
 int value;
 result = __builtin_add(value,0);
If value is held in w0, the following will be generated:
 add w0, #0, A

Prototype: int __builtin_add(int value, const int shift);
Argument: value Integer number to add to accumulator value.

shift Amount to shift resultant accumulator value.
Return Value: Returns the shifted addition result to an accumulator.
Assembler Opera-
tor / Machine
Instruction:

add

Error Messages An error message will be displayed if:
� the result is not an accumulator register
� the shift value is not a literal within range
DS51284G-page 132 © 2008 Microchip Technology Inc.

Built-in Functions
__builtin_btg
Description: This function will generate a btg machine instruction.

Some examples include:

int i; /* near by default */
int l __attribute__((far));

struct foo {
 int bit1:1;
} barbits;

int bar;

void some_bittoggles() {
 register int j asm("w9");
 int k;

 k = i;

 __builtin_btg(&i,1);
 __builtin_btg(&j,3);
 __builtin_btg(&k,4);
 __builtin_btg(&l,11);

 return j+k;
}

Note that taking the address of a variable in a register will produce
warning by the compiler and cause the register to be saved onto the
stack (so that its address may be taken); this form is not recommended.
This caution only applies to variables explicitly placed in registers by
the programmer.

Prototype: void __builtin_btg(unsigned int *, unsigned int
0xn);

Argument: * A pointer to the data item for which a bit should be toggled.
0xn A literal value in the range of 0 to 15.

Return Value: Returns a btg machine instruction.
Assembler Opera-
tor / Machine
Instruction:

btg

Error Messages An error message will be displayed if the parameter values are not
within range

__builtin_clr
Description: Clear the specified accumulator. For example:

 register int result asm("A");
 result = __builtin_clr();
will generate:
 clr A

Prototype: int __builtin_clr(void);
Argument: None
Return Value: Returns the cleared value result to an accumulator.
© 2008 Microchip Technology Inc. DS51284G-page 133

16-Bit C Compiler User�s Guide
Assembler Opera-
tor / Machine
Instruction:

clr

Error Messages An error message will be displayed if the result is not an accumulator
register.

__builtin_clr_prefetch
Description: Clear an accumulator and prefetch data ready for a future MAC

operation.
xptr may be null to signify no X prefetch to be performed, in which
case the values of xincr and xval are ignored, but required.
yptr may be null to signify no Y prefetch to be performed, in which
case the values of yincr and yval are ignored, but required.
xval and yval nominate the address of a C variable where the
prefetched value will be stored.
xincr and yincr may be the literal values: -6, -4, -2, 0, 2, 4, 6 or an
integer value.
If AWB is non null, the other accumulator will be written back into the
referenced variable.
For example:
 register int result asm("A");
 int x_memory_buffer[256]
 __attribute__((space(xmemory)));
 int y_memory_buffer[256]
 __attribute__((space(ymemory)));
 int *xmemory;
 int *ymemory;
 int awb;
 int xVal, yVal;

 xmemory = x_memory_buffer;
 ymemory = y_memory_buffer;
 result = __builtin_clr(&xmemory, &xVal, 2,
 &ymemory, &yVal, 2, &awb);
might generate:
 clr A, [w8]+=2, w4, [w10]+=2, w5, w13

The compiler may need to spill w13 to ensure that it is available for the
write-back. It may be recommended to users that the register be
claimed for this purpose.
After this instruction:
� result will be cleared
� xVal will contain x_memory_buffer[0]
� yVal will contain y_memory_buffer[0]
� xmemory and ymemory will be incremented by 2, ready for the

next mac operation
Prototype: int __builtin_clr_prefetch(

 int **xptr, int *xval, int xincr,
 int **yptr, int *yval, int yincr, int *AWB);

__builtin_clr
DS51284G-page 134 © 2008 Microchip Technology Inc.

Built-in Functions
Argument: xptr Integer pointer to x prefetch.
xval Integer value of x prefetch.
xincr Integer increment value of x prefetch.
yptr Integer pointer to y prefetch.
yval Integer value of y prefetch.
yincr Integer increment value of y prefetch.
AWB Accumulator selection.

Return Value: Returns the cleared value result to an accumulator.
Assembler Opera-
tor / Machine
Instruction:

clr

Error Messages An error message will be displayed if:
� the result is not an accumulator register
� xval is a null value but xptr is not null
� yval is a null value but yptr is not null

__builtin_divf
Description: Computes the quotient num / den. A math error exception occurs if den

is zero. Function arguments are unsigned, as is the function result.
Prototype: unsigned int __builtin_divf(unsigned int num,

 unsigned int den);
Argument: num numerator

den denominator
Return Value: Returns the unsigned integer value of the quotient num / den.
Assembler Opera-
tor / Machine
Instruction:

div.f

__builtin_divmodsd
Description: Issues the 16-bit architecture�s native signed divide support with the

same restrictions given in the �dsPIC30F/33F Programmer�s Reference
Manual� (DS70157). Notably, if the quotient does not fit into a 16-bit
result, the results (including remainder) are unexpected. This form of
the builtin function will capture both the quotient and remainder.

Prototype: signed int __builtin_divmodsd(
 signed long dividend, signed int divisor,
 signed int *remainder);

Argument: dividendnumber to be divided
divisornumber to divide by
remainderpointer to remainder

Return Value: Quotient and remainder.
Assembler Opera-
tor / Machine
Instruction:

divmodsd

Error Messages None.

__builtin_clr_prefetch
© 2008 Microchip Technology Inc. DS51284G-page 135

16-Bit C Compiler User�s Guide
__builtin_divmodud
Description: Issues the 16-bit architecture�s native unsigned divide support with the

same restrictions given in the �dsPIC30F/33F Programmer�s Refer-
ence Manual� (DS70157). Notably, if the quotient does not fit into a
16-bit result, the results (including remainder) are unexpected. This
form of the builtin function will capture both the quotient and remainder.

Prototype: unsigned int __builtin_divmodud(
 unsigned long dividend, unsigned int divisor,
 unsigned int *remainder);

Argument: dividendnumber to be divided
divisornumber to divide by
remainderpointer to remainder

Return Value: Quotient and remainder.
Assembler Opera-
tor / Machine
Instruction:

divmodud

Error Messages None.

__builtin_divsd
Description: Computes the quotient num / den. A math error exception occurs if den

is zero. Function arguments are signed, as is the function result. The
command-line option -Wconversions can be used to detect unex-
pected sign conversions.

Prototype: int __builtin_divsd(const long num, const int den);
Argument: num numerator

den denominator
Return Value: Returns the signed integer value of the quotient num / den.
Assembler Opera-
tor / Machine
Instruction:

div.sd

__builtin_divud
Description: Computes the quotient num / den. A math error exception occurs if den

is zero. Function arguments are unsigned, as is the function result. The
command-line option -Wconversions can be used to detect unex-
pected sign conversions.

Prototype: unsigned int __builtin_divud(const unsigned
 long num, const unsigned int den);

Argument: num numerator
den denominator

Return Value: Returns the unsigned integer value of the quotient num / den.
Assembler Opera-
tor / Machine
Instruction:

div.ud
DS51284G-page 136 © 2008 Microchip Technology Inc.

Built-in Functions
__builtin_dmaoffset
Description: Obtains the offset of a symbol within DMA memory.

For example:
 unsigned int result;
 char buffer[256] __attribute__((space(dma)));

 result = __builtin_dmaoffset(&buffer);

Might generate:
 mov #dmaoffset(buffer), w0

Prototype: unsigned int __builtin_dmaoffset(const void *p);
Argument: *p pointer to DMA address value
Return Value: Returns the offset to a variable located in DMA memory.
Assembler Opera-
tor / Machine
Instruction:

dmaoffset

Error Messages An error message will be displayed if the parameter is not the address
of a global symbol.

__builtin_ed
Description: Squares sqr, returning it as the result. Also prefetchs data for future

square operation by computing **xptr - **yptr and storing the
result in *distance.
xincr and yincr may be the literal values: -6, -4, -2, 0, 2, 4, 6 or an
integer value.
For example:
 register int result asm("A");
 int *xmemory, *ymemory;
 int distance;

 result = __builtin_ed(distance,
 &xmemory, 2,
 &ymemory, 2,
 &distance);

might generate:
 ed w4*w4, A, [w8]+=2, [W10]+=2, w4

Prototype: int __builtin_ed(int sqr, int **xptr, int xincr,
 int **yptr, int yincr, int *distance);

Argument: sqr Integer squared value.
xptr Integer pointer to pointer to x prefetch.
xincr Integer increment value of x prefetch.
yptr Integer pointer to pointer to y prefetch.
yincr Integer increment value of y prefetch.
distance Integer pointer to distance.

Return Value: Returns the squared result to an accumulator.
Assembler Opera-
tor / Machine
Instruction:

ed
© 2008 Microchip Technology Inc. DS51284G-page 137

16-Bit C Compiler User�s Guide
Error Messages An error message will be displayed if:
� the result is not an accumulator register
� xptr is null
� yptr is null
� distance is null

__builtin_edac
Description: Squares sqr and sums with the nominated accumulator register,

returning it as the result. Also prefetchs data for future square operation
by computing **xptr - **yptr and storing the result in *distance.
xincr and yincr may be the literal values: -6, -4, -2, 0, 2, 4, 6 or an
integer value.
For example:
 register int result asm("A");
 int *xmemory, *ymemory;
 int distance;

 result = __builtin_ed(distance,
 &xmemory, 2,
 &ymemory, 2,
 &distance);

might generate:
 ed w4*w4, A, [w8]+=2, [W10]+=2, w4

Prototype: int __builtin_edac(int sqr, int **xptr, int xincr,
 int **yptr, int yincr, int *distance);

Argument: sqr Integer squared value.
xptr Integer pointer to pointer to x prefetch.
xincr Integer increment value of x prefetch.
yptr Integer pointer to pointer to y prefetch.
yincr Integer increment value of y prefetch.
distance Integer pointer to distance.

Return Value: Returns the squared result to specified accumulator.
Assembler Opera-
tor / Machine
Instruction:

edac

Error Messages An error message will be displayed if:
� the result is not an accumulator register
� xptr is null
� yptr is null
� distance is null

__builtin_fbcl
Description: Finds the first bit change from left in value. This is useful for dynamic

scaling of fixed-point data. For example:
 int result, value;
 result = __builtin_fbcl(value);

might generate:
 fbcl w4, w5

Prototype: int __builtin_fbcl(int value);

__builtin_ed
DS51284G-page 138 © 2008 Microchip Technology Inc.

Built-in Functions
Argument: valueInteger number of first bit change.
Return Value: Returns the shifted addition result to an accumulator.
Assembler Opera-
tor / Machine
Instruction:

fbcl

Error Messages An error message will be displayed if the result is not an accumulator
register.

__builtin_lac
Description: Shifts value by shift (a literal between -8 and 7) and returns the value

to be stored into the accumulator register. For example:
 register int result asm("A");
 int value;
 result = __builtin_lac(value,3);

Might generate:
 lac w4, #3, A

Prototype: int __builtin_lac(int value, int shift);
Argument: valueInteger number to be shifted.

shiftLiteral amount to shift.
Return Value: Returns the shifted addition result to an accumulator.
Assembler Opera-
tor / Machine
Instruction:

lac

Error Messages An error message will be displayed if:
� the result is not an accumulator register
� the shift value is not a literal within range

__builtin_fbcl
© 2008 Microchip Technology Inc. DS51284G-page 139

16-Bit C Compiler User�s Guide
__builtin_mac
Description: Computes a x b and sums with accumulator; also prefetchs data ready

for a future MAC operation.
xptr may be null to signify no X prefetch to be performed, in which
case the values of xincr and xval are ignored, but required.
yptr may be null to signify no Y prefetch to be performed, in which
case the values of yincr and yval are ignored, but required.
xval and yval nominate the address of a C variable where the
prefetched value will be stored.
xincr and yincr may be the literal values: -6, -4, -2, 0, 2, 4, 6 or an
integer value.
If AWB is non null, the other accumulator will be written back into the
referenced variable.
For example:
 register int result asm("A");
 int *xmemory;
 int *ymemory;
 int xVal, yVal;

 result = __builtin_mac(xVal, yVal,
 &xmemory, &xVal, 2,
 &ymemory, &yVal, 2, 0);

might generate:
 mac w4*w5, A, [w8]+=2, w4, [w10]+=2, w5

Prototype: int __builtin_mac(int a, int b,
int **xptr, int *xval, int xincr,
int **yptr, int *yval, int yincr, int *AWB);

Argument: a Integer multiplicand.
b Integer multiplier.
xptr Integer pointer to pointer to x prefetch.
xval Integer pointer to value of x prefetch.
xincr Integer increment value of x prefetch.
yptr Integer pointer to pointer to y prefetch.
yval Integer pointer to value of y prefetch.
yincr Integer increment value of y prefetch.
AWB Integer pointer to accumulator selection.

Return Value: Returns the cleared value result to an accumulator.
Assembler Opera-
tor / Machine
Instruction:

mac

Error Messages An error message will be displayed if:
� the result is not an accumulator register
� xval is a null value but xptr is not null
� yval is a null value but yptr is not null

__builtin_modsd
Description: Issues the 16-bit architecture�s native signed divide support with the

same restrictions given in the �dsPIC30F/33F Programmer�s Refer-
ence Manual� (DS70157). Notably, if the quotient does not fit into a
16-bit result, the results (including remainder) are unexpected. This
form of the builtin function will capture only the remainder.

Prototype: signed int __builtin_modsd(signed long dividend,
 signed int divisor);
DS51284G-page 140 © 2008 Microchip Technology Inc.

Built-in Functions
Argument: dividend number to be divided
divisor number to divide by

Return Value: Remainder.
Assembler Opera-
tor / Machine
Instruction:

modsd

Error Messages None.

__builtin_modud
Description: Issues the 16-bit architecture�s native unsigned divide support with the

same restrictions given in the �dsPIC30F/33F Programmer�s Refer-
ence Manual� (DS70157). Notably, if the quotient does not fit into a
16-bit result, the results (including remainder) are unexpected. This
form of the builtin function will capture only the remainder.

Prototype: unsigned int __builtin_modud(unsigned long dividend,
 unsigned int divisor);

Argument: dividendnumber to be divided
divisornumber to divide by

Return Value: Remainder.
Assembler Opera-
tor / Machine
Instruction:

modud

Error Messages None.

__builtin_movsac
Description: Computes nothing, but prefetchs data ready for a future MAC

operation.
xptr may be null to signify no X prefetch to be performed, in which
case the values of xincr and xval are ignored, but required.
yptr may be null to signify no Y prefetch to be performed, in which
case the values of yincr and yval are ignored, but required.
xval and yval nominate the address of a C variable where the
prefetched value will be stored.
xincr and yincr may be the literal values: -6, -4, -2, 0, 2, 4, 6 or an
integer value.
If AWB is non null, the other accumulator will be written back into the
referenced variable.
For example:
 register int result asm("A");
 int *xmemory;
 int *ymemory;
 int xVal, yVal;

 result = __builtin_movsac(&xmemory, &xVal, 2,
 &ymemory, &yVal, 2, 0);

might generate:
 movsac A, [w8]+=2, w4, [w10]+=2, w5

Prototype: int __builtin_movsac(
 int **xptr, int *xval, int xincr,
 int **yptr, int *yval, int yincr, int *AWB);

__builtin_modsd
© 2008 Microchip Technology Inc. DS51284G-page 141

16-Bit C Compiler User�s Guide
Argument: xptr Integer pointer to pointer to x prefetch.
xval Integer pointer to value of x prefetch.
xincr Integer increment value of x prefetch.
yptr Integer pointer to pointer to y prefetch.
yval Integer pointer to value of y prefetch.
yincr Integer increment value of y prefetch.
AWB Integer pointer to accumulator selection.

Return Value: Returns prefetch data.
Assembler Opera-
tor / Machine
Instruction:

movsac

Error Messages An error message will be displayed if:
� the result is not an accumulator register
� xval is a null value but xptr is not null
� yval is a null value but yptr is not null

__builtin_mpy
Description: Computes a x b ; also prefetchs data ready for a future MAC operation.

xptr may be null to signify no X prefetch to be performed, in which
case the values of xincr and xval are ignored, but required.
yptr may be null to signify no Y prefetch to be performed, in which
case the values of yincr and yval are ignored, but required.
xval and yval nominate the address of a C variable where the
prefetched value will be stored.
xincr and yincr may be the literal values: -6, -4, -2, 0, 2, 4, 6 or an
integer value.
For example:
 register int result asm("A");
 int *xmemory;
 int *ymemory;
 int xVal, yVal;

 result = __builtin_mpy(xVal, yVal,
 &xmemory, &xVal, 2,
 &ymemory, &yVal, 2);

might generate:
 mac w4*w5, A, [w8]+=2, w4, [w10]+=2, w5

Prototype: int __builtin_mpy(int a, int b,
 int **xptr, int *xval, int xincr,
 int **yptr, int *yval, int yincr);

Argument: a Integer multiplicand.
b Integer multiplier.
xptr Integer pointer to pointer to x prefetch.
xval Integer pointer to value of x prefetch.
xincr Integer increment value of x prefetch.
yptr Integer pointer to pointer to y prefetch.
yval Integer pointer to value of y prefetch.
yincr Integer increment value of y prefetch.
AWB Integer pointer to accumulator selection.

Return Value: Returns the cleared value result to an accumulator.
Assembler Opera-
tor / Machine
Instruction:

mpy

__builtin_movsac
DS51284G-page 142 © 2008 Microchip Technology Inc.

Built-in Functions
Error Messages An error message will be displayed if:
� the result is not an accumulator register
� xval is a null value but xptr is not null
� yval is a null value but yptr is not null

__builtin_mpyn
Description: Computes -a x b ; also prefetchs data ready for a future MAC

operation.
xptr may be null to signify no X prefetch to be performed, in which
case the values of xincr and xval are ignored, but required.
yptr may be null to signify no Y prefetch to be performed, in which
case the values of yincr and yval are ignored, but required.
xval and yval nominate the address of a C variable where the
prefetched value will be stored.
xincr and yincr may be the literal values: -6, -4, -2, 0, 2, 4, 6 or an
integer value.
For example:
 register int result asm("A");
 int *xmemory;
 int *ymemory;
 int xVal, yVal;

 result = __builtin_mpy(xVal, yVal,
 &xmemory, &xVal, 2,
 &ymemory, &yVal, 2);

might generate:
 mac w4*w5, A, [w8]+=2, w4, [w10]+=2, w5

Prototype: int __builtin_mpyn(int a, int b,
 int **xptr, int *xval, int xincr,
 int **yptr, int *yval, int yincr);

Argument: aInteger multiplicand.
bInteger multiplier.
xptrInteger pointer to pointer to x prefetch.
xvalInteger pointer to value of x prefetch.
xincrInteger increment value of x prefetch.
yptrInteger pointer to pointer to y prefetch.
yvalInteger pointer to value of y prefetch.
yincrInteger increment value of y prefetch.
AWBInteger pointer to accumulator selection.

Return Value: Returns the cleared value result to an accumulator.
Assembler Opera-
tor / Machine
Instruction:

mpyn

Error Messages An error message will be displayed if:
� the result is not an accumulator register
� xval is a null value but xptr is not null
� yval is a null value but yptr is not null

__builtin_mpy
© 2008 Microchip Technology Inc. DS51284G-page 143

16-Bit C Compiler User�s Guide
__builtin_msc
Description: Computes a x b and subtracts from accumulator; also prefetchs data

ready for a future MAC operation.
xptr may be null to signify no X prefetch to be performed, in which
case the values of xincr and xval are ignored, but required.
yptr may be null to signify no Y prefetch to be performed, in which
case the values of yincr and yval are ignored, but required.
xval and yval nominate the address of a C variable where the
prefetched value will be stored.
xincr and yincr may be the literal values: -6, -4, -2, 0, 2, 4, 6 or an
integer value.
If AWB is non null, the other accumulator will be written back into the
referenced variable.
For example:
 register int result asm("A");
 int *xmemory;
 int *ymemory;
 int xVal, yVal;

 result = __builtin_msc(xVal, yVal,
 &xmemory, &xVal, 2,
 &ymemory, &yVal, 2, 0);

might generate:
 msc w4*w5, A, [w8]+=2, w4, [w10]+=2, w5

Prototype: int __builtin_msc(int a, int b,
 int **xptr, int *xval, int xincr,
 int **yptr, int *yval, int yincr, int *AWB);

Argument: aInteger multiplicand.
bInteger multiplier.
xptrInteger pointer to pointer to x prefetch.
xvalInteger pointer to value of x prefetch.
xincrInteger increment value of x prefetch.
yptrInteger pointer to pointer to y prefetch.
yvalInteger pointer to value of y prefetch.
yincrInteger increment value of y prefetch.
AWBInteger pointer to accumulator selection.

Return Value: Returns the cleared value result to an accumulator.
Assembler Opera-
tor / Machine
Instruction:

msc

Error Messages An error message will be displayed if:
� the result is not an accumulator register
� xval is a null value but xptr is not null
� yval is a null value but yptr is not null

__builtin_mulss
Description: Computes the product p0 x p1. Function arguments are signed inte-

gers, and the function result is a signed long integer. The command-line
option -Wconversions can be used to detect unexpected sign
conversions.

Prototype: signed long __builtin_mulss(const signed int p0,
const signed int p1);
DS51284G-page 144 © 2008 Microchip Technology Inc.

Built-in Functions
Argument: p0 multiplicand
p1 multiplier

Return Value: Returns the signed long integer value of the product p0 x p1.
Assembler Opera-
tor / Machine
Instruction:

mul.ss

__builtin_mulsu
Description: Computes the product p0 x p1. Function arguments are integers with

mixed signs, and the function result is a signed long integer. The com-
mand-line option -Wconversions can be used to detect unexpected
sign conversions. This function supports the full range of addressing
modes of the instruction, including immediate mode for operand p1.

Prototype: signed long __builtin_mulsu(const signed int p0,
const unsigned int p1);

Argument: p0 multiplicand
p1 multiplier

Return Value: Returns the signed long integer value of the product p0 x p1.
Assembler Opera-
tor / Machine
Instruction:

mul.su

__builtin_mulus
Description: Computes the product p0 x p1. Function arguments are integers with

mixed signs, and the function result is a signed long integer. The com-
mand-line option -Wconversions can be used to detect unexpected
sign conversions. This function supports the full range of addressing
modes of the instruction.

Prototype: signed long __builtin_mulus(const unsigned int p0,
const signed int p1);

Argument: p0 multiplicand
p1 multiplier

Return Value: Returns the signed long integer value of the product p0 x p1.
Assembler Opera-
tor / Machine
Instruction:

mul.us

__builtin_muluu
Description: Computes the product p0 x p1. Function arguments are unsigned inte-

gers, and the function result is an unsigned long integer. The com-
mand-line option -Wconversions can be used to detect unexpected
sign conversions. This function supports the full range of addressing
modes of the instruction, including immediate mode for operand p1.

Prototype: unsigned long __builtin_muluu(const unsigned int p0,
const unsigned int p1);

Argument: p0 multiplicand
p1 multiplier

Return Value: Returns the signed long integer value of the product p0 x p1.

__builtin_mulss
© 2008 Microchip Technology Inc. DS51284G-page 145

16-Bit C Compiler User�s Guide
Assembler Opera-
tor / Machine
Instruction:

mul.uu

__builtin_nop
Description: Generates a nop instruction.
Prototype: void __builtin_nop(void);
Argument: None.
Return Value: Returns a no operation (nop).
Assembler Opera-
tor / Machine
Instruction:

nop

__builtin_psvpage
Description: Returns the psv page number of the object whose address is given as a

parameter. The argument p must be the address of an object in an EE
data, PSV or executable memory space; otherwise an error message is
produced and the compilation fails. See the space attribute in
Section 2.3.1 �Specifying Attributes of Variables�.

Prototype: unsigned int __builtin_psvpage(const void *p);
Argument: p object address
Return Value: Returns the psv page number of the object whose address is given as a

parameter.
Assembler Opera-
tor / Machine
Instruction:

psvpage

Error Messages The following error message is produced when this function is used
incorrectly:
�Argument to __builtin_psvpage() is not the address of an object
in code, psv, or eedata section�.
The argument must be an explicit object address.
For example, if obj is object in an executable or read-only section, the
following syntax is valid:
unsigned page = __builtin_psvpage(&obj);

__builtin_psvoffset
Description: Returns the psv page offset of the object whose address is given as a

parameter. The argument p must be the address of an object in an EE
data, PSV or executable memory space; otherwise an error message is
produced and the compilation fails. See the space attribute in
Section 2.3.1 �Specifying Attributes of Variables�.

Prototype: unsigned int __builtin_psvoffset(const void *p);
Argument: p object address
Return Value: Returns the psv page number offset of the object whose address is

given as a parameter.
Assembler Opera-
tor / Machine
Instruction:

psvoffset

__builtin_muluu
DS51284G-page 146 © 2008 Microchip Technology Inc.

Built-in Functions
Error Messages The following error message is produced when this function is used
incorrectly:
�Argument to __builtin_psvoffset() is not the address of an
object in code, psv, or eedata section�.
The argument must be an explicit object address.
For example, if obj is object in an executable or read-only section, the
following syntax is valid:
unsigned page = __builtin_psvoffset(&obj);

__builtin_readsfr
Description: Reads the SFR.
Prototype: unsigned int __builtin_readsfr(const void *p);
Argument: p object address
Return Value: Returns the SFR.
Assembler Opera-
tor / Machine
Instruction:

readsfr

Error Messages The following error message is produced when this function is used
incorrectly:

__builtin_return_address
Description: Returns the return address of the current function, or of one of its call-

ers. For the level argument, a value of 0 yields the return address of
the current function, a value of 1 yields the return address of the caller
of the current function, and so forth. When level exceeds the current
stack depth, 0 will be returned. This function should only be used with a
non-zero argument for debugging purposes.

Prototype: int __builtin_return_address (const int level);
Argument: level Number of frames to scan up the call stack.
Return Value: Returns the return address of the current function, or of one of its call-

ers.
Assembler Opera-
tor / Machine
Instruction:

return_address

__builtin_sac
Description: Shifts value by shift (a literal between -8 and 7) and returns the

value.
For example:
 register int value asm("A");
 int result;

 result = __builtin_sac(value,3);
Might generate:
 sac A, #3, w0

Prototype: int __builtin_sac(int value, int shift);
Argument: valueInteger number to be shifted.

shiftLiteral amount to shift.
Return Value: Returns the shifted result to an accumulator.

__builtin_psvoffset
© 2008 Microchip Technology Inc. DS51284G-page 147

16-Bit C Compiler User�s Guide
Assembler Opera-
tor / Machine
Instruction:

sac

Error Messages An error message will be displayed if:
� the result is not an accumulator register
� the shift value is not a literal within range

__builtin_sacr
Description: Shifts value by shift (a literal between -8 and 7) and returns the value

which is rounded using the rounding mode determined by the
CORCONbits.RND control bit.
For example:
 register int value asm("A");
 int result;

 result = __builtin_sac(value,3);
Might generate:
 sac.r A, #3, w0

Prototype: int __builtin_sacr(int value, int shift);
Argument: valueInteger number to be shifted.

shiftLiteral amount to shift.
Return Value: Returns the shifted result to CORCON register.
Assembler Opera-
tor / Machine
Instruction:

sacr

Error Messages An error message will be displayed if:
� the result is not an accumulator register
� the shift value is not a literal within range

__builtin_sftac
Description: Shifts accumulator by shift. The valid shift range is -16 to 16.

For example:
 register int result asm("A");
 int i;

 result = __builtin_sftac(i);
Might generate:
 sftac A, w0

Prototype: int __builtin_sftac(int shift);
Argument: shiftLiteral amount to shift.
Return Value: Returns the shifted result to an accumulator.
Assembler Opera-
tor / Machine
Instruction:

sftac

Error Messages An error message will be displayed if:
� the result is not an accumulator register
� the shift value is not a literal within range

__builtin_sac
DS51284G-page 148 © 2008 Microchip Technology Inc.

Built-in Functions
__builtin_subab
Description: Subtracts acumulators A and B with the result written back to the

specified accumulator. For example:
 register int result asm("A");
 result = __builtin_subab();
will generate:
 sub A

Prototype: int __builtin_subab(void);
Argument: None
Return Value: Returns the subtraction result to an accumulator.
Assembler Opera-
tor / Machine
Instruction:

subad

Error Messages An error message will be displayed if the result is not an accumulator
register.

__builtin_tblpage
Description: Returns the table page number of the object whose address is given as

a parameter. The argument p must be the address of an object in an
EE data, PSV or executable memory space; otherwise an error mes-
sage is produced and the compilation fails. See the space attribute in
Section 2.3.1 �Specifying Attributes of Variables�.

Prototype: unsigned int __builtin_tblpage(const void *p);
Argument: p object address
Return Value: Returns the table page number of the object whose address is given as

a parameter.
Assembler Opera-
tor / Machine
Instruction:

tblpage

Error Messages The following error message is produced when this function is used
incorrectly:
�Argument to __builtin_tblpage() is not the address of an object
in code, psv, or eedata section�.
The argument must be an explicit object address.
For example, if obj is object in an executable or read-only section, the
following syntax is valid:
unsigned page = __builtin_tblpage(&obj);

__builtin_tbloffset
Description: Returns the table page offset of the object whose address is given as a

parameter. The argument p must be the address of an object in an EE
data, PSV or executable memory space; otherwise an error message is
produced and the compilation fails. See the space attribute in
Section 2.3.1 �Specifying Attributes of Variables�.

Prototype: unsigned int __builtin_tbloffset(const void *p);
Argument: p object address
Return Value: Returns the table page number offset of the object whose address is

given as a parameter.
© 2008 Microchip Technology Inc. DS51284G-page 149

16-Bit C Compiler User�s Guide
Assembler Opera-
tor / Machine
Instruction:

tbloffset

Error Messages The following error message is produced when this function is used
incorrectly:
�Argument to __builtin_tbloffset() is not the address of an
object in code, psv, or eedata section�.
The argument must be an explicit object address.
For example, if obj is object in an executable or read-only section, the
following syntax is valid:
unsigned page = __builtin_tbloffset(&obj);

__builtin_tblrdh
Description: Issues the tblrdh.w instruction to read a word from Flash or EEDATA

memory. You must set up the TBLPAG to point to the appropriate page.
To do this, you may make use of __builtin_tbloffset() and
__builtin_tblpage().
Please refer to the data sheet or dsPIC Family Reference Manual for
complete details regarding reading and writing program Flash.

Prototype: unsigned int __builtin_tblrdh(unsigned int offset);
Argument: offset desired memory offset
Return Value: None.
Assembler Opera-
tor / Machine
Instruction:

tblrdh

Error Messages None.

__builtin_tblrdl
Description: Issues the tblrdl.w instruction to read a word from Flash or EEDATA

memory. You must set up the TBLPAG to point to the appropriate page.
To do this, you may make use of __builtin_tbloffset()
and__builtin_tblpage().
Please refer to the data sheet or �dsPIC30F Family Reference Manual�
(DS70046) for complete details regarding reading and writing program
Flash.

Prototype: unsigned int __builtin_tblrdl(unsigned int offset);
Argument: offset desired memory offset
Return Value: None.
Assembler Opera-
tor / Machine
Instruction:

tblrdl

Error Messages None.

__builtin_tbloffset
DS51284G-page 150 © 2008 Microchip Technology Inc.

Built-in Functions
__builtin_tblwth
Description: Issues the tblwth.w instruction to write a word to Flash or EEDATA

memory. You must set up the TBLPAG to point to the appropriate page.
To do this, you may make use of __builtin_tbloffset() and
__builtin_tblpage().
Please refer to the data sheet or �dsPIC30F Family Reference Manual�
(DS70046) for complete details regarding reading and writing program
Flash.

Prototype: void __builtin_tblwth(unsigned int offset
 unsigned int data);

Argument: offset desired memory offset
data data to be written

Return Value: None.
Assembler Opera-
tor / Machine
Instruction:

tblwth

Error Messages None.

__builtin_tblwtl
Description: Issues the tblrdl.w instruction to write a word to Flash or EEDATA

memory. You must set up the TBLPAG to point to the appropriate page.
To do this, you may make use of __builtin_tbloffset() and
__builtin_tblpage().
Please refer to the data sheet or �dsPIC30F Family Reference Manual�
(DS70046) for complete details regarding reading and writing program
Flash.

Prototype: void __builtin_tblwtl(unsigned int offset
 unsigned int data);

Argument: offset desired memory offset
data data to be written

Return Value: None.
Assembler Opera-
tor / Machine
Instruction:

tblwtl

Error Messages None.

__builtin_write_NVM
Description: Enables the Flash for writing by issuing the correct unlock sequence

and enabling the WRite bit of the NVMCON register.
Prototype: void __builtin_write_NVM(void);
Argument: None.
Return Value: None.
Assembler Opera-
tor / Machine
Instruction:

mov #0x55, Wn
mov Wn, _NVMKEY
mov #0xAA, Wn
mov Wn, _NVMKEY
bset _NVMVON, #15
nop
nop

Error Messages None.
© 2008 Microchip Technology Inc. DS51284G-page 151

16-Bit C Compiler User�s Guide
__builtin_write_RTCWEN
Description: Used to write to the RTCC Timer by implementing the unlock sequence

by writing the correct unlock values to NVMKEY and then setting the
RTCWREN bit of RCFGCAL SFR.

Prototype: void __builtin_write_RTCWEN(void);
Argument: None.
Return Value: None.
Assembler Opera-
tor / Machine
Instruction:

mov #0x55, Wn
mov Wn, _NVMKEY
mov #0xAA, Wn
mov Wn, _NVMKEY
bset _NVMVON, #15
nop
nop

Error Messages None.

__builtin_write_OSCCONL
Description: Unlocks and writes its argument to OSCCONL.
Prototype: void __builtin_write_OSCCONL(unsigned char value);
Argument: value character to be written
Return Value: None.
Assembler Opera-
tor / Machine
Instruction*:

mov #0x46, w0
mov #0x57, w1
mov __OSCCON, w2
mov.b w0, [w2]
mov.b w1, [w2]
mov.b value, [w2]

Error Messages None.
* The exact sequnce may be different.

__builtin_write_OSCCONH
Description: Unlocks and writes its argument to OSCCONH.
Prototype: void __builtin_write_OSCCONH(unsigned char value);
Argument: value character to be written
Return Value: None.
Assembler Opera-
tor / Machine
Instruction*:

mov #0x78, w0
mov #0x9A, w1
mov __OSCCON+1, w2
mov.b w0, [w2]
mov.b w1, [w2]
mov.b value, [w2]

Error Messages None.
* The exact sequnce may be different.
DS51284G-page 152 © 2008 Microchip Technology Inc.

MPLAB® C COMPILER FOR
PIC24 MCUs AND dsPIC® DSCs

USER�S GUIDE
Appendix C. Diagnostics
C.1 INTRODUCTION
This appendix lists the most common diagnostic messages generated by the MPLAB
C Compiler for PIC24 MCUs and dsPIC® DSCs (formerly MPLAB C30).
The compiler can produce two kinds of diagnostic messages: errors and warnings.
Each kind has a different purpose.
� Errors reports problems that make it impossible to compile your program. The

compiler reports errors with the source file name and line number where the prob-
lem is apparent.

� Warnings reports other unusual conditions in your code that may indicate a
problem, although compilation can (and does) proceed. Warning messages also
report the source file name and line number, but include the text warning: to dis-
tinguish them from error messages.

Warnings may indicate danger points where you should check to make sure that your
program really does what you intend; or the use of obsolete features; or the use of
non-standard features of the compiler. Many warnings are issued only if you ask for
them, with one of the -W options (for instance,-Wall requests a variety of useful
warnings).
In rare instances, the compiler may issue an internal error message report. This
signifies that the compiler itself has detected a fault that should be reported to
Microchip support. Details on contacting support are contained elsewhere in this
manual.

C.2 ERRORS

Symbols
\x used with no following HEX digits
The escape sequence \x should be followed by hex digits.
�&� constraint used with no register class
The asm statement is invalid.
�%� constraint used with last operand
The asm statement is invalid.
#elif after #else
In a preprocessor conditional, the #else clause must appear after any #elif clauses.
#elif without #if
In a preprocessor conditional, the #if must be used before using the #elif.
#else after #else
In a preprocessor conditional, the #else clause must appear only once.
#else without #if
In a preprocessor conditional, the #if must be used before using the #else.
© 2008 Microchip Technology Inc. DS51284G-page 153

16-Bit C Compiler User�s Guide
#endif without #if
In a preprocessor conditional, the #if must be used before using the #endif.
#error �message�
This error appears in response to a #error directive.
#if with no expression
A expression that evaluates to a constant arithmetic value was expected.
#include expects �FILENAME� or <FILENAME>
The file name for the #include is missing or incomplete. It must be enclosed by quotes
or angle brackets.
�#� is not followed by a macro parameter
The stringsize operator, �#� must be followed by a macro argument name.
�#keyword� expects �FILENAME� or <FILENAME>
The specified �#keyword� expects a quoted or bracketed filename as an argument.
�#� is not followed by a macro parameter
The �#� operator should be followed by a macro argument name.
�##� cannot appear at either end of a macro expansion
The concatenation operator, �##� may not appear at the start or the end of a macro
expansion.

A
a parameter list with an ellipsis can�t match an empty parameter name list
declaration
The declaration and definition of a function must be consistent.
�symbol� after #line is not a positive integer
 #line is expecting a source line number which must be positive.
aggregate value used where a complex was expected
Do not use aggregate values where complex values are expected.
aggregate value used where a float was expected
Do not use aggregate values where floating-point values are expected.
aggregate value used where an integer was expected
Do not use aggregate values where integer values are expected.
alias arg not a string
The argument to the alias attribute must be a string that names the target for which the
current identifier is an alias.
alignment may not be specified for �identifier�
The aligned attribute may only be used with a variable.
�__alignof� applied to a bit-field
The �__alignof� operator may not be applied to a bit-field.
alternate interrupt vector is not a constant
The interrupt vector number must be an integer constant.
alternate interrupt vector number n is not valid
A valid interrupt vector number is required.
DS51284G-page 154 © 2008 Microchip Technology Inc.

Diagnostics
ambiguous abbreviation argument
The specified command-line abbreviation is ambiguous.
an argument type that has a default promotion can�t match an empty parameter
name list declaration.
The declaration and definition of a function must be consistent.
args to be formatted is not ...
The first-to-check index argument of the format attribute specifies a parameter that is
not declared ���.
argument �identifier� doesn�t match prototype
Function argument types should match the function�s prototype.
argument of �asm� is not a constant string
The argument of �asm� must be a constant string.
argument to �-B� is missing
The directory name is missing.
argument to �-l� is missing
The library name is missing.
argument to �-specs� is missing
The name of the specs file is missing.
argument to �-specs=� is missing
The name of the specs file is missing.
argument to �-x� is missing
The language name is missing.
argument to �-Xlinker� is missing
The argument to be passed to the linker is missing.
arithmetic on pointer to an incomplete type
Arithmetic on a pointer to an incomplete type is not allowed.
array index in non-array initializer
Do not use array indices in non-array initializers.
array size missing in �identifier�
An array size is missing.
array subscript is not an integer
Array subscripts must be integers.
�asm� operand constraint incompatible with operand size
The asm statement is invalid.
�asm� operand requires impossible reload
The asm statement is invalid.
asm template is not a string constant
Asm templates must be string constants.
assertion without predicate
#assert or #unassert must be followed by a predicate, which must be a single identifier.
�attribute� attribute applies only to functions
The attribute �attribute� may only be applied to functions.
© 2008 Microchip Technology Inc. DS51284G-page 155

16-Bit C Compiler User�s Guide
B
bit-field �identifier� has invalid type
Bit-fields must be of enumerated or integral type.
bit-field �identifier� width not an integer constant
Bit-field widths must be integer constants.
both long and short specified for �identifier�
A variable cannot be of type long and of type short.
both signed and unsigned specified for �identifier�
A variable cannot be both signed and unsigned.
braced-group within expression allowed only inside a function
It is illegal to have a braced-group within expression outside a function.
break statement not within loop or switch
Break statements must only be used within a loop or switch.
__builtin_longjmp second argument must be 1
__builtin_longjmp requires its second argument to be 1.

C
called object is not a function
Only functions may be called in C.
cannot convert to a pointer type
The expression cannot be converted to a pointer type.
cannot put object with volatile field into register
It is not legal to put an object with a volatile field into a register.
cannot reload integer constant operand in �asm�
The asm statement is invalid.
cannot specify both near and far attributes
The attributes near and far are mutually exclusive, only one may be used for a function
or variable.
cannot take address of bit-field �identifier�
It is not legal to attempt to take address of a bit-field.
can�t open �file� for writing
The system cannot open the specified �file�. Possible causes are not enough disk
space to open the file, the directory does not exist, or there is no write permission in the
destination directory.
can�t set �attribute� attribute after definition
The �attribute� attribute must be used when the symbol is defined.
case label does not reduce to an integer constant
Case labels must be compile-time integer constants.
case label not within a switch statement
Case labels must be within a switch statement.
cast specifies array type
It is not permissible for a cast to specify an array type.
DS51284G-page 156 © 2008 Microchip Technology Inc.

Diagnostics
cast specifies function type
It is not permissible for a cast to specify a function type.
cast to union type from type not present in union
When casting to a union type, do so from type present in the union.
char-array initialized from wide string
Char-arrays should not be initialized from wide strings. Use ordinary strings.
file: compiler compiler not installed on this system
Only the C compiler is distributed; other high-level languages are not supported.
complex invalid for �identifier�
The complex qualifier may only be applied to integral and floating types.
conflicting types for �identifier�
Multiple, inconsistent declarations exist for identifier.
continue statement not within loop
Continue statements must only be used within a loop.
conversion to non-scalar type requested
Type conversion must be to a scalar (not aggregate) type.

D
data type of �name� isn�t suitable for a register
The data type does not fit into the requested register.
declaration for parameter �identifier� but no such parameter
Only parameters in the parameter list may be declared.
declaration of �identifier� as array of functions
It is not legal to have an array of functions.
declaration of �identifier� as array of voids
It is not legal to have an array of voids.
�identifier� declared as function returning a function
Functions may not return functions.
�identifier� declared as function returning an array
Functions may not return arrays.
decrement of pointer to unknown structure
Do not decrement a pointer to an unknown structure.
�default� label not within a switch statement
Default case labels must be within a switch statement.
�symbol� defined both normally and as an alias
A �symbol� can not be used as an alias for another symbol if it has already been
defined.
�defined� cannot be used as a macro name
The macro name cannot be called �defined�.
dereferencing pointer to incomplete type
A dereferenced pointer must be a pointer to an incomplete type.
division by zero in #if
Division by zero is not computable.
© 2008 Microchip Technology Inc. DS51284G-page 157

16-Bit C Compiler User�s Guide
duplicate case value
Case values must be unique.
duplicate label �identifier�
Labels must be unique within their scope.
duplicate macro parameter �symbol�
�symbol� has been used more than once in the parameter list.
duplicate member �identifier�
Structures may not have duplicate members.
duplicate (or overlapping) case value
Case ranges must not have a duplicate or overlapping value. The error message �this
is the first entry overlapping that value� will provide the location of the first occurrence
of the duplicate or overlapping value. Case ranges are an extension of the ANSI
standard for the compiler.

E
elements of array �identifier� have incomplete type
Array elements should have complete types.
empty character constant
Empty character constants are not legal.
empty file name in �#keyword�
The filename specified as an argument of the specified #keyword is empty.
empty index range in initializer
Do not use empty index ranges in initializers
empty scalar initializer
Scalar initializers must not be empty.
enumerator value for �identifier� not integer constant
Enumerator values must be integer constants.
error closing �file�
The system cannot close the specified �file�. Possible causes are not enough disk
space to write to the file or the file is too big.
error writing to �file�
The system cannot write to the specified �file�. Possible causes are not enough disk
space to write to the file or the file is too big.
excess elements in char array initializer
There are more elements in the list than the initializer value states.
excess elements in struct initializer
Do not use excess elements in structure initializers.
expression statement has incomplete type
The type of the expression is incomplete.
extra brace group at end of initializer
Do not place extra brace groups at the end of initializers.
extraneous argument to �option� option
There are too many arguments to the specified command-line option.
DS51284G-page 158 © 2008 Microchip Technology Inc.

Diagnostics
F
�identifier� fails to be a typedef or built in type
A data type must be a typedef or built-in type.
field �identifier� declared as a function
Fields may not be declared as functions.
field �identifier� has incomplete type
Fields must have complete types.
first argument to __builtin_choose_expr not a constant
The first argument must be a constant expression that can be determined at compile
time.
flexible array member in otherwise empty struct
A flexible array member must be the last element of a structure with more than one
named member.
flexible array member in union
A flexible array member cannot be used in a union.
flexible array member not at end of struct
A flexible array member must be the last element of a structure.
�for� loop initial declaration used outside C99 mode
A �for� loop initial declaration is not valid outside C99 mode.
format string arg follows the args to be formatted
The arguments to the format attribute are inconsistent. The format string argument
index must be less than the index of the first argument to check.
format string arg not a string type
The format string index argument of the format attribute specifies a parameter which is
not a string type.
format string has invalid operand number
The operand number argument of the format attribute must be a compile-time constant.
function definition declared �register�
Function definitions may not be declared �register�.
function definition declared �typedef�
Function definitions may not be declared �typedef�.
function does not return string type
The format_arg attribute may only be used with a function which return value is a string
type.
function �identifier� is initialized like a variable
It is not legal to initialize a function like a variable.
function return type cannot be function
The return type of a function cannot be a function.
© 2008 Microchip Technology Inc. DS51284G-page 159

16-Bit C Compiler User�s Guide
G
global register variable follows a function definition
Global register variables should precede function definitions.
global register variable has initial value
Do not specify an initial value for a global register variable.
global register variable �identifier� used in nested function
Do not use a global register variable in a nested function.

H
�identifier� has an incomplete type
It is not legal to have an incomplete type for the specified �identifier�.
�identifier� has both �extern� and initializer
A variable declared �extern� cannot be initialized.
hexadecimal floating constants require an exponent
Hexadecimal floating constants must have exponents.

I
implicit declaration of function �identifier�
The function identifier is used without a preceding prototype declaration or function
definition.
impossible register constraint in �asm�
The asm statement is invalid.
incompatible type for argument n of �identifier�
When calling functions in C, ensure that actual argument types match the formal
parameter types.
incompatible type for argument n of indirect function call
When calling functions in C, ensure that actual argument types match the formal
parameter types.
incompatible types in operation
The types used in operation must be compatible.
incomplete �name� option
The option to the command-line parameter name is incomplete.
inconsistent operand constraints in an �asm�
The asm statement is invalid.
increment of pointer to unknown structure
Do not increment a pointer to an unknown structure.
initializer element is not computable at load time
Initializer elements must be computable at load time.
initializer element is not constant
Initializer elements must be constant.
initializer fails to determine size of �identifier�
An array initializer fails to determine its size.
DS51284G-page 160 © 2008 Microchip Technology Inc.

Diagnostics
initializer for static variable is not constant
Static variable initializers must be constant.
initializer for static variable uses complicated arithmetic
Static variable initializers should not use complicated arithmetic.
input operand constraint contains �constraint�
The specified constraint is not valid for an input operand.
int-array initialized from non-wide string
Int-arrays should not be initialized from non-wide strings.
interrupt functions must not take parameters
An interrupt function cannot receive parameters. void must be used to state explicitly
that the argument list is empty.
interrupt functions must return void
An interrupt function must have a return type of void. No other return type is allowed.
interrupt modifier �name� unknown
The compiler was expecting �irq�, �altirq� or �save� as an interrupt attribute modifier.
interrupt modifier syntax error
There is a syntax error with the interrupt attribute modifier.
interrupt pragma must have file scope
#pragma interrupt must be at file scope.
interrupt save modifier syntax error
There is a syntax error with the �save� modifier of the interrupt attribute.
interrupt vector is not a constant
The interrupt vector number must be an integer constant.
interrupt vector number n is not valid
A valid interrupt vector number is required.
invalid #ident directive
#ident should be followed by a quoted string literal.
invalid arg to �__builtin_frame_address�
The argument should be the level of the caller of the function (where 0 yields the frame
address of the current function, 1 yields the frame address of the caller of the current
function, and so on) and is an integer literal.
invalid arg to �__builtin_return_address�
The level argument must be an integer literal.
invalid argument for �name�
The compiler was expecting �data� or �prog� as the space attribute parameter.
invalid character �character� in #if
This message appears when an unprintable character, such as a control character,
appears after #if.
invalid initial value for member �name�
Bit-field �name� can only be initialized by an integer.
invalid initializer
Do not use invalid initializers.
© 2008 Microchip Technology Inc. DS51284G-page 161

16-Bit C Compiler User�s Guide
Invalid location qualifier: �symbol�
Expecting �sfr� or �gpr�, which are ignored on dsPIC DSC devices, as location qualifiers.
invalid operands to binary �operator�
The operands to the specified binary operator are invalid.
Invalid option �option�
The specified command-line option is invalid.
Invalid option �symbol� to interrupt pragma
Expecting shadow and/or save as options to interrupt pragma.
Invalid option to interrupt pragma
Garbage at the end of the pragma.
Invalid or missing function name from interrupt pragma
The interrupt pragma requires the name of the function being called.
Invalid or missing section name
The section name must start with a letter or underscore (�_�) and be followed by a
sequence of letters, underscores and/or numbers. The names �access �, �shared � and
�overlay� have special meaning.
invalid preprocessing directive #�directive�
Not a valid preprocessing directive. Check the spelling.
invalid preprologue argument
The pre prologue option is expecting an assembly statement or statements for its
argument enclosed in double quotes.
invalid register name for �name�
File scope variable �name� declared as a register variable with an illegal register name.
invalid register name �name� for register variable
The specified name is not the name of a register.
invalid save variable in interrupt pragma
Expecting a symbol or symbols to save.
invalid storage class for function �identifier�
Functions may not have the �register� storage class.
invalid suffix �suffix� on integer constant
Integer constants may be suffixed by the letters �u�, �U�, �l� and �L� only.
invalid suffix on floating constant
A floating constant suffix may be �f�, �F�, �l� or �L� only. If there are two �L�s, they must be
adjacent and the same case.
invalid type argument of �operator�
The type of the argument to operator is invalid.
invalid type modifier within pointer declarator
Only const or volatile may be used as type modifiers within a pointer declarator.
invalid use of array with unspecified bounds
Arrays with unspecified bounds must be used in valid ways.
invalid use of incomplete typedef �typedef�
The specified typedef is being used in an invalid way; this is not allowed.
DS51284G-page 162 © 2008 Microchip Technology Inc.

Diagnostics
invalid use of undefined type �type identifier�
The specified type is being used in an invalid way; this is not allowed.
invalid use of void expression
Void expressions must not be used.
�name� is not a valid filename
#line requires a valid filename.
�filename� is too large
The specified file is too large to process the file. Its probably larger than 4 GB, and the
preprocessor refuses to deal with such large files. It is required that files be less than
4 GB in size.
ISO C forbids data definition with no type or storage class
A type specifier or storage class specifier is required for a data definition in ISO C.
ISO C requires a named argument before �...�
ISO C requires a named argument before �...�.

L
label label referenced outside of any function
Labels may only be referenced inside functions.
label �label� used but not defined
The specified label is used but is not defined.
language �name� not recognized
Permissible languages include: c assembler none.
filename: linker input file unused because linking not done
The specified filename was specified on the command line, and it was taken to be a
linker input file (since it was not recognized as anything else). However, the link step
was not run. Therefore, this file was ignored.
long long long is too long for GCC
The compiler supports integers no longer than long long.
long or short specified with char for �identifier�
The long and short qualifiers cannot be used with the char type.
long or short specified with floating type for �identifier�
The long and short qualifiers cannot be used with the float type.
long, short, signed or unsigned invalid for �identifier�
The long, short and signed qualifiers may only be used with integral types.

M
macro names must be identifiers
Macro names must start with a letter or underscore followed by more letters, numbers
or underscores.
macro parameters must be comma-separated
Commas are required between parameters in a list of parameters.
macro �name� passed n arguments, but takes just n
Too many arguments were passed to macro �name�.
© 2008 Microchip Technology Inc. DS51284G-page 163

16-Bit C Compiler User�s Guide
macro �name� requires n arguments, but only n given
Not enough arguments were passed to macro �name�.
matching constraint not valid in output operand
The asm statement is invalid.
�symbol� may not appear in macro parameter list
 �symbol� is not allowed as a parameter.
Missing �=� for �save� in interrupt pragma
The save parameter requires an equal sign before the variable(s) are listed. For
example, #pragma interrupt isr0 save=var1,var2
missing �(�after predicate
#assert or #unassert expects parentheses around the answer. For example:
ns#assert PREDICATE (ANSWER)
missing �(� in expression
Parentheses are not matching, expecting an opening parenthesis.
missing �)� after �defined�
Expecting a closing parenthesis.
missing �)� in expression
Parentheses are not matching, expecting a closing parenthesis.
missing �)� in macro parameter list
The macro is expecting parameters to be within parentheses and separated by
commas.
missing �)� to complete answer
#assert or #unassert expects parentheses around the answer.
missing argument to �option� option
The specified command-line option requires an argument.
missing binary operator before token �token�
Expecting an operator before the �token�.
missing terminating �character� character
Missing terminating character such as a single quote �, double quote � or right angle
bracket >.
missing terminating > character
Expecting terminating > in #include directive.
more than n operands in �asm�
The asm statement is invalid.
multiple default labels in one switch
Only a single default label may be specified for each switch.
multiple parameters named �identifier�
Parameter names must be unique.
multiple storage classes in declaration of �identifier�
Each declaration should have a single storage class.
DS51284G-page 164 © 2008 Microchip Technology Inc.

Diagnostics
N
negative width in bit-field �identifier�
Bit-field widths may not be negative.
nested function �name� declared �extern�
A nested function cannot be declared �extern�.
nested redefinition of �identifier�
Nested redefinitions are illegal.
no data type for mode �mode�
The argument mode specified for the mode attribute is a recognized GCC machine
mode, but it is not one that is implemented in the compiler.
no include path in which to find �name�
Cannot find include file �name�.
no macro name given in #�directive� directive
A macro name must follow the #define, #undef, #ifdef or #ifndef directives.
nonconstant array index in initializer
Only constant array indices may be used in initializers.
non-prototype definition here
If a function prototype follows a definition without a prototype, and the number of
arguments is inconsistent between the two, this message identifies the line number of
the non-prototype definition.
number of arguments doesn�t match prototype
The number of function arguments must match the function�s prototype.

O
operand constraint contains incorrectly positioned �+� or �=�.
The asm statement is invalid.
operand constraints for �asm� differ in number of alternatives
The asm statement is invalid.
operator �defined� requires an identifier
�defined� is expecting an identifier.
operator �symbol� has no right operand
Preprocessor operator �symbol� requires an operand on the right side.
output number n not directly addressable
The asm statement is invalid.
output operand constraint lacks �=�
The asm statement is invalid.
output operand is constant in �asm�
The asm statement is invalid.
overflow in enumeration values
Enumeration values must be in the range of �int�.
© 2008 Microchip Technology Inc. DS51284G-page 165

16-Bit C Compiler User�s Guide
P
parameter �identifier� declared void
Parameters may not be declared void.
parameter �identifier� has incomplete type
Parameters must have complete types.
parameter �identifier� has just a forward declaration
Parameters must have complete types; forward declarations are insufficient.
parameter �identifier� is initialized
It is lot legal to initialize parameters.
parameter name missing
The macro was expecting a parameter name. Check for two commas without a name
between.
parameter name missing from parameter list
Parameter names must be included in the parameter list.
parameter name omitted
Parameter names may not be omitted.
param types given both in param list and separately
Parameter types should be given either in the parameter list or separately, but not both.
parse error
The source line cannot be parsed; it contains errors.
pointer value used where a complex value was expected
Do not use pointer values where complex values are expected.
pointer value used where a floating point value was expected
Do not use pointer values where floating-point values are expected.
pointers are not permitted as case values
A case value must be an integer-valued constant or constant expression.
predicate must be an identifier
#assert or #unassert require a single identifier as the predicate.
predicate�s answer is empty
The #assert or #unassert has a predicate and parentheses but no answer inside the
parentheses, which is required.
previous declaration of �identifier�
This message identifies the location of a previous declaration of identifier that conflicts
with the current declaration.
identifier previously declared here
This message identifies the location of a previous declaration of identifier that conflicts
with the current declaration.
identifier previously defined here
This message identifies the location of a previous definition of identifier that conflicts
with the current definition.
prototype declaration
Identifies the line number where a function prototype is declared. Used in conjunction
with other error messages.
DS51284G-page 166 © 2008 Microchip Technology Inc.

Diagnostics
R
redeclaration of �identifier�
The identifier is multiply declared.
redeclaration of �enum identifier�
Enums may not be redeclared.
�identifier� redeclared as different kind of symbol
Multiple, inconsistent declarations exist for identifier.
redefinition of �identifier�
The identifier is multiply defined.
redefinition of �struct identifier�
Structs may not be redefined.
redefinition of �union identifier�
Unions may not be redefined.
register name given for non-register variable �name�
Attempt to map a register to a variable which is not marked as register.
register name not specified for �name�
File scope variable �name� declared as a register variable without providing a register.
register specified for �name� isn�t suitable for data type
Alignment or other restrictions prevent using requested register.
request for member �identifier� in something not a structure or union
Only structure or unions have members. It is not legal to reference a member of
anything else, since nothing else has members.
requested alignment is not a constant
The argument to the aligned attribute must be a compile-time constant.
requested alignment is not a power of 2
The argument to the aligned attribute must be a power of two.
requested alignment is too large
The alignment size requested is larger than the linker allows. The size must be 4096
or less and a power of 2.
return type is an incomplete type
Return types must be complete.

S
save variable �name� index not constant
The subscript of the array �name� is not a constant integer.
save variable �name� is not word aligned
The object being saved must be word aligned
save variable �name� size is not even
The object being saved must be evenly sized.
save variable �name� size is not known
The object being saved must have a known size.
© 2008 Microchip Technology Inc. DS51284G-page 167

16-Bit C Compiler User�s Guide
section attribute cannot be specified for local variables
Local variables are always allocated in registers or on the stack. It is therefore not legal
to attempt to place local variables in a named section.
section attribute not allowed for identifier
The section attribute may only be used with a function or variable.
section of identifier conflicts with previous declaration
If multiple declarations of the same identifier specify the section attribute, then the
value of the attribute must be consistent.
sfr address �address� is not valid
The address must be less than 0x2000 to be valid.
sfr address is not a constant
The sfr address must be a constant.
�size of� applied to a bit-field
�sizeof� must not be applied to a bit-field.
size of array �identifier� has non-integer type
Array size specifiers must be of integer type.
size of array �identifier� is negative
Array sizes may not be negative.
size of array �identifier� is too large
The specified array is too large.
size of variable �variable� is too large
The maximum size of the variable can be 32768 bytes.
storage class specified for parameter �identifier�
A storage class may not be specified for a parameter.
storage size of �identifier� isn�t constant
Storage size must be compile-time constants.
storage size of �identifier� isn�t known
The size of identifier is incompletely specified.
stray �character� in program
Do not place stray �character� characters in the source program.
strftime formats cannot format arguments
While using the attribute format when the archetype parameter is strftime, the third
parameter to the attribute, which specifies the first parameter to match against the
format string, should be 0. strftime style functions do not have input values to match
against a format string.
structure has no member named �identifier�
A structure member named �identifier � is referenced; but the referenced structure
contains no such member. This is not allowed.
subscripted value is neither array nor pointer
Only arrays or pointers may be subscripted.
switch quantity not an integer
Switch quantities must be integers
DS51284G-page 168 © 2008 Microchip Technology Inc.

Diagnostics
symbol �symbol� not defined
The symbol �symbol� needs to be declared before it may be used in the pragma.
syntax error
A syntax error exists on the specified line.
syntax error �:� without preceding �?�
A �:� must be preceded by �?� in the �?:� operator.

T
the only valid combination is �long double�
The long qualifier is the only qualifier that may be used with the double type.
this built-in requires a frame pointer
__builtin_return_address requires a frame pointer. Do not use the
-fomit-frame-pointer option.
this is a previous declaration
If a label is duplicated, this message identifies the line number of a preceding
declaration.
too few arguments to function
When calling a function in C, do not specify fewer arguments than the function requires.
Nor should you specify too many.
too few arguments to function �identifier�
When calling a function in C, do not specify fewer arguments than the function requires.
Nor should you specify too many.
too many alternatives in �asm�
The asm statement is invalid.
too many arguments to function
When calling a function in C, do not specify more arguments than the function requires.
Nor should you specify too few.
too many arguments to function �identifier�
When calling a function in C, do not specify more arguments than the function requires.
Nor should you specify too few.
too many decimal points in number
Expecting only one decimal point.
top-level declaration of �identifier� specifies �auto�
Auto variables can only be declared inside functions.
two or more data types in declaration of �identifier�
Each identifier may have only a single data type.
two types specified in one empty declaration
No more that one type should be specified.
type of formal parameter n is incomplete
Specify a complete type for the indicated parameter.
type mismatch in conditional expression
Types in conditional expressions must not be mismatched.
typedef �identifier� is initialized
It is not legal to initialize typedef�s. Use __typeof__ instead.
© 2008 Microchip Technology Inc. DS51284G-page 169

16-Bit C Compiler User�s Guide
U
�identifier� undeclared (first use in this function)
The specified identifier must be declared.
�identifier� undeclared here (not in a function)
The specified identifier must be declared.
union has no member named �identifier�
A union member named �identifier� is referenced, but the referenced union contains no
such member. This is not allowed.
unknown field �identifier� specified in initializer
Do not use unknown fields in initializers.
unknown machine mode �mode�
The argument mode specified for the mode attribute is not a recognized machine
mode.
unknown register name �name� in �asm�
The asm statement is invalid.
unrecognized format specifier
The argument to the format attribute is invalid.
unrecognized option �-option�
The specified command-line option is not recognized.
unrecognized option �option�
�option� is not a known option.
�identifier� used prior to declaration
The identifier is used prior to its declaration.
unterminated #�name�
#endif is expected to terminate a #if, #ifdef or #ifndef conditional.
unterminated argument list invoking macro �name�
Evaluation of a function macro has encountered the end of file before completing the
macro expansion.
unterminated comment
The end of file was reached while scanning for a comment terminator.

V
�va_start� used in function with fixed args
�va_start� should be used only in functions with variable argument lists.
variable �identifier� has initializer but incomplete type
It is not legal to initialize variables with incomplete types.
variable or field �identifier� declared void
Neither variables nor fields may be declared void.
variable-sized object may not be initialized
It is not legal to initialize a variable-sized object.
virtual memory exhausted
Not enough memory left to write error message.
DS51284G-page 170 © 2008 Microchip Technology Inc.

Diagnostics
void expression between �(� and �)�
Expecting a constant expression but found a void expression between the
parentheses.
�void� in parameter list must be the entire list
If �void� appears as a parameter in a parameter list, then there must be no other
parameters.
void value not ignored as it ought to be
The value of a void function should not be used in an expression.

W
warning: -pipe ignored because -save-temps specified
The -pipe option cannot be used with the -save-temps option.
warning: -pipe ignored because -time specified
The -pipe option cannot be used with the -time option.
warning: �-x spec� after last input file has no effect
The �-x� command line option affects only those files named after its on the command
line; if there are no such files, then this option has no effect.
weak declaration of �name� must be public
Weak symbols must be externally visible.
weak declaration of �name� must precede definition
�name� was defined and then declared weak.
wrong number of arguments specified for attribute attribute
There are too few or too many arguments given for the attribute named �attribute�.
wrong type argument to bit-complement
Do not use the wrong type of argument to this operator.
wrong type argument to decrement
Do not use the wrong type of argument to this operator.
wrong type argument to increment
Do not use the wrong type of argument to this operator.
wrong type argument to unary exclamation mark
Do not use the wrong type of argument to this operator.
wrong type argument to unary minus
Do not use the wrong type of argument to this operator.
wrong type argument to unary plus
Do not use the wrong type of argument to this operator.

Z
zero width for bit-field �identifier�
Bit-fields may not have zero width.
© 2008 Microchip Technology Inc. DS51284G-page 171

16-Bit C Compiler User�s Guide
C.3 WARNINGS

Symbols
�/*� within comment
A comment mark was found within a comment.
�$� character(s) in identifier or number
Dollar signs in identifier names are an extension to the standard.
#�directive� is a GCC extension
#warning, #include_next, #ident, #import, #assert and #unassert directives are GCC
extensions and are not of ISO C89.
#import is obsolete, use an #ifndef wrapper in the header file
The #import directive is obsolete. #import was used to include a file if it hadn�t already
been included. Use the #ifndef directive instead.
#include_next in primary source file
#include_next starts searching the list of header file directories after the directory in
which the current file was found. In this case, there were no previous header files so it
is starting in the primary source file.
#pragma pack (pop) encountered without matching #pragma pack (push, <n>)
The pack(pop) pragma must be paired with a pack(push) pragma, which must precede
it in the source file.
#pragma pack (pop, identifier) encountered without matching #pragma pack
(push, identifier, <n>)
The pack(pop) pragma must be paired with a pack(push) pragma, which must precede
it in the source file.
#warning: message
The directive #warning causes the preprocessor to issue a warning and continue
preprocessing. The tokens following #warning are used as the warning message.

A
absolute address specification ignored
Ignoring the absolute address specification for the code section in the #pragma
statement because it is not supported in the compiler. Addresses must be specified in
the linker script and code sections can be defined with the keyword __attribute__.
address of register variable �name� requested
The register specifier prevents taking the address of a variable.
alignment must be a small power of two, not n
The alignment parameter of the pack pragma must be a small power of two.
anonymous enum declared inside parameter list
An anonymous enum is declared inside a function parameter list. It is usually better
programming practice to declare enums outside parameter lists, since they can never
become complete types when defined inside parameter lists.
anonymous struct declared inside parameter list
An anonymous struct is declared inside a function parameter list. It is usually better
programming practice to declare structs outside parameter lists, since they can never
become complete types when defined inside parameter lists.
DS51284G-page 172 © 2008 Microchip Technology Inc.

Diagnostics
anonymous union declared inside parameter list
An anonymous union is declared inside a function parameter list. It is usually better
programming practice to declare unions outside parameter lists, since they can never
become complete types when defined inside parameter lists.
anonymous variadic macros were introduced in C99
Macros which accept a variable number of arguments is a C99 feature.
argument �identifier� might be clobbered by �longjmp� or �vfork�
An argument might be changed by a call to longjmp. These warnings are possible only
in optimizing compilation.
array �identifier� assumed to have one element
The length of the specified array was not explicitly stated. In the absence of information
to the contrary, the compiler assumes that it has one element.
array subscript has type �char�
An array subscript has type �char�.
array type has incomplete element type
Array types should not have incomplete element types.
asm operand n probably doesn�t match constraints
The specified extended asm operand probably doesn�t match its constraints.
assignment of read-only member �name�
The member �name� was declared as const and cannot be modified by assignment.
assignment of read-only variable �name�
�name� was declared as const and cannot be modified by assignment.
�identifier� attribute directive ignored
The named attribute is not a known or supported attribute, and is therefore ignored.
�identifier� attribute does not apply to types
The named attribute may not be used with types. It is ignored.
�identifier� attribute ignored
The named attribute is not meaningful in the given context, and is therefore ignored.
�attribute� attribute only applies to function types
The specified attribute can only be applied to the return types of functions and not to
other declarations.

B
backslash and newline separated by space
While processing for escape sequences, a backslash and newline were found
separated by a space.
backslash-newline at end of file
While processing for escape sequences, a backslash and newline were found at the
end of the file.
bit-field �identifier� type invalid in ISO C
The type used on the specified identifier is not valid in ISO C.
braces around scalar initializer
A redundant set of braces around an initializer is supplied.
© 2008 Microchip Technology Inc. DS51284G-page 173

16-Bit C Compiler User�s Guide
built-in function �identifier� declared as non-function
The specified function has the same name as a built-in function, yet is declared as
something other than a function.

C
C++ style comments are not allowed in ISO C89
Use C style comments �/*� and �*/� instead of C++ style comments �//�.
call-clobbered register used for global register variable
Choose a register that is normally saved and restored by function calls (W8-W13), so
that library routines will not clobber it.
cannot inline function �main�
The function �main� is declared with the inline attribute. This is not supported, since
main must be called from the C start-up code, which is compiled separately.
can�t inline call to �identifier� called from here
The compiler was unable to inline the call to the specified function.
case value �n� not in enumerated type
The controlling expression of a switch statement is an enumeration type, yet a case
expression has the value n, which does not correspond to any of the enumeration
values.
case value �value� not in enumerated type �name�
�value� is an extra switch case that is not an element of the enumerated type �name�.
cast does not match function type
The return type of a function is cast to a type that does not match the function�s type.
cast from pointer to integer of different size
A pointer is cast to an integer that is not 16-bits wide.
cast increases required alignment of target type
When compiling with the -Wcast-align command-line option, the compiler verifies
that casts do not increase the required alignment of the target type. For example, this
warning message will be given if a pointer to char is cast as a pointer to int, since the
aligned for char (byte alignment) is less than the alignment requirement for int (word
alignment).
character constant too long
Character constants must not be too long.
comma at end of enumerator list
Unnecessary comma at the end of the enumerator list.
comma operator in operand of #if
Not expecting a comma operator in the #if directive.
comparing floating point with == or != is unsafe
Floating-point values can be approximations to infinitely precise real numbers. Instead
of testing for equality, use relational operators to see whether the two values have
ranges that overlap.
comparison between pointer and integer
A pointer type is being compared to an integer type.
DS51284G-page 174 © 2008 Microchip Technology Inc.

Diagnostics
comparison between signed and unsigned
One of the operands of a comparison is signed, while the other is unsigned. The signed
operand will be treated as an unsigned value, which may not be correct.
comparison is always n
A comparison involves only constant expressions, so the compiler can evaluate the run
time result of the comparison. The result is always n.
comparison is always n due to width of bit-field
A comparison involving a bit-field always evaluates to n because of the width of the
bit-field.
comparison is always false due to limited range of data type
A comparison will always evaluate to false at run time, due to the range of the data
types.
comparison is always true due to limited range of data type
A comparison will always evaluate to true at run time, due to the range of the data
types.
comparison of promoted ~unsigned with constant
One of the operands of a comparison is a promoted ~unsigned, while the other is a
constant.
comparison of promoted ~unsigned with unsigned
One of the operands of a comparison is a promoted ~unsigned, while the other is
unsigned.
comparison of unsigned expression >= 0 is always true
A comparison expression compares an unsigned value with zero. Since unsigned
values cannot be less than zero, the comparison will always evaluate to true at run
time.
comparison of unsigned expression < 0 is always false
A comparison expression compares an unsigned value with zero. Since unsigned
values cannot be less than zero, the comparison will always evaluate to false at run
time.
comparisons like X<=Y<=Z do not have their mathematical meaning
A C expression does not necessarily mean the same thing as the corresponding
mathematical expression. In particular, the C expression X<=Y<=Z is not equivalent to
the mathematical expression X ≤ Y ≤ Z.
conflicting types for built-in function �identifier�
The specified function has the same name as a built-in function but is declared with
conflicting types.
const declaration for �identifier� follows non-const
The specified identifier was declared const after it was previously declared as
non-const.
control reaches end of non-void function
All exit paths from non-void function should return an appropriate value. The compiler
detected a case where a non-void function terminates, without an explicit return value.
Therefore, the return value might be unpredictable.
conversion lacks type at end of format
When checking the argument list of a call to printf, scanf, etc., the compiler found that
a format field in the format string lacked a type specifier.
© 2008 Microchip Technology Inc. DS51284G-page 175

16-Bit C Compiler User�s Guide
concatenation of string literals with __FUNCTION__ is deprecated
__FUNCTION__ will be handled the same way as __func__ (which is defined by the
ISO standard C99). __func__ is a variable, not a string literal, so it does not catenate
with other string literals.
conflicting types for �identifier�
The specified identifier has multiple, inconsistent declarations.

D
data definition has no type or storage class
A data definition was detected that lacked a type and storage class.
data qualifier �qualifier� ignored
Data qualifiers, which include �access�, �shared� and �overlay�, are not used in the com-
piler, but are there for compatibility with the MPLAB C Compiler for PIC18 MCUs.
declaration of �identifier� has �extern� and is initialized
Externs should not be initialized.
declaration of �identifier� shadows a parameter
The specified identifier declaration shadows a parameter, making the parameter
inaccessible.
declaration of �identifier� shadows a symbol from the parameter list
The specified identifier declaration shadows a symbol from the parameter list, making
the symbol inaccessible.
declaration of �identifier� shadows global declaration
The specified identifier declaration shadows a global declaration, making the global
inaccessible.
�identifier� declared inline after being called
The specified function was declared inline after it was called.
�identifier� declared inline after its definition
The specified function was declared inline after it was defined.
�identifier� declared �static� but never defined
The specified function was declared static, but was never defined.
decrement of read-only member �name�
The member �name� was declared as const and cannot be modified by decrementing.
decrement of read-only variable �name�
�name� was declared as const and cannot be modified by decrementing.
�identifier� defined but not used
The specified function was defined, but was never used.
deprecated use of label at end of compound statement
A label should not be at the end of a statement. It should be followed by a statement.
dereferencing �void *� pointer
It is not correct to dereference a �void *� pointer. Cast it to a pointer of the appropriate
type before dereferencing the pointer.
division by zero
Compile-time division by zero has been detected.
DS51284G-page 176 © 2008 Microchip Technology Inc.

Diagnostics
duplicate �const�
The �const� qualifier should be applied to a declaration only once.
duplicate �restrict�
The �restrict� qualifier should be applied to a declaration only once.
duplicate �volatile�
The �volatile� qualifier should be applied to a declaration only once.

E
embedded �\0� in format
When checking the argument list of a call to printf, scanf, etc., the compiler found that
the format string contains an embedded �\0� (zero), which can cause early termination
of format string processing.
empty body in an else-statement
An else statement is empty.
empty body in an if-statement
An if statement is empty.
empty declaration
The declaration contains no names to declare.
empty range specified
The range of values in a case range is empty, that is, the value of the low expression
is greater than the value of the high expression. Recall that the syntax for case ranges
is case low ... high:.
�enum identifier� declared inside parameter list
The specified enum is declared inside a function parameter list. It is usually better
programming practice to declare enums outside parameter lists, since they can never
become complete types when defined inside parameter lists.
enum defined inside parms
An enum is defined inside a function parameter list.
enumeration value �identifier� not handled in switch
The controlling expression of a switch statement is an enumeration type, yet not all
enumeration values have case expressions.
enumeration values exceed range of largest integer
Enumeration values are represented as integers. The compiler detected that an
enumeration range cannot be represented in any of the compiler integer formats,
including the largest such format.
excess elements in array initializer
There are more elements in the initializer list than the array was declared with.
excess elements in scalar initializer");
There should be only one initializer for a scalar variable.
excess elements in struct initializer
There are more elements in the initializer list than the structure was declared with.
excess elements in union initializer
There are more elements in the initializer list than the union was declared with.
© 2008 Microchip Technology Inc. DS51284G-page 177

16-Bit C Compiler User�s Guide
extra semicolon in struct or union specified
The structure type or union type contains an extra semicolon.
extra tokens at end of #�directive� directive
The compiler detected extra text on the source line containing the #�directive� directive.

F
-ffunction-sections may affect debugging on some targets
You may have problems with debugging if you specify both the -g option and the
-ffunction-sections option.
first argument of �identifier� should be �int�
Expecting declaration of first argument of specified identifier to be of type int.
floating constant exceeds range of �double�
A floating-point constant is too large or too small (in magnitude) to be represented as
a �double�.
floating constant exceeds range of �float�
A floating-point constant is too large or too small (in magnitude) to be represented as
a �float�.
floating constant exceeds range of �long double�
A floating-point constant is too large or too small (in magnitude) to be represented as
a �long double�.
floating point overflow in expression
When folding a floating-point constant expression, the compiler found that the
expression overflowed, that is, it could not be represented as float.
�type1� format, �type2� arg (arg �num�)
The format is of type �type1�, but the argument being passed is of type �type2�.
The argument in question is the �num� argument.
format argument is not a pointer (arg n)
When checking the argument list of a call to printf, scanf, etc., the compiler found that
the specified argument number n was not a pointer, san the format specifier indicated
it should be.
format argument is not a pointer to a pointer (arg n)
When checking the argument list of a call to printf, scanf, etc., the compiler found that
the specified argument number n was not a pointer san the format specifier indicated
it should be.
fprefetch-loop-arrays not supported for this target
The option to generate instructions to prefetch memory is not supported for this target.
function call has aggregate value
The return value of a function is an aggregate.
function declaration isn�t a prototype
When compiling with the -Wstrict-prototypes command-line option, the compiler
ensures that function prototypes are specified for all functions. In this case, a function
definition was encountered without a preceding function prototype.
function declared �noreturn� has a �return� statement
A function was declared with the noreturn attribute-indicating that the function does not
return-yet the function contains a return statement. This is inconsistent.
DS51284G-page 178 © 2008 Microchip Technology Inc.

Diagnostics
function might be possible candidate for attribute �noreturn�
The compiler detected that the function does not return. If the function had been
declared with the �noreturn� attribute, then the compiler might have been able to
generate better code.
function returns address of local variable
Functions should not return the addresses of local variables, since, when the function
returns, the local variables are de-allocated.
function returns an aggregate
The return value of a function is an aggregate.
function �name� redeclared as inline
previous declaration of function �name� with attribute noinline
Function �name� was declared a second time with the keyword �inline�, which now
allows the function to be considered for inlining.
function �name� redeclared with attribute noinline
previous declaration of function �name� was inline
Function �name� was declared a second time with the noinline attribute, which now
causes it to be ineligible for inlining.
function �identifier� was previously declared within a block
The specified function has a previous explicit declaration within a block, yet it has an
implicit declaration on the current line.

G
GCC does not yet properly implement �[*]� array declarators
Variable length arrays are not currently supported by the compiler.

H
hex escape sequence out of range
The hex sequence must be less than 100 in hex (256 in decimal).

I
ignoring asm-specifier for non-static local variable �identifier�
The asm-specifier is ignored when it is used with an ordinary, non-register local
variable.
ignoring invalid multibyte character
When parsing a multibyte character, the compiler determined that it was invalid. The
invalid character is ignored.
ignoring option �option� due to invalid debug level specification
A debug option was used with a debug level that is not a valid debug level.
ignoring #pragma identifier
The specified pragma is not supported by the compiler, and is ignored.
imaginary constants are a GCC extention
ISO C does not allow imaginary numeric constants.
implicit declaration of function �identifier�
The specified function has no previous explicit declaration (definition or function
prototype), so the compiler makes assumptions about its return type and parameters.
© 2008 Microchip Technology Inc. DS51284G-page 179

16-Bit C Compiler User�s Guide
increment of read-only member �name�
The member �name� was declared as const and cannot be modified by incrementing.
increment of read-only variable �name�
�name� was declared as const and cannot be modified by incrementing.
initialization of a flexible array member
A flexible array member is intended to be dynamically allocated not statically.
�identifier� initialized and declared �extern�
Externs should not be initialized.
initializer element is not constant
Initializer elements should be constant.
inline function �name� given attribute noinline
The function �name� has been declared as inline, but the noinline attribute prevents the
function from being considered for inlining.
inlining failed in call to �identifier� called from here
The compiler was unable to inline the call to the specified function.
integer constant is so large that it is unsigned
An integer constant value appears in the source code without an explicit unsigned
modifier, yet the number cannot be represented as a signed int; therefore, the compiler
automatically treats it as an unsigned int.
integer constant is too large for �type� type
An integer constant should not exceed 2^32 - 1 for an unsigned long int, 2^63 - 1 for a
long long int or 2^64 - 1 for an unsigned long long int.
integer overflow in expression
When folding an integer constant expression, the compiler found that the expression
overflowed; that is, it could not be represented as an int.
invalid application of �sizeof� to a function type
It is not recommended to apply the sizeof operator to a function type.
invalid application of �sizeof� to a void type
The sizeof operator should not be applied to a void type.
invalid digit �digit� in octal constant
All digits must be within the radix being used. For instance, only the digits 0 thru 7 may
be used for the octal radix.
invalid second arg to __builtin_prefetch; using zero
Second argument must be 0 or 1.
invalid storage class for function �name�
�auto� storage class should not be used on a function defined at the top level. �static�
storage class should not be used if the function is not defined at the top level.
invalid third arg to __builtin_prefetch; using zero
Third argument must be 0, 1, 2, or 3.
�identifier� is an unrecognized format function type
The specified identifier, used with the format attribute, is not one of the recognized
format function types printf, scanf, or strftime.
DS51284G-page 180 © 2008 Microchip Technology Inc.

Diagnostics
�identifier� is narrower than values of its type
A bit-field member of a structure has for its type an enumeration, but the width of the
field is insufficient to represent all enumeration values.
�storage class� is not at beginning of declaration
The specified storage class is not at the beginning of the declaration. Storage classes
are required to come first in declarations.
ISO C does not allow extra �;� outside of a function
An extra �;� was found outside a function. This is not allowed by ISO C.
ISO C does not support �++� and �--� on complex types
The increment operator and the decrement operator are not supported on complex
types in ISO C.
ISO C does not support �~� for complex conjugation
The bitwise negation operator cannot be use for complex conjugation in ISO C.
ISO C does not support complex integer types
Complex integer types, such as __complex__ short int, are not supported in ISO C.
ISO C does not support plain �complex� meaning �double complex�
Using __complex__ without another modifier is equivalent to �complex double� which
is not supported in ISO C.
ISO C does not support the �char� �kind of format� format
ISO C does not support the specification character �char� for the specified �kind of
format�.
ISO C doesn�t support unnamed structs/unions
All structures and/or unions must be named in ISO C.
ISO C forbids an empty source file
The file contains no functions or data. This is not allowed in ISO C.
ISO C forbids empty initializer braces
ISO C expects initializer values inside the braces.
ISO C forbids nested functions
A function has been defined inside another function.
ISO C forbids omitting the middle term of a ?: expression
The conditional expression requires the middle term or expression between the �?� and
the �:�.
ISO C forbids qualified void function return type
A qualifier may not be used with a void function return type.
ISO C forbids range expressions in switch statements
Specifying a range of consecutive values in a single case label is not allowed in ISO C.
ISO C forbids subscripting �register� array
Subscripting a �register� array is not allowed in ISO C.
ISO C forbids taking the address of a label
Taking the address of a label is not allowed in ISO C.
ISO C forbids zero-size array �name�
The array size of �name� must be larger than zero.
© 2008 Microchip Technology Inc. DS51284G-page 181

16-Bit C Compiler User�s Guide
ISO C restricts enumerator values to range of �int�
The range of enumerator values must not exceed the range of the int type.
ISO C89 forbids compound literals
Compound literals are not valid in ISO C89.
ISO C89 forbids mixed declarations and code
Declarations should be done first before any code is written. It should not be mixed in
with the code.
ISO C90 does not support �[*]� array declarators
Variable length arrays are not supported in ISO C90.
ISO C90 does not support complex types
Complex types, such as __complex__ float x, are not supported in ISO C90.
ISO C90 does not support flexible array members
A flexible array member is a new feature in C99. ISO C90 does not support it.
ISO C90 does not support �long long�
The long long type is not supported in ISO C90.
ISO C90 does not support �static� or type qualifiers in parameter array
declarators
When using an array as a parameter to a function, ISO C90 does not allow the array
declarator to use �static� or type qualifiers.
ISO C90 does not support the �char� �function� format
ISO C does not support the specification character �char� for the specified function
format.
ISO C90 does not support the �modifier� �function� length modifier
The specified modifier is not supported as a length modifier for the given function.
ISO C90 forbids variable-size array �name�
In ISO C90, the number of elements in the array must be specified by an integer
constant expression.

L
label �identifier� defined but not used
The specified label was defined, but not referenced.
large integer implicitly truncated to unsigned type
An integer constant value appears in the source code without an explicit unsigned
modifier, yet the number cannot be represented as a signed int; therefore, the compiler
automatically treats it as an unsigned int.
left-hand operand of comma expression has no effect
One of the operands of a comparison is a promoted ~unsigned, while the other is
unsigned.
left shift count >= width of type
Shift counts should be less than the number of bits in the type being shifted. Otherwise,
the shift is meaningless, and the result is undefined.
left shift count is negative
Shift counts should be positive. A negative left shift count does not mean shift right;
it is meaningless.
DS51284G-page 182 © 2008 Microchip Technology Inc.

Diagnostics
library function �identifier� declared as non-function
The specified function has the same name as a library function, yet is declared as
something other than a function.
line number out of range
The limit for the line number for a #line directive in C89 is 32767 and in C99 is
2147483647.
�identifier� locally external but globally static
The specified identifier is locally external but globally static. This is suspect.
location qualifier �qualifier� ignored
Location qualifiers, which include �grp� and �sfr�, are not used in the compiler, but are
there for compatibility with MPLAB C Compiler for PIC18 MCUs.
�long� switch expression not converted to �int� in ISO C
ISO C does not convert �long� switch expressions to �int�.

M
�main� is usually a function
The identifier main is usually used for the name of the main entry point of an
application. The compiler detected that it was being used in some other way, for
example, as the name of a variable.
�operation� makes integer from pointer without a cast
A pointer has been implicitly converted to an integer.
�operation� makes pointer from integer without a cast
An integer has been implicitly converted to a pointer.
malformed �#pragma pack-ignored�
The syntax of the pack pragma is incorrect.
malformed �#pragma pack(pop[,id])-ignored�
The syntax of the pack pragma is incorrect.
malformed �#pragma pack(push[,id],<n>)-ignored�
The syntax of the pack pragma is incorrect.
malformed �#pragma weak-ignored�
The syntax of the weak pragma is incorrect.
�identifier� might be used uninitialized in this function
The compiler detected a control path though a function which might use the specified
identifier before it has been initialized.
missing braces around initializer
A required set of braces around an initializer is missing.
missing initializer
An initializer is missing.
modification by �asm� of read-only variable �identifier�
A const variable is the left-hand-side of an assignment in an �asm� statement.
multi-character character constant
A character constant contains more than one character.
© 2008 Microchip Technology Inc. DS51284G-page 183

16-Bit C Compiler User�s Guide
N
negative integer implicitly converted to unsigned type
A negative integer constant value appears in the source code, but the number cannot
be represented as a signed int; therefore, the compiler automatically treats it as an
unsigned int.
nested extern declaration of �identifier�
There are nested extern definitions of the specified identifier.
no newline at end of file
The last line of the source file is not terminated with a newline character.
no previous declaration for �identifier�
When compiling with the -Wmissing-declarations command-line option, the
compiler ensures that functions are declared before they are defined. In this case, a
function definition was encountered without a preceding function declaration.
no previous prototype for �identifier�
When compiling with the -Wmissing-prototypes command-line option, the
compiler ensures that function prototypes are specified for all functions. In this case, a
function definition was encountered without a preceding function prototype.
no semicolon at end of struct or union
A semicolon is missing at the end of the structure or union declaration.
non-ISO-standard escape sequence, �seq�
�seq� is �\e� or �\E� and is an extension to the ISO standard. The sequence can be used
in a string or character constant and stands for the ASCII character <ESC>.
non-static declaration for �identifier� follows static
The specified identifier was declared non-static after it was previously declared as
static.
�noreturn� function does return
A function declared with the noreturn attribute returns. This is inconsistent.
�noreturn� function returns non-void value
A function declared with the noreturn attribute returns a non-void value. This is
inconsistent.
null format string
When checking the argument list of a call to printf, scanf, etc., the compiler found that
the format string was missing.

O
octal escape sequence out of range
The octal sequence must be less than 400 in octal (256 in decimal).
output constraint �constraint� for operand n is not at the beginning
Output constraints in extended asm should be at the beginning.
overflow in constant expression
The constant expression has exceeded the range of representable values for its type.
overflow in implicit constant conversion
An implicit constant conversion resulted in a number that cannot be represented as a
signed int; therefore, the compiler automatically treats it as an unsigned int.
DS51284G-page 184 © 2008 Microchip Technology Inc.

Diagnostics
P
parameter has incomplete type
A function parameter has an incomplete type.
parameter names (without types) in function declaration
The function declaration lists the names of the parameters but not their types.
parameter points to incomplete type
A function parameter points to an incomplete type.
parameter �identifier� points to incomplete type
The specified function parameter points to an incomplete type.
passing arg �number� of �name� as complex rather than floating due to prototype
The prototype declares argument �number� as a complex, but a float value is used so
the compiler converts to a complex to agree with the prototype.
passing arg �number� of �name� as complex rather than integer due to prototype
The prototype declares argument �number� as a complex, but an integer value is used
so the compiler converts to a complex to agree with the prototype.
passing arg �number� of �name� as floating rather than complex due to prototype
The prototype declares argument �number� as a float, but a complex value is used so
the compiler converts to a float to agree with the prototype.
passing arg �number� of �name� as �float� rather than �double� due to prototype
The prototype declares argument �number� as a float, but a double value is used so the
compiler converts to a float to agree with the prototype.
passing arg �number� of �name� as floating rather than integer due to prototype
The prototype declares argument �number� as a float, but an integer value is used so
the compiler converts to a float to agree with the prototype.
passing arg �number� of �name� as integer rather than complex due to prototype
The prototype declares argument �number� as an integer, but a complex value is used
so the compiler converts to an integer to agree with the prototype.
passing arg �number� of �name� as integer rather than floating due to prototype
The prototype declares argument �number� as an integer, but a float value is used so
the compiler converts to an integer to agree with the prototype.
pointer of type �void *� used in arithmetic
A pointer of type �void� has no size and should not be used in arithmetic.
pointer to a function used in arithmetic
A pointer to a function should not be used in arithmetic.
previous declaration of �identifier�
This warning message appears in conjunction with another warning message. The
previous message identifies the location of the suspect code. This message identifies
the first declaration or definition of the identifier.
previous implicit declaration of �identifier�
This warning message appears in conjunction with the warning message �type
mismatch with previous implicit declaration�. It locates the implicit declaration of the
identifier that conflicts with the explicit declaration.
© 2008 Microchip Technology Inc. DS51284G-page 185

16-Bit C Compiler User�s Guide
R
�name� re-asserted
The answer for "name" has been duplicated.
�name� redefined
�name� was previously defined and is being redefined now.
redefinition of �identifier�
The specified identifier has multiple, incompatible definitions.
redundant redeclaration of �identifier� in same scope
The specified identifier was re-declared in the same scope. This is redundant.
register used for two global register variables
Two global register variables have been defined to use the same register.
repeated �flag� flag in format
When checking the argument list of a call to strftime, the compiler found that there was
a flag in the format string that is repeated.
When checking the argument list of a call to printf, scanf, etc., the compiler found that
one of the flags { ,+,#,0,-} was repeated in the format string.
return-type defaults to �int�
In the absence of an explicit function return-type declaration, the compiler assumes
that the function returns an int.
return type of �name� is not �int�
The compiler is expecting the return type of �name� to be �int�.
�return� with a value, in function returning void
The function was declared as void but returned a value.
�return� with no value, in function returning non-void
A function declared to return a non-void value contains a return statement with no
value. This is inconsistent.
right shift count >= width of type
Shift counts should be less than the number of bits in the type being shifted. Otherwise,
the shift is meaningless, and the result is undefined.
right shift count is negative
Shift counts should be positive. A negative right shift count does not mean shift left; it
is meaningless.

S
second argument of �identifier� should be �char **�
Expecting second argument of specified identifier to be of type �char **�.
second parameter of �va_start� not last named argument
The second parameter of �va_start� must be the last named argument.
shadowing built-in function �identifier�
The specified function has the same name as a built-in function, and consequently
shadows the built-in function.
shadowing library function �identifier�
The specified function has the same name as a library function, and consequently
shadows the library function.
DS51284G-page 186 © 2008 Microchip Technology Inc.

Diagnostics
shift count >= width of type
Shift counts should be less than the number of bits in the type being shifted. Otherwise,
the shift is meaningless, and the result is undefined.
shift count is negative
Shift counts should be positive. A negative left shift count does not mean shift right, nor
does a negative right shift count mean shift left; they are meaningless.
size of �name� is larger than n bytes
Using -Wlarger-than-len will produce the above warning when the size of �name�
is larger than the len bytes defined.
size of �identifier� is n bytes
The size of the specified identifier (which is n bytes) is larger than the size specified
with the -Wlarger-than-len command-line option.
size of return value of �name� is larger than n bytes
Using -Wlarger-than-len will produce the above warning when the size of the
return value of �name� is larger than the len bytes defined.
size of return value of �identifier� is n bytes
The size of the return value of the specified function is n bytes, which is larger than the
size specified with the -Wlarger-than-len command-line option.
spurious trailing �%� in format
When checking the argument list of a call to printf, scanf, etc., the compiler found that
there was a spurious trailing �%� character in the format string.
statement with no effect
A statement has no effect.
static declaration for �identifier� follows non-static
The specified identifier was declared static after it was previously declared as
non-static.
string length �n� is greater than the length �n� ISO Cn compilers are required to
support
The maximum string length for ISO C89 is 509. The maximum string length for ISO C99
is 4095.
�struct identifier� declared inside parameter list
The specified struct is declared inside a function parameter list. It is usually better
programming practice to declare structs outside parameter lists, since they can never
become complete types when defined inside parameter lists.
struct has no members
The structure is empty, it has no members.
structure defined inside parms
A union is defined inside a function parameter list.
style of line directive is a GCC extension
Use the format �#line linenum� for traditional C.
subscript has type �char�
An array subscript has type �char�.
suggest explicit braces to avoid ambiguous �else�
A nested if statement has an ambiguous else clause. It is recommended that braces be
used to remove the ambiguity.
© 2008 Microchip Technology Inc. DS51284G-page 187

16-Bit C Compiler User�s Guide
suggest hiding #directive from traditional C with an indented #
The specified directive is not traditional C and may be �hidden� by indenting the #.
A directive is ignored unless its # is in column 1.
suggest not using #elif in traditional C
#elif should not be used in traditional K&R C.
suggest parentheses around assignment used as truth value
When assignments are used as truth values, they should be surrounded by
parentheses, to make the intention clear to readers of the source program.
suggest parentheses around + or - inside shift
suggest parentheses around && within ||
suggest parentheses around arithmetic in operand of |
suggest parentheses around comparison in operand of |
suggest parentheses around arithmetic in operand of ^
suggest parentheses around comparison in operand of ^
suggest parentheses around + or - in operand of &
suggest parentheses around comparison in operand of &
While operator precedence is well defined in C, sometimes a reader of an expression
might be required to expend a few additional microseconds in comprehending the
evaluation order of operands in an expression if the reader has to rely solely upon the
precedence rules, without the aid of explicit parentheses. A case in point is the use of
the �+� or �-� operator inside a shift. Many readers will be spared unnecessary effort if
parentheses are use to clearly express the intent of the programmer, even though the
intent is unambiguous to the programmer and to the compiler.

T
�identifier� takes only zero or two arguments
Expecting zero or two arguments only.
the meaning of �\a� is different in traditional C
When the -wtraditional option is used, the escape sequence �\a� is not recognized
as a meta-sequence: its value is just �a�. In non-traditional compilation, �\a� represents
the ASCII BEL character.
the meaning of �\x� is different in traditional C
When the -wtraditional option is used, the escape sequence �\x� is not recognized
as a meta-sequence: its value is just �x�. In non-traditional compilation, �\x� introduces
a hexadecimal escape sequence.
third argument of �identifier� should probably be �char **�
Expecting third argument of specified identifier to be of type �char **�.
this function may return with or without a value
All exit paths from non-void function should return an appropriate value. The compiler
detected a case where a non-void function terminates, sometimes with and sometimes
without an explicit return value. Therefore, the return value might be unpredictable.
this target machine does not have delayed branches
The -fdelayed-branch option is not supported.
too few arguments for format
When checking the argument list of a call to printf, scanf, etc., the compiler found that
the number of actual arguments was fewer than that required by the format string.
DS51284G-page 188 © 2008 Microchip Technology Inc.

Diagnostics
too many arguments for format
When checking the argument list of a call to printf, scanf, etc., the compiler found that
the number of actual arguments was more than that required by the format string.
traditional C ignores #�directive� with the # indented
Traditionally, a directive is ignored unless its # is in column 1.
traditional C rejects initialization of unions
Unions cannot be initialized in traditional C.
traditional C rejects the �ul� suffix
Suffix �u� is not valid in traditional C.
traditional C rejects the unary plus operator
The unary plus operator is not valid in traditional C.
trigraph ??char converted to char
Trigraphs, which are a three-character sequence, can be used to represent symbols
that may be missing from the keyboard. Trigraph sequences convert as follows:

trigraph ??char ignored
Trigraph sequence is being ignored. char can be (,), <, >, =, /, ', !, or -
type defaults to �int� in declaration of �identifier�
In the absence of an explicit type declaration for the specified identifier, the compiler
assumes that its type is int.
type mismatch with previous external decl
previous external decl of �identifier�
The type of the specified identifier does not match the previous declaration.
type mismatch with previous implicit declaration
An explicit declaration conflicts with a previous implicit declaration.
type of �identifier� defaults to �int�
In the absence of an explicit type declaration, the compiler assumes that identifier�s
type is int.
type qualifiers ignored on function return type
The type qualifier being used with the function return type is ignored.

U
undefining �defined�
�defined� cannot be used as a macro name and should not be undefined.
undefining �name�
The #undef directive was used on a previously defined macro name �name�.
union cannot be made transparent
The transparent_union attribute was applied to a union, but the specified variable
does not satisfy the requirements of that attribute.
�union identifier� declared inside parameter list
The specified union is declared inside a function parameter list. It is usually better
programming practice to declare unions outside parameter lists, since they can never
become complete types when defined inside parameter lists.

??(= [??) =] ??< = { ??> = } ??= = # ??/ = \ ??' = ^ ??! = | ??- = ~
© 2008 Microchip Technology Inc. DS51284G-page 189

16-Bit C Compiler User�s Guide
union defined inside parms
A union is defined inside a function parameter list.
union has no members
The union is empty, it has no members.
unknown conversion type character �character� in format
When checking the argument list of a call to printf, scanf, etc., the compiler found that
one of the conversion characters in the format string was invalid (unrecognized).
unknown conversion type character 0xnumber in format
When checking the argument list of a call to printf, scanf, etc., the compiler found that
one of the conversion characters in the format string was invalid (unrecognized).
unknown escape sequence �sequence�
�sequence� is not a valid escape code. An escape code must start with a �\� and use
one of the following characters: n, t, b, r, f, b, \, ', ", a, or ?, or it must be a numeric
sequence in octal or hex. In octal, the numeric sequence must be less than 400 octal.
In hex, the numeric sequence must start with an �x� and be less than 100 hex.
unnamed struct/union that defines no instances
struct/union is empty and has no name.
unreachable code at beginning of identifier
There is unreachable code at beginning of the specified function.
unrecognized gcc debugging option: char
The �char� is not a valid letter for the -dletters debugging option.
unused parameter �identifier�
The specified function parameter is not used in the function.
unused variable �name�
The specified variable was declared but not used.
use of �*� and �flag� together in format
When checking the argument list of a call to printf, scanf, etc., the compiler found that
both the flags �*� and �flag� appear in the format string.
use of C99 long long integer constants
Integer constants are not allowed to be declared long long in ISO C89.
use of �length� length modifier with �type� type character
When checking the argument list of a call to printf, scanf, etc., the compiler found that
the specified length was incorrectly used with the specified type.
�name� used but never defined
The specified function was used but never defined.
�name� used with �spec� �function� format
�name� is not valid with the conversion specification �spec� in the format of the specified
function.
useless keyword or type name in empty declaration
An empty declaration contains a useless keyword or type name.
DS51284G-page 190 © 2008 Microchip Technology Inc.

Diagnostics
V
__VA_ARGS__ can only appear in the expansion of a C99 variadic macro
The predefined macro __VA_ARGS should be used in the substitution part of a macro
definition using ellipses.
value computed is not used
A value computed is not used.
variable �name� declared �inline�
The keyword �inline� should be used with functions only.
variable �%s� might be clobbered by �longjmp� or �vfork�
A non-volatile automatic variable might be changed by a call to longjmp. These
warnings are possible only in optimizing compilation.
volatile register variables don�t work as you might wish
Passing a variable as an argument could transfer the variable to a different register
(w0-w7) than the one specified (if not w0-w7) for argument transmission. Or the
compiler may issue an instruction that is not suitable for the specified register and may
need to temporarily move the value to another place. These are only issues if the
specified register is modified asynchronously (i.e., though an ISR).

W
-Wformat-extra-args ignored without -Wformat
-Wformat must be specified to use -Wformat-extra-args.
-Wformat-nonliteral ignored without -Wformat
-Wformat must be specified to use -Wformat-nonliteral.
-Wformat-security ignored without -Wformat
-Wformat must be specified to use -Wformat-security.
-Wformat-y2k ignored without -Wformat
-Wformat must be specified to use.
-Wid-clash-LEN is no longer supported
The option -Wid-clash-LEN is no longer supported.
-Wmissing-format-attribute ignored without -Wformat
-Wformat must be specified to use -Wmissing-format-attribute.
-Wuninitialized is not supported without -O
Optimization must be on to use the -Wuninitialized option.
�identifier� was declared �extern� and later �static�
The specified identifier was previously declared �extern� and is now being declared as
static.
�identifier� was declared implicitly �extern� and later �static�
The specified identifier was previously declared implicitly �extern� and is now being
declared as static.
�identifier� was previously implicitly declared to return �int�
There is a mismatch against the previous implicit declaration.
© 2008 Microchip Technology Inc. DS51284G-page 191

16-Bit C Compiler User�s Guide
�identifier� was used with no declaration before its definition
When compiling with the -Wmissing-declarations command-line option, the
compiler ensures that functions are declared before they are defined. In this case, a
function definition was encountered without a preceding function declaration.
�identifier� was used with no prototype before its definition
When compiling with the -Wmissing-prototypes command-line option, the
compiler ensures that function prototypes are specified for all functions. In this case, a
function call was encountered without a preceding function prototype for the called
function.
writing into constant object (arg n)
When checking the argument list of a call to printf, scanf, etc., the compiler found that
the specified argument number n was a const object that the format specifier indicated
should be written into.

Z
zero-length identifier format string
When checking the argument list of a call to printf, scanf, etc., the compiler found that
the format string was empty (��).
DS51284G-page 192 © 2008 Microchip Technology Inc.

MPLAB® C COMPILER FOR
PIC24 MCUs AND dsPIC® DSCs

USER�S GUIDE
Appendix D. MPLAB C Compiler for PIC18 MCUs vs. 16-Bit Devices
D.1 INTRODUCTION
The purpose of this chapter is to highlight the differences between the MPLAB C Com-
piler for PIC18 MCUs (formerly MPLAB C18) and the MPLAB C C Compiler for PIC24
MCUs and dsPIC® DSCs (formerly MPLAB C30). For more details on the PIC18 MCU
compiler, please refer to the �MPLAB® C18 C Compiler User�s Guide� (DS51288).

D.2 HIGHLIGHTS
This chapter discusses the following areas of difference between the two compilers:
� Data Formats
� Pointers
� Storage Classes
� Stack Usage
� Storage Qualifiers
� Predefined Macro Names
� Integer Promotions
� String Constants
� Access Memory
� Inline Assembly
� Pragmas
� Memory Models
� Calling Conventions
� Startup Code
� Compiler-Managed Resources
� Optimizations
� Object Module Format
� Implementation-Defined Behavior
� Bit fields
© 2008 Microchip Technology Inc. DS51284G-page 193

16-Bit C Compiler User�s Guide
D.3 DATA FORMATS

TABLE D-1: NUMBER OF BITS USED IN DATA FORMATS

TABLE D-2: FLOATING-POINT VS. IEEE-754 FORMAT

D.4 POINTERS

TABLE D-3: NUMBER OF BITS USED FOR POINTERS

D.5 STORAGE CLASSES
The PIC18 MCU Compiler allows the non-ANSI storage class specifiers overlay for
variables and auto or static for function arguments.
The 16-Bit Device Compiler does not allow these specifiers.

D.6 STACK USAGE

TABLE D-4: TYPE OF STACK USED

Data Format
MPLAB® C Compiler for

PIC18 MCUs(1) 16-Bit Devices(2)

char 8 8
int 16 16
short long 24 -
long 32 32
long long - 64
float 32 32
double 32 32 or 64(3)

Note 1: The PIC18 MCU Compiler uses its own data format, which is similar to IEEE-754
format, but with the top nine bits rotated (see Table D-2).

2: The 16-Bit Device Compiler uses IEEE-754 format.
3: See Section 5.5 �Floating Point�.

Standard Byte 3 Byte 2 Byte 1 Byte 0

PIC18 MCU Compiler eeeeeeee0 sddd dddd16 dddd dddd8 dddd dddd0

16-Bit Device Compiler seeeeeee1 e0ddd dddd16 dddd dddd8 dddd dddd0

Legend: s = sign bit, d = mantissa, e = exponent

Memory Type
MPLAB® C Compiler for

PIC18 MCUs 16-Bit Devices

Program Memory - Near 16 16
Program Memory - Far 24 16
Data Memory 16 16

Items on Stack
MPLAB® C Compiler for

PIC18 MCUs 16-Bit Devices

Return Addresses hardware software
Local Variables software software
DS51284G-page 194 © 2008 Microchip Technology Inc.

MPLAB C Compiler for PIC18 MCUs vs. 16-Bit Devices
D.7 STORAGE QUALIFIERS
The PIC18 MCU Compiler uses the non-ANSI far, near, rom and ram type qualifiers.
The 16-Bit Device Compiler uses the non-ANSI far, near and space attributes.

EXAMPLE D-1: DEFINING A NEAR VARIABLE

EXAMPLE D-2: DEFINING A FAR VARIABLE

EXAMPLE D-3: CREATING A VARIABLE IN PROGRAM MEMORY

D.8 PREDEFINED MACRO NAMES
The PIC18 MCU Compiler defines __18CXX, __18F242, ... (all other processors with
__ prefix) and __SMALL__ or __LARGE__, depending on the selected memory model.
The 16-Bit Device Compiler defines __dsPIC30.

D.9 INTEGER PROMOTIONS
The PIC18 MCU Compiler performs integer promotions at the size of the largest oper-
and even if both operands are smaller than an int. This compiler provides the -Oi+
option to conform to the standard.
The 16-Bit Device Compiler performs integer promotions at int precision or greater as
mandated by ISO.

D.10 STRING CONSTANTS
The PIC18 MCU Compiler keeps string constants in program memory in its .string-
table section. This compiler supports several variants of the string functions. For
instance, the strcpy function has four variants allowing the copying of a string to and
from both data and program memory.
The 16-Bit Device Compiler accesses string constants from data memory or from pro-
gram memory through the PSV window, allowing constants to be accessed like any
other data.

D.11 ACCESS MEMORY
16-bit devices do not have access memory.

D.12 INLINE ASSEMBLY
The PIC18 MCU Compiler uses non-ANSI _asm and _endasm to identify a block of
inline assembly.
The 16-Bit Device Compiler uses non-ANSI asm, which looks more like a function call.
The compiler use of the asm statement is detailed in Section 9.4 �Using Inline
Assembly Language�.

PIC18 near int gVariable;

16-Bit __attribute__((near)) int gVariable;

PIC18 far int gVariable;

16-Bit __attribute__((far)) int gVariable;

PIC18 rom int gArray[6] = {0,1,2,3,4,5};

16-Bit __attribute__((space(psv)))
 const int gArray[6] = {0,1,2,3,4,5};
© 2008 Microchip Technology Inc. DS51284G-page 195

16-Bit C Compiler User�s Guide
D.13 PRAGMAS
The PIC18 MCU Compiler uses pragmas for sections (code, romdata, udata,
idata), interrupts (high-priority and low-priority) and variable locations (bank, section).
The 16-Bit Device Compiler uses non-ANSI attributes instead of pragmas.

TABLE D-5: PRAGMAS VS. ATTRIBUTES

EXAMPLE D-4: SPECIFY AN UNINITIALIZED VARIABLE IN A USER SECTION
IN DATA MEMORY

EXAMPLE D-5: LOCATE THE VARIABLE MABONGA AT ADDRESS 0X100 IN
DATA MEMORY

EXAMPLE D-6: SPECIFY A VARIABLE TO BE PLACED IN PROGRAM
MEMORY

Pragma (PIC18 MCU Compiler) Attribute (16-Bit Device Compiler)

#pragma udata [name] __attribute__ ((section ("name")))
#pragma idata [name] __attribute__ ((section ("name")))
#pragma romdata [name] __attribute__ ((space (prog)))
#pragma code [name] __attribute__ ((section ("name"))),

__attribute__ ((space (prog)))
#pragma interruptlow __attribute__ ((interrupt))
#pragma interrupt __attribute__ ((interrupt, shadow))
#pragma varlocate bank NA*

#pragma varlocate name NA*

*16-bit devices do not have banks.

PIC18 #pragma udata mybss
 int gi;

16-Bit int __attribute__((__section__(".mybss"))) gi;

PIC18 #pragma idata myDataSection=0x100;
 int Mabonga = 1;

16-Bit int __attribute__((address(0x100))) Mabonga = 1;

PIC18 #pragma romdata const_table
const rom char my_const_array[10] =
 {0,1,2,3,4,5,6,7,8,9};

16-Bit const __attribute__((space(auto_psv)))
 char my_const_array[10] = {0,1,2,3,4,5,6,7,8,9};

Note: The 16-Bit Device Compiler does not directly support accessing variables
in program space. Variables so allocated must be explicitly accessed by the
programmer, usually using table-access inline assembly instructions, or
using the program space visibility window. See Section 4.14 �Program
Space Visibility (PSV) Usage� for more on the PSV window.
DS51284G-page 196 © 2008 Microchip Technology Inc.

MPLAB C Compiler for PIC18 MCUs vs. 16-Bit Devices
EXAMPLE D-7: LOCATE THE FUNCTION PRINTSTRING AT ADDRESS
0X8000 IN PROGRAM MEMORY

EXAMPLE D-8: COMPILER AUTOMATICALLY SAVES AND RESTORES THE
VARIABLES VAR1 AND VAR2

D.14 MEMORY MODELS
The PIC18 MCU Compiler uses non-ANSI small and large memory models. Small uses
the 16-bit pointers and restricts program memory to be less than 64 KB (32 KB words).
The 16-Bit Device Compiler uses non-ANSI small code and large code models. Small
code restricts program memory to be less than 96 KB (32 KB words). In large code,
pointers may go through a jump table.

D.15 CALLING CONVENTIONS
There are many differences in the calling conventions of the MPLAB C Compiler for
PIC18 MCUs and the MPLAB C Compiler for PIC24 MCUs and dsPIC® DSCs. Please
refer to Section 4.11 �Function Call Conventions� for a discussion of 16-Bit Device
Compiler calling conventions.

D.16 STARTUP CODE
The PIC18 MCU Compiler provides three startup routines � one that performs no user
data initialization, one that initializes only variables that have initializers, and one that
initializes all variables (variables without initializers are set to zero as required by the
ANSI standard).
The 16-Bit Device Compiler provides two startup routines � one that performs no user
data initialization and one that initializes all variables (variables without initializers are
set to zero as required by the ANSI standard) except for variables in the persistent data
section.

D.17 COMPILER-MANAGED RESOURCES
The PIC18 MCU Compiler has the following managed resources: PC, WREG, STA-
TUS, PROD, section .tmpdata, section MATH_DATA, FSR0, FSR1, FSR2, TBLPTR,
TABLAT.
The 16-Bit Device Compiler has the following managed resources: W0-W15, RCOUNT,
SR.

PIC18 #pragma code myTextSection=0x8000;
int PrintString(const char *s){...};

16-Bit int __attribute__((address(0x8000))) PrintString
 (const char *s) {...};

PIC18 #pragma interrupt isr0 save=var1, var2
 void isr0(void)
 {
 /* perform interrupt function here */
 }

16-Bit void __attribute__((__interrupt__(__save__(var1,var2))))
 isr0(void)
 {
 /* perform interrupt function here */
 }
© 2008 Microchip Technology Inc. DS51284G-page 197

16-Bit C Compiler User�s Guide
D.18 OPTIMIZATIONS
The following optimizations are part of each compiler.

D.19 OBJECT MODULE FORMAT
The MPLAB C Compiler for PIC18 MCUs and the MPLAB C Compiler for PIC24 MCUs
and dsPIC® DSCs use different COFF File Formats that are not interchangeable.

D.20 IMPLEMENTATION-DEFINED BEHAVIOR
For the right-shift of a negative-signed integral value:
� The PIC18 MCU Compiler does not retain the sign bit
� The 16-Bit Device Compiler retains the sign bit

MPLAB® C Compiler for

PIC18 MCUs 16-Bit Devices

Branches(-Ob+)
Code Straightening(-Os+)
Tail Merging(-Ot+)
Unreachable Code Removal(-Ou+)
Copy Propagation(-Op+)
Redundant Store Removal(-Or+)
Dead Code Removal(-Od+)

Optimization settings (-On where n is 1, 2, 3 or s)(1)

Duplicate String Merging (-Om+) -fwritable-strings

Banking (-On+) N/A � Banking not used
WREG Content Tracking(-Ow+) All registers are automatically tracked
Procedural Abstraction(-Opa+) Procedural Abstraction(-mpa)
Note 1: These optimization settings will satisfy most needs. Additional flags may be used

for �fine-tuning". See Section 3.5.6 �Options for Controlling Optimization� for
more information.
DS51284G-page 198 © 2008 Microchip Technology Inc.

MPLAB C Compiler for PIC18 MCUs vs. 16-Bit Devices
D.21 BIT FIELDS
Bit fields in the PIC18 MCU Compiler cannot cross byte storage boundaries and, there-
fore, cannot be greater than 8 bits in size.
The 16-Bit Device Compiler supports bit fields with any bit size, up to the size of the
underlying type. Any integral type can be made into a bit field. The allocation cannot
cross a bit boundary natural to the underlying type.
For example:
 struct foo {
 long long i:40;
 int j:16;
 char k:8;
 } x;

 struct bar {
 long long I:40;
 char J:8;
 int K:16;
 } y;

struct foo will have a size of 10 bytes using the 16-Bit Device Compiler. i will be
allocated at bit offset 0 (through 39). There will be 8 bits of padding before j, allocated
at bit offset 48. If j were allocated at the next available bit offset, 40, it would cross a
storage boundary for a 16 bit integer. k will be allocated after j, at bit offset 64. The
structure will contain 8 bits of padding at the end to maintain the required alignment in
the case of an array. The alignment is 2 bytes because the largest alignment in the
structure is 2 bytes.
struct bar will have a size of 8 bytes using the 16-Bit Device Compiler. I will be allo-
cated at bit offset 0 (through 39). There is no need to pad before J because it will not
cross a storage boundary for a char. J is allocated at bit offset 40. K can be allocated
starting at bit offset 48, completing the structure without wasting any space.
© 2008 Microchip Technology Inc. DS51284G-page 199

16-Bit C Compiler User�s Guide
NOTES:
DS51284G-page 200 © 2008 Microchip Technology Inc.

MPLAB® C COMPILER FOR
PIC24 MCUs AND dsPIC® DSCs

USER�S GUIDE
Appendix E. Deprecated Features
E.1 INTRODUCTION
The features described below are considered to be obsolete and have been replaced
with more advanced functionality. Projects which depend on deprecated features will
work properly with versions of the language tools cited. The use of a deprecated
feature will result in a warning; programmers are encouraged to revise their projects in
order to eliminate any dependancy on deprecated features. Support for these features
may be removed entirely in future versions of the language tools.

E.2 HIGHLIGHTS
Deprecated features covered are:
� Predefined Constants

E.3 PREDEFINED CONSTANTS
The following preprocessing symbols are defined by the compiler.

The ELF-specific version of the compiler defines the following preprocessing symbols.

The COFF-specific version of the compiler defines the following preprocessing
symbols.

For the most current information, see Section 3.7 �Predefined Macro Names�.

Symbol Defined with -ansi command-line option?

dsPIC30 No
__dsPIC30 Yes
__dsPIC30__ Yes

Symbol Defined with -ansi command-line option?

dsPIC30ELF No
__dsPIC30ELF Yes
__dsPIC30ELF__ Yes

Symbol Defined with -ansi command-line option?

dsPIC30COFF No
__dsPIC30COFF Yes
__dsPIC30COFF__ Yes
© 2008 Microchip Technology Inc. DS51284G-page 201

16-Bit C Compiler User�s Guide
NOTES:
DS51284G-page 202 © 2008 Microchip Technology Inc.

MPLAB® C COMPILER FOR
PIC24 MCUs AND dsPIC® DSCs

USER�S GUIDE
Appendix F. ASCII Character Set
TABLE F-1: ASCII CHARACTER SET

Most Significant Character

Least
 Significant
 Character

Hex 0 1 2 3 4 5 6 7

0 NUL DLE Space 0 @ P � p

1 SOH DC1 ! 1 A Q a q

2 STX DC2 " 2 B R b r

3 ETX DC3 # 3 C S c s

4 EOT DC4 $ 4 D T d t

5 ENQ NAK % 5 E U e u

6 ACK SYN & 6 F V f v

7 Bell ETB � 7 G W g w

8 BS CAN (8 H X h x

9 HT EM) 9 I Y i y

A LF SUB * : J Z j z

B VT ESC + ; K [k {

C FF FS , < L \ l |

D CR GS - = M] m }

E SO RS . > N ^ n ~

F SI US / ? O _ o DEL
© 2008 Microchip Technology Inc. DS51284G-page 203

16-Bit C Compiler User�s Guide
NOTES:
DS51284G-page 204 © 2008 Microchip Technology Inc.

MPLAB® C COMPILER FOR
PIC24 MCUs AND dsPIC® DSCs

USER�S GUIDE
Appendix G. GNU Free Documentation License
GNU Free Documentation License
Version 1.2, November 2002
Copyright (C) 2000, 2001, 2002 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Everyone is permitted to copy and distribute verbatim copies of this license document,
but changing it is not allowed.

G.1 PREAMBLE
The purpose of this License is to make a manual, textbook, or other functional and
useful document �free� in the sense of freedom: to assure everyone the effective
freedom to copy and redistribute it, with or without modifying it, either commercially or
non commercially. Secondarily, this License preserves for the author and publisher a
way to get credit for their work, while not being considered responsible for modifications
made by others.
This License is a kind of �copyleft�, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.
We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

G.2 APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium, that contains a notice
placed by the copyright holder saying it can be distributed under the terms of this
License. Such a notice grants a world-wide, royalty-free license, unlimited in duration,
to use that work under the conditions stated herein. The �Document�, below, refers to
any such manual or work. Any member of the public is a licensee, and is addressed as
�you�. You accept the license if you copy, modify, or distribute the work in a way
requiring permission under copyright law.
A �Modified Version� of the Document means any work containing the Document or a
portion of it, either copied verbatim, or with modifications and/or translated into another
language.
© 2008 Microchip Technology Inc. DS51284G-page 205

16-Bit C Compiler User�s Guide
A �Secondary Section� is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document's overall subject (or to related matters) and contains nothing that could
fall directly within that overall subject. (Thus, if the Document is in part a textbook of
mathematics, a Secondary Section may not explain any mathematics.) The relation-
ship could be a matter of historical connection with the subject or with related matters,
or of legal, commercial, philosophical, ethical or political position regarding them.
The �Invariant Sections� are certain Secondary Sections whose titles are designated,
as being those of Invariant Sections, in the notice that says that the Document is
released under this License. If a section does not fit the above definition of Secondary
then it is not allowed to be designated as Invariant. The Document may contain zero
Invariant Sections. If the Document does not identify any Invariant Sections then there
are none.
The �Cover Texts� are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.
A �Transparent� copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available draw-
ing editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is not
�Transparent� is called �Opaque�.
Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed for
human modification. Examples of transparent image formats include PNG, XCF and
JPG. Opaque formats include proprietary formats that can be read and edited only by
proprietary word processors, SGML or XML for which the DTD and/or processing tools
are not generally available, and the machine-generated HTML, PostScript or PDF
produced by some word processors for output purposes only.
The �Title Page� means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, �Title Page�
means the text near the most prominent appearance of the work's title, preceding the
beginning of the body of the text.
A section �Entitled XYZ� means a named subunit of the Document whose title either is
precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below,
such as �Acknowledgements�, �Dedications�, �Endorsements�, or �History�.) To
�Preserve the Title� of such a section when you modify the Document means that it
remains a section �Entitled XYZ� according to this definition.
The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.
DS51284G-page 206 © 2008 Microchip Technology Inc.

GNU Free Documentation License
G.3 VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially or
non-commercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for
copies. If you distribute a large enough number of copies you must also follow the
conditions in section 3.
You may also lend copies, under the same conditions stated above, and you may
publicly display copies.

G.4 COPYING IN QUANTITY
If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document's license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the
back cover. Both covers must also clearly and legibly identify you as the publisher of
these copies. The front cover must present the full title with all words of the title equally
prominent and visible. You may add other material on the covers in addition. Copying
with changes limited to the covers, as long as they preserve the title of the Document
and satisfy these conditions, can be treated as verbatim copying in other respects.
If the required texts for either cover are too voluminous to fit legibly, you should put the
first ones listed (as many as fit reasonably) on the actual cover, and continue the rest
onto adjacent pages.
If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which the
general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If you
use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.
It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

G.5 MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under
precisely this License, with the Modified Version filling the role of the Document, thus
licensing distribution and modification of the Modified Version to whoever possesses a
copy of it. In addition, you must do these things in the Modified Version:
a) Use in the Title Page (and on the covers, if any) a title distinct from that of the

Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as
© 2008 Microchip Technology Inc. DS51284G-page 207

16-Bit C Compiler User�s Guide
a previous version if the original publisher of that version gives permission.
b) List on the Title Page, as authors, one or more persons or entities responsible for

authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

c) State on the Title page the name of the publisher of the Modified Version, as the
publisher.

d) Preserve all the copyright notices of the Document.
e) Add an appropriate copyright notice for your modifications adjacent to the other

copyright notices.
f) Include, immediately after the copyright notices, a license notice giving the public

permission to use the Modified Version under the terms of this License, in the
form shown in the Addendum below.

g) Preserve in that license notice the full lists of Invariant Sections and required
Cover Texts given in the Document's license notice.

h) Include an unaltered copy of this License.
i) Preserve the section Entitled �History�, Preserve its Title, and add to it an item

stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled �History� in the Document,
create one stating the title, year, authors, and publisher of the Document as given
on its Title Page, then add an item describing the Modified Version as stated in the
previous sentence.

j) Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
�History� section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

k) For any section Entitled �Acknowledgements� or �Dedications�, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of
the contributor acknowledgements and/or dedications given therein.

l) Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

m) Delete any section Entitled �Endorsements�. Such a section may not be included
in the Modified Version.

n) Do not retitle any existing section to be Entitled �Endorsements� or to conflict in
title with any Invariant Section.

o) Preserve any Warranty Disclaimers.
If the Modified Version includes new front-matter sections or appendices that qualify as
Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version's license notice. These titles
must be distinct from any other section titles.
You may add a section Entitled �Endorsements�, provided it contains nothing but
endorsements of your Modified Version by various parties--for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.
You may add a passage of up to five words as a Front-Cover Text, and a passage of
up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
DS51284G-page 208 © 2008 Microchip Technology Inc.

GNU Free Documentation License
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but you
may replace the old one, on explicit permission from the previous publisher that added
the old one.
The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

G.6 COMBINING DOCUMENTS
You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.
The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.
In the combination, you must combine any sections Entitled �History� in the various
original documents, forming one section Entitled �History�; likewise combine any
sections Entitled �Acknowledgements�, and any sections Entitled �Dedications�. You
must delete all sections Entitled �Endorsements�.

G.7 COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you follow
the rules of this License for verbatim copying of each of the documents in all other
respects.
You may extract a single document from such a collection, and distribute it individually
under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

G.8 AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called an
�aggregate� if the copyright resulting from the compilation is not used to limit the legal
rights of the compilation's users beyond what the individual works permit. When the
Document is included an aggregate, this License does not apply to the other works in
the aggregate which are not themselves derivative works of the Document.
If the Cover Text requirement of section 3 is applicable to these copies of the
Document, then if the Document is less than one half of the entire aggregate, the
Document's Cover Texts may be placed on covers that bracket the Document within
the aggregate, or the electronic equivalent of covers if the Document is in electronic
form. Otherwise they must appear on printed covers that bracket the whole aggregate.
© 2008 Microchip Technology Inc. DS51284G-page 209

16-Bit C Compiler User�s Guide
G.9 TRANSLATION
Translation is considered a kind of modification, so you may distribute translations of
the Document under the terms of section 4. Replacing Invariant Sections with transla-
tions requires special permission from their copyright holders, but you may include
translations of some or all Invariant Sections in addition to the original versions of these
Invariant Sections. You may include a translation of this License, and all the license
notices in the Document, and any Warranty Disclaimers, provided that you also include
the original English version of this License and the original versions of those notices
and disclaimers. In case of a disagreement between the translation and the original
version of this License or a notice or disclaimer, the original version will prevail.
If a section in the Document is Entitled �Acknowledgements�, �Dedications�, or
�History�, the requirement (section 4) to Preserve its Title (section 1) will typically
require changing the actual title.

G.10 TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or
distribute the Document is void, and will automatically terminate your rights under this
License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

G.11 FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit to
the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.
Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License �or any later version�
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by the
Free Software Foundation. If the Document does not specify a version number of this
License, you may choose any version ever published (not as a draft) by the Free
Software Foundation.
DS51284G-page 210 © 2008 Microchip Technology Inc.

http://www.gnu.org/copyleft/

MPLAB® C COMPILER FOR
PIC24 MCUs AND dsPIC® DSCs

USER�S GUIDE
Glossary
Access Memory (PIC18 Only)
Special registers on PIC18XXXXX devices that allow access regardless of the setting
of the Bank Select Register (BSR).
Address
Value that identifies a location in memory.
Alphabetic Character
Alphabetic characters are those characters that are letters of the arabic alphabet
(a, b, �, z, A, B, �, Z).
Alphanumeric
Alphanumeric characters are comprised of alphabetic characters and decimal digits
(0,1, �, 9).
Anonymous Structure
An unnamed structure.
ANSI
American National Standards Institute is an organization responsible for formulating
and approving standards in the United States.
Archive
A collection of relocatable object modules. It is created by assembling multiple source
files to object files, and then using the archiver to combine the object files into one
library file. A library can be linked with object modules and other libraries to create
executable code.
Archiver
A tool that creates and manipulates libraries.
ASCII
American Standard Code for Information Interchange is a character set encoding that
uses 7 binary digits to represent each character. It includes upper and lower case let-
ters, digits, symbols and control characters.
Assembler
A language tool that translates assembly language source code into machine code.
Assembly Language
A programming language that describes binary machine code in a symbolic form.
Attribute
Characteristics of variables or functions in a C program which are used to describe
machine-specific properties.
C
A general-purpose programming language which features economy of expression,
modern control flow and data structures and a rich set of operators.
© 2008 Microchip Technology Inc. DS51284G-page 211

16-Bit C Compiler User�s Guide
COFF
Common Object File Format. An object file of this format contains machine code,
debugging and other information.
Command Line Interface
A means of communication between a program and its user based solely on textual
input and output.
Data Memory
On Microchip MCU and DSC devices, data memory (RAM) is comprised of General
Purpose Registers (GPRs) and Special Function Registers (SFRs). Some devices also
have EEPROM data memory.
Device Programmer
A tool used to program electrically programmable semiconductor devices, such as
microcontrollers.
Digital Signal Controller
A microcontroller device with digital signal processing capability, (i.e., Microchip dsPIC
DSC devices).
Digital Signal Processing
The computer manipulation of digital signals, commonly analog signals (sound or
image) which have been converted to digital form (sampled).
Digital Signal Processor
A microprocessor that is designed for use in digital signal processing.
Directives
Statements in source code that provide control of the language tool�s operation.
DSC
See Digital Signal Controller.
DSP
See Digital Signal Processor.
Endianess
Describes order of bytes in a multi-byte object.
Epilogue
A portion of compiler-generated code that is responsible for deallocating stack space,
restoring registers and performing any other machine-specific requirement specified in
the run-time model. This code executes after any user code for a given function, imme-
diately prior to the function return.
Errors
Errors report problems that make it impossible to continue processing your program.
When possible, errors identify the source file name and line number where the problem
is apparent.
Executable Code
Software that is ready to be loaded for execution.
Expressions
Combinations of constants and/or symbols separated by arithmetic or logical opera-
tors.
DS51284G-page 212 © 2008 Microchip Technology Inc.

Glossary
File Registers
On-chip data memory, including General Purpose Registers (GPRs) and Special Func-
tion Registers (SFRs).
Frame Pointer
A pointer that references the location on the stack that separates the stack-based argu-
ments from the stack-based local variables. Provides a convenient base from which to
access local variables and other values for the current function.
Free-Standing
A C compiler implementation that accepts any strictly conforming program that does
not use complex types and in which the use of the features specified in the ISO library
clause is confined to the contents of the standard headers <float.h>, <iso646.h>,
<limits.h>, <stddef.h> and <stdint.h>.
GPR
General Purpose Register. The portion of device data memory (RAM) available for gen-
eral use.
Heap
An area of memory used for dynamic memory allocation where blocks of memory are
allocated and freed in an arbitrary order determined at run time.
Hex Code
Executable instructions stored in a hexadecimal format code. Hex code is contained in
a hex file.
Hex File
An ASCII file containing hexadecimal addresses and values (hex code) suitable for pro-
gramming a device.
High Level Language
A language for writing programs that is further removed from the processor than
assembly.
IDE
Integrated Development Environment. MPLAB IDE is Microchip�s integrated develop-
ment environment.
Identifier
A function or variable name.
IEEE
Institute of Electrical and Electronics Engineers.
Initialized Data
Data which is defined with an initial value. In C,
int myVar=5;

defines a variable which will reside in an initialized data section.
Instruction Set
The collection of machine language instructions that a particular processor under-
stands.
Instructions
A sequence of bits that tells a Central Processing Unit (CPU) to perform a particular
operation and can contain data to be used in the operation.
© 2008 Microchip Technology Inc. DS51284G-page 213

16-Bit C Compiler User�s Guide
International Organization for Standardization
An organization that sets standards in many businesses and technologies, including
computing and communications.
Interrupt
A signal to the CPU that suspends the execution of a running application and transfers
control to an Interrupt Service Routine (ISR) so that the event may be processed.
Interrupt Handler
A routine that processes special code when an interrupt occurs.
Interrupt Request
An event which causes the processor to temporarily suspend normal instruction exe-
cution and to start executing an interrupt handler routine. Some processors have sev-
eral interrupt request events allowing different priority interrupts.
Interrupt Service Routine
A function that is invoked when an interrupt occurs.
IRQ
See Interrupt Request.
ISO
See International Organization for Standardization.
ISR
See Interrupt Service Routine.
L-value
An expression that refers to an object that can be examined and/or modified. An l-value
expression is used on the left-hand side of an assignment.
Latency
The time between an event and its response.
Librarian
See Archiver.
Library
See Archive.
Linker
A language tool that combines object files and libraries to create executable code,
resolving references from one module to another.
Linker Script Files
Linker script files are the command files of a linker. They define linker options and
describe available memory on the target platform.
Little Endianess
A data ordering scheme for multibyte data whereby the least significant byte is stored
at the lower addresses.
Machine Code
The representation of a computer program that is actually read and interpreted by the
processor. A program in binary machine code consists of a sequence of machine
instructions (possibly interspersed with data). The collection of all possible instructions
for a particular processor is known as its �instruction set�.
DS51284G-page 214 © 2008 Microchip Technology Inc.

Glossary
Machine Language
A set of instructions for a specific central processing unit, designed to be usable by a
processor without being translated.
Macro
Macroinstruction. An instruction that represents a sequence of instructions in abbrevi-
ated form.
Memory Models
A representation of the memory available to the application.
Microcontroller (MCU)
A highly integrated chip that contains a CPU, RAM, program memory, I/O ports and tim-
ers.
Mnemonics
Text instructions that can be translated directly into machine code. Also referred to as
Opcodes.
MPLAB ASM30/LINK30/LIB30
Previous names for Microchip�s relocatable macro assembler, object linker and object
archiver/librarian supporting 16-bit devices.
MPLAB C17/C18/C30
Previous names for various C compilers from Microchip. MPLAB C17 supports
PIC17CXXX devices, MPLAB C18 supports PIC18CXXX and PIC18FXXXX devices,
and MPLAB C30 supports dsPIC30F/33F DSCs and PIC24H/F MCUs.
MPLAB Language Tool for Device
Microchip�s C compilers, assemblers and linkers for specifed devices. Select the type
of language tool based on the device you will be using for your application, e.g., if you
will be creating C code on a PIC18 MCU, select the MPLAB C Compiler for PIC18
MCUs.
MPLAB IDE
Microchip�s Integrated Development Environment.
Object File
A file containing machine code and possibly debug information. It may be immediately
executable or it may be relocatable, requiring linking with other object files, (e.g., librar-
ies, to produce a complete executable program).
Opcodes
Operational Codes. See Mnemonics.
Operators
Symbols, like the plus sign �+� and the minus sign �-�, that are used when forming
well-defined expressions. Each operator has an assigned precedence that is used to
determine order of evaluation.
PIC MCUs
PIC microcontrollers (MCUs) refers to all Microchip microcontroller families.
© 2008 Microchip Technology Inc. DS51284G-page 215

16-Bit C Compiler User�s Guide
Pragma
A directive that has meaning to a specific compiler. Often a pragma is used to convey
implementation-defined information to the compiler. The MPLAB C Compiler for PIC24
MCUs and dsPIC® DSCs uses attributes to convey this information.
Precedence
Rules that define the order of evaluation in expressions.
Program Counter
The location that contains the address of the instruction that is currently executing.
Program Memory
The memory area in a device where instructions are stored.
Prologue
A portion of compiler-generated code that is responsible for allocating stack space, pre-
serving registers and performing any other machine-specific requirement specified in
the run-time model. This code executes before any user code for a given function.
RAM
Random Access Memory (Data Memory). Memory in which information can be
accessed in any order.
Recursive Calls
A function that calls itself, either directly or indirectly.
Relocatable
An object file whose sections have not been assigned to a fixed location in memory.
Relocation
A process performed by the linker in which absolute addresses are assigned to relo-
catable sections and all symbols in the relocatable sections are updated to their new
addresses.
ROM
Read Only Memory (Program Memory). Memory that cannot be modified.
Run Time Model
Describes the use of target architecture resources.
Section
A named sequence of code or data.
SFR
See Special Function Registers.
Simulator
A software program that models the operation of devices.
Source Code
The form in which a computer program is written by the programmer. Source code is
written in some formal programming language which can be translated into machine
code or executed by an interpreter.
Source File
An ASCII text file containing source code.
Special Function Registers
The portion of data memory (RAM) dedicated to registers that control I/O processor
functions, I/O status, timers or other modes or peripherals.
DS51284G-page 216 © 2008 Microchip Technology Inc.

Glossary
Stack, Software
Memory used by an application for storing return addresses, function parameters and
local variables. This memory is typically managed by the compiler when developing
code in a high-level language.
Storage Class
Determines the lifetime of an object.
Storage Qualifier
Indicates special properties of an object (e.g., volatile).
Trigraphs
Three-character sequences, all starting with ??, that are defined by ISO C as replace-
ments for single characters.
Uninitialized Data
Data which is defined without an initial value. In C,
int myVar;
defines a variable which will reside in an uninitialized data section.
Vector
The memory locations from which an application starts execution when a specific event
occurs, such as a reset or interrupt.
Warning
Warnings report conditions that may indicate a problem, but do not halt processing. In
the 16-bit compiler, warning messages report the source file name and line number, but
include the text �warning:� to distinguish them from error messages.
© 2008 Microchip Technology Inc. DS51284G-page 217

16-Bit C Compiler User�s Guide
NOTES:
DS51284G-page 218 © 2008 Microchip Technology Inc.

MPLAB® C COMPILER FOR
PIC24 MCUs AND dsPIC® DSCs

USER�S GUIDE

Index
Symbols
__builtin_add.. 132
__builtin_addab.. 132
__builtin_btg... 133
__builtin_clr .. 133
__builtin_clr_prefect ... 134
__builtin_divf .. 135
__builtin_divmodsd .. 135
__builtin_divmodud .. 136
__builtin_divsd ... 136
__builtin_divud ... 136
__builtin_dmaoffset .. 137
__builtin_ed.. 137
__builtin_edac .. 138
__builtin_fbcl .. 138
__builtin_lac ... 139
__builtin_mac ... 140
__builtin_modsd... 140
__builtin_modud... 141
__builtin_movsac ... 141
__builtin_mpy ... 142
__builtin_mpyn... 143
__builtin_msc ... 144
__builtin_mulss .. 144
__builtin_mulsu .. 145
__builtin_mulus .. 145
__builtin_muluu .. 145
__builtin_nop.. 146
__builtin_psvoffset ... 146
__builtin_psvpage .. 146
__builtin_readsfr... 147
__builtin_return_address.. 147
__builtin_sac .. 147
__builtin_sacr ... 148
__builtin_sftac .. 148
__builtin_subab.. 149
__builtin_tbloffset ... 149
__builtin_tblpage .. 149
__builtin_tblrdh... 150
__builtin_tblrdl .. 150
__builtin_tblwth .. 151
__builtin_tblwtl.. 151
__builtin_write_NVM .. 151
__builtin_write_OSCCONH.................................... 152
__builtin_write_OSCCONL 152
__builtin_write_RTCWEN 152
__C30_VERSION__ .. 60
.bss..16, 125
.const...64, 76
.data ..16, 125

.dinit.. 64

.pbss... 64

.text ...24, 36, 68, 125

.tmpdata ... 197
#define ... 52
#ident ... 57
#if ... 45
#include...52, 53, 91, 93
#line.. 54
#pragma ..41, 125, 196

A
-A.. 51
abort ... 24, 128
Access Memory.. 195
address Attribute .. 12, 20
Address Spaces ... 63
alias Attribute ... 20
aligned Attribute ... 13
Alignment ..13, 15, 73, 124
-ansi ..26, 38, 54
ANSI C Standard.. 9
ANSI C, Differences with 16-Bit Device C................ 11
ANSI C, Strict ... 39
ANSI Standard Library Support.................................. 9
ANSI-89 extension ... 79
Archiver .. 8
Arrays and Pointers.. 123
ASCII Character Set... 203
asm ...13, 111, 195
Assembler .. 8
Assembly Options .. 54

-Wa ... 54
Assembly, Inline ... 111, 195
Assembly, Mixing with C .. 109
Atomic Operation ... 105
attribute ...12, 20, 196
Attribute, Function .. 20

address ... 20
alias... 20
boot ... 21
const ... 22
deprecated .. 22
far .. 22
format .. 22
format_arg... 23
interrupt..23, 101, 103
near... 23
no_instrument_function............................... 23, 57
noload ... 24
noreturn... 24, 44
© 2008 Microchip Technology Inc. DS51284G-page 219

16-Bit C Compiler User�s Guide
section... 24, 68
secure ... 24
shadow.. 25, 101
unused .. 25
user_init .. 25
weak.. 26

Attribute, Variable... 12
address ... 12
aligned .. 13
boot ... 13
deprecated .. 13
far .. 14, 67
fillupper ... 14
mode ... 14
near... 14, 67
noload ... 15
packed .. 15
persistent .. 15
reverse .. 15
section... 16
secure ... 16
sfr .. 16
space .. 17
transparent_union ... 18
unordered.. 18
unused .. 18
weak.. 18

auto_psv Space ... 35
Automatic Variable ..41, 43, 70
-aux-info ... 38

B
-B.. 56, 59
Binary Radix ... 32
Bit Fields ...38, 124, 199
Bit fields.. 106
Bit Reversed and Modulo Addressing 76
boot Attribute.. 13, 21
Built-In Functions

__builtin_add... 132
__builtin_addab... 132
__builtin_btg.. 133
__builtin_clr ... 133
__builtin_clr_prefect .. 134
__builtin_divf ... 135
__builtin_divmodsd ... 135
__builtin_divmodud ... 136
__builtin_divsd .. 136
__builtin_divud .. 136
__builtin_dmaoffset ... 137
__builtin_ed... 137
__builtin_edac... 138
__builtin_fbcl ... 138
__builtin_lac .. 139
__builtin_mac.. 140
__builtin_modsd.. 140
__builtin_modud.. 141
__builtin_movsac .. 141
__builtin_mpy.. 142
__builtin_mpyn.. 143
__builtin_msc .. 144

__builtin_mulss ... 144
__builtin_mulsu ... 145
__builtin_mulus ... 145
__builtin_muluu ... 145
__builtin_nop... 146
__builtin_psvoffset .. 146
__builtin_psvpage ... 146
__builtin_readsfr.. 147
__builtin_return_address................................. 147
__builtin_sac ... 147
__builtin_sacr .. 148
__builtin_sftac ... 148
__builtin_subab ... 149
__builtin_tbloffset .. 149
__builtin_tblpage ... 149
__builtin_tblrdh.. 150
__builtin_tblrdl ... 150
__builtin_tblwth ... 151
__builtin_tblwtl... 151
__builtin_write_NVM 151
__builtin_write_OSCCONH............................. 152
__builtin_write_OSCCONL 152
__builtin_write_RTCWEN 152

C
-C.. 52
-c .. 37, 55
C Dialect Control Options... 38

-ansi .. 38
-aux-info .. 38
-ffreestanding .. 38
-fno-asm .. 38
-fno-builtin ... 38
-fno-signed-bitfields... 38
-fno-unsigned-bitfields....................................... 38
-fsigned-bitfields .. 38
-fsigned-char ... 38
-funsigned-bitfields .. 38
-funsigned-char ... 38
-fwritable-strings.. 38, 198
-traditional ... 26

C Heap Usage.. 72
C Stack Usage ... 70
C, Mixing with Assembly .. 109
C30_VERSION... 60
Calling Conventions ... 197
Case Ranges.. 31
Cast .. 41, 43, 44
char ... 14, 38, 39, 73, 75, 79
Characters.. 121
Code Generation Conventions Options.................... 56

-fargument-alias .. 56
-fargument-noalias .. 56
-fargument-noalias-global 56
-fcall-saved.. 57
-fcall-used.. 57
-ffixed .. 57
-finstrument-functions.. 57
-fno-ident ... 57
-fno-short-double... 58
-fno-verbose-asm .. 58
DS51284G-page 220 © 2008 Microchip Technology Inc.

Index
-fpack-struct .. 58
-fpcc-struct-return ... 58
-fshort-enums.. 58
-fverbose-asm... 58
-fvolatile .. 58
-fvolatile-global.. 58
-fvolatile-static ... 58

Code Size, Reduce35, 46, 47
Coding ISR�s .. 101
COFF .. 8, 61, 92, 198
Command Line Options ... 33
Command-Line Compiler ... 33
Command-Line Options ... 34
Command-Line Simulator8, 9
Comments...39, 52
Common Subexpression Elimination 22, 48, 49, 50
Common Subexpressions.. 50
Compiler... 8

Command-Line ... 33
Driver ... 8, 9, 33, 56, 61
Overview... 7

Compiler-Managed Resources 197
Compiling Multiple Files ... 61
Complex

Data Types ... 29
Floating Types .. 29
Integer Types.. 29
Numbers ... 29

complex.. 29
Conditional Expression .. 31
Conditionals with Omitted Operands........................ 31
Configuration Bits Setup .. 95
const Attribute .. 22
Constants

Binary.. 32
Predefined ...60, 201
String .. 195

CORCON ..64, 91, 92
Customer Notification Service.................................... 6
Customer Support .. 6

D
-D ..52, 54
Data Formats ... 194
Data Memory Allocation... 95
Data Memory Space35, 36, 72
Data Memory Space, Near....................................... 14
Data Representation .. 79
Data Type ...14, 79

Complex.. 29
Floating Point .. 80
Integer... 79
Pointers... 80

-dD ... 52
Debugging Information... 46
Debugging Options .. 46

-g... 46
-Q.. 46
-save-temps .. 46

Declarators... 124
Defining Global Register Variables 27

deprecated Attribute......................................13, 22, 44
Development Tools .. 8
Device Support Files .. 91
Diagnostics... 153
Differences Between 16-Bit Device C

and ANSI C... 11
Differences Between Compilers............................. 193
Directories ...52, 53, 54
Directory Search Options ... 56

-B .. 56, 59
-specs= ... 56

-dM ... 52
-dN ... 52
Documentation

Conventions .. 3
Layout ... 2

double ... 58, 73, 75, 80, 194
Double-Word Integers .. 29
dsPIC DSC C Compiler.. 7
dsPIC DSC-Specific Options.................................... 35
dsPIC-Specific Options

-mconst-in-code .. 35
-mconst-in-data ... 35
-mcpu .. 35
-merrata .. 35
-mlarge-code... 35
-mlarge-data.. 35
-mno-isr-warn.. 36
-mno-pa... 35
-momf=.. 36
-mpa.. 35
-mpa=.. 35
-msmall-code .. 36
-msmall-data ... 36
-msmall-scalar... 36
-msmart-io... 36
-mtext= .. 36

DWARF .. 36

E
-E... 37, 52, 53, 54, 55
EEDATA... 95, 96
EEPROM, data... 95
ELF... 8, 36
Enabling/Disabling Interrupts 104
endian .. 79
Enumerations ... 124
Environment ... 120
Environment Variables ... 59

PIC30_C_INCLUDE_PATH 59
PIC30_COMPILER_PATH................................ 59
PIC30_EXEC_PREFIX 59
PIC30_LIBRARY_ PATH 59
PIC30_OMF .. 59
TMPDIR .. 59

errno... 128
Error Control Options

-pedantic-errors... 39
-Werror.. 44
-Werror-implicit-function-declaration 39

Errors ... 153
© 2008 Microchip Technology Inc. DS51284G-page 221

16-Bit C Compiler User�s Guide
Escape Sequences .. 121
Exception Vectors .. 102
Executables.. 61
exit.. 128
Extensions.. 53
extern ..27, 44, 51, 57
External Symbols ... 109

F
-falign-functions.. 47
-falign-labels ... 47
-falign-loops.. 47
far Attribute.................................... 14, 22, 67, 112, 195
Far Data Space .. 67
-fargument-alias ... 56
-fargument-noalias ... 56
-fargument-noalias-global... 56
-fcaller-saves.. 47
-fcall-saved... 57
-fcall-used... 57
-fcse-follow-jumps .. 48
-fcse-skip-blocks... 48
-fdata-sections.. 48
-fdefer-pop. See -fno-defer
Feature Set .. 9
-fexpensive-optimizations... 48
-ffixed ... 28, 57
-fforce-mem.. 47, 50
-ffreestanding ... 38
-ffunction-sections .. 48
-fgcse ... 48
-fgcse-lm .. 48
-fgcse-sm ... 48
File Extensions... 34
File Naming Convention... 34
Files.. 127
fillupper Attribute .. 14
-finline-functions26, 44, 47, 50
-finline-limit ... 50
-finstrument-functions... 23, 57
-fkeep-inline-functions .. 26, 51
-fkeep-static-consts .. 51
Flags, Positive and Negative.............................. 50, 56
float ... 14, 58, 73, 75, 80
Floating .. 80
Floating Point ... 80, 122
Floating Types, Complex.. 29
-fmove-all-movables ... 48
-fno ... 50, 56
-fno-asm ... 38
-fno-builtin .. 38
-fno-defer-pop .. 48
-fno-function-cse .. 51
-fno-ident .. 57
-fno-inline ... 51
-fno-keep-static-consts ... 51
-fno-peephole ... 48
-fno-peephole2 ... 48
-fno-short-double.. 58
-fno-show-column... 52
-fno-signed-bitfields .. 38

-fno-unsigned-bitfields .. 38
-fno-verbose-asm ... 58
-fomit-frame-pointer 46, 47, 51
-foptimize-register-move... 48
-foptimize-sibling-calls .. 51
format Attribute... 22
format_arg Attribute.. 23
-fpack-struct.. 58
-fpcc-struct-return ... 58
Frame Pointer (W14).................................... 51, 57, 70
-freduce-all-givs.. 49
-fregmove ... 48
-frename-registers .. 49
-frerun-cse-after-loop.. 49, 50
-frerun-loop-opt... 49
-fschedule-insns ... 49
-fschedule-insns2 ... 49
-fshort-enums ... 58
-fsigned-bitfields ... 38
-fsigned-char .. 38
FSRn .. 197
-fstrength-reduce .. 49, 50
-fstrict-aliasing .. 47, 49
-fsyntax-only ... 39
-fthread-jumps .. 46, 50
Function

Attributes ... 20
Call Conventions ... 73
Calls, Preserving Registers............................... 74
Parameters.. 73
Pointers ... 66

-funroll-all-loops.. 47, 50
-funroll-loops... 47, 50
-funsigned-bitfields ... 38
-funsigned-char .. 38
-fverbose-asm .. 58
-fvolatile .. 58
-fvolatile-global ... 58
-fvolatile-static .. 58
-fwritable-strings ... 38, 198

G
-g .. 46
general registers... 112
getenv... 129
Global Register Variables... 27
Guidelines for Writing ISR�s 100

H
-H.. 52
Header Files34, 52, 53, 54, 59

Processor .. 91, 93
--heap ... 72
Heap, C Usage... 72
--help .. 37
Hex File .. 61
High-Priority Interrupts 99, 105

I
-I ... 52, 54, 59
-I- .. 52, 54
DS51284G-page 222 © 2008 Microchip Technology Inc.

Index
Identifiers ... 121
-idirafter .. 52
IEEE 754.. 194
-imacros ..52, 54
imag ... 29
Implementation-Defined Behavior...................119, 198
Include ... 60
-include ...53, 54
Include Files... 56
Inhibit Warnings ... 39
Inline ... 44, 47, 50, 111, 195
inline..26, 51, 57
Inline Assembly Usage .. 95
Inline Functions.. 26
int .. 14, 73, 75, 79
Integer ...79, 112

Behavior.. 122
Double-Word... 29
Promotions.. 195
Types, Complex.. 29

Internet Address, Microchip 5
Interrupt

Enabling/Disabling .. 104
Functions .. 109
Handling.. 109
High Priority ...99, 105
Latency ... 103
Low Priority ..99, 105
Nesting.. 103
Priority... 103
Protection From .. 107
Service Routine Context Saving 103
Vectors.. 102
Vectors, Writing .. 102

interrupt Attribute 23, 25, 101, 103, 196
-iprefix .. 53
ISR

Coding .. 101
Declaration.. 96
Guidelines for Writing 100
Syntax for Writing ... 100
Writing... 100

-isystem...53, 56
-iwithprefix .. 53
-iwithprefixbefore.. 53

K
Keyword Differences.. 11

L
-L...55, 56
-l ... 55
Labels as Values.. 30
Large Code Model ..35, 80
Large Data Model .. 35
Latency .. 103
Librarian ... 8
Library ...55, 61

ANSI Standard.. 9
Functions .. 126

Linker ..8, 55

Linker Script ..61, 69, 92, 93
Linking Options .. 54

-L... 55, 56
-l .. 55
-nodefaultlibs... 55
-nostdlib .. 55
-s ... 55
-u... 55
-Wl... 55
-Xlinker.. 55

little endian ... 79
LL, Suffix .. 29
Local Register Variables 27, 28
Locating Code and Data .. 68
long ...14, 73, 75, 79
long double.. 14, 58, 73, 75, 80
long long.. 14, 44, 75, 79, 194
long long int .. 29
Loop Optimization .. 22
Loop Optimizer... 49
Loop Unrolling .. 50
Low-Priority Interrupts 99, 105

M
-M ... 53
Mabonga .. 68, 196
macro ..27, 52, 54
Macro Names, Predefined 195
Macros ... 95

Configuration Bits Setup 95
Inline Assembly Usage 95
ISR Declaration... 96

MacrosData Memory Allocation 95
MATH_DATA ... 197
-mconst-in-code ..35, 64, 66
-mconst-in-data .. 35, 66
-mcpu ... 35
-MD .. 53
Memory .. 128
Memory Models...9, 66, 197

-mconst-in-code .. 66
-mconst-in-data ... 66
-mlarge-code... 66
-mlarge-data.. 66
-msmall-code .. 66
-msmall-data ... 66
-msmall-scalar... 66

Memory Spaces ... 65
Memory, Access... 195
-merrata.. 35
-MF... 53
-MG .. 53
Mixing Assembly Language and C

Variables and Functions 109
-mlarge-code .. 35, 66
-mlarge-data... 35, 66
-MM .. 53
-MMD ... 53
-mno-isr-warn ... 36
-mno-pa.. 35
mode Attribute.. 14
© 2008 Microchip Technology Inc. DS51284G-page 223

16-Bit C Compiler User�s Guide
-momf= ... 36
-MP... 54
-mpa ... 35
-mpa= ... 35
MPLAB C Compiler for dsPIC DSCs.......................... 7
MPLAB C Compiler for PIC18 MCUs..................... 193
MPLAB C Compiler for PIC24 MCUs......................... 7
MPLAB C Compiler for PIC24 MCUs and

dsPIC DSCs ... 7
MPLAB C18 ... 193
MPLAB C30 ... 7
-MQ .. 54
-msmall-code...36, 66, 67
-msmall-data..36, 66, 67
-msmall-scalar .. 36, 66
-msmart-io .. 36
-MT... 54
-mtext= ... 36

N
Near and Far Code .. 67
Near and Far Data ... 66
near Attribute................................. 14, 23, 67, 112, 195
Near Data Section.. 66
Near Data Space.. 113
Nesting Interrupts ... 103
no_instrument_function Attribute........................ 23, 57
-nodefaultlibs .. 55
noload Attribute .. 15, 24
noreturn Attribute ... 24, 44
-nostdinc... 52, 54
-nostdlib.. 55

O
-O ... 46
-o .. 37, 61
-O0 ... 46
-O1 ... 46
-O2 ... 47, 50
-O3 ... 47
Object File ... 8, 48, 53, 55, 61
Object Module Format.. 198
Omitted Operands.. 31
Optimization ... 9, 198
Optimization Control Options 46

-falign-functions... 47
-falign-labels.. 47
-falign-loops .. 47
-fcaller-saves... 47
-fcse-follow-jumps ... 48
-fcse-skip-blocks ... 48
-fdata-sections .. 48
-fexpensive-optimizations.................................. 48
-fforce-mem... 50
-ffunction-sections... 48
-fgcse .. 48
-fgcse-lm ... 48
-fgcse-sm .. 48
-finline-functions.. 50
-finline-limit .. 50
-fkeep-inline-functions....................................... 51

-fkeep-static-consts ... 51
-fmove-all-movables.. 48
-fno-defer-pop ... 48
-fno-function-cse ... 51
-fno-inline .. 51
-fno-peephole .. 48
-fno-peephole2 .. 48
-fomit-frame-pointer... 51
-foptimize-register-move 48
-foptimize-sibling-calls....................................... 51
-freduce-all-givs... 49
-fregmove .. 48
-frename-registers... 49
-frerun-cse-after-loop .. 49
-frerun-loop-opt ... 49
-fschedule-insns .. 49
-fschedule-insns2 .. 49
-fstrength-reduce... 49
-fstrict-aliasing ... 49
-fthread-jumps ... 50
-funroll-all-loops... 50
-funroll-loops ... 50
-O .. 46
-O0 .. 46
-O1 .. 46
-O2 .. 47
-O3 .. 47
-Os .. 47

Optimization, Loop ... 22, 49
Optimization, Peephole .. 48
Options

Assembling.. 54
C Dialect Control ... 38
Code Generation Conventions.......................... 56
Debugging... 46
Directory Search ... 56
dsPIC DSC-Specific .. 35
Linking... 54
Optimization Control.. 46
Output Control ... 37
Preprocessor Control .. 51
Warnings and Errors Control............................. 39

-Os.. 47
Output Control Options... 37

-c ... 37
-E... 37
--help ... 37
-o ... 37
-S... 37
-v ... 37
-x ... 37

P
-P.. 54
packed Attribute ... 15, 58
Parameters, Function ... 73
PATH.. 61
PC .. 197
-pedantic... 39, 44
-pedantic-errors .. 39
Peephole Optimization ... 48
DS51284G-page 224 © 2008 Microchip Technology Inc.

Index
persistent Attribute ... 15
persistent data ..64, 95, 197
PIC24 MCU C Compiler ... 7
PIC30_C_INCLUDE_PATH59, 60
PIC30_COMPILER_PATH....................................... 59
PIC30_EXEC_PREFIX56, 59
PIC30_LIBRARY_ PATH ... 59
PIC30_OMF ... 59
pic30-gcc.. 33
pointer ...73, 75
Pointers ...44, 80, 194

Frame ..51, 57
Function .. 66
Stack... 57

Pragmas... 196
Predefined Constants60, 201
Predefined Macro Names 195
prefix ...53, 56
Preprocessing Directives 125
Preprocessor.. 56
Preprocessor Control Options.................................. 51

-A .. 51
-C .. 52
-D .. 52
-dD .. 52
-dM.. 52
-dN .. 52
-fno-show-column ... 52
-H .. 52
-I.. 52
-I- .. 52
-idirafter... 52
-imacros .. 52
-include ... 53
-iprefix ... 53
-isystem .. 53
-iwithprefix... 53
-iwithprefixbefore .. 53
-M.. 53
-MD ... 53
-MF ... 53
-MG... 53
-MM... 53
-MMD .. 53
-MQ... 54
-MT ... 54
-nostdinc ... 54
-P .. 54
-trigraphs... 54
-U .. 54
-undef.. 54

Preserving Registers Across Function Calls 74
Procedural Abstraction......................................35, 198
Processor Header Files.......................................91, 93
Processor ID .. 35
PROD... 197
Program Memory Pointers 66
PSV Usage ...76, 96
PSV Window ... 66, 76, 91, 96

Q
-Q ... 46
Qualifiers .. 124

R
RAW Dependency.. 49
RCOUNT.. 197
Reading, Recommended ... 4
real ... 29
Reduce Code Size ..35, 46, 47
Register

Behavior.. 123
Conventions .. 75
Definition Files .. 92

register ... 27, 28
Reset...102, 103, 104
Return Type ... 40
Return Value .. 74
reverse Attribute... 15
Run Time Environment .. 63

S
-S.. 37, 55
-s .. 55
-save-temps ... 46
Scalars ... 66
Scheduling ... 49
section.. 48, 197
section Attribute16, 24, 68, 196
secure Attribute .. 16, 24
SFR ... 9, 61, 91, 92, 93
sfr Attribute... 16
shadow Attribute25, 101, 196
short ..73, 75, 79
short long ... 194
Signals ... 127
signed char... 79
signed int.. 79
signed long... 79
signed long long ... 79
signed short.. 79
Simulator, Command-Line 8, 9
Small Code Model...9, 36, 80
Small Data Model... 9, 36
Software Stack ..25, 69, 70
space Attribute ..17, 195, 196
Special Function Registers61, 91, 103
Specifying Registers for Local Variables.................. 28
-specs=... 56
SPLIM .. 69
SR .. 197
Stack .. 103

C Usage .. 70
Pointer (W15)...................................57, 64, 69, 70
Pointer Limit Register (SPLIM) 64, 69
Software.. 69, 70
Usage.. 194

Standard I/O Functions .. 9
© 2008 Microchip Technology Inc. DS51284G-page 225

16-Bit C Compiler User�s Guide
Startup
and Initialization .. 64
Code ... 197
Module, Alternate.. 64
Module, Primary.. 64
Modules .. 70

Statement Differences.. 30
Statements ... 124
static ... 58
STATUS ... 197
Storage Classes... 194
Storage Qualifiers .. 195
Streams.. 127
strerror.. 129
String Constants... 195
Strings .. 38
structure ... 73, 75
Structures... 124
Suffix LL ... 29
Suffix ULL... 29
switch ... 41
symbol .. 55
Syntax Check ... 39
Syntax for Writing ISR�s ... 100
system.. 129
System Header Files .. 41, 53

T
-T.. 92
TABLAT.. 197
TBLPTR ... 197
TBLRD ... 97
TMPDIR ... 59
tmpfile... 128
-traditional .. 26, 38
Traditional C... 45
Translation ... 120
transparent_union Attribute...................................... 18
Trigraphs .. 41, 54
-trigraphs .. 54
Type Conversion .. 44
typeof ... 29

U
-U ... 52, 54
-u .. 55
ULL, Suffix.. 29
-undef ... 54
Underscore... 100, 109
Unions .. 124
unordered Attribute .. 18
Unroll Loop... 50
unsigned char... 79
unsigned int .. 79
unsigned long... 79
unsigned long long ... 79
unsigned long long int .. 29
unsigned short.. 79
unused Attribute ..18, 25, 41
Unused Function Parameter 41
Unused Variable... 41

user_init Attribute ... 25
User-Defined Data Section....................................... 68
User-Defined Text Section 68
Using Inline Assembly Language 111
Using Macros ... 95
Using SFRs .. 93

V
-v .. 37
Variable Attributes .. 12
Variables in Specified Registers............................... 27
void... 75
volatile .. 58

W
-W.. 39, 41, 42, 43, 45, 153
-w.. 39
W Registers.. 73, 109
W14 .. 70, 197
W15 .. 70, 197
-Wa... 54
-Waggregate-return .. 43
-Wall ..39, 41, 42, 43, 45
Warnings .. 172
Warnings and Errors Control Options 39

-fsyntax-only.. 39
-pedantic ... 39
-pedantic-errors... 39
-W.. 43
-w .. 39
-Waggregate-return... 43
-Wall .. 39
-Wbad-function-cast .. 43
-Wcast-align .. 43
-Wcast-qual ... 43
-Wchar-subscripts ... 39
-Wcomment... 39
-Wconversion .. 44
-Wdiv-by-zero.. 39
-Werror .. 44
-Werror-implicit-function-declaration 39
-Wformat ... 39
-Wimplicit... 39
-Wimplicit-function-declaration 39
-Wimplicit-int.. 39
-Winline ... 44
-Wlarger-than- ... 44
-Wlong-long... 44
-Wmain.. 39
-Wmissing-braces ... 39
-Wmissing-declarations..................................... 44
-Wmissing-format-attribute................................ 44
-Wmissing-noreturn... 44
-Wmissing-prototypes 44
-Wmultichar ... 40
-Wnested-externs.. 44
-Wno-long-long.. 44
-Wno-multichar.. 40
-Wno-sign-compare... 45
-Wpadded.. 44
-Wparentheses.. 40
DS51284G-page 226 © 2008 Microchip Technology Inc.

Index
-Wpointer-arith .. 44
-Wredundant-decls ... 44
-Wreturn-type.. 40
-Wsequence-point... 40
-Wshadow... 44
-Wsign-compare ... 45
-Wstrict-prototypes.. 45
-Wswitch ... 41
-Wsystem-headers.. 41
-Wtraditional.. 45
-Wtrigraphs ... 41
-Wundef .. 45
-Wuninitialized .. 41
-Wunknown-pragmas.. 41
-Wunreachable-code .. 45
-Wunused ... 41
-Wunused-function.. 41
-Wunused-label... 41
-Wunused-parameter .. 42
-Wunused-value.. 42
-Wunused-variable.. 42
-Wwrite-strings.. 45

Warnings, Inhibit .. 39
-Wbad-function-cast ... 43
-Wcast-align ... 43
-Wcast-qual .. 43
-Wchar-subscripts .. 39
-Wcomment.. 39
-Wconversion ... 44
-Wdiv-by-zero... 39
weak Attribute ...18, 26
Web Site, Microchip ... 5
-Werror ... 44
-Werror-implicit-function-declaration 39
-Wformat ...23, 39, 44
-Wimplicit ... 39
-Wimplicit-function-declaration................................. 39
-Wimplicit-int... 39
-Winline ...26, 44
-Wl.. 55
-Wlarger-than- .. 44
-Wlong-long.. 44
-Wmain... 39
-Wmissing-braces .. 39
-Wmissing-declarations.. 44
-Wmissing-format-attribute....................................... 44
-Wmissing-noreturn.. 44
-Wmissing-prototypes .. 44
-Wmultichar .. 40
-Wnested-externs... 44
-Wno- ... 39
-Wno-deprecated-declarations................................. 44
-Wno-div-by-zero.. 39
-Wno-long-long .. 44
-Wno-multichar... 40
-Wno-sign-compare...43, 45
-Wpadded .. 44
-Wparentheses... 40
-Wpointer-arith ... 44
-Wredundant-decls... 44

WREG .. 197
-Wreturn-type ... 40
Writing an Interrupt Service Routine 100
Writing the Interrupt Vector 102
-Wsequence-point .. 40
-Wshadow .. 44
-Wsign-compare... 45
-Wstrict-prototypes ... 45
-Wswitch... 41
-Wsystem-headers ... 41
-Wtraditional ... 45
-Wtrigraphs... 41
-Wundef.. 45
-Wuninitialized.. 41
-Wunknown-pragmas ... 41
-Wunreachable-code.. 45
-Wunused... 41, 43
-Wunused-function ... 41
-Wunused-label .. 41
-Wunused-parameter ... 42
-Wunused-value ... 42
-Wunused-variable ... 42
-Wwrite-strings ... 45

X
-x .. 37
-Xlinker ... 55
© 2008 Microchip Technology Inc. DS51284G-page 227

DS51284G-page 228 © 2008 Microchip Technology Inc.

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://support.microchip.com
Web Address:
www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260
Kokomo
Kokomo, IN
Tel: 765-864-8360
Fax: 765-864-8387
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Santa Clara
Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445
Toronto
Mississauga, Ontario,
Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC
Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China - Beijing
Tel: 86-10-8528-2100
Fax: 86-10-8528-2104
China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889
China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431
China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470
China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205
China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066
China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393
China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760
China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118
China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130
China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256
China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049

ASIA/PACIFIC
India - Bangalore
Tel: 91-80-4182-8400
Fax: 91-80-4182-8422
India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632
India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513
Japan - Yokohama
Tel: 81-45-471- 6166
Fax: 81-45-471-6122
Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302
Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934
Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859
Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068
Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069
Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850
Taiwan - Hsin Chu
Tel: 886-3-572-9526
Fax: 886-3-572-6459
Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-536-4803
Taiwan - Taipei
Tel: 886-2-2500-6610
Fax: 886-2-2508-0102
Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820

WORLDWIDE SALES AND SERVICE

01/02/08

	Preface
	Chapter 1. Compiler Overview
	1.1 Introduction
	1.2 Highlights
	1.3 Compiler Description and Documentation
	1.4 Compiler and Other Development Tools
	1.5 Compiler Feature Set

	Chapter 2. Differences Between 16-Bit Device C and ANSI C
	2.1 Introduction
	2.2 Highlights
	2.3 Keyword Differences
	2.4 Statement Differences
	2.5 Expression Differences

	Chapter 3. Using the Compiler on the Command Line
	3.1 Introduction
	3.2 Highlights
	3.3 Overview
	3.4 File Naming Conventions
	3.5 Options
	3.6 Environment Variables
	3.7 Predefined Macro Names
	3.8 Compiling a Single File on the Command Line
	3.9 Compiling Multiple Files on the Command Line
	3.10 Notable Symbols

	Chapter 4. Run Time Environment
	4.1 Introduction
	4.2 Highlights
	4.3 Address Spaces
	4.4 Startup and Initialization
	4.5 Memory Spaces
	4.6 Memory Models
	4.7 Locating Code and Data
	4.8 Software Stack
	4.9 The C Stack Usage
	4.10 The C Heap Usage
	4.11 Function Call Conventions
	4.12 Register Conventions
	4.13 Bit Reversed and Modulo Addressing
	4.14 Program Space Visibility (PSV) Usage

	Chapter 5. Data Types
	5.1 Introduction
	5.2 Highlights
	5.3 Data Representation
	5.4 Integer
	5.5 Floating Point
	5.6 Pointers

	Chapter 6. Additional C Pointer Types
	6.1 Introduction
	6.2 Managed PSV Pointers
	6.3 PMP Pointers
	6.4 External Pointers

	Chapter 7. Device Support Files
	7.1 Introduction
	7.2 Highlights
	7.3 Processor Header Files
	7.4 Register Definition Files
	7.5 Using SFRs
	7.6 Using Macros
	7.7 Accessing EEDATA from C Code - dsPIC30F dSCs only

	Chapter 8. Interrupts
	8.1 Introduction
	8.2 Highlights
	8.3 Writing an Interrupt Service Routine
	8.4 Writing the Interrupt Vector
	8.5 Interrupt Service Routine Context Saving
	8.6 Latency
	8.7 Nesting Interrupts
	8.8 Enabling/Disabling Interrupts
	8.9 Sharing Memory Between Interrupt Service Routines and Mainline Code
	8.10 PSV Usage with Interrupt Service Routines

	Chapter 9. Mixing Assembly Language and C Modules
	9.1 Introduction
	9.2 Highlights
	9.3 Mixing Assembly Language and C Variables and Functions
	9.4 Using Inline Assembly Language

	Appendix A. Implementation-Defined Behavior
	A.1 Introduction
	A.2 Highlights
	A.3 Translation
	A.4 Environment
	A.5 Identifiers
	A.6 Characters
	A.7 Integers
	A.8 Floating Point
	A.9 Arrays and Pointers
	A.10 Registers
	A.11 Structures, Unions, Enumerations and Bit fields
	A.12 Qualifiers
	A.13 Declarators
	A.14 Statements
	A.15 Preprocessing Directives
	A.16 Library Functions
	A.17 Signals
	A.18 Streams and Files
	A.19 tmpfile
	A.20 errno
	A.21 Memory
	A.22 abort
	A.23 exit
	A.24 getenv
	A.25 system
	A.26 strerror

	Appendix B. Built-in Functions
	B.1 Introduction
	B.2 Built-In Function List

	Appendix C. Diagnostics
	C.1 Introduction
	C.2 Errors
	C.3 Warnings

	Appendix D. MPLAB C Compiler for PIC18 MCUs vs. 16-Bit Devices
	D.1 Introduction
	D.2 Highlights
	D.3 Data Formats
	D.4 Pointers
	D.5 Storage Classes
	D.6 Stack Usage
	D.7 Storage Qualifiers
	D.8 Predefined Macro Names
	D.9 Integer Promotions
	D.10 String Constants
	D.11 Access Memory
	D.12 Inline Assembly
	D.13 Pragmas
	D.14 Memory Models
	D.15 Calling Conventions
	D.16 Startup Code
	D.17 Compiler-Managed Resources
	D.18 Optimizations
	D.19 Object Module Format
	D.20 Implementation-Defined Behavior
	D.21 Bit fields

	Appendix E. Deprecated Features
	E.1 Introduction
	E.2 Highlights
	E.3 Predefined Constants

	Appendix G. GNU Free Documentation License
	G.1 Preamble
	G.2 Applicability and Definitions
	G.3 Verbatim Copying
	G.4 Copying in Quantity
	G.5 Modifications
	G.6 Combining Documents
	G.7 Collections of Documents
	G.8 Aggregation with Independent Works
	G.9 Translation
	G.10 Termination
	G.11 Future Revisions of this License

	Glossary
	Index
	Worldwide Sales and Service

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /OK
 /CompatibilityLevel 1.2
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /3Of9Barcode
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /Arnprior
 /BaskOldFace
 /Batang
 /Bauhaus93
 /Baveuse
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /Berylium
 /Berylium-BoldItalic
 /BlackadderITC-Regular
 /BlueHighway
 /BlueHighway-Bold
 /BlueHighwayCondensed
 /BlueHighwayDType
 /BlueHighwayLinocut
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /BurnstownDam
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /CarbonBlock
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /CreditValley
 /CreditValley-Bold
 /CreditValley-BoldItalic
 /CreditValley-Italic
 /CurlzMT
 /EarwigFactory
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HandelGothicEFBold
 /HandelGothicEFMedium
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /HurryUp
 /Impact
 /ImprintMT-Shadow
 /INCONTROL
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /Kartika
 /Kredit
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /Map-Symbols
 /MaturaMTScriptCapitals
 /MICROCHIP
 /MicrosoftSansSerif
 /MinyaNouvelle
 /MinyaNouvelleBold
 /MinyaNouvelleBoldItalic
 /MinyaNouvelleItalic
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MonotypeSorts
 /MS-Mincho
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MT-Extra
 /MVBoli
 /Neuropol
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /PlanetBenson2
 /Playbill
 /PoorRichard-Regular
 /Pristina-Regular
 /Pupcat
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SimSun
 /SnapITC-Regular
 /Stencil
 /Stereofidelic
 /SybilGreen
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Teen
 /Teen-Bold
 /Teen-BoldItalic
 /Teen-Italic
 /TeenLight
 /TeenLight-Italic
 /TempusSansITC
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /VelvendaCooler
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Waker
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

