
D
M

A
 C

ontrolle

31
Section 31. DMA Controller
r

HIGHLIGHTS
This section of the manual contains the following topics:

31.1 Introduction.. 31-2
31.2 Status and Control Registers... 31-5
31.3 Modes of Operation ... 31-29
31.4 Interrupts.. 31-50
31.5 Operation in Power-Saving and Debug Modes ... 31-54
31.6 Effects of Various Resets... 31-54
31.7 Related Application Notes ... 31-55
31.8 Revision History... 31-56
© 2009 Microchip Technology Inc. DS61117E-page 31-1

PIC32MX Family Reference Manual
31.1 INTRODUCTION
The Direct Memory Access (DMA) controller is a bus master module that is useful for data trans-
fers between different peripherals without intervention from the CPU. The source and destination
of a DMA transfer can be any of the memory-mapped modules included in the PIC32MX.For
example, memory, or one of the Peripheral Bus (PBUS) devices such as SPI, UART, I2C™ and
so on.

Following are some of the key features of the DMA module:

• Depending on the device variant, up to eight identical channels are available, including the
following:
- Auto-Increment Source and Destination Address registers
- Source and Destination Pointers

• Depending on the device variant, data transfers of up to 64 Kbytes are supported
• Automatic Word-Size Detection, featuring the following:

- Transfer granularity down to byte level
- Bytes need not be word-aligned at source and destination

• Fixed Priority Channel Arbitration
• Flexible DMA Channel Operating modes, including the following:

- Manual (software) or automatic (interrupt) DMA requests
- One-Shot or Auto-Repeat Block Transfer modes
- Channel-to-channel chaining

• Flexible DMA Requests, featuring the following:
- A DMA request can be selected from any of the peripheral interrupt sources
- Each channel can select any interrupt as its DMA request source
- A DMA transfer abort can be selected from any of the peripheral interrupt sources
- Automatic transfer termination upon a data pattern match

• Multiple DMA Channel Status Interrupts, supplying the following:
- DMA channel block transfer complete
- Source empty or half empty
- Destination full or half full
- DMA transfer aborted due to an external event
- Invalid DMA address generated

• DMA Debug Support Features, including the following:
- Most recent address accessed by a DMA channel
- Most recent DMA channel to transfer data

• CRC Generation Module, featuring the following:
- CRC module can be assigned to any of the available channels
- Data read from the source can be reordered on some device variants
- CRC module is highly configurable

The following features are also available in the DMA controller:

• Unaligned Transfers
• Different Source and Destination Sizes
• Memory-to-Memory Transfers
• Memory-to-Peripheral Transfers
• Channel Auto-Enable
• Events Start/Stop
• Pattern Match Detection
• Channel Chaining
• CRC Calculation
DS61117E-page 31-2 © 2009 Microchip Technology Inc.

Section 31. DMA Controller
D

M
A

 C
ontroller

31

31.1.1 DMA Operation
A DMA channel transfers data from a source to a destination without CPU intervention. The
source and destination start addresses define the start address of the source and destination,
respectively.

Both the source and destination have independently configurable sizes and the number of the
transferred bytes is independent of the source and destination sizes.

A transfer is initiated either by software or by an interrupt request. The user can select any
interrupt on the device to start a DMA transfer.

Upon transfer initiation, the DMA controller will perform a cell transfer and the channel remains
enabled until a block transfer is complete. When a channel is disabled, further transfers will be
prohibited until the channel is re-enabled.

The DMA channel uses separate pointers to keep track of the current word locations at the
source and destination.

Interrupts can be generated when the Source/Destination Pointer is half of the source/destination
size, or when the source/destination counter reaches the end of the source/destination.

A DMA transfer can be aborted by the software, by a pattern match or by an interrupt event. The
transfer will also stop when an address error is detected.

Figure 31-1: Typical DMA Source to Destination Transfer Diagram

 [Destination Device/Memory][Source Device/Memory]

DMA

Start Transfer

IRQ

Stop Transfer

IRQ

1/2/3/4 Bytes in Access Size 1/2/3/4 Bytes in Access Size

SW Start Transfer SW Abort Transfer
© 2009 Microchip Technology Inc. DS61117E-page 31-3

PIC32MX Family Reference Manual
Figure 31-2: DMA Module Block Diagram

Figure 31-3: CRC Implementation Details

Peripheral Bus Address Decoder Channel 0 Control

Channel 1 Control

Channel n ControlGlobal Control
(DMACON)

Bus Interface

Channel Priority
Arbitration

SEL

SE
L

Y

I0

I1

I2

In

System IRQ

Device Bus + Bus Arbitration

INT Controller

CRC Seed Write

CRC Data Read

DataIn

Stage Feedback
enable

Clk

Stage 31 Stage 30 Stage 29 Stage 1 Stage 0

SET
Q D

Q CLR

<

SET
Q D

Q CLR

<

SET
Q D

Q CLR

<

SET
Q D

Q CLR

<

SET
Q D

Q CLR

<

Stage Feedback
enable

Stage Feedback
enable

Note: Depending on the device variant, up to 32 stages (0 through 31) are available. Refer to the specific device data sheet
for details.
DS61117E-page 31-4 © 2009 Microchip Technology Inc.

Section 31. DMA Controller
D

M
A

 C
ontroller

31

31.2 STATUS AND CONTROL REGISTERS

The DMA module consists of the following Special Function Registers (SFRs):

• DMACON: Control Register for the DMA Controller
• DMASTAT: Status Register for the DMA Module
• DMAADDR: DMA Address Register
• DCRCCON: DMA CRC Control Register
• DCRCDATA: DMA CRC Data Register – The initial value of the CRC generator
• DCRCXOR: DMA CRC XOR Enable Register – Provides a description of the generator

polynomial for CRC calculation
• DCHxCON: DMA Channel x Control Register
• DCHxECON: DMA Channel x Event Control Register
• DCHxINT: DMA Channel x Interrupt Control Register
• DCHxSSA: DMA Channel x Source Start Address Register
• DCHxDSA: DMA Channel x Destination Start Address Register
• DCHxSSIZ: DMA Channel x Source Size Register
• DCHxDSIZ: DMA Channel x Destination Size Register
• DCHxSPTR: DMA Channel x Source Pointer Register
• DCHxDPTR: DMA Channel x Destination Pointer Register
• DCHxCSIZ: DMA Channel x Cell-Size Register
• DCHxCPTR: DMA Channel x Cell Pointer Register
• DCHxDAT: DMA Channel x Pattern Data Register

Table 31-1 provides a brief summary of DMA-module-related registers. Corresponding registers
appear after the summary, followed by a detailed description of each register.

Note: Each PIC32MX device variant may have one or more DMA channels. An ‘x’ used in the names of
control/Status bits and registers denotes the particular channel. Refer to the specific device data sheets for
more details.
© 2009 Microchip Technology Inc. DS61117E-page 31-5

PIC32MX Family Reference Manual

Table 31-1: DMA Register Summary
Address

Offset Name Bit
Range

Bit
31/23/15/7

Bit
30/22/14/6

Bit
29/21/13/5

Bit
28/20/12/4

Bit
27/19/11/3

Bit
26/18/10/2

Bit
25/17/9/1

Bit
24/16/8/0

0x00 DMACON(1,2,3) 31:24 — — — — — — — —

23:16 — — — — — — — —

15:8 ON FRZ SIDL(4) SUSPEND BUSY(4) — — —

7:0 — — — — — — — —

0x10 DMASTAT 31:24 — — — — — — — —

23:16 — — — — — — — —

15:8 — — — — — — — —

7:0 — — — — RDWR DMACH<2:0>(5)

0x20 DMAADDR 31:24 DMAADDR<31:24>

23:16 DMAADDR<23:16>

15:8 DMAADDR<15:8>

7:0 DMAADDR<7:0>

0x30 DCRCCON(1,2,3) 31:24 — — BYTO1(4) BYTO0(4) WBO(4) — — BITO(4)

23:16 — — — — — — — —

15:8 — — — PLEN<4:0>(5)

7:0 CRCEN CRCAPP CRCTYP(4) — — CRCCH<2:0>(5)

0x40 DCRCDATA(1,2,3) 31:24 DCRCDATA<31:24>(5)

23:16 DCRCDATA<23:16>(5)

15:8 DCRCDATA<15:8>

7:0 DCRCDATA<7:0>

0x50 DCRCXOR(1,2,3) 31:24 DCRCXOR<31:24>(5)

23:16 DCRCXOR<23:16>(5)

15:8 DCRCXOR<15:8>

7:0 DCRCXOR<7:0>

0x60 DCHxCON(1,2,3) 31:24 — — — — — — — —

23:16 — — — — — — — —

15:8 CHBUSY(4) — — — — — — CHCHNS

7:0 CHEN CHAED CHCHN CHAEN — CHEDET CHPRI<1:0>

0x70 DCHxECON(1,2,3) 31:24 — — — — — — — —

23:16 CHAIRQ<7:0>

15:8 CHSIRQ<7:0>

7:0 CFORCE CABORT PATEN SIRQEN AIRQEN — — —

0x80 DCHxINT(1,2,3) 31:24 — — — — — — — —

23:16 CHSDIE CHSHIE CHDDIE CHDHIE CHBCIE CHCCIE CHTAIE CHERIE

15:8 — — — — — — — —

7:0 CHSDIF CHSHIF CHDDIF CHDHIF CHBCIF CHCCIF CHTAIF CHERIF

0x90 DCHxSSA(1,2,3) 31:24 CHSSA<31:24>

23:16 CHSSA<23:16>

15:8 CHSSA<15:8>

7:0 CHSSA<7:0>

Legend: Legend: — = unimplemented, read as ‘0’. Address offset values are shown in hexadecimal.
Note 1: This register has an associated Clear register at an offset of 0x4 bytes. These registers have the same name with CLR

appended to the end of the register name (e.g., DMACONCLR). Writing a ‘1’ to any bit position in the Clear register will clear
valid bits in the associated register. Reads from the Clear register should be ignored.

2: This register has an associated Set register at an offset of 0x8 bytes. These registers have the same name with SET
appended to the end of the register name (e.g., DMACONSET). Writing a ‘1’ to any bit position in the Set register will set valid
bits in the associated register. Reads from the Set register should be ignored.

3: This register has an associated Invert register at an offset of 0xC bytes. These registers have the same name with INV
appended to the end of the register name (e.g., DMACONINV). Writing a ‘1’ to any bit position in the Invert register will invert
valid bits in the associated register. Reads from the Invert register should be ignored.

4: This bit is not available on all devices. Refer to the specific device data sheet for details.
5: Depending on the device variant, not all bits are available. Refer to the specific device data sheet for details.
DS61117E-page 31-6 © 2009 Microchip Technology Inc.

Section 31. DMA Controller
D

M
A

 C
ontroller

31
0xA0 DCHxDSA 31:24 CHDSA<31:24>

23:16 CHDSA<23:16>

15:8 CHDSA<15:8>

7:0 CHDSA<7:0>

0xB0 DCHxSSIZ(1,2,3) 31:24 — — — — — — — —

23:16 — — — — — — — —

15:8 CHSSIZ<15:8>(5)

7:0 CHSSIZ<7:0>

0xC0 DCHxDSIZ(1,2,3) 31:24 — — — — — — — —

23:16 — — — — — — — —

15:8 CHDSIZ<15:8>(5)

7:0 CHDSIZ<7:0>

0xD0 DCHxSPTR 31:24 — — — — — — — —

23:16 — — — — — — — —

15:8 CHSPTR<15:8>(5)

7:0 CHSPTR<7:0>

0xE0 DCHxDPTR 31:24 — — — — — — — —

23:16 — — — — — — — —

15:8 CHDPTR<15:8>(5)

7:0 CHDPTR<7:0>

0xF0 DCHxCSIZ(1,2,3) 31:24 — — — — — — — —

23:16 — — — — — — — —

15:8 CHCSIZ<15:8>(5)

7:0 CHCSIZ<7:0>

0x100 DCHxCPTR 31:24 — — — — — — — —

23:16 — — — — — — — —

15:8 CHCPTR<15:8>(5)

7:0 CHCPTR<7:0>

0x110 DCHxDAT(1,2,3) 31:24 — — — — — — — —

23:16 — — — — — — — —

15:8 — — — — — — — —

7:0 CHPDAT<7:0>

Table 31-1: DMA Register Summary (Continued)
Address
Offset Name Bit

Range
Bit

31/23/15/7
Bit

30/22/14/6
Bit

29/21/13/5
Bit

28/20/12/4
Bit

27/19/11/3
Bit

26/18/10/2
Bit

25/17/9/1
Bit

24/16/8/0

Legend: Legend: — = unimplemented, read as ‘0’. Address offset values are shown in hexadecimal.
Note 1: This register has an associated Clear register at an offset of 0x4 bytes. These registers have the same name with CLR

appended to the end of the register name (e.g., DMACONCLR). Writing a ‘1’ to any bit position in the Clear register will clear
valid bits in the associated register. Reads from the Clear register should be ignored.

2: This register has an associated Set register at an offset of 0x8 bytes. These registers have the same name with SET
appended to the end of the register name (e.g., DMACONSET). Writing a ‘1’ to any bit position in the Set register will set valid
bits in the associated register. Reads from the Set register should be ignored.

3: This register has an associated Invert register at an offset of 0xC bytes. These registers have the same name with INV
appended to the end of the register name (e.g., DMACONINV). Writing a ‘1’ to any bit position in the Invert register will invert
valid bits in the associated register. Reads from the Invert register should be ignored.

4: This bit is not available on all devices. Refer to the specific device data sheet for details.
5: Depending on the device variant, not all bits are available. Refer to the specific device data sheet for details.
© 2009 Microchip Technology Inc. DS61117E-page 31-7

PIC32MX Family Reference Manual
Register 31-1: DMACON: DMA Controller Control Register
r-x r-x r-x r-x r-x r-x r-x r-x
— — — — — — — —

bit 31 bit 24

r-x r-x r-x r-x r-x r-x r-x r-x
— — — — — — — —

bit 23 bit 16

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 r-x r-x r-x
ON FRZ SIDL(1) SUSPEND BUSY(1) — — —

bit 15 bit 8

r-x r-x r-x r-x r-x r-x r-x r-x
— — — — — — — —

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit P = Programmable bit r = Reserved bit
U = Unimplemented bit -n = Bit Value at POR: (‘0’, ‘1’, x = Unknown)

bit 31-16 Reserved: Write ‘0’; ignore read
bit 15 ON: DMA On bit

1 = DMA module is enabled
0 = DMA module is disabled

Note: When using 1:1 PBCLK divisor, the user’s software should not read/write the peripheral’s
SFRs in the SYSCLK cycle immediately following the instruction that clears the module’s
ON bit.

bit 14 FRZ: DMA Freeze bit
1 = DMA is frozen during Debug mode
0 = DMA continues to run during Debug mode

Note: FRZ is writable in Debug Exception mode only, it is forced to ‘0’ in Normal mode.
bit 13 SIDL: Stop in Idle Mode bit(1)

1 = DMA transfers are frozen during Idle
0 = DMA transfers continue during Idle

bit 12 SUSPEND: DMA Suspend bit
1 = DMA transfers are suspended to allow CPU uninterrupted access to data bus
0 = DMA operates normally

bit 11 BUSY: DMA Module Busy bit(1)

1 = DMA module is active
0 = DMA module is disabled and not actively transferring data

bit 10-0 Reserved: Write ‘0’; ignore read

Note 1: This bit is not available on all devices. Refer to the specific device data sheet for details.
DS61117E-page 31-8 © 2009 Microchip Technology Inc.

Section 31. DMA Controller
D

M
A

 C
ontroller

31

Register 31-2: DMASTAT: DMA Status Register(1)

r-x r-x r-x r-x r-x r-x r-x r-x
— — — — — — — —

bit 31 bit 24

r-x r-x r-x r-x r-x r-x r-x r-x
— — — — — — — —

bit 23 bit 16

r-x r-x r-x r-x r-x r-x r-x r-x
— — — — — — — —

bit 15 bit 8

r-x r-x r-x r-x R-0 R-0 R-0 R-0
— — — — RDWR DMACH<2:0>(2)

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit P = Programmable bit r = Reserved bit
U = Unimplemented bit -n = Bit Value at POR: (‘0’, ‘1’, x = Unknown)

bit 31-4 Reserved: Write ‘0’; ignore read
bit 3 RDWR: Read/Write Status bit

1 = Last DMA bus access was a read
0 = Last DMA bus access was a write

bit 2-0 DMACH<2:0>: DMA Channel bits(2)

Note 1: This register contains the value of the most recent active DMA channel.

2: Depending on the device variant, not all bits are available. Refer to the specific device data sheet for
details.
© 2009 Microchip Technology Inc. DS61117E-page 31-9

PIC32MX Family Reference Manual
Register 31-3: DMAADDR: DMA Address Register(1)

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0
DMAADDR<31:24>

bit 31 bit 24

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0
DMAADDR<23:16>

bit 23 bit 16

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0
DMAADDR<15:8>

bit 15 bit 8

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0
DMAADDR<7:0>

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit P = Programmable bit r = Reserved bit
U = Unimplemented bit -n = Bit Value at POR: (‘0’, ‘1’, x = Unknown)

bit 31-0 DMAADDR<31:0>: DMA Module Address bits

Note 1: This register contains the address of the most recent DMA access.
DS61117E-page 31-10 © 2009 Microchip Technology Inc.

Section 31. DMA Controller
D

M
A

 C
ontroller

31

Register 31-4: DCRCCON: DMA CRC Control Register

r-x r-x R/W-0 R/W-0 R/W-0 r-x r-x R/W-0
— — BYTO<1:0>(1) WBO(1,2) — — BITO(1)

bit 31 bit 24

r-x r-x r-x r-x r-x r-x r-x r-x
— — — — — — — —

bit 23 bit 16

r-x r-x r-x R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
— — — PLEN<4:0>(2)

bit 15 bit 8

R/W-0 R/W-0 R/W-0 r-x r-x R/W-0 R/W-0 R/W-0
CRCEN CRCAPP(2) CRCTYP(1) — — CRCCH<2:0>(1)

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit P = Programmable bit r = Reserved bit
U = Unimplemented bit -n = Bit Value at POR: (‘0’, ‘1’, x = Unknown)

bit 31-30 Reserved: Write ‘0’; ignore read
bit 29-28 BYTO<1:0>: CRC Byte Order Selection bits(1)

11 = Endian byte swap on half-word boundaries (i.e., source half-word order with reverse source byte
order per half-word)

10 = Swap half-words on word boundaries (i.e., reverse source half-word order with source byte order
per half-word)

01 = Endian byte swap on word boundaries (i.e., reverse source byte order)
00 = No swapping (i.e., source byte order)

bit 27 WBO: CRC Write Byte Order Selection bit(1,2)

1 = Source data is written to the destination re-ordered as defined by BYTO<1:0>
0 = Source data is written to the destination unaltered

bit 26-25 Reserved: Write ‘0’; ignore read
bit 24 BITO: CRC Bit Order Selection bit(1)

When DCRCCON<CRCTYP> = 1 (CRC module is in IP Header mode):
1 = The IP header checksum is calculated Least Significant bit (LSb) first (i.e., reflected)
0 = The IP header checksum is calculated Most Significant bit (MSb) first (i.e., not reflected)

When DCRCCON<CRCTYP> = 0 (CRC module is in LFSR mode):
1 = The LFSR CRC is calculated Least Significant bit first (i.e., reflected)
0 = The LFSR CRC is calculated Most Significant bit first (i.e., not reflected)

bit 23-13 Reserved: Write ‘0’; ignore read

Note 1: Depending on the device variant, not all bits are available on all devices. Refer to the specific device data
sheet for details.

2: When WBO = 1, unaligned transfers are not supported and the CRCAPP bit cannot be set.
© 2009 Microchip Technology Inc. DS61117E-page 31-11

PIC32MX Family Reference Manual
bit 12-8 PLEN<4:0>: Polynomial Length bits(2)

When DCRCCON<CRCTYP> = 1 (CRC module is in IP Header mode):
The bits are unused.

When DCRCCON<CRCTYP> = 0 (CRC module is in LFSR mode):
Denotes the length of the polynomial -1.

bit 7 CRCEN: CRC Enable bit
1 = CRC module is enabled and channel transfers are routed through the CRC module
0 = CRC module is disabled and channel transfers proceed normally

bit 6 CRCAPP: CRC Append Mode bit(2)

1 = The DMA transfers data from the source into the CRC but NOT to the destination. When a block
transfer completes the DMA writes the calculated CRC value to the location given by CHxDSA

0 = The DMA transfers data from the source through the CRC obeying WBO as it writes the data to
the destination

bit 5 CRCTYP: CRC Type Selection bit(1)

1 = The CRC module will calculate an IP header checksum
0 = The CRC module will calculate a LFSR CRC

bit 4-3 Reserved: Write ‘0’; ignore read
bit 2-0 CRCCH<2:0>: CRC Channel Select bits(1)

111 = CRC is assigned to Channel 7
110 = CRC is assigned to Channel 6
101 = CRC is assigned to Channel 5
100 = CRC is assigned to Channel 4
011 = CRC is assigned to Channel 3
010 = CRC is assigned to Channel 2
001 = CRC is assigned to Channel 1
000 = CRC is assigned to Channel 0

Register 31-4: DCRCCON: DMA CRC Control Register (Continued)

Note 1: Depending on the device variant, not all bits are available on all devices. Refer to the specific device data
sheet for details.

2: When WBO = 1, unaligned transfers are not supported and the CRCAPP bit cannot be set.
DS61117E-page 31-12 © 2009 Microchip Technology Inc.

Section 31. DMA Controller
D

M
A

 C
ontroller

31

Register 31-5: DCRCDATA: DMA CRC Data Register

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
DCRCDATA<31:24>(1)

bit 31 bit 24

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
DCRCDATA<23:16>(1)

bit 23 bit 16

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
DCRCDATA<15:8>(1)

bit 15 bit 8

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
DCRCDATA<7:0>(1)

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit P = Programmable bit r = Reserved bit
U = Unimplemented bit -n = Bit Value at POR: (‘0’, ‘1’, x = Unknown)

bit 31-0 DCRCDATA<31:0>: CRC Data Register bits(1)

Writing to this register will seed the CRC generator. Reading from this register will return the current
value of the CRC. Bits > PLEN will return ‘0’ on any read.

When DRCCON<CRCTYP> = 1 (CRC module is in IP Header mode):
Only the lower 16 bits contain IP header checksum information. The upper 16 bits are always ‘0’. Data
written to this register is converted and read back in 1’s complement form (i.e., current IP header
checksum value).

When DCRCCON<CRCTYP> = 0 (CRC module is in LFSR mode):
Bits greater than PLEN will return ‘0’ on any read.

Note 1: Depending on the device variant, not all bits are available. Refer to the specific device data sheet for
details.
© 2009 Microchip Technology Inc. DS61117E-page 31-13

PIC32MX Family Reference Manual
Register 31-6: DCRCXOR: DMA CRCXOR Enable Register
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

DCRCXOR<31:24>(1)

bit 31 bit 24

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
DCRCXOR<23:16>(1)

bit 23 bit 16

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
DCRCXOR<15:8>(1)

bit 15 bit 8

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
DCRCXOR<7:0>(1)

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit P = Programmable bit r = Reserved bit
U = Unimplemented bit -n = Bit Value at POR: (‘0’, ‘1’, x = Unknown)

bit 31-0 DCRCXOR<31:0>: CRC XOR Register bits(1)

When DRCCON<CRCTYP> = 1 (CRC module is in IP Header mode):
This register is unused.

When DCRCCON<CRCTYP> = 0 (CRC module is in LFSR mode):
1 = Enable the XOR input to the Shift register
0 = Disable the XOR input to the Shift register; data is shifted directly in from the previous stage in

the register

Note 1: Depending on the device variant, not all bits are available. Refer to the specific device data sheet for
details.
DS61117E-page 31-14 © 2009 Microchip Technology Inc.

Section 31. DMA Controller
D

M
A

 C
ontroller

31

Register 31-7: DCHxCON: DMA Channel x Control Register

r-x r-x r-x r-x r-x r-x r-x r-x
— — — — — — — —

bit 31 bit 24

r-x r-x r-x r-x r-x r-x r-x r-x
— — — — — — — —

bit 23 bit 16

R/W-0 r-x r-x r-x r-x r-x r-x R/W-0
CHBUSY(1) — — — — — — CHCHNS(2)

bit 15 bit 8

R/W-0 R/W-0 R/W-0 R/W-0 r-x R-0 R/W-0 R/W-0
CHEN(3) CHAED CHCHN CHAEN — CHEDET CHPRI<1:0>

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit P = Programmable bit r = Reserved bit
U = Unimplemented bit -n = Bit Value at POR: (‘0’, ‘1’, x = Unknown)

bit 31-16 Reserved: Write ‘0’; ignore read
bit 15 CHBUSY: Channel Busy bit(1)

1 = Channel is active or has been enabled
0 = Channel is inactive and has been disabled

bit 14-9 Reserved: Write ‘0’; ignore read
bit 8 CHCHNS: Chain Channel Selection bit(2)

1 = Chain to channel lower in natural priority (CH1 will be enabled by CH2 transfer complete)
0 = Chain to channel higher in natural priority (CH1 will be enabled by CH0 transfer complete)

bit 7 CHEN: Channel Enable bit(3)

1 = Channel is enabled
0 = Channel is disabled

bit 6 CHAED: Channel Allow Events If Disabled bit
1 = Channel start/abort events will be registered, even if the channel is disabled
0 = Channel start/abort events will be ignored if the channel is disabled

bit 5 CHCHN: Channel Chain Enable bit
1 = Allow channel to be chained
0 = Do not allow channel to be chained

bit 4 CHAEN: Channel Automatic Enable bit
1 = Channel is continuously enabled, and not automatically disabled after a block transfer is complete
0 = Channel is disabled on block transfer complete

bit 3 Reserved: Write ‘0’; ignore read

Note 1: This bit is not available on all devices. Refer to the specific device data sheet for details.

2: The chain selection bit takes effect when chaining is enabled (i.e., CHCHN = 1).

3: When the channel is suspended by clearing this bit, the user application should poll the CHBUSY bit (if
available on the device variant) to see when the channel is suspended, as it may take some clock cycles
to complete a current transaction before the channel is suspended.
© 2009 Microchip Technology Inc. DS61117E-page 31-15

PIC32MX Family Reference Manual
bit 2 CHEDET: Channel Event Detected bit
1 = An event has been detected
0 = No events have been detected

bit 1-0 CHPRI<1:0>: Channel Priority bits
11 = Channel has priority 3 (highest)
10 = Channel has priority 2
01 = Channel has priority 1
00 = Channel has priority 0

Register 31-7: DCHxCON: DMA Channel x Control Register (Continued)

Note 1: This bit is not available on all devices. Refer to the specific device data sheet for details.

2: The chain selection bit takes effect when chaining is enabled (i.e., CHCHN = 1).

3: When the channel is suspended by clearing this bit, the user application should poll the CHBUSY bit (if
available on the device variant) to see when the channel is suspended, as it may take some clock cycles
to complete a current transaction before the channel is suspended.
DS61117E-page 31-16 © 2009 Microchip Technology Inc.

Section 31. DMA Controller
D

M
A

 C
ontroller

31

Register 31-8: DCHxECON: DMA Channel x Event Control Register

r-x r-x r-x r-x r-x r-x r-x r-x
— — — — — — — —

bit 31 bit 24

R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1
CHAIRQ<7:0>

bit 23 bit 16

R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1
CHSIRQ<7:0>

bit 15 bit 8

S-0 S-0 R/W-0 R/W-0 R/W-0 r-x r-x r-x
CFORCE CABORT PATEN SIRQEN AIRQEN — — —

bit 7 bit 0

Legend: S = Settable bit
R = Readable bit W = Writable bit P = Programmable bit r = Reserved bit
U = Unimplemented bit -n = Bit Value at POR: (‘0’, ‘1’, x = Unknown)

bit 31-24 Reserved: Write ‘0’; ignore read
bit 23-16 CHAIRQ<7:0>: IRQ that will abort Channel Transfer bits

11111111 = Interrupt 255 will abort any transfers in progress and set CHAIF flag
•
•
•
00000001 = Interrupt 1 will abort any transfers in progress and set CHAIF flag
00000000 = Interrupt 0 will abort any transfers in progress and set CHAIF flag

bit 15-8 CHSIRQ<7:0>: IRQ that will Start Channel Transfer bits
11111111 = Interrupt 255 will initiate a DMA transfer
•
•
•
00000001 = Interrupt 1 will initiate a DMA transfer
00000000 = Interrupt 0 will initiate a DMA transfer

bit 7 CFORCE: DMA Forced Transfer bit
1 = A DMA transfer is forced to begin when this bit is written to a ‘1’
0 = This bit always reads ‘0’

bit 6 CABORT: DMA Abort Transfer bit
1 = A DMA transfer is aborted when this bit is written to a ‘1’
0 = This bit always reads ‘0’

bit 5 PATEN: Channel Pattern Match Abort Enable bit
1 = Abort transfer and clear CHEN on pattern match
0 = Pattern match is disabled

bit 4 SIRQEN: Channel Start IRQ Enable bit
1 = Start channel cell transfer if an interrupt matching CHSIRQ occurs
0 = Interrupt number CHSIRQ is ignored and does not start a transfer

bit 3 AIRQEN: Channel Abort IRQ Enable bit
1 = Channel transfer is aborted if an interrupt matching CHAIRQ occurs
0 = Interrupt number CHAIRQ is ignored and does not terminate a transfer

bit 2-0 Reserved: Write ‘0’; ignore read
© 2009 Microchip Technology Inc. DS61117E-page 31-17

PIC32MX Family Reference Manual
Register 31-9: DCHxINT: DMA Channel x Interrupt Control Register
r-x r-x r-x r-x r-x r-x r-x r-x
— — — — — — — —

bit 31 bit 24

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
CHSDIE CHSHIE CHDDIE CHDHIE CHBCIE CHCCIE CHTAIE CHERIE

bit 23 bit 16

r-x r-x r-x r-x r-x r-x r-x r-x
— — — — — — — —

bit 15 bit 8

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
CHSDIF CHSHIF CHDDIF CHDHIF CHBCIF CHCCIF CHTAIF CHERIF

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit P = Programmable bit r = Reserved bit
U = Unimplemented bit -n = Bit Value at POR: (‘0’, ‘1’, x = Unknown)

bit 31-24 Reserved: Write‘0’; ignore read
bit 23 CHSDIE: Channel Source Done Interrupt Enable bit

1 = Interrupt is enabled
0 = Interrupt is disabled

bit 22 CHSHIE: Channel Source Half Empty Interrupt Enable bit
1 = Interrupt is enabled
0 = Interrupt is disabled

bit 21 CHDDIE: Channel Destination Done Interrupt Enable bit
1 = Interrupt is enabled
0 = Interrupt is disabled

bit 20 CHDHIE: Channel Destination Half Full Interrupt Enable bit
1 = Interrupt is enabled
0 = Interrupt is disabled

bit 19 CHBCIE: Channel Block Transfer Complete Interrupt Enable bit
1 = Interrupt is enabled
0 = Interrupt is disabled

bit 18 CHCCIE: Channel Cell Transfer Complete Interrupt Enable bit
1 = Interrupt is enabled
0 = Interrupt is disabled

bit 17 CHTAIE: Channel Transfer Abort Interrupt Enable bit
1 = Interrupt is enabled
0 = Interrupt is disabled

bit 16 CHERIE: Channel Address Error Interrupt Enable bit
1 = Interrupt is enabled
0 = Interrupt is disabled

bit 15-8 Reserved: Write ‘0’; ignore read
bit 7 CHSDIF: Channel Source Done Interrupt Flag bit

1 = Channel Source Pointer has reached end of source (CHSPTR = CHSSIZ)
0 = No interrupt is pending
DS61117E-page 31-18 © 2009 Microchip Technology Inc.

Section 31. DMA Controller
D

M
A

 C
ontroller

31

bit 6 CHSHIF: Channel Source Half Empty Interrupt Flag bit

1 = Channel Source Pointer has reached midpoint of source (CHSPTR = CHSSIZ/2)
0 = No interrupt is pending

bit 5 CHDDIF: Channel Destination Done Interrupt Flag bit
1 = Channel Destination Pointer has reached end of destination (CHDPTR = CHDSIZ)
0 = No interrupt is pending

bit 4 CHDHIF: Channel Destination Half Full Interrupt Flag bit
1 = Channel Destination Pointer has reached midpoint of destination (CHDPTR = CHDSIZ/2)
0 = No interrupt is pending

bit 3 CHBCIF: Channel Block Transfer Complete Interrupt Flag bit
1 = A block transfer has been completed (the larger of CHSSIZ/CHDSIZ bytes has been transferred),

or a pattern match event occurs
0 = No interrupt is pending

bit 2 CHCCIF: Channel Cell Transfer Complete Interrupt Flag bit
1 = A cell transfer has been completed (CHCSIZ bytes have been transferred)
0 = No interrupt is pending

bit 1 CHTAIF: Channel Transfer Abort Interrupt Flag bit
1 = An interrupt matching CHAIRQ has been detected and the DMA transfer has been aborted
0 = No interrupt is pending

bit 0 CHERIF: Channel Address Error Interrupt Flag bit
1 = A channel address error has been detected

Either the source or the destination address is invalid.
0 = No interrupt is pending

Register 31-9: DCHxINT: DMA Channel x Interrupt Control Register (Continued)
© 2009 Microchip Technology Inc. DS61117E-page 31-19

PIC32MX Family Reference Manual
Register 31-10: DCHxSSA: DMA Channel x Source Start Address Register
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x

CHSSA<31:24>
bit 31 bit 24

R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x
CHSSA<23:16>

bit 23 bit 16

R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x
CHSSA<15:8>

bit 15 bit 8

R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x
CHSSA<7:0>

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit P = Programmable bit r = Reserved bit
U = Unimplemented bit -n = Bit Value at POR: (‘0’, ‘1’, x = Unknown)

bit 31-0 CHSSA<31:0> Channel Source Start Address bits
Channel source start address.

Note: This must be the physical address of the source.
DS61117E-page 31-20 © 2009 Microchip Technology Inc.

Section 31. DMA Controller
D

M
A

 C
ontroller

31

Register 31-11: DCHxDSA: DMA Channel x Destination Start Address Register

R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x
CHDSA<31:24>

bit 31 bit 24

R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x
CHDSA<23:16>

bit 23 bit 16

R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x
CHDSA<15:8>

bit 15 bit 8

R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x
CHDSA<7:0>

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit P = Programmable bit r = Reserved bit
U = Unimplemented bit -n = Bit Value at POR: (‘0’, ‘1’, x = Unknown)

bit 31-0 CHDSA<31:0>: Channel Destination Start Address bits
Channel destination start address.

Note: This must be the physical address of the destination.
© 2009 Microchip Technology Inc. DS61117E-page 31-21

PIC32MX Family Reference Manual
Register 31-12: DCHxSSIZ: DMA Channel x Source Size Register
r-x r-x r-x r-x r-x r-x r-x r-x
— — — — — — — —

bit 31 bit 24

r-x r-x r-x r-x r-x r-x r-x r-x
— — — — — — — —

bit 23 bit 16

R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x
CHSSIZ<15:8>(1)

bit 15 bit 8

R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x
CHSSIZ<7:0>(1)

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit P = Programmable bit r = Reserved bit
U = Unimplemented bit -n = Bit Value at POR: (‘0’, ‘1’, x = Unknown)

bit 31-16 Reserved: Write ‘0’; ignore read
bit 15-0 CHSSIZ<15:0>: Channel Source Size bits(1)

65335 =65,535 byte source size
•
•
•
2 = 2 byte source size
1 = 1 byte source size
0 = 65,536 byte source size

Note 1: Depending on the device variant, not all bits are available. Refer to the specific device data sheet for
details.
DS61117E-page 31-22 © 2009 Microchip Technology Inc.

Section 31. DMA Controller
D

M
A

 C
ontroller

31

Register 31-13: DCHxDSIZ: DMA Channel x Destination Size Register

r-x r-x r-x r-x r-x r-x r-x r-x
— — — — — — — —

bit 31 bit 24

r-x r-x r-x r-x r-x r-x r-x r-x
— — — — — — — —

bit 23 bit 16

R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x
CHDSIZ<15:8>(1)

bit 15 bit 8

R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x
CHDSIZ<7:0>(1)

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit P = Programmable bit r = Reserved bit
U = Unimplemented bit -n = Bit Value at POR: (‘0’, ‘1’, x = Unknown)

bit 31-16 Reserved: Write ‘0’; ignore read
bit 15-0 CHDSIZ<15:0>: Channel Destination Size bits(1)

65535 =65,535 byte destination size
•
•
•
2 = 2 byte destination size
1 = 1 byte destination size
0 = 65,536 byte destination size

Note 1: Depending on the device variant, not all bits are available. Refer to the specific device data sheet for
details.
© 2009 Microchip Technology Inc. DS61117E-page 31-23

PIC32MX Family Reference Manual
Register 31-14: DCHxSPTR: DMA Channel x Source Pointer Register(1)

r-x r-x r-x r-x r-x r-x r-x r-x
— — — — — — — —

bit 31 bit 24

r-x r-x r-x r-x r-x r-x r-x r-x
— — — — — — — —

bit 23 bit 16

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0
CHSPTR<15:8>(2)

bit 15 bit 8

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0
CHSPTR<7:0>(2)

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit P = Programmable bit r = Reserved bit
U = Unimplemented bit -n = Bit Value at POR: (‘0’, ‘1’, x = Unknown)

bit 31-16 Reserved: Write ‘0’; ignore read
bit 15-0 CHSPTR<15:0>: Channel Source Pointer bits(2)

65535 =Points to byte 65,535 of the source
•
•
•
1 = Points to byte 1 of the source
0 = Points to byte 0 of the source

Note 1: When in Pattern Detect mode, this register is reset on a pattern detect.

2: Depending on the device variant, not all bits are available. Refer to the specific device data sheet for
details.
DS61117E-page 31-24 © 2009 Microchip Technology Inc.

Section 31. DMA Controller
D

M
A

 C
ontroller

31

Register 31-15: DCHxDPTR: DMA Channel x Destination Pointer Register
r-x r-x r-x r-x r-x r-x r-x r-x
— — — — — — — —

bit 31 bit 24

r-x r-x r-x r-x r-x r-x r-x r-x
— — — — — — — —

bit 23 bit 16

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0
CHDPTR<15:8>(1)

bit 15 bit 8

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0
CHDPTR<7:0>(1)

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit P = Programmable bit r = Reserved bit
U = Unimplemented bit -n = Bit Value at POR: (‘0’, ‘1’, x = Unknown)

bit 31-16 Reserved: Write ‘0’; ignore read
bit 15-0 CHDPTR<15:0>: Channel Destination Pointer bits(1)

65535 = Points to byte 65,535 of the destination
•
•
•
1 = Points to byte 1 of the destination
0 = Points to byte 0 of the destination

Note 1: Depending on the device variant, not all bits are available. Refer to the specific device data sheet for
details.
© 2009 Microchip Technology Inc. DS61117E-page 31-25

PIC32MX Family Reference Manual
Register 31-16: DCHxCSIZ: DMA Channel x Cell-Size Register
r-x r-x r-x r-x r-x r-x r-x r-x
— — — — — — — —

bit 31 bit 24

r-x r-x r-x r-x r-x r-x r-x r-x
— — — — — — — —

bit 23 bit 16

R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x
CHCSIZ<15:8>(1)

bit 15 bit 8

R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x
CHCSIZ<7:0>(1)

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit P = Programmable bit r = Reserved bit
U = Unimplemented bit -n = Bit Value at POR: (‘0’, ‘1’, x = Unknown)

bit 31-16 Reserved: Write ‘0’; ignore read
bit 15-0 CHCSIZ<15:0>: Channel Cell-Size bits(1)

65535 = 65,535 bytes transferred on an event
•
•
•
2 = 2 bytes transferred on an event
1 = 1 byte transferred on an event
0 = 65,536 bytes transferred on an event

Note 1: Depending on the device variant, not all bits are available. Refer to the specific device data sheet for
details.
DS61117E-page 31-26 © 2009 Microchip Technology Inc.

Section 31. DMA Controller
D

M
A

 C
ontroller

31

Register 31-17: DCHxCPTR: DMA Channel x Cell Pointer Register(1)

r-x r-x r-x r-x r-x r-x r-x r-x
— — — — — — — —

bit 31 bit 24

r-x r-x r-x r-x r-x r-x r-x r-x
— — — — — — — —

bit 23 bit 16

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0
CHCPTR<15:8>(2)

bit 15 bit 8

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0
CHCPTR<7:0>(2)

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit P = Programmable bit r = Reserved bit
U = Unimplemented bit -n = Bit Value at POR: (‘0’, ‘1’, x = Unknown)

bit 31-16 Reserved: Write ‘0’; ignore read
bit 15-0 CHCPTR<7:0>: Channel Cell Progress Pointer bits(2)

65535 = 65,535 bytes have been transferred since the last event
•
•
•
1 = 1 byte has been transferred since the last event
0 = 0 byte have been transferred since the last event

Note 1: When in Pattern Detect mode, this register is reset on a pattern detect.

2: Depending on the device variant, not all bits are available. Refer to the specific device data sheet for
details.
© 2009 Microchip Technology Inc. DS61117E-page 31-27

PIC32MX Family Reference Manual
Register 31-18: DCHxDAT: DMA Channel x Pattern Data Register
r-x r-x r-x r-x r-x r-x r-x r-x
— — — — — — — —

bit 31 bit 24

r-x r-x r-x r-x r-x r-x r-x r-x
— — — — — — — —

bit 23 bit 16

r-x r-x r-x r-x r-x r-x r-x r-x
— — — — — — — —

bit 15 bit 8

R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x
CHPDAT<7:0>

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit P = Programmable bit r = Reserved bit
U = Unimplemented bit -n = Bit Value at POR: (‘0’, ‘1’, x = Unknown)

bit 31-8 Reserved: Write ‘0’; ignore read
bit 7-0 CHPDAT<7:0>: Channel Data Register bits

Pattern Terminate mode:
Data to be matched must be stored in this register to allow terminate on match.

All other modes:
Unused.
DS61117E-page 31-28 © 2009 Microchip Technology Inc.

Section 31. DMA Controller
D

M
A

 C
ontroller

31

31.3 MODES OF OPERATION

The DMA module offers the following operating modes:

• Basic Transfer Mode
• Pattern Match Termination Mode
• Channel Chaining Mode
• Channel Auto-Enable Mode
• Special Function Module (SFM) Mode: LFSR CRC, IP Header Checksum

Note that these operation modes are not mutually exclusive but can be simultaneously
operational. For example, the DMA controller can perform CRC calculation using chained
channels and terminating the transfer upon a pattern match.

31.3.1 DMA Controller Terminology
Event: Any system event that can initiate or abort a DMA transfer.

Transaction: A single word transfer (up to 4 bytes), comprised of read and write operations.

Cell Transfer: The number of bytes transferred when a DMA channel has a transfer initiated
before waiting for another event (given by the DCHxCSIZ register). A cell transfer is comprised
of one or more transactions.

Block Transfer: Defined as the number of bytes transferred when a channel is enabled. The
number of bytes is the larger of either DCHxSSIZ or DCHxDSIZ. A block transfer is comprised
of one or more cell transfers.

31.3.2 Basic Transfer Mode Operation
A DMA channel will transfer data from a source register to a destination register without CPU
intervention. The Channel Source Start Address register (DCHxSSA) defines the physical start
address of the source. The Channel Destination Start Address register (DCHxDSA) defines the
physical start address of the destination. Both the source and destination are independently
configurable using the DCHxSSIZ and DCHxDSIZ registers.

A cell transfer is initiated in one of two ways:

• Software can initiate a transfer by setting the channel CFORCE (DCHxECON<7>) bit
• Interrupt event occurs on the device that matches the CHSIRQ interrupt and SIRQEN = 1

(DCHxECON<4>). The user can select any interrupt on the device to start a DMA transfer

A DMA transfer will transfer DCHxCSIZ (cell transfer) bytes when a transfer is initiated (an
event occurs). The channel remains enabled until the DMA channel has transferred the larger of
DCHxSSIZ and DCHxDSIZ (i.e., block transfer is complete). If DCHxCSIZ is greater than the
larger of DCHxSSIZ and DCHxDSIZ, then the larger of DCHxSSIZ and DCHxDSIZ bytes will be
transferred. When the channel is disabled, further transfers will be prohibited until the channel is
re-enabled (CHEN is set to ‘1’).

Each channel keeps track of the number of words transferred from the source and destination
using the pointers DCHxSPTR and DCHxDPTR. Interrupts are generated when the source or
Destination Pointer is half of the size (DCHxSSIZ/2 or DCHxDSIZ/2), or when the source or
destination counter reaches the end. These interrupts are CHSHIF (DCHxINT<6>), CHDHIF
(DCHxINT<4>), CHSDIF (DCHxINT<7>) or CHDDIF (DCHxINT<5>), respectively.
© 2009 Microchip Technology Inc. DS61117E-page 31-29

PIC32MX Family Reference Manual
A DMA transfer request can be reset by the following:

• Writing the CABORT bit (DCHxECON<6>)
• Pattern match occurs if pattern match is enabled as described in Section 31.3.3 “Pattern

Match Termination Mode Operation”, provided that Channel Auto-Enable mode bit
CHAEN (DCHxCON<4>), is not set

• Interrupt event occurs on the device that matches the CHAIRQ <7:0> bits (DCHxECON<23:16>)
interrupt if enabled by AIRQEN (DCHxECON<3>)

• Detection of an address error
• Completion of a cell transfer
• A block transfer completes provided that Channel Auto-Enable mode (CHAEN) is not set

When a channel abort interrupt occurs, the Channel Transfer Abort Interrupt Flag CHTAIF
(DCHxINT<1>) bit is set. This allows the user to detect and recover from an aborted DMA
transfer. When a transfer is aborted, any transaction currently underway will be completed.

The Source and Destination Pointers are updated as a transfer progresses. These pointers are
read-only. The pointers are reset under the following conditions:

• If the channel source address (DCHxSSA) is updated, the Source Pointer (DCHxSPTR)
will be reset.

• Similar updates to the destination address (DCHxDSA) will cause the Destination Pointer
(DCHxDPTR) to be reset.

• A channel transfer is aborted by writing the CABORT (DCHxECON<6>) bit.

Note: Refer to Table 31-4 for detailed information about the channel event behavior.
DS61117E-page 31-30 © 2009 Microchip Technology Inc.

Section 31. DMA Controller
D

M
A

 C
ontroller

31

Example 31-1: DMA Channel Initialization for Basic Transfer Mode Code Example

31.3.2.1 Interrupt and Pointer Updates

The Source and Destination Pointers are updated after every transaction. Interrupts will also be
set or cleared at this time. If a pointer passes the halfway point during a transaction, the
interrupt will be updated accordingly.

Pointers are reset when any of the following occurs:

• On any device Reset
• When the DMA is turned off (ON bit (DMACON<15>) is ‘0’
• A block transfer completes, regardless of the state of CHAEN (DCHxCON<4>)
• A pattern match terminates a transfer, regardless of the state of CHAEN (DCHxCON<4>)
• The CABORT (DCHxECON<6>) flag is written
• Source or destination start addresses are updated

/*
The following code example illustrates the DMA channel 0 configuration for a data transfer.
*/

IEC1CLR=0x00010000; // disable DMA channel 0 interrupts
IFS1CLR=0x00010000; // clear existing DMA channel 0 interrupt flag

DMACONSET=0x00008000; // enable the DMA controller
DCH0CON=0x3; // channel off, pri 3, no chaining

CH0ECON=0; // no start or stop irq’s, no pattern match

// program the transfer
DCH0SSA=0x1d010000; // transfer source physical address
DCH0DSA=0x1d020000; // transfer destination physical address
DCH0SSIZ=200; // source size 200 bytes
DCH0DSIZ=200; // destination size 200 bytes
DCH0CSIZ=200; // 200 bytes transferred per event

DCH0INTCLR=0x00ff00ff; // clear existing events, disable all interrupts
DCH0CONSET=0x80; // turn channel on

// initiate a transfer
DCH0ECONSET=0x00000080; // set CFORCE to 1

// do something else

// poll to see that the transfer was done

while(TRUE)
{

register int pollCnt; // use a poll counter.
// continuously polling the DMA controller in a tight
// loop would affect the performance of the DMA transfer

int dmaFlags=DCH0INT;
if((dmaFlags&0xb)
{ // one of CHERIF (DCHxINT<0>), CHTAIF (DCHxINT<1>)

// or CHBCIF (DCHxINT<3>) flags set
break; // transfer completed

}
pollCnt=100; // use an adjusted value here
while(pollCnt--); // wait before reading again the DMA controller

}

// check the transfer completion result
© 2009 Microchip Technology Inc. DS61117E-page 31-31

PIC32MX Family Reference Manual
31.3.3 Pattern Match Termination Mode Operation
Pattern Match Termination mode allows the user to end a transfer if a byte of data written during
a transaction matches a specific pattern, as defined by the DCHxDAT register. A pattern match
is treated the same way as a block transfer complete, where the CHBCIF bit (DCHxINT<3>) is
set and the CHEN bit (DCHxCON<7>) is cleared.

This feature is useful in applications where a variable data size is required and eases the set up
of the DMA channel. UART is a good example of where this can be effectively used.

Assuming a system has a series of messages that are routinely transmitted to an external host
and it has a maximum message size of 86 characters, the user would set the following
parameters on the channel:

• DCHxSSIZ to 87 bytes:
If something unexpected occurs the CPU program will be interrupted when the buffer
overflows and can take the appropriate action.

• DCHxDSIZ set to 1-byte.
• The destination address is set to the UART TXREG.
• The DCHxDAT is set to 0x00, which will stop the transfer on a NULL character in any byte

lane.
• The CHSIRQ (DCHxECON<15:8>) is set to the UART “transmit buffer empty” IRQ.
• The SIRQEN (DCHxECON<4>) is set to enable the channel to respond to the start

interrupt event.
• The start address is set to the start address of the message to be transferred.
• The channel is enabled, CHEN = 1 (DCHxCON<7>).
• The user will then force a cell transfer through CFORCE (DCHxECON<7>) and the first

byte transmission by the UART.
• Each time a byte is transmitted by the UART, the transmit buffer empty interrupt will initiate

the following byte transfer from the source to the UART.
• When the DMA channel detects a NULL character in any of the byte lanes of the channel,

the transaction will be completed and the channel disabled.

Pattern matching is independent of the byte lane of the source data. If ANY byte in the source
buffer matches DCHxDAT, a pattern match is detected. The transaction will be completed and
the data read from the source will be written to the destination.
DS61117E-page 31-32 © 2009 Microchip Technology Inc.

Section 31. DMA Controller
D

M
A

 C
ontroller

31

Example 31-2: DMA Channel Initialization in Pattern Match Transfer Mode Code Example
/*
The following code example illustrates the DMA channel 0 configuration for data transfer with
pattern match enabled. Transfer from the UART1 a <CR> ended string, at most 200 characters long
*/

IEC1CLR=0x00010000; // disable DMA channel 0 interrupts
IFS1CLR=0x00010000; // clear any existing DMA channel 0 interrupt flag

DMACONSET=0x00008000; // enable the DMA controller
DCH0CON=0x03; // channel off, priority 3, no chaining

DCH0ECON=(27 <<8)| 0x30; // start irq is UART1 RX, pattern match enabled
DCH0DAT=’\r’; // pattern value, carriage return

// program the transfer
DCH0SSA=VirtToPhys(&U1RXREG); // transfer source physical address
DCH0DSA=0x1d020000; // transfer destination physical address
DCH0SSIZ=1; // source size is 1 byte
DCH0DSIZ=200; // destination size at most 200 bytes
DCH0CSIZ=1; // one byte per UART transfer request

DCH0INTCLR=0x00ff00ff; // clear existing events, disable all interrupts
DCH0INTSET=0x00090000; // enable Block Complete and error interrupts

IPC9CLR=0x0000001f; // clear the DMA channel 0 priority and sub-priority
IPC9SET=0x00000016; // set IPL 5, sub-priority 2
IEC1SET=0x00010000; // enable DMA channel 0 interrupt

DCH0CONSET=0x80; // turn channel on

// wait for the UART1 RX interrupt to initiate a
// transfer

// do something else

// will get an interrupt when the transfer is done
// or when an address error occurred
© 2009 Microchip Technology Inc. DS61117E-page 31-33

PIC32MX Family Reference Manual
31.3.4 Channel Chaining Mode Operation
Channel chaining is an enhancement to the DMA channel operation. A channel (slave channel)
can be chained to an adjacent channel (master channel). The slave channel will be enabled
when a block transfer of the master channel completes, i.e., CHBCIF (DCHxINT<3>), is set.

At this point, any event on the slave channel will initiate a cell transfer. If the channel has an
event pending, a cell transfer will begin immediately.

The master channel will set its interrupt flags normally, CHBCIF (CHxINT<3>) and has no
knowledge of the “chain” status of the slave channel. The master channel is still able to cause
interrupts at the end of a DMA transfer if one of the CHSDIE/CHDDIE/CHBCIE
(DCHxINT<23/21/19>) bits is set.

In the channels natural priority order, channel 0 has the highest priority and channel 7 the low-
est. The channel higher or lower in natural priority, that can enable a specific channel, is
selected by CHCHNS (DCHxCON<8>), provided that channel chaining is enabled, CHCHN = 1
(DCHxCON<5>).

A feature of the DMA module is the ability to allow events while the channel is disabled using
CHAED (DCHxCON<6>). This bit is particularly useful in Chained mode, in which the slave
channel needs to be ready to start a transfer as soon as the channel is enabled by the
master channel.

The following examples demonstrate situations in which chaining may be useful:

1. Transferring data in one peripheral (e.g., from UART1, DMA channel 0, at 9600 baud, to
SRAM) to another peripheral (e.g., from SRAM to UART2, DMA channel 1, at
19200 baud).
In this example, CHAED will be set in both channels; with UART2 setting the event detect,
CHEDET (DCHxCON<2>), on channel 1 when the last byte has been transmitted. As
soon as channel 0 completes a transfer, channel 1 is enabled and the data is
transferred immediately.

2. A/D converter transfers data to one buffer (connected to channel 0).
When the destination buffer 0 is full (block transfer completes), channel 1 is enabled and
further conversions are transferred to buffer 1. In this case, CHAED will not be enabled. If
it were, the last word transferred by channel 0 would be transferred a second time by
channel 1 (because the A/D converter interrupt event would have set the event detect flag
CHEDET in both channels).

Note: In some devices, channel 0 has the highest priority and channel 4 the lowest. Refer
to the specific device data sheet for availability.
DS61117E-page 31-34 © 2009 Microchip Technology Inc.

Section 31. DMA Controller
D

M
A

 C
ontroller

31

Example 31-3: DMA Channel Initialization in Chaining Mode Code Example
/*
The following code example illustrates the DMA channel 0 configuration for data transfer with
pattern match enabled. DMA channel 0 transfer from the UART1 to a RAM buffer while DMA channel 1
transfers data from the RAM buffer to UART2. Transferred strings are at most 200 characters
long. Transfer on UART2 will start as soon as the UART1 transfer is completed.
*/

unsigned char myBuff<200>;// transfer buffer

IEC1CLR=0x00010000; // disable DMA channel 0 interrupts
IFS1CLR=0x00010000; // clear any existing DMA channel 0 interrupt flag

DMACONSET=0x00008000; // enable the DMA controller

DCH0CON=0x3; // channel 0 off, priority 3, no chaining
DCH1CON=0x62; // channel 1 off, priority 2

// chain to higher priority
// (channel 0), enable events detection while disabled

DCH0ECON=(27 <<8)| 0x30; // start irq is UART1 RX, pattern enabled
DCH1ECON=(42 <<8)| 0x30; // start irq is UART1 TX, pattern enabled

DCH0DAT=DCH1DAT=’\r’; // pattern value, carriage return

// program channel 0 transfer
DCH0SSA=VirtToPhys(&U1RXREG); // transfer source physical address
DCH0DSA=VirtToPhys(myBuff); // transfer destination physical address
DCH0SSIZ=1; // source size is 1 byte
DCH0DSIZ=200; // dst size at most 200 bytes
DCH0CSIZ=1; // one byte per UART transfer request

// program channel 1 transfer
DCH1SSA=VirtToPhys(myBuff); // transfer source physical address
DCH1DSA=VirtToPhys(&U2TXREG); // transfer destination physical address
DCH1SSIZ=200; // source size at most 200 bytes
DCH1DSIZ=0; // dst size is 1 byte
DCH1CSIZ=1; // one byte per UART transfer request

DCH0INTCLR=0x00ff00ff; // DMA0: clear events, disable interrupts
DCH1INTCLR=0x00ff00ff; // DMA1: clear events, disable interrupts
DCH1INTSET=0x00090000; // DMA1: enable Block Complete and error interrupts

IPC9CLR=0x00001f1f; // clear the DMA channels 0 and 1 priority and
// sub-priority

IPC9SET=0x00000b16; // set IPL 5, sub-priority 2 for DMA channel 0
// set IPL 2, sub-priority 3 for DMA channel 1

IEC1SET=0x00020000; // enable DMA channel 1 interrupt

DCH0CONSET=0x80; // turn channel on

// do something else

// the UART1 RX interrupts will initiate the DMA channel 0 transfer
// once this transfer is complete, the DMA channel 1 will start
// upon DMA channel 1 transfer completion will get an interrupt

while(!intCh1Ocurred); // poll DMA channel 1 interrupt
© 2009 Microchip Technology Inc. DS61117E-page 31-35

PIC32MX Family Reference Manual
31.3.5 Channel Auto-Enable Mode Operation
The channel auto-enable can be used to keep a channel active, even if a block transfer
completes or pattern match occurs. This prevents the user from having to re-enable the channel
each time a block transfer completes. To use this mode the user will configure the channel,
setting the CHAEN (DCHxCON<4>) bit before enabling the channel, i.e., setting the CHEN bit
(DCHxCON<7>). The channel will behave as normal except that normal termination of a
transfer will not result in the channel being disabled.

Normal block transfer completion is defined as:

• Block Transfer Complete
• Pattern Match Detect

As before, the Channel Pointers will be reset. This mode is useful for applications that do
repeated pattern matching.

31.3.6 Suspending Transfers
The user application can immediately suspend the DMA module by writing the SUSPEND bit
(DMACON<12>). This will immediately suspend the DMA controller from any further bus
transactions.

Depending on the device variant, when the DMA module is suspended by setting the SUS-
PEND bit, the user application should poll the BUSY (DMACON<11>) bit to determine when the
module is completely suspended following the completion of the current transaction.

Individual channels may be suspended using the CHEN (DCHxCON<7>) bit. If a DMA transfer
is in progress and the CHEN bit is cleared, the current transaction will be completed and further
transactions on the channel will be suspended.

Depending on the device variant, when the channel is suspended by clearing the CHEN bit, the
user application should poll the CHBUSY (DCHxCON<15>) bit to determine when the channel
is completely suspended following completion of the current transaction.

Clearing the enable bit (CHEN) will not affect the Channel Pointers or the transaction counters.
While a channel is suspended, the user can elect to continue to receive events (abort interrupts,
etc.) by setting CHAED (DCHxCON<6>).

31.3.7 Resetting the Channel
The channel logic will be reset on any device Reset. The channel is also reset when the channel
flag bit CABORT (DCHxECON<6>) is written. This will turn off channel flag bit CHEN = 0, clear
the Source and Destination Pointers, and reset the event detector. When the CABORT bit is set,
the current transaction in progress (if any) will complete before the channel is reset, but any
remaining transactions will be aborted.

The user should modify the channel registers only while the channel is disabled (CHEN = 0).
Modifying the Source and Destination registers will reset the corresponding pointer registers
(DCHxSPTR or DCHxDPTR).

Note: CHAEN prevents the channel from being automatically disabled once it has been
enabled. The channel will still have to be enabled by the software.

Note: The BUSY bit is not available on all device. Refer to the specific device data sheet
for availability.

Note: The channel size must be changed while the channel is disabled.
DS61117E-page 31-36 © 2009 Microchip Technology Inc.

Section 31. DMA Controller
D

M
A

 C
ontroller

31

31.3.8 Channel Priority and Selection
The DMA controller has a natural priority associated with each of the channels. Channel 0 has
the highest natural priority. Each channel has two priority bits, CHPRI<1:0> (DCHxCON<1:0>).
These bits identify the channel’s priority. When multiple channels have transfers pending, the
next channel to transmit data will be selected as follows:

• Channels with the highest priority will complete all cell transfers before moving onto
channels with a lower priority (see behavior, “PRI3 xfers”, in Figure 31-4).

• If multiple channels have the same priority (identical CHPRI), the controller will cycle
through all channels at that priority. Each channel with a cell transfer in progress at the
highest priority will be allowed a single transaction of the active cell transfer before the con-
troller allows a single transaction by the next channel at that priority level (see behavior,
“PRI2 xfers” between markers “C” and “B”, in Figure 31-4).

• If a channel with a higher priority requests a transfer while another channel of lower priority
has a transaction in process, the transaction will complete before moving to the channel
with the higher priority (see events at markers “A” in Figure 31-4).

Figure 31-4: Channel Priority Behavior

REQ: CH0, PRI0

REQ: CH1, PRI2

REQ: CH2, PRI3

REQ: CH3, PRI2

DMA Active Channel none 0 3 2 2 2 3 3 31 1 0 none

PRI0
xfers

PRI2
xfers

PRI0
xfers PRI3 xfers PRI2 xfers

Cycle through
CH1 and CH3

A A B C B

Transition Legend:
A – Higher priority transfer request; suspend current and transfer next.
B – All highest priority transfers complete; drop to channels at lower priority.
C – Cycle through all channels at the current priority.
© 2009 Microchip Technology Inc. DS61117E-page 31-37

PIC32MX Family Reference Manual
31.3.9 Byte Alignment
The byte alignment feature of the DMA controller relieves the user from aligning the source and
destination addresses.The read portion of a transaction will read the maximum number of bytes
that are available to be read in a given word. For example, if the Source Pointer is N > 4 bytes
from the source size, 4 bytes will be read if the Source Pointer points to byte 0, 3 bytes if the
Source Pointer points to byte 1, etc. If the number of bytes remaining in the source is N < 4, only
the first N bytes are read. This is important when the read includes registers that are updated on
a read.

The Source Pointer and Destination Pointers are updated after every write, with the number of
bytes that have been written. The user should note that in cases where a transfer is aborted,
before a transaction is complete, the Source Pointer will not necessarily reflect the reads that
have taken place.

An example of this behavior is given in Table 31-2. Example 1 demonstrates a simple transfer of
9 bytes between two large buffers, in which CHxSSA = 0x1000, CHxSSIZ = 100,
CHxDSA = 0x43F9, CHxDSIZ = 100 and CHxCSIZ = 9.

Table 31-2: Source and Destination Pointer Updates – Example 1

Transaction Operation Source
Pointer

Destination
Pointer

Transfer
Count/Size

Read
Address

Write
Address Read Data(1) Write Data(2)

1 Read 9 11 0/9 1009 xxxx 33_22_11_XX XX_XX_XX_XX
1 Write1 9 11 0/9 1009 440A 33_22_11_XX 22_11_XX_XX
1 Ptr

Update(3)
B 13 2/9 1009 440A 33_22_11_XX XX_XX_XX_XX

1 Write2 B 13 2/9 1009 440C 33_22_11_XX XX_XX_XX_33
1 Ptr

Update(3)
C 14 3/9 1009 440C 33_22_11_XX XX_XX_XX_XX

2 Read C 14 3/9 100C 440C 77_66_55_44 XX_XX_XX_XX
2 Write1 C 14 3/9 100C 440D 77_66_55_44 66_55_44_XX
2 Ptr

Update(3)
F 17 6/9 100C 440D 77_66_55_44 XX_XX_XX_XX

2 Write2 F 17 6/9 100C 4410 77_66_55_44 XX_XX_XX_77
2 Ptr

Update(3)
10 18 7/9 100C 4410 77_66_55_44 XX_XX_XX_XX

3 Read 10 18 7/9 1010 4410 XX_XX_99_88 XX_XX_XX_XX
3 Write1 10 18 7/9 1010 4411 XX_XX_XX_88 XX_99_88_XX
3 Ptr

Update(3)
12 1A 9/9 1010 4411 XX_XX_XX_88 XX_XX_XX_XX

Note 1: XX indicates that data read is discarded.
2: XX indicates that data that is NOT written.
3: Interrupts are updated when the pointers are updated as required.
DS61117E-page 31-38 © 2009 Microchip Technology Inc.

Section 31. DMA Controller
D

M
A

 C
ontroller

31

Another example of this behavior is given in Table 31-3. Example 2 demonstrates worst-case bus
utilization, i.e., unaligned buffers with destination buffer wrapping, in which CHxSSA = 0x1000,
CHxSSIZ = 100, CHxDSA = 0x4402, CHxDSIZ = 4 and CHxCSIZ = 8.

31.3.10 Channel Transfer Behavior
Once a channel has been enabled, CHEN = 1 (DCHxCON<7>), any event that starts a cell
transfer will transfer the CHCSIZ (DCHxCSIZ) bytes of data. This will require one or more trans-
actions. Once the cell transfer is complete the channel will return to an inactive state, and will
wait for another channel start event to occur before starting another cell transfer.

When the larger of CHSSIZ (DCHxSSIZ) or CHDSIZ (DCHxDSIZ) bytes are transferred, a block
transfer completes, the channel transfer will be halted and the channel will be disabled (i.e.,
CHEN set to ‘0’ by hardware, and pointers are reset).

Table 31-3: Source and Destination Pointer Updates – Example 2

Transaction Operation Source
Pointer

Destination
Pointer

Transfer
Count/Size

Read
Address

Write
Address Read Data(1) Write Data(2)

1 Read 9 0 0/8 1009 xxxx 33_22_11_XX XX_XX_XX_XX
1 Write1 9 0 0/8 1009 4402 33_22_11_XX 22_11_XX_XX
1 Ptr

Update(3)
B 2 2/8 1009 4402 33_22_11_XX XX_XX_XX_XX

1 Write2 B 2 2/8 1009 4404 33_22_11_XX XX_XX_XX_33
1 Ptr

Update(3)
C 3 3/8 1009 4404 33_22_11_XX XX_XX_XX_XX

2 Read C 3 3/8 100C 4404 77_66_55_44 XX_XX_XX_XX
2 Write1 C 3 3/8 100C 4405 77_66_55_44 XX_XX_44_XX
2 Ptr

Update(3)
D 0 4/8 100C 4405 77_66_55_44 XX_XX_XX_XX

2 Write2 D 0 4/8 100C 4402 77_66_55_44 66_55_XX_XX
2 Ptr

Update(3)
F 2 6/8 100C 4402 77_66_55_44 XX_XX_XX_XX

3 Write3 F 2 6/8 100F 4404 77_66_55_44 XX_XX_XX_77
3 Ptr

Update(3)
10 3 7/8 100F 4404 77_66_55_44 XX_XX_XX_XX

3 Read 10 18 7/8 1010 4404 BB_AA_99_88 XX_XX_XX_XX
3 Write1 10 18 7/8 1010 4405 BB_AA_99_88 XX_XX_88_XX
3 Ptr

Update(3)
11 1A 8/8 1010 4405 77_66_55_44 XX_XX_XX_XX

Note 1: XX indicates that data read is discarded.
2: XX indicates that data that is NOT written.
3: Interrupts are updated when the pointers are updated as required.
© 2009 Microchip Technology Inc. DS61117E-page 31-39

PIC32MX Family Reference Manual
31.3.11 Channel Enable
Each channel has an enable bit CHEN, which can be used to enable or disable the channel in
question. When this bit is set, the channel transfer requests are serviced by the DMA controller.

When CHEN is clear, the state of the channel is preserved (this allows the channel to be
suspended once a transfer has begun).

CHEN will be cleared by hardware under the following conditions:

• A block transfer is complete, the pointer to the larger of the source or destination matches
the size (only if CHAEN (DCHxCON<4>) is clear).

• A pattern match occurs in Pattern Match mode (only if CHAEN is clear).
• An abort interrupt occurs.
• The user writes the CABORT (DCHxECON<6>) flag.

31.3.12 Channel IRQ Detection
The DMA Controller maintains its own flags for detecting the start and abort IRQ in the system
and is completely independent of the INT Controller and IES/IFS flags. The corresponding IRQ
does not have to be enabled before a transfer can take place, nor cleared at the end of a DMA
transfer.

Once the start or abort IRQ system events are triggered, they will be detected automatically by
the DMA controller internal logic, without the need for user intervention.

31.3.13 Channel Event Transfer Initiation
A given channel transfer can be initiated by:

• Writing the CFORCE bit (DCHxECON<7>).
• An interrupt occurs that matches the value of CHSIRQ<7:0> (DCHxECON<15:8>) if it is

enabled by SIRQEN (DCHxECON<4>).

Channel events are registered if the channel is enabled (CHEN = 1), or if “Allow Event If
Disabled” is set, i.e., CHAED = 1 (DCHxCON<6>).

31.3.14 Channel Event Transfer Termination
Channel transfer is terminated in any of the following cases:

• A transfer is aborted as described in Section 31.3.16 “Channel Abort”.
• A cell transfer (CHCSIZ bytes (DCHxCSIZ transferred)) completes.
• The DMA has transferred the larger of CHSSIZ or CHDSIZ bytes (block transfer complete),

the channel is disabled in hardware and must be re-enabled by user software before the
channel will respond to channel events.

• A pattern match occurs if enabled.
• An abort interrupt, CHAIRQ<7:0> (DCHxECON<23:16>), occurs if abort interrupts are

enabled by AIRQEN (DCHxECON<3>).
• An address error occurs.

An example of how to use the abort interrupt would be a transfer from a UART channel to the
memory. While the UART Receive Data Available interrupt can be used to start the transfer, the
UART Error interrupt can abort the transfer. This way, whenever an error occurs on the commu-
nication channel (a framing/parity error or even an overrun), the transfer is stopped and the user
code gets control in an ISR (if the abort interrupt is enabled for the DMA controller).

A summary of the status flags affected by channel transfer initiation or termination is provided in
Table 31-4. Channel abort events are allowed if the channel is enabled, CHEN = 1, or if the user
elects to allow events while the channel is disabled, CHAED = 1.
DS61117E-page 31-40 © 2009 Microchip Technology Inc.

Section 31. DMA Controller
D

M
A

 C
ontroller

31

Table 31-4: Channel Event Behavior

Event Description and Function Registers Affected

Events Initiating Transfers

System Interrupt Matching
CHSIRQ<7:0>(1,2)

The channel event detect will be set. CHEDET = 1

Channel Chain Event This will enable the channel if not already set. If an event detect
is pending, a channel transfer will begin immediately.

CHEN = 1

User Writes the CFORCE Bit(1) The channel event detect will be set. CHEDET = 1

Events Terminating Transfers

System Interrupt Matching
CHAIRQ<7:0>(1,2)

The channel event detect will be reset and the channel turned
off. The abort interrupt flag is set.

CHEDET = 0
CHEN = 0
CHAIF = 1

Pattern Match(1) This occurs when any byte of data written in a transaction
matches the data in CHPDAT.
The channel event detect is reset.
The channel is turned off if CHAEN = 0. This event is treated
as a completed block transfer.
Pointers are reset.

CHEDET = 0
CHEN = 0
CHBCIF = 1
CHSPTR = 0
CHDPTR = 0
CHCPTR = 0

Cell Transfer is Complete This occurs when CHCSIZ bytes have been transferred. The
transfer event detect is reset and the channel remains enabled
pending the next event.

CHEDET = 0
CHCCIF = 1

Block Transfer is Complete The channel event detect is reset.
The channel is turned off if CHAEN = 0. This event is treated
as a completed transfer.
Pointers are reset.

CHEDET = 0
CHEN = 0
CHBCIF = 1
CHSPTR = 0
CHDPTR = 0
CHCPTR = 0

User Writes the CABORT bit The channel is turned off and the channel event detect is reset.
The pointers are reset.

CHEDET = 0
CHEN = 0
CHSPTR = 0
CHDPTR = 0
CHCPTR = 0

Address Error is Detected The channel is turned off and the event detect is reset. The
address error interrupt flag is set.

CHEDET = 0
CHEN = 0
CHERIF = 1

Note 1: Events are allowed only when the channel is enabled, or the user allows events while disabled (CHEN = 1
or CHAED = 1).

2: The DMA Controller maintains its own flags for detecting start and abort interrupt requests (IRQs) in the sys-
tem, and is completely independent of the INT Controller IES/IFS flags. Once the start or abort IRQ system
events are triggered, they will be detected automatically by the DMA controller internal logic, without the
need for user intervention.
© 2009 Microchip Technology Inc. DS61117E-page 31-41

PIC32MX Family Reference Manual
31.3.15 Channel Abort Interrupt
A channel can elect to abort a cell transfer if an interrupt event occurs. The interrupt is selected
by the channel’s abort IRQ, CHAIRQ<7:0> (DCHxECON<23:16>). Any one of the device inter-
rupt events can cause a channel abort. An abort only occurs if enabled by AIRQEN
(DCHxECON<3>).

If this occurs (often a timer time-out or a module error flag), the channel’s status flags will
indicate the external abort event on the channel in question by setting its CHTAIF bit
(DCHxINT<1>). The Source and Destination Pointers are not reset, allowing the user to recover
from the error.

31.3.16 Channel Abort
A channel transfer can be aborted by the user by writing the CABORT bit (DCHxECON<6>).
When a transfer is aborted, the current bus transaction will be completed and any transactions
that remain will be aborted. The CHEN (DCHxCON<7>) bit will be cleared. When the user
writes the CABORT bit, the Source and Destination Pointers are reset.

31.3.17 Address Error
If the address (either source or destination) occurring during a transfer is an illegal address, the
channel’s address error interrupt flag CHERIF (DCHxINT<0>) will be set. The channel will be
disabled, i.e., CHEN will be reset by hardware.

The channel status is unaffected to aid in the debug of the problem.

31.3.18 DMA Suspend
DMA transactions are suspended immediately if the SUSPEND bit (DMACON<12>) is set. The
current read or write will be completed. If the suspend comes during the read portion of the
transaction, the transaction will be suspended and the write will be put on hold. If the suspend
comes during the write portion of the transaction, the write will complete and the pointers
updated as normal. Any transactions that were in process will continue where they left off when
the SUSPEND bit is cleared.

Depending on the device variant, when the DMA module is suspended by setting the
SUSPEND bit, the user application should poll the BUSY (DMACON<11>) bit to determine
when the module is completely suspended following the completion of the current transaction.

Example 31-4: DMA Controller Suspension

Note: The BUSY bit is not available on all device. Refer to the specific device data sheet
for availability.

/*
The following code example will suspend the DMA Controller.
*/
DMACONSET=0x00001000; // suspend the DMA controller

while(!(DMACONbits.busy)); // wait for the transfer to be actually suspended

// let the CPU have complete control of the bus

DMACONCLR=0x00001000; // clear the suspend mode and let the DMA operate normally

// from now on, the CPU and DMA controller share the bus access
DS61117E-page 31-42 © 2009 Microchip Technology Inc.

Section 31. DMA Controller
D

M
A

 C
ontroller

31

31.3.19 Special Function Module (SFM) Mode
The DMA module has one integrated Special Function module (SFM) shared by all channels.

As shown in Figure 31-5, the SFM has the following blocks:

• LFSR CRC
• IP Header Checksum
• Byte Reordering
• Bit Reordering

Figure 31-5: Special Function Module (SFM)

Depending on the device variant, the SFM is a highly configurable, 16-bit or 32-bit CRC
generator. The SFM can be assigned to any available DMA channel by setting the CRCCH bits
(DCRCCON) appropriately. The SFM is enabled by setting the CRCEN bit (DCRCCON<7>).

The data from the source can be optionally subjected to byte reordering using the WBO bit. The
data is then optionally passed to the LFSR CRC or IP header checksum blocks based on the
setting of the CRCTYP bit in the DCRCCON register as shown in Figure 31-5.

Further, the SFM modifies the behavior of the DMA channel associated with the SFM. The
behavior of the channel is selected by the CRCAPP bit (DCRCCON<6>), resulting in the follow-
ing two modes:

• Background Mode: CRC is calculated in the background, with normal DMA behavior
maintained (see Section 31.3.19.1 “CRC Background Mode (CRCAPP = 0)”).

• Append Mode: Data read from the source is not written to the destination, but the CRC data
is accumulated in the CRC data register. The accumulated CRC is written to the location
given by DCHxDSA when a block transfer completes (see Section 31.3.19.2 “CRC
Append Mode (CRCAPP = 1)”).

The order in which data is written to the destination can be selected using the WBO bit
(DRCCON<27>). If the WBO bit is cleared, the writes to the destination are unaltered. If the WBO
bit is set, the writes to the destination are reordered as defined by the CRC Byte Order Selection
(BYTO<1:0>) bits (DRCCON<29:28>).

Note: This feature is not available on all devices. Refer to the specific device data sheet
for availability.

Data In

Byte
Reordering

LFSR CRC

BYTO

CRCDATA

CRCAPP

WBO

Data Out

Bit
ReorderingBITO

Note: CRCAPP = 1; WBO = 1 is invalid.

00

01

10

IP Header
Checksum
© 2009 Microchip Technology Inc. DS61117E-page 31-43

PIC32MX Family Reference Manual
The SFM generator can be seeded by writing to the DCRCDATA register before enabling the
channel.

Note that when in IP Header Checksum mode (CRCTYP = 1) data written, reads back as the
one’s complement form as this is the current value of the checksum.

The CRC value in DCRCDATA can be read at any time during the CRC generation but is only
valid once the transfer completes.

31.3.19.1 CRC BACKGROUND MODE (CRCAPP = 0)

In this mode, the behavior of the DMA channel is maintained. The DMA reads the data from the
source, passes it through the CRC module and writes it to the destination. Writes to the
destination obey the WBO selection. In this mode, the calculated CRC is left in the DCRCDATA
register at the end of the block transfer.

This mode can be used to calculate a CRC as data is moved from a source address to a
destination address. The data source can be either a memory buffer or a FIFO in a peripheral.
Likewise, the destination can be either a memory buffer or a FIFO. When the data transfer
completes, the user can read the calculated CRC value and either append it to the transmitted
data or verify the received CRC data.

Background mode potentially ties up the CRC module for extended periods of time. For instance,
when assigned to a UART data stream, the SFM cannot be used by another channel until the
UART data stream completes.
DS61117E-page 31-44 © 2009 Microchip Technology Inc.

Section 31. DMA Controller
D

M
A

 C
ontroller

31

Example 31-5: DMA LFSR CRC Calculation in Background Mode Code Example

/*
The following code example illustrates a DMA calculation using the CRC background mode. Data is
transferred from a 200 bytes Flash buffer to a RAM buffer and the CRC is calculated while the
transfer takes place. */

unsigned int blockCrc; // CRC of the flash block

IEC1CLR=0x00010000; // disable DMA channel 0 interrupts
IFS1CLR=0x00010000; // clear any existing DMA channel 0 interrupt flag

DMACONSET=0x00008000; // enable the DMA controller

DCRCDATA=0xffff; // seed the CRC generator
DCRCXOR=0x1021; // Use the standard CCITT CRC 16 polynomial: X^16+X^12+X^5+1
DCRCCON=0x0f80; // CRC enabled, polynomial length 16, background mode

// CRC attached to the DMA channel 0.

DCH0CON=0x03; // channel off, priority 3, no chaining
DCH0ECON=0; // no start irqs, no match enabled

// program channel transfer
DCH0SSA=VirtToPhys(flashBuff); // transfer source physical address
DCH0DSA=VirtToPhys(ramBuff); // transfer destination physical address
DCH0SSIZ=200; // source size
DCH0DSIZ=200; // destination size
DCHOCSIZ=200; // 200 bytes per event

DCH0INTCLR=0x00ff00ff; // DMA0: clear events, disable interrupts

DCH0CONSET=0x80; // channel 0 on

// initiate a transfer
DCH0ECONSET=0x00000080; // set CFORCE to 1

// do something else while the transfer takes place

// poll to see that the transfer was done
BOOL error=FALSE;
while(TRUE)
{

register int pollCnt; // don’t poll in a tight loop
int dmaFlags=DCH0INT;
if((dmaFlags& 0x3)
{ // CHERIF (DCHxINT<0>) or CHTAIF (DCHxINT<1> set

error=TRUE; // error or aborted...
break;

}
else if (dmaFlags&0x8)

{ // CHBCIF (DCHxINT<3>) set
break; // transfer completed normally

}
pollCnt=100; // use an adjusted value here
while(pollCnt--); // wait before polling again

}

if(!error)
{

blockCrc=DCRDATA; // read the CRC of the transferred flash block
}
else
{

// process error
}

© 2009 Microchip Technology Inc. DS61117E-page 31-45

PIC32MX Family Reference Manual
31.3.19.2 CRC APPEND MODE (CRCAPP = 1)

In this mode, the DMA only feeds source data to the CRC module; it does not write source data
to the destination address. However, when the block transfer completes or a pattern match
occurs, the DMA writes the CRC value to the destination address.

This mode is best used when multiple peripherals are required to use the CRC generator. In this
case, the input data is accumulated in a buffer on the device. Once the buffer is complete the
CRC is generated on the buffer and used appropriately. Because the DMA does not need to wait
for multiple events (typically interrupts) a block of data is passed through the CRC in fairly short
order, allowing the CRC module to be assigned to a different channel, or redirected to a different
block of data.

The following usage notes apply to CRC Append mode:

• Only the source buffer is viewed when considering whether a block transfer is complete,
the destination address (DCHxDSA) is only used as the location to write the generated
CRC value.

• The destination size (DCHxDSIZ) can be a maximum of 4.
- If DCHxDSIZ is greater than 4, only 4 bytes are written
- If DCHxDSIZ is less than 4, only DCHxDSIZ bytes of the CRC are written
- PLEN has no effect on the number of CRC bytes or bits written

• After the write, the channel is disabled.
• Any abort (i.e., abort IRQ asserts) prevents the CRC value from being written
• Reordering is not supported in append mode if WBO is set to ‘0’.
DS61117E-page 31-46 © 2009 Microchip Technology Inc.

Section 31. DMA Controller
D

M
A

 C
ontroller

31

Example 31-6: CRC Calculation in Append Mode Code Example
/*
The following code example illustrates a DMA calculation using the CRC append mode. The CRC of
a 256 bytes flash buffer is calculated without performing any data transfer. As soon as the CRC
calculation is completed the CRC value of the flash buffer is available in a local variable for
further use. */

unsigned int blockCrc; // CRC of the flash block

IEC1CLR=0x00010000; // disable DMA channel 0 interrupts
IFS1CLR=0x00010000; // clear any existing DMA channel 0 interrupt flag

DMACONSET=0x00008000; // enable the DMA controller

DCRCDATA=0xffff; // seed the CRC generator
DCRCXOR=0x1021; // Use the standard CCITT CRC 16 polynomial: X^16+X^12+X^5+1
DCRCCON=0x0fc0; // CRC enabled, polynomial length 16, append mode

// CRC attached to the DMA channel 0.

DCH0CON=0x03; // channel off, priority 3, no chaining
DCH0ECON=0; // no start irqs, no match enabled

// program channel transfer
DCH0SSA=VirtToPhys(flashBuff); // transfer source physical address
DCH0DSA=VirtToPhys(&blockCrc); // transfer destination physical address
DCH0SSIZ=200; // source size
DCH0DSIZ=200; // dst size
DCHOCSIZ=200; // 200 bytes transferred per event

DCH0INTCLR=0x00ff00ff; // DMA0: clear events, disable interrupts
DCH1INTCLR=0x00ff00ff; // DMA1: clear events, disable interrupts

DCH0CONSET=0x80; // channel 0 on

// initiate a transfer
DCH0ECONSET=0x00000080; // set CFORCE to 1

// do something else while the CRC calculation takes place

// poll to see that the transfer was done
BOOL error=FALSE;
while(TRUE)
{

register int pollCnt; // don’t poll in a tight loop
int dmaFlags=DCH0INT;
if((dmaFlags& 0x3)
{ // CHERIF (DCHxINT<0>) or CHTAIF (DCHxINT<1> set

error=TRUE; // error or aborted...
break;

}
else if (dmaFlags&0x8)

{ // CHBCIF (DCHxINT<3>) set
break; // transfer completed normally

}
pollCnt=100; // use an adjusted value here
while(pollCnt--); // wait before polling again

}

if(error)
{

// process error
}

// the block CRC is available in the blockCrc variable
© 2009 Microchip Technology Inc. DS61117E-page 31-47

PIC32MX Family Reference Manual
31.3.19.3 DATA ORDER

Data read from the source can be reordered to allow for variations in the byte order of the source
data, such as endianness. The reordered source data is written to the channel destination when
WBO = 1. The unaltered source data is written to the destination when WBO = 0.

The CRC calculation takes place, even if the user does not utilize the result stored in
DCRCDATA.

BYTO controls the byte order of the data being processed by the module. Figure 31-6 shows the
different byte order settings and the effect on data reads. BYTO value of ‘01’ is useful for
reordering bytes within words. While BYTO values of ‘10’ and ‘11’ is useful for reordering bytes
within half-words.

It is important to note that the data is reordered as it is read. This means that data that is not
word-aligned may not be reordered correctly.

When using the LFSR CRC mode or IP Header Checksum mode of the SFM, the bit order can
be changed by using the BITO bit.

Figure 31-6: Byte Order for BYTO Values

31.3.19.4 LFSR CRC

The CRC generator will take one system clock to process each byte of data read from the
source. This implies that if 32-bits of data are read from the source, the CRC generation will
take four system clocks to process the data.

When the CRYTYP bit is cleared, the SFM is set to LFSR CRC mode and calculates the LFSR
CRC.

The implementation of the CRC module is software configurable. The terms of the polynomial
and its length can be programmed using the DCRCXOR bits and the PLEN (DCRCCON) bits,
respectively.

Example 31-7 and Example 31-8 show the polynomials for the 16-bit and 32-bit CRC.

Example 31-7: 16-bit CRC Polynomial

Example 31-8: 32-bit CRC Polynomial

Note: This feature is not available on all devices. Refer to the specific device data sheet
for availability.

Byte3 Byte2 Byte1 Byte0

Byte3 Byte2 Byte1 Byte0

Byte3 Byte2 Byte1 Byte0

Byte3Byte2Byte1Byte0

Byte3 Byte2 Byte1 Byte0

Byte3 Byte2Byte1 Byte0

Byte3 Byte2 Byte1 Byte0

Byte3Byte2 Byte1Byte0

BYTO=00

BYTO=01 BYTO=11

BYTO=10

x16 x12 x5 1+ + +

x31 x26 x23 x22 x16 x12 x11 x10 x8 x7 x5 x4 x2 x 1+ + + + + + + + + + + + + +
DS61117E-page 31-48 © 2009 Microchip Technology Inc.

Section 31. DMA Controller
D

M
A

 C
ontroller

31

To program either polynomial into the CRC generator, the CRC register bits should be set as
shown in the following table:

The PLEN bits (DCRCCON) in the CRC generator are used to select which bit is used as the
feedback point of the CRC. For a 16-bit CRC example, if PLEN<3:0> = 0x0110, then bit 6 of
the Shift register is fed into the XOR gates of all bits set in the CRCXOR register.

The CRCXOR feedback points are specified using the DCRCXOR register. Setting the Nth bit in
the DCRCXOR register will enable the input to the Nth bit of the CRC Shift register to be XORed
with the (PLEN + 1)th bit of the CRC Shift register. Bit 0 of the CRC generator is always XORed.

31.3.19.5 CALCULATING THE IP HEADER CHECKSUM

When the CRCTYP bit is set, the SFM calculates the IP header checksum. Use the following
procedure to calculate the IP header checksum:

1. Configure a channel to point to the IP header.
2. Configure CRCCON to enable the SFM and select the channel being used.
3. Set CRCTYP bit in the DCRCCON register, which selects IP Header checksum.
4. Set DCRCDATA to ‘0000’.
5. Start the transfer.
6. When the transfer completes, read the data out of the DCRCDATA register.

Table 31-5: Example CRC Setup
CRC Type Bit Name Bit Value

Devices with
16-bit CRC

PLEN<3:0> ‘b1111’

DCRCXOR<15:0> ‘b0001 0000 0010 000’

Devices with
32-bit CRC

PLEN<4:0> ‘b11111’

DCRCXOR<31:0> ‘b0000 0100 1100 0001 0001 1101 1011 0110’

Note: This feature is not available on all devices. Refer to the specific device data sheet
for availability.
© 2009 Microchip Technology Inc. DS61117E-page 31-49

PIC32MX Family Reference Manual
31.4 INTERRUPTS
The DMA device has the ability to generate interrupts reflecting the events that occur during the
channel’s data transfer:

• Error interrupts, signaled by each channel’s CHERIF bit (DCHxINT<0>) and enabled using
the CHERIE bit (DCHxINT<16>). This event occurs when there is an address error
occurred during the channel transfer operation.

• Abort interrupts, signaled by each channel’s CHTAIF bit (DCHxINT<1>) and enabled using
the CHTAIE bit (DCHxINT<17>). This event occurs when a DMA channel transfer gets
aborted because of a system event (interrupt) matching the CHAIRQ<7:0>
(DCHxECON<23:16>) when the abort interrupt request is enabled, AIRQEN = 1
(DCHxECON<3>).

• Block complete interrupts, signaled by each channel’s CHBCIF bit (DCHxINT<3>) and
enabled using the CHBCIE bit (DCHxINT<19>). This event occurs when a DMA channel
block transfer is completed.

• Cell complete interrupts, signaled by each channel’s CHCCIF bit (DCHxINT<2>) and
enabled using the CHCCIE bit (DCHxINT<18>). This event occurs when a DMA channel
cell transfer is completed.

• Source Address Pointer activity interrupts: either when the Channel Source Pointer
reached the end of the source, signaled by the CHSDIF bit (DCHxINT<7>) and enabled by
CHSDIE bit (DCHxINT<23>), or when the Channel Source Pointer reached midpoint of the
source, signaled by the CHSHIF bit (DCHxINT<6>) and enabled by the CHSHIE bit (DCHx-
INT<22>).

• Destination Address Pointer activity interrupts: either when the Channel Destination Pointer
reached the end of the destination, signaled by the CHDDIF bit (DCHxINT<5>) and
enabled by the CHDDIE bit (DCHxINT<21>), or when the Channel Destination Pointer
reached midpoint of the destination, signaled by the CHDHIF bit (DCHxINT<4>) and
enabled by the CHDHIE bit (DCHxINT<20>).

All the interrupts belonging to a DMA channel map to the corresponding channel interrupt vector.

The corresponding DMA channels interrupt flags are:

• DMA0IF (IFS1<16>)
• DMA1IF (IFS1<17>)
• DMA2IF (IFS1<18>)
• DMA3IF (IFS1<19>)
• DMA4IF (IFS1<20>)
• DMA5IF (IFS1<21>)
• DMA6IF (IFS1<22>)
• DMA7IF (IFS1<23>)

All these interrupt flags must be cleared in software.

A DMA channel is enabled as a source of interrupts via the respective DMA interrupt enable bits:

• DMA0IE (IEC1<16>)
• DMA1IE (IEC1<17>)
• DMA2IE (IEC1<18>)
• DMA3IE (IEC1<19>)
• DMA4IE (IEC1<20>)
• DMA5IE (IEC1<21>)
• DMA6IE (IEC1<22>)
• DMA7IE (IEC1<23>)

Note: Not all DMA channels are available on all devices. Refer to the specific device data
sheet for availability.
DS61117E-page 31-50 © 2009 Microchip Technology Inc.

Section 31. DMA Controller
D

M
A

 C
ontroller

31

The interrupt-priority-level bits and interrupt-subpriority-level bits must also be configured:

• DMA0IP<2:0> (IPC9<4:2>), DMA0IS<1:0> (IPC9<1:0>)
• DMA1IP<2:0> (IPC9<12:10>), DMA1IS<1:0> (IPC9<9:8>)
• DMA2IP<2:0> (IPC9<20:18>), DMA2IS<1:0> (IPC9<17:16>)
• DMA3IP<2:0> (IPC9<28:26>), DMA3IS<1:0> (IPC9<25:24>)
• DMA4IP<2:0> (IPC10<4:2>), DMA4IS<1:0> (IPC10<1:0>)
• DMA5IP<2:0> (IPC10<12:10>), DMA5IS<1:0> (IPC10<9:8>)
• DMA7IP<2:0> (IPC10<20:18>), DMA6IS<1:0> (IPC10<17:16>)
• DMA7IP<2:0> (IPC10<28:26>), DMA7IS<1:0> (IPC10<25:24>)

31.4.1 Interrupt Configuration
Each DMA channel internally has multiple interrupt flags (CHSDIF, CHSHIF, CHDDIF, CHDHIF,
CHBCIF, CHCCIF, CHTAIF, CHERIF) and corresponding enable interrupt control bits (CHSDIE,
CHSHIE, CHDDIE, CHDHIE, CHBCIE, CHCCIE, CHTAIE, CHERIE).

However, for the interrupt controller, there is just one dedicated interrupt flag bit per channel,
DMAxIF, and the corresponding interrupt enable/mask bits, DMAxIE.

Therefore, note that all of the interrupt conditions for a specific DMA channel share just one
interrupt vector. Each DMA channel can have its own priority level independent of other DMA
channels.

Note that the DMAxIF bits will be set without regard to the state of the corresponding enable bits
DMAxIE. The DMAxIF bits can be polled by software if desired.

The DMAxIE bits are used to define the behavior of the Vector Interrupt Controller or INT when
a corresponding DMAxIF bit is set. When the corresponding DMAxIE bit is clear, the INT module
does not generate a CPU interrupt for the event. If the DMAxIE bit is set, the INT module will gen-
erate an interrupt to the CPU when the corresponding DMAxIF bit is set (subject to the priority
and subpriority as follows).

It is the responsibility of the user’s software routine that services a particular interrupt to clear the
appropriate interrupt flag bit before the service routine is complete.

The priority of each DMA channel can be set independently with the DMAxIP bits in the IPCx
register. These priorities define the priority group to which the interrupt source will be assigned.
The priority groups range from a value of 7 (the highest priority), to a value of 0, which does not
generate an interrupt. An interrupt being serviced will be preempted by an interrupt in a higher
priority group.

The subpriority bits allow setting the priority of an interrupt source within a priority group. The val-
ues of the subpriority range from 3 (the highest priority), to 0 the lowest priority. An interrupt with
the same priority group but having a higher subpriority value will not preempt a lower subpriority
interrupt that is in progress.

The priority group and subpriority bits allow more than one interrupt source to share the same
priority and subpriority. If simultaneous interrupts occur in this configuration, the natural order of
the interrupt sources within a Priority/subpriority group pair determine the interrupt generated.
The natural priority is based on the vector numbers of the interrupt sources. The lower the vector
number the higher the natural priority of the interrupt. Any interrupts that were overridden by nat-
ural order will then generate their respective interrupts based on Priority, subpriority and natural
order after the interrupt flag for the current interrupt is cleared.

After an enabled interrupt is generated, the CPU will jump to the vector assigned to that interrupt.
The vector number for the interrupt is the same as the natural order number. The CPU will then
begin executing code at the vector address. The user’s code at this vector address should
perform any application-specific operations and clear the DMAxIF interrupt flags, and then exit.
Refer to the vector address table details in Section 8. “Interrupts” (DS61108) in the “PIC32MX
Family Reference Manual” for more information on interrupts.

Note: Depending on the device variant, up to 8 (i.e., 0-7) interrupt flags and interrupt
enable/mask bits are available. Refer to the specific device data sheet for
availability.
© 2009 Microchip Technology Inc. DS61117E-page 31-51

PIC32MX Family Reference Manual
Example 31-9: DMA Channel Initialization with Interrupts Enabled Code Example

Table 31-6: DMA Interrupt Vectors for Various Offsets with EBASE = 0x8000:0000

Interrupt Vector/Natural
Order

IRQ
Number

Vector
Address
IntCtl.VS
= 0x01

Vector
Address
IntCtl.VS
= 0x02

Vector
Address
IntCtl.VS
= 0x04

Vector
Address
IntCtl.VS
= 0x08

Vector
Address
IntCtl.VS
= 0x10

DMA0 36 48 8000 0680 8000 0B00 8000 1400 8000 2600 8000 4A00
DMA1 37 49 8000 06A0 8000 0B40 8000 1480 8000 2700 8000 4C00
DMA2 38 50 8000 06C0 8000 0B80 8000 1500 8000 2800 8000 4E00
DMA3 39 51 8000 06E0 8000 0BC0 8000 1580 8000 2900 8000 5000

DMA4(1) 40 52 8000 0700 8000 0C00 8000 1600 8000 2A00 8000 5200
DMA5(1) 41 53 8000 0720 8000 0C40 8000 1680 8000 2B00 8000 5400
DMA6(1) 42 54 8000 0740 8000 0C80 8000 1700 8000 2C00 8000 5600
DMA7(1) 43 55 8000 0760 8000 0CC0 8000 1780 8000 2D00 8000 5800
Note 1: These interrupts are not available on all devices. Refer to the specific device data sheet for availability.

/*
The following code example illustrates a DMA channel 0 interrupt configuration.
When the DMA channel 0 interrupt is generated, the CPU will jump to the vector assigned to
DMA0 interrupt.
*/

IEC1CLR=0x00010000; // disable DMA channel 0 interrupts
IFS1CLR=0x00010000; // clear any existing DMA channel 0 interrupt flag

DMACONSET=0x00008000; // enable the DMA controller
DCH0CON=0x03; // channel off, priority 3, no chaining

DCH0ECON=0; // no start or stop irq’s, no pattern match

// program the transfer
DCH0SSA=0x1d010000; // transfer source physical address
DCH0DSA=0x1d020000; // transfer destination physical address
DCH0SSIZ=200; // source size 200 bytes
DCH0DSIZ=200; // destination size 200 bytes
DCH0CSIZ=200; // 200 bytes transferred per event

DCH0INTCLR=0x00ff00ff; // clear existing events, disable all interrupts
DCH0INTSET=0x00090000; // enable Block Complete and error interrupts

IPC9CLR=0x0000001f; // clear the DMA channel 0 priority and sub-priority
IPC9SET=0x00000016; // set IPL 5, sub-priority 2
IEC1SET=0x00010000; // enable DMA channel 0 interrupt

DCH0CONSET=0x80; // turn channel on
// initiate a transfer

DCH0ECONSET=0x00000080; // set CFORCE to 1

// do something else

// will get an interrupt when the block transfer is done
// or when error occurred
DS61117E-page 31-52 © 2009 Microchip Technology Inc.

Section 31. DMA Controller
D

M
A

 C
ontroller

31

Example 31-10: DMA Channel 0 ISR Code Example
/*
The following code example demonstrates a simple Interrupt Service Routine for DMA channel 0
interrupts. The user’s code at this vector should perform any application specific operations
and must clear the DMA0 interrupt flags before exiting.
*/

void __ISR(_DMA_0_VECTOR, ipl5) __DMA0Interrupt(void)
{

int dmaFlags=DCH0INT&0xff; // read the interrupt flags

/*
perform application specific operations in response to any interrupt flag set
*/

DCH0INTCLR=0x000000ff; // clear the DMA channel interrupt flags
IFS1CLR = 0x00010000; // Be sure to clear the DMA0 interrupt flags

// before exiting the service routine.
}

Note: The DMA ISR code example shows MPLAB® C32 C compiler specific syntax. Refer to your compiler
manual regarding support for ISRs.
© 2009 Microchip Technology Inc. DS61117E-page 31-53

PIC32MX Family Reference Manual
31.5 OPERATION IN POWER-SAVING AND DEBUG MODES

31.5.1 DMA Operation in Idle Mode
When the device enters Idle mode, the system clock sources remain functional and the DMA
module continues to operate.

On some variants, the SIDL bit (DMACON<13>) selects whether the module will stop or continue
functioning on Idle.

If SIDL = 0, the module will continue operation in Idle mode and will have the clocks turned off.
If SIDL = 1, the module will discontinue operation in Idle mode. The DMA module will turn off the
clocks so that the power consumption is more efficient.

31.5.2 DMA Operation in Sleep Mode
When the device enters Sleep mode, the system clock is disabled. No DMA activity can occur in
this mode.

31.5.3 DMA Operation in Debug Mode
The FRZ bit (DMACON<14>) determines whether the DMA module will run or stop while the CPU
is executing debug exception code (i.e., application is halted) in Debug mode. When FRZ = 0,
the DMA module continues to run even when application is halted in Debug mode. When
FRZ = 1 and the application is halted in Debug mode, the module will freeze its operations and
make no changes to the state of the DMA module. The module will resume its operation after
CPU resumes execution.

31.6 EFFECTS OF VARIOUS RESETS

31.6.1 Device Reset
All DMA registers are forced to their Reset states upon a device Reset. When the asynchronous
Reset input goes active, the DMA logic:

• Resets all fields in DMACON, DMASTAT, DMAADDR, DCRCCON, DCRCDATA,
DCRCXOR

• Sets the appropriate values in each channel’s register fields: DCHxCON, DCHxECON,
DCHxINT, DCHxSSIZ, DCHxDSIZ, DCHxSPTR, DCHxDPTR, DCHxCSIZ, DCHxCPTR,
DCHxDAT

• Registers DCHxSSA and DCHxDSA have random values after Reset
• Aborts any on-going data transfers

31.6.2 Power-On Reset
All DMA registers are forced to their Reset states upon a Power-on Reset.

31.6.3 Watchdog Timer Reset
All DMA registers are forced to their Reset states upon a Watchdog Timer Reset.

Note: The DMA cannot be used by a peripheral that has its SIDL bit set to ‘1’.

Note: The FRZ bit is readable and writable only when the CPU is executing in Debug
Exception mode. In all other modes, the FRZ bit reads as ‘0’. If FRZ bit is changed
during Debug mode, the new value does not take effect until the current Debug
Exception mode is exited and re-entered. During the Debug Exception mode, the
FRZ bit reads the state of the peripheral when entering Debug mode.
DS61117E-page 31-54 © 2009 Microchip Technology Inc.

Section 31. DMA Controller
D

M
A

 C
ontroller

31

31.7 RELATED APPLICATION NOTES

This section lists application notes that are related to this section of the manual. These
application notes may not be written specifically for the PIC32MX device family, but the concepts
are pertinent and could be used with modification and possible limitations. The current
application notes related to the Direct Memory Access (DMA) module are:

Title Application Note #
No related application notes at this time N/A

Note: Visit the Microchip web site (www.microchip.com) for additional application notes
and code examples for the PIC32MX family of devices.
© 2009 Microchip Technology Inc. DS61117E-page 31-55

http://www.microchip.com
http://www.microchip.com
http://www.microchip.com
http://www.microchip.com

PIC32MX Family Reference Manual
31.8 REVISION HISTORY

Revision A (October 2007)
This is the initial released version of this document.

Revision B (October 2007)
Updated document to remove Confidential status.

Revision C (April 2008)
Revised status to Preliminary; Revised U-0 to r-x; Revised Table 31-1; Revised Table 31-2
(DCHxCON, bit 3), deleted Note 1; Revised Registers 31-19, 31-39, 31-43, 31-47, 31-48, 31-49,
31-53; Revise Sections 31.3, 31.3.2; Revised Examples 31-1, 31-3, 31-4, 31-6, 31-7, 31-8;
Delete Example 31-2 and renumber examples; Delete Section 31.3.3 and renumber sections;
Revised Section 31.3.20.7.

Revision D (June 2008)
Revised Registers 31-58 to 31-60, Footnote; Revised Example 31-8; Change Reserved bits
“Maintain as” to “Write”; Added Note to ON bit (DMACON Register).

Revision E (August 2009)
This revision introduces new bits and functionality that are only available on certain devices. The
following details the resulting changes:

• DMA Register Summary (Table 31-1)
- Added the BUSY, BYTO1, BYTO0, WBO, BITO, CRCTYP and CHBUSY bits
- Removed references to the IEC1, IPC9 and IFS1 registers
- Added the Address Offset column to the DMA Register Summary
- Added Notes 1, 2 and 3, which describe the Clear, Set and Invert registers
- Added Notes 4 and 5 regarding the availability of certain bits and ranges of bits

depending on the device variant
• Added Notes describing the Clear, Set and Invert registers to the following registers:

- DMACON (Register 31-1)
- DMASTAT (Register 31-2)
- DMAADDR (Register 31-3)
- DCRCCON (Register 31-4)
- DCRCDATA (Register 31-5)
- DCRCXOR (Register 31-6)
- DCHxCON (Register 31-7)
- DCHxECON (Register 31-8)
- DCHxINT (Register 31-9)
- DCHxSSA (Register 31-10)
- DCHxDSA (Register 31-11)
- DCHxSSIZ (Register 31-12)
- DCHxDSIZ (Register 31-13)
- DCHSPTR (Register 31-14)
- DCHxDPTR (Register 31-15)
- DCHxCSIZ (Register 31-16)
- DCHxCPTR (Register 31-17)
- DCHxDAT (Register 31-18)

• Removed these registers: IFS1, IEC1 and IPC9
• Added the BUSY bit (DMACON<11>) and Note 1 regarding availability of the SIDL and

BUSY bits to Register 31-1
DS61117E-page 31-56 © 2009 Microchip Technology Inc.

Section 31. DMA Controller
D

M
A

 C
ontroller

31

Revision E (August 2009) (Continued)
• Updated the DMACH bit (DMASTAT<2:0>) and added Note 2 regarding the availability of

all bits in Register 31-2
• Added the BYTO1, BYTO0, WBO, BITO and CRCTYP bits, updated bits PLEN<4:0> and

CRCCH<2:0>, and added Notes 1 and 2 to Register 31-4
• Updated DCRCDATA bits and added Note 1 to Register 31-5
• Updated DCRCXOR bits and added Note 1 to Register 31-6
• Added CHBUSY bit (DCHxCON<15>) and added Note 1 to Register 31-7
• Updated DCHxSSIZ bits and added Note 1 to Register 31-12
• Updated DCHxDSIZ bits and added Note 1 to Register 31-13
• Updated DCHxSPTR bits and added Note 2 to Register 31-14
• Updated DCHxDPTR bits and added Note 1 to Register 31-15
• Updated DCHxCSIZ bits and added Note 1 to Register 31-16
• Updated DCHxCPTR bits and added Note 2 to Register 31-17
• Updated the lowest priority channel number and added a related note to the fourth

paragraph in Section 31.3.4 “Channel Chaining Mode Operation”
• Added information on suspending the DMA module and a related note to Section 31.3.6

“Suspending Transfers” and Section 31.3.18 “DMA Suspend”
• Updated Section 31.3.19 “Special Function Module (SFM) Mode” to differentiate

between the 16-bit and 32-bit CRC
• Added Section 31.3.19.5 “Calculating the IP Header Checksum”
• Added DMA channel interrupt flags, enable bits and priority-level bits to Section 31.4

“Interrupts”
• Added DMA interrupt vectors (DMA4-DMA7) to Table 31-6
• Updated Section 31.5.1 “DMA Operation in Idle Mode”
© 2009 Microchip Technology Inc. DS61117E-page 31-57

PIC32MX Family Reference Manual
NOTES:
DS61117E-page 31-58 © 2009 Microchip Technology Inc.

	Section 31. DMA Controller
	31.1 Introduction
	31.1.1 DMA Operation
	Figure 31-1: Typical DMA Source to Destination Transfer Diagram
	Figure 31-2: DMA Module Block Diagram
	Figure 31-3: CRC Implementation Details

	31.2 Status and Control Registers
	Table 31-1: DMA Register Summary
	Register 31-1: DMACON: DMA Controller Control Register
	Register 31-2: DMASTAT: DMA Status Register(1)
	Register 31-3: DMAADDR: DMA Address Register(1)
	Register 31-4: DCRCCON: DMA CRC Control Register
	Register 31-5: DCRCDATA: DMA CRC Data Register
	Register 31-6: DCRCXOR: DMA CRCXOR Enable Register
	Register 31-7: DCHxCON: DMA Channel x Control Register
	Register 31-8: DCHxECON: DMA Channel x Event Control Register
	Register 31-9: DCHxINT: DMA Channel x Interrupt Control Register
	Register 31-10: DCHxSSA: DMA Channel x Source Start Address Register
	Register 31-11: DCHxDSA: DMA Channel x Destination Start Address Register
	Register 31-12: DCHxSSIZ: DMA Channel x Source Size Register
	Register 31-13: DCHxDSIZ: DMA Channel x Destination Size Register
	Register 31-14: DCHxSPTR: DMA Channel x Source Pointer Register(1)
	Register 31-15: DCHxDPTR: DMA Channel x Destination Pointer Register
	Register 31-16: DCHxCSIZ: DMA Channel x Cell-Size Register
	Register 31-17: DCHxCPTR: DMA Channel x Cell Pointer Register(1)
	Register 31-18: DCHxDAT: DMA Channel x Pattern Data Register

	31.3 Modes of Operation
	31.3.1 DMA Controller Terminology
	31.3.2 Basic Transfer Mode Operation
	Example 31-1: DMA Channel Initialization for Basic Transfer Mode Code Example

	31.3.3 Pattern Match Termination Mode Operation
	Example 31-2: DMA Channel Initialization in Pattern Match Transfer Mode Code Example

	31.3.4 Channel Chaining Mode Operation
	Example 31-3: DMA Channel Initialization in Chaining Mode Code Example

	31.3.5 Channel Auto-Enable Mode Operation
	31.3.6 Suspending Transfers
	31.3.7 Resetting the Channel
	31.3.8 Channel Priority and Selection
	Figure 31-4: Channel Priority Behavior

	31.3.9 Byte Alignment
	Table 31-2: Source and Destination Pointer Updates – Example 1
	Table 31-3: Source and Destination Pointer Updates – Example 2

	31.3.10 Channel Transfer Behavior
	31.3.11 Channel Enable
	31.3.12 Channel IRQ Detection
	31.3.13 Channel Event Transfer Initiation
	31.3.14 Channel Event Transfer Termination
	Table 31-4: Channel Event Behavior

	31.3.15 Channel Abort Interrupt
	31.3.16 Channel Abort
	31.3.17 Address Error
	31.3.18 DMA Suspend
	Example 31-4: DMA Controller Suspension

	31.3.19 Special Function Module (SFM) Mode
	Figure 31-5: Special Function Module (SFM)
	Example 31-5: DMA LFSR CRC Calculation in Background Mode Code Example
	Example 31-6: CRC Calculation in Append Mode Code Example
	Figure 31-6: Byte Order for BYTO Values
	Example 31-7: 16-bit CRC Polynomial
	Example 31-8: 32-bit CRC Polynomial
	Table 31-5: Example CRC Setup

	31.4 Interrupts
	31.4.1 Interrupt Configuration
	Table 31-6: DMA Interrupt Vectors for Various Offsets with EBASE = 0x8000:0000
	Example 31-9: DMA Channel Initialization with Interrupts Enabled Code Example
	Example 31-10: DMA Channel 0 ISR Code Example

	31.5 Operation in Power-Saving and Debug Modes
	31.5.1 DMA Operation in Idle Mode
	31.5.2 DMA Operation in Sleep Mode
	31.5.3 DMA Operation in Debug Mode

	31.6 Effects of Various Resets
	31.6.1 Device Reset
	31.6.2 Power-On Reset
	31.6.3 Watchdog Timer Reset

	31.7 Related Application Notes
	31.8 Revision History

