
Section 8. Interrupts
Interrupts

8

HIGHLIGHTS
This section of the manual contains the following topics:

8.1 Introduction ... 8-2
8.2 Control Registers .. 8-3
8.3 Operation .. 8-12
8.4 Single Vector Mode... 8-14
8.5 Multi-Vector Mode ... 8-15
8.6 Interrupt Vector Address Calculation... 8-16
8.7 Interrupt Priorities..8-17
8.8 Interrupts and Register Sets ... 8-18
8.9 Interrupt Processing.. 8-19
8.10 External Interrupts... 8-23
8.11 Temporal Proximity Interrupt Coalescing .. 8-24
8.12 Effects of Interrupts After Reset .. 8-25
8.13 Operation in Power-Saving and Debug Modes... 8-25
8.14 Design Tips ... 8-26
8.15 Related Application Notes... 8-27
8.16 Revision History .. 8-28
© 2009 Microchip Technology Inc. DS61108E-page 8-1

PIC32MX Family Reference Manual
8.1 INTRODUCTION
The PIC32MX generates interrupt requests in response to interrupt events from peripheral mod-
ules. The Interrupt module exists external to the CPU logic and prioritizes the interrupt events
before presenting them to the CPU.

The PIC32MX Interrupts module includes the following features:

• Up to 96 interrupt sources
• Up to 64 interrupt vectors
• Single and Multi-Vector mode operations
• Five external interrupts with edge polarity control
• Interrupt proximity timer
• Module freeze in Debug mode
• Seven user-selectable priority levels for each vector
• Four user-selectable subpriority levels within each priority
• User-configurable shadow set based on priority level (this feature is not available on all

devices; refer to the specific device data sheet for availability)
• Software can generate any interrupt
• User-configurable interrupt vector table location
• User-configurable interrupt vector spacing

Figure 8-1: Interrupt Controller Module

Interrupt Controller

In
te

rr
up

t R
eq

ue
st

s Vector Number

CPU Core
Priority Level

Shadow Set Number

Note: Several of the registers cited in this section are not in the interrupt controller module.
These registers (and bits) are associated with the CPU. Refer to Section 2. “MCU”
(DS61113) for more details.

To avoid confusion, a typographic distinction is made for registers in the CPU. The
register names in this section, and all other sections of this manual, are signified by
uppercase letters only (except for cases in which variables are used). CPU register
names are signified by upper and lowercase letters. For example, INTSTAT is an
Interrupts register; whereas, IntCtl is a CPU register.
DS61108E-page 8-2 © 2009 Microchip Technology Inc.

Section 8. Interrupts
Interrupts

8

8.2 CONTROL REGISTERS

The Interrupts module consists of the following Special Function Registers (SFRs):

• INTCON: Interrupt Control Register
• INTSTAT: Interrupt Status Register
• TPTMR: Temporal Proximity Timer Register
• IFSx: Interrupt Flag Status Registers
• IECx: Interrupt Enable Control Registers
• IPCx: Interrupt Priority Control Registers

Table 8-1 provides a brief summary of the related Interrupts module registers. Corresponding
registers appear after the summary, followed by a detailed description of each register.

Note: Each PIC32MX device variant may have one or more Interrupt sources, and depending on the
device variant, the number of sources may be different. An ‘x’ used in the names of
control/status bits and registers denotes that there are multiple registers, which have the same
function, that can define these interrupt sources. Refer to the specific device data sheet for
more details.

Table 8-1: Interrupts Register Summary
Address

Offset Name Bit
Range

Bit
31/23/15/7

Bit
30/22/14/6

Bit
29/21/13/5

Bit
28/20/12/4

Bit
27/19/11/3

Bit
26/18/10/2

Bit
25/17/9/1

Bit
24/16/8/0

0x00 INTCON(1,2,3) 31:24 — — — — — — — —

23:16 — — — — — — — SS0

15:8 — FRZ — MVEC — TPC<2:0>

7:0 — — — INT4EP INT3EP INT2EP INT1EP INT0EP

0x10 INTSTAT(1,2,3) 31:24 — — — — — — — —

23:16 — — — — — — — —

15:8 — — — — — RIPL<2:0>

7:0 — — VEC<5:0>

0x20 TPTMR(1,2,3) 31:24 TPTMR<31:24>

23:16 TPTMR<23:16>

15:8 TPTMR<15:8>

7:0 TPTMR<7:0>

0x30-
0x50

IFSx(1,2,3) 31:24 IFS31 IFS30 IFS29 IFS28 IFS27 IFS26 IFS25 IFS24

23:16 IFS23 IFS22 IFS21 IFS20 IFS19 IFS18 IFS17 IFS16

15:8 IFS15 IFS14 IFS13 IFS12 IFS11 IFS10 IFS09 IFS08

7:0 IFS07 IFS06 IFS05 IFS04 IFS03 IFS02 IFS01 IFS00

0x60-
0x80

IECx(1,2,3) 31:24 IEC31 IEC30 IEC29 IEC28 IEC27 IEC26 IEC25 IEC24

23:16 IEC23 IEC22 IEC21 IEC20 IEC19 IEC18 IEC17 IEC16

15:8 IEC15 IEC14 IEC13 IEC12 IEC11 IEC10 IEC09 IEC08

7:0 IEC07 IEC06 IEC05 IEC04 IEC03 IEC02 IEC01 IEC00

0x90-
0x180

IPCx(1,2,3) 31:24 — — — IP03<2:0> IS03<1:0>

23:16 — — — IP02<2:0> IS02<1:0>

15:8 — — — IP01<2:0> IS01<1:0>

7:0 — — — IP00<2:0> IS00<1:0>

Legend: — = unimplemented, read as ‘0’. Address offset values are shown in hexadecimal.
Note 1: This register has an associated Clear register at an offset of 0x4 bytes. These registers have the same name with CLR appended to the

end of the register name (e.g., INTCONCLR). Writing a ‘1’ to any bit position in the Clear register will clear valid bits in the associated
register. Reads from the Clear register should be ignored.

2: This register has an associated Set register at an offset of 0x8 bytes. These registers have the same name with SET appended to the
end of the register name (e.g., INTCONSET). Writing a ‘1’ to any bit position in the Set register will set valid bits in the associated regis-
ter. Reads from the Set register should be ignored.

3: This register has an associated Invert register at an offset of 0xC bytes. These registers have the same name with INV appended to the
end of the register name (e.g., INTCONINV). Writing a ‘1’ to any bit position in the Invert register will invert valid bits in the associated
register. Reads from the Invert register should be ignored.
© 2009 Microchip Technology Inc. DS61108E-page 8-3

PIC32MX Family Reference Manual
Register 8-1: INTCON: Interrupt Control Register(1,2,3)

r-x r-x r-x r-x r-x r-x r-x r-x
— — — — — — — —

bit 31 bit 24

r-x r-x r-x r-x r-x r-x r-x R/W-0
— — — — — — — SS0

bit 23 bit 16

r-x R/W-0 r-x R/W-0 r-x R/W-0 R/W-0 R/W-0
— FRZ — MVEC — TPC<2:0>

bit 15 bit 8

r-x r-x r-x R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
— — — INT4EP INT3EP INT2EP INT1EP INT0EP

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit P = Programmable bit r = Reserved bit
U = Unimplemented bit -n = Bit Value at POR: (‘0’, ‘1’, x = Unknown)

bit 31-17 Reserved: Write ‘0’; ignore read
bit 16 SS0: Single Vector Shadow Register Set bit

1 = Single vector is presented with a shadow register set
0 = Single vector is not presented with a shadow register set

bit 15 Reserved: Write ‘0’; ignore read
bit 14 FRZ: Freeze in Debug Exception Mode bit

1 = Freeze operation when CPU is in Debug Exception mode
0 = Continue operation even when CPU is in Debug Exception mode

Note: FRZ is writable in Debug Exception mode only, it is forced to ‘0’ in normal mode.
bit 13 Reserved: Write ‘0’; ignore read
bit 12 MVEC: Multi Vector Configuration bit

1 = Interrupt controller configured for multi vectored mode
0 = Interrupt controller configured for single vectored mode

bit 11 Reserved: Write ‘0’; ignore read

Note 1: This register has an associated Clear register (INTCONCLR) at an offset of 0x4 bytes. Writing a ‘1’ to any
bit position in the Clear register will clear valid bits in the associated register. Reads from the Clear register
should be ignored.

2: This register has an associated Set register (INTCONSET) at an offset of 0x8 bytes. Writing a ‘1’ to any
bit position in the Set register will set valid bits in the associated register. Reads from the Set register
should be ignored.

3: This register has an associated Invert register (INTCONINV) at an offset of 0xC bytes. Writing a ‘1’ to any
bit position in the Invert register will invert valid bits in the associated register. Reads from the Invert
register should be ignored.
DS61108E-page 8-4 © 2009 Microchip Technology Inc.

Section 8. Interrupts
Interrupts

8

bit 10-8 TPC<2:0>: Temporal Proximity Control bits
111 = Interrupts of group priority 7 or lower start the TP timer
110 = Interrupts of group priority 6 or lower start the TP timer
101 = Interrupts of group priority 5 or lower start the TP timer
100 = Interrupts of group priority 4 or lower start the TP timer
011 = Interrupts of group priority 3 or lower start the TP timer
010 = Interrupts of group priority 2 or lower start the TP timer
001 = Interrupts of group priority 1 start the IP timer
000 = Disables proximity timer

bit 7-5 Reserved: Write ‘0’; ignore read
bit 4 INT4EP: External Interrupt 4 Edge Polarity Control bit

1 = Rising edge
0 = Falling edge

bit 3 INT3EP: External Interrupt 3 Edge Polarity Control bit
1 = Rising edge
0 = Falling edge

bit 2 INT2EP: External Interrupt 2 Edge Polarity Control bit
1 = Rising edge
0 = Falling edge

bit 1 INT1EP: External Interrupt 1 Edge Polarity Control bit
1 = Rising edge
0 = Falling edge

bit 0 INT0EP: External Interrupt 0 Edge Polarity Control bit
1 = Rising edge
0 = Falling edge

Register 8-1: INTCON: Interrupt Control Register(1,2,3) (Continued)

Note 1: This register has an associated Clear register (INTCONCLR) at an offset of 0x4 bytes. Writing a ‘1’ to any
bit position in the Clear register will clear valid bits in the associated register. Reads from the Clear register
should be ignored.

2: This register has an associated Set register (INTCONSET) at an offset of 0x8 bytes. Writing a ‘1’ to any
bit position in the Set register will set valid bits in the associated register. Reads from the Set register
should be ignored.

3: This register has an associated Invert register (INTCONINV) at an offset of 0xC bytes. Writing a ‘1’ to any
bit position in the Invert register will invert valid bits in the associated register. Reads from the Invert
register should be ignored.
© 2009 Microchip Technology Inc. DS61108E-page 8-5

PIC32MX Family Reference Manual
Register 8-2: INTSTAT: Interrupt Status Register(1,2,3)

r-x r-x r-x r-x r-x r-x r-x r-x
— — — — — — — —

bit 31 bit 24

r-x r-x r-x r-x r-x r-x r-x r-x
— — — — — — — —

bit 23 bit 16

r-x r-x r-x r-x r-x R-0 R-0 R-0
— — — — — RIPL<2:0>

bit 15 bit 8

r-x r-x R-0 R-0 R-0 R-0 R-0 R-0
— — VEC<5:0>

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit P = Programmable bit r = Reserved bit
U = Unimplemented bit -n = Bit Value at POR: (‘0’, ‘1’, x = Unknown)

bit 31-11 Reserved: Write ‘0’; ignore read
bit 10-8 RIPL<2:0>: Requested Priority Level bits

000-111 = The priority level of the latest interrupt presented to the CPU

Note: This value should only be used when the interrupt controller is configured for Single
Vector mode.

bit 7-6 Reserved: Write ‘0’; ignore read
bit 5-0 VEC<5:0>: Interrupt Vector bits

00000-11111 = The interrupt vector that is presented to the CPU

Note: This value should only be used when the interrupt controller is configured for Single
Vector mode.

Note 1: This register has an associated Clear register (INTSTATCLR) at an offset of 0x4 bytes. Writing a ‘1’ to any
bit position in the Clear register will clear valid bits in the associated register. Reads from the Clear register
should be ignored.

2: This register has an associated Set register (INTSTATSET) at an offset of 0x8 bytes. Writing a ‘1’ to any
bit position in the Set register will set valid bits in the associated register. Reads from the Set register
should be ignored.

3: This register has an associated Invert register (INTSTATINV) at an offset of 0xC bytes. Writing a ‘1’ to any
bit position in the Invert register will invert valid bits in the associated register. Reads from the Invert
register should be ignored.
DS61108E-page 8-6 © 2009 Microchip Technology Inc.

Section 8. Interrupts
Interrupts

8

Register 8-3: TPTMR: Temporal Proximity Timer Register(1,2,3)

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
TPTMR<31:24>

bit 31 bit 24

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
TPTMR<23:16>

bit 23 bit 16

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
TPTMR<15:8>

bit 15 bit 8

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
TPTMR<7:0>

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit P = Programmable bit r = Reserved bit
U = Unimplemented bit -n = Bit Value at POR: (‘0’, ‘1’, x = Unknown)

bit 31-0 TPTMR<31:0>: Temporal Proximity Timer Reload bits
Used by the Temporal Proximity Timer as a reload value when the Temporal Proximity timer is
triggered by an interrupt event.

Note 1: This register has an associated Clear register (TPTMRCLR) at an offset of 0x4 bytes. Writing a ‘1’ to any
bit position in the Clear register will clear valid bits in the associated register. Reads from the Clear register
should be ignored.

2: This register has an associated Set register (TPTMRSET) at an offset of 0x8 bytes. Writing a ‘1’ to any bit
position in the Set register will set valid bits in the associated register. Reads from the Set register should
be ignored.

3: This register has an associated Invert register (TPTMRINV) at an offset of 0xC bytes. Writing a ‘1’ to any
bit position in the Invert register will invert valid bits in the associated register. Reads from the Invert
register should be ignored.
© 2009 Microchip Technology Inc. DS61108E-page 8-7

PIC32MX Family Reference Manual
Register 8-4: IFSx: Interrupt Flag Status Register(1,2,3,4)

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
IFS31 IFS30 IFS29 IFS28 IFS27 IFS26 IFS25 IFS24

bit 31 bit 24

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
IFS23 IFS22 IFS21 IFS20 IFS19 IFS18 IFS17 IFS16

bit 23 bit 16

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
IFS15 IFS14 IFS13 IFS12 IFS11 IFS10 IFS09 IFS08

bit 15 bit 8

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
IFS07 IFS06 IFS05 IFS04 IFS03 IFS02 IFS01 IFS00

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit P = Programmable bit r = Reserved bit
U = Unimplemented bit -n = Bit Value at POR: (‘0’, ‘1’, x = Unknown)

bit 31-0 IFS31-IFS00: Interrupt Flag Status bits
1 = Interrupt request has occurred
0 = No interrupt request has occurred

Note 1: This register represents a generic definition of the IFSx register. Refer to the “Interrupts” chapter in the
specific device data sheet to learn exact bit definitions.

2: These registers have an associated Clear register (IFSxCLR) at an offset of 0x4 bytes. Writing a ‘1’ to any
bit position in the Clear register will clear valid bits in the associated register. Reads from the Clear register
should be ignored.

3: These registers have an associated Set register (IFSxSET) at an offset of 0x8 bytes. Writing a ‘1’ to any
bit position in the Set register will set valid bits in the associated register. Reads from the Set register
should be ignored.

4: These registers have an associated Invert register (IFSxINV) at an offset of 0xC bytes. Writing a ‘1’ to any
bit position in the Invert register will invert valid bits in the associated register. Reads from the Invert
register should be ignored.
DS61108E-page 8-8 © 2009 Microchip Technology Inc.

Section 8. Interrupts
Interrupts

8

Register 8-5: IECx: Interrupt Enable Control Register(1,2,3,4)

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
IEC31 IEC30 IEC29 IEC28 IEC27 IEC26 IEC25 IEC24

bit 31 bit 24

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
IEC23 IEC22 IEC21 IEC20 IEC19 IEC18 IEC17 IEC16

bit 23 bit 16

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
IEC15 IEC14 IEC13 IEC12 IEC11 IEC10 IEC09 IEC08

bit 15 bit 8

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
IEC07 IEC06 IEC05 IEC04 IEC03 IEC02 IEC01 IEC00

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit P = Programmable bit r = Reserved bit
U = Unimplemented bit -n = Bit Value at POR: (‘0’, ‘1’, x = Unknown)

bit 31-0 IEC31-IEC00: Interrupt Enable bits
1 = Interrupt is enabled
0 = Interrupt is disabled

Note 1: This register represents a generic definition of the IECx register. Refer to the “Interrupts” chapter in the
specific device data sheet to learn exact bit definitions.

2: These registers have an associated Clear register (IECxCLR) at an offset of 0x4 bytes. Writing a ‘1’ to any
bit position in the Clear register will clear valid bits in the associated register. Reads from the Clear register
should be ignored.

3: These registers have an associated Set register (IECxSET) at an offset of 0x8 bytes. Writing a ‘1’ to any
bit position in the Set register will set valid bits in the associated register. Reads from the Set register
should be ignored.

4: These registers have an associated Invert register (IECxINV) at an offset of 0xC bytes. Writing a ‘1’ to any
bit position in the Invert register will invert valid bits in the associated register. Reads from the Invert
register should be ignored.
© 2009 Microchip Technology Inc. DS61108E-page 8-9

PIC32MX Family Reference Manual
Register 8-6: IPCx: Interrupt Priority Control Register(1,2,3,4)

r-x r-x r-x R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
— — — IP03<2:0> IS03<1:0>

bit 31 bit 24

r-x r-x r-x R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
— — — IP02<2:0> IS02<1:0>

bit 23 bit 16

r-x r-x r-x R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
— — — IP01<2:0> IS01<1:0>

bit 15 bit 8

r-x r-x r-x R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
— — — IP00<2:0> IS00<1:0>

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit P = Programmable bit r = Reserved bit
U = Unimplemented bit -n = Bit Value at POR: (‘0’, ‘1’, x = Unknown)

bit 31-29 Reserved: Write ‘0’; ignore read
bit 28-26 IP03<2:0>: Interrupt Priority bits

111 = Interrupt priority is 7
110 = Interrupt priority is 6
101 = Interrupt priority is 5
100 = Interrupt priority is 4
011 = Interrupt priority is 3
010 = Interrupt priority is 2
001 = Interrupt priority is 1
000 = Interrupt is disabled

bit 25-24 IS03<1:0>: Interrupt Subpriority bits
11 = Interrupt subpriority is 3
10 = Interrupt subpriority is 2
01 = Interrupt subpriority is 1
00 = Interrupt subpiority is 0

bit 23-21 Reserved: Write ‘0’; ignore read

Note 1: This register represents a generic definition of the IPCx register. Refer to the “Interrupts” chapter in the
specific device data sheet to learn exact bit definitions.

2: These registers have an associated Clear register (IPCxCLR) at an offset of 0x4 bytes. Writing a ‘1’ to any
bit position in the Clear register will clear valid bits in the associated register. Reads from the Clear register
should be ignored.

3: These registers have an associated Set register (IPCxSET) at an offset of 0x8 bytes. Writing a ‘1’ to any
bit position in the Set register will set valid bits in the associated register. Reads from the Set register
should be ignored.

4: These registers have an associated Invert register (IPCxINV) at an offset of 0xC bytes. Writing a ‘1’ to any
bit position in the Invert register will invert valid bits in the associated register. Reads from the Invert
register should be ignored.
DS61108E-page 8-10 © 2009 Microchip Technology Inc.

Section 8. Interrupts
Interrupts

8

bit 20-18 IP02<2:0>: Interrupt Priority bits
111 = Interrupt priority is 7
110 = Interrupt priority is 6
101 = Interrupt priority is 5
100 = Interrupt priority is 4
011 = Interrupt priority is 3
010 = Interrupt priority is 2
001 = Interrupt priority is 1
000 = Interrupt is disabled

bit 17-16 IS02<1:0>: Interrupt Subpriority bits
11 = Interrupt subpriority is 3
10 = Interrupt subpriority is 2
01 = Interrupt subpriority is 1
00 = Interrupt subpriority is 0

bit 15-13 Reserved: Write ‘0’; ignore read
bit 12-10 IP01<2:0>: Interrupt Priority bits

111 = Interrupt priority is 7
110 = Interrupt priority is 6
101 = Interrupt priority is 5
100 = Interrupt priority is 4
011 = Interrupt priority is 3
010 = Interrupt priority is 2
001 = Interrupt priority is 1
000 = Interrupt is disabled

bit 9-8 IS01<1:0>: Interrupt Subpriority bits
11 = Interrupt subpriority is 3
10 = Interrupt subpriority is 2
01 = Interrupt subpriority is 1
00 = Interrupt subpriority is 0

bit 7-5 Reserved: Write ‘0’; ignore read
bit 4-2 IP00<2:0>: Interrupt Priority bits

111 = Interrupt priority is 7
110 = Interrupt priority is 6
101 = Interrupt priority is 5
100 = Interrupt priority is 4
011 = Interrupt priority is 3
010 = Interrupt priority is 2
001 = Interrupt priority is 1
000 = Interrupt is disabled

bit 1-0 IS00<1:0>: Interrupt Subpriority bits
11 = Interrupt subpriority is 3
10 = Interrupt subpriority is 2
01 = Interrupt subpriority is 1
00 = Interrupt subpriority is 0

Register 8-6: IPCx: Interrupt Priority Control Register(1,2,3,4) (Continued)

Note 1: This register represents a generic definition of the IPCx register. Refer to the “Interrupts” chapter in the
specific device data sheet to learn exact bit definitions.

2: These registers have an associated Clear register (IPCxCLR) at an offset of 0x4 bytes. Writing a ‘1’ to any
bit position in the Clear register will clear valid bits in the associated register. Reads from the Clear register
should be ignored.

3: These registers have an associated Set register (IPCxSET) at an offset of 0x8 bytes. Writing a ‘1’ to any
bit position in the Set register will set valid bits in the associated register. Reads from the Set register
should be ignored.

4: These registers have an associated Invert register (IPCxINV) at an offset of 0xC bytes. Writing a ‘1’ to any
bit position in the Invert register will invert valid bits in the associated register. Reads from the Invert
register should be ignored.
© 2009 Microchip Technology Inc. DS61108E-page 8-11

PIC32MX Family Reference Manual
8.3 OPERATION
The interrupt controller is responsible for pre-processing interrupt requests (IRQs) from a number
of on-chip peripherals and presenting them in the appropriate order to the processor.

Figure 8-2 depicts the interrupt process within the PIC32MX. The interrupt controller is designed
to receive up to 96 IRQs from the processor core, on-chip peripherals capable of generating
interrupts, and five external inputs. All IRQs are sampled on the rising edge of the SYSCLK and
latched in associated IFSx registers. A pending IRQ is indicated by the flag bit being equal to ‘1’
in an IFSx register. The pending IRQ will not cause further processing if the corresponding bit in
the interrupt enable (IECx) register is clear. The IECx bits act to gate the interrupt flag. If the inter-
rupt is enabled, all IRQs are encoded into a 5-bit-wide vector number. The 5-bit vector results in
0 to 63 unique interrupt vector numbers. Since there are more IRQs than available vector num-
bers, some IRQs share common vector numbers. Each vector number is assigned an
interrupt-priority-level and shadow-set number. The priority level is determined by the IPCx reg-
ister setting of associated vector. In Multi-Vector mode, the user can select a priority level to
receive a dedicated shadow register set. In Single Vector mode, all interrupts may receive a ded-
icated shadow set. The interrupt controller selects the highest priority IRQ among all pending
IRQs and presents the associated vector number, priority-level and shadow-set number to the
processor core.

The processor core samples the presented vector information between the ‘E’ and ‘M’ stages of
the pipeline. If the vector’s priority level presented to the core is greater than the current priority
indicated by the CPU Interrupt Priority bits IPL (Status<15:10>), the interrupt is serviced; other-
wise, it will remain pending until the current priority is less than the interrupt’s priority. When ser-
vicing an interrupt, the processor core pushes the program counter into the Exception Program
Counter (EPC) register in the CPU and sets the Exception Level (EXL) bit (Status<1>) in the
CPU. The EXL bit disables further interrupts until the application explicitly re-enables them by
clearing EXL bit. Next, it branches to the vector address calculated from the presented vector
number.

The INTSTAT register contains the Interrupt Vector Number (VEC) bits (INTSTAT<5:0>) and
Requested Interrupt Priority (RIPL) bits (INTSTAT<10:8>) of the current pending interrupt. This
may not be the same as the interrupt which caused the core to diverge from normal execution.

The processor returns to the previous state when the ERET (Exception Return) instruction is
executed. ERET clears the EXL bit, restores the program counter, and reverts the current shadow
set to the previous one.

The PIC32MX interrupt controller can be configured to operate in one of two modes:

• Single Vector mode – all interrupt requests will be serviced at one vector address (mode
out of reset).

• Multi-Vector mode – interrupt requests will be serviced at the calculated vector address.

Notes: While the user can, during run time, reconfigure the interrupt controller from Single
Vector to Multi-Vector mode (or vice versa), such action is strongly discouraged.
Changing interrupt controller modes after initialization may result in
undefined behavior.

The M4K core supports several different interrupt processing modes. The interrupt
controller is designed to work in External Interrupt Controller mode.
DS61108E-page 8-12 © 2009 Microchip Technology Inc.

Section 8. Interrupts
Interrupts

8

Figure 8-2: Interrupt Process

ENCODE LATCH COMPARE GENERATE

StatusIE

St
at

us
IP

L RIPL
>

IPL

Interrupt RequestAny Request

Shadow Set Number

Interrupt Exception

Requested IPL

In
te

rr
up

t S
ou

rc
es

 In
te

rru
pt

 M
od

ul
e

Load

Vector Number

O
ffs

et

Exception Vector Offset

Fields

G
en

er
at

or

S
R

S
C

tl E
IC

SS
C

au
se

R
IP

L

IntCtlVS

•

Shadow Set Number

Note: SRSCtl, Cause, Status and IntCtl registers are CPU registers and are described in Section 2. “MCU” (DS61113).
© 2009 Microchip Technology Inc. DS61108E-page 8-13

PIC32MX Family Reference Manual
8.4 SINGLE VECTOR MODE
On any form of reset, the interrupt controller initializes to Single Vector mode. When the MVEC
(INTCON<12>) bit is ‘0’, the interrupt controller operates in Single Vector mode. In this mode, the
CPU always vectors to the same address.

To configure the CPU in PIC32MX Single Vector mode, the following CPU registers (IntCtl,
Cause and Status) and INTCON register must be configured as follows:

• EBase ≠ 00000

• VS (IntCtl<9:5>) ≠ 00000

• IV (Cause<23>) = 1

• EXL (Status<1>) = 0

• BEV (Status<22>) = 0

• MVEC (INTCON<12>) = 0
• IE (Status<0>) = 1

Example 8-1: Single Vector Mode Initialization

Note: Users familiar with MIPS32 architecture must note that the M4K core in the
PIC32MX is still operating in External Interrupt Controller (EIC) mode. The
PIC32MX achieves Single Vector mode by forcing all IRQs to use a vector number
of 0x00. Because the M4K core in the PIC32MX always operates in EIC mode, the
single vector behavior through “Interrupt Compatibility Mode” as defined by MIPS32
architecture is not recommended.

/*
Set the CP0 registers for multi-vector interrupt
Place EBASE at 0xBD000000

This code example uses MPLAB C32 intrinsic functions to access CP0 registers.
Check your compiler documentation to find equivalent functions or use inline assembly

*/
unsigned int temp;

asm volatile(“di”); // Disable all interrupts

temp = mips_getsr(); // Get Status
temp |= 0x00400000; // Set BEV bit
mips_setsr(temp); // Update Status

_mips_mtc0(C0_EBASE, 0xBD000000); // Set an EBase value of 0xBD000000
_mips_mtc0(C0_INTCTL, 0x00000020); // Set the Vector Spacing to non-zero value

temp = mips_getcr(); // Get Cause
temp |= 0x00800000; // Set IV
mips_setcr(temp); // Update Cause

temp = mips_getsr(); // Get Status
temp &= 0xFFBFFFFD; // Clear BEV and EXL
mips_setsr(temp); // Update Status

INTCONCLR = 0x800; // Clear MVEC bit

asm volatile(“ie”); // Enable all interrupts
DS61108E-page 8-14 © 2009 Microchip Technology Inc.

Section 8. Interrupts
Interrupts

8

8.5 MULTI-VECTOR MODE
When the MVEC (INTCON<12>) bit is ‘1’, the interrupt controller operates in Multi-Vector mode.
In this mode, the CPU vectors to the unique address for each vector number. Each vector is
located at a specific offset, with respect to a base address specified by the EBase (Exception
Base) register in the CPU. The individual vector address offset is determined by the vector space
that is specified by the VS bits in IntCtl register. (The IntCtl register is located in the CPU; refer
to Section 2. “MCU” (DS61113) for more details.)

To configure the CPU in PIC32MX Multi-Vector mode, the following CPU registers (IntCtl, Cause
and Status) and the INTCON register must be configured as follows:

• EBase ≠ 00000

• VS (IntCtl<9:5>) ≠ 00000

• IV (Cause<23>) = 1

• EXL (Status<1>) = 0

• BEV (Status<22>) = 0

• MVEC (INTCON<12>) = 1

• IE (Status<0>) = 1

Example 8-2: Multi-Vector Mode Initialization
/*

Set the CP0 registers for multi-vector interrupt
Place EBASE at 0xBD000000 and Vector Spacing to 32 bytes

This code example uses MPLAB C32 intrinsic functions to access CP0 registers.
Check your compiler documentation to find equivalent functions or use inline assembly

*/
unsigned int temp;

asm volatile(“di”); // Disable all interrupts

temp = mips_getsr(); // Get Status
temp |= 0x00400000; // Set BEV bit
mips_setsr(temp); // Update Status

_mips_mtc0(C0_EBASE, 0xBD000000); // Set an EBase value of 0xBD000000
_mips_mtc0(C0_INTCTL, 0x00000020); // Set the Vector Spacing of 32 bytes
temp = mips_getcr(); // Get Cause
temp |= 0x00800000; // Set IV
mips_setcr(temp); // Update Cause

temp = mips_getsr(); // Get Status
temp &= 0xFFBFFFFD; // Clear BEV and EXL
mips_setsr(temp); // Update Status

INTCONSET = 0x800; // Set MVEC bit

asm volatile(“ie”); // Enable all interrupts
© 2009 Microchip Technology Inc. DS61108E-page 8-15

PIC32MX Family Reference Manual
8.6 INTERRUPT VECTOR ADDRESS CALCULATION
The vector address for a particular interrupt depends on how the interrupt controller is
configured. If the interrupt controller is configured for Single Vectored mode (see Section 8.4
“Single Vector Mode”), all interrupt vectors use the same vector address. When it is config-
ured for Multi-Vectored mode (see Section 8.5 “Multi-Vector Mode”), each interrupt vector
has a unique vector address.

On all forms of Reset, the processor enters in Bootstrap mode with Control bit BEV (Status<22>)
set. (The Status register is located in the CPU; refer to Section 2. “MCU” (DS61113) for more
details.) While the processor is in Bootstrap mode, all interrupts are disabled and all general
exceptions are redirected to one interrupt vector address, 0xBFC00380. When configuring the
interrupt controller to the desired mode of operation, several registers must be set to specific
values (see Section 8.4 “Single Vector Mode” and Section 8.5 “Multi-Vector Mode”) before
the BEV bit is cleared.

The vector address of a given interrupt is calculated using Exception Base (EBase<31:12>)
register, which provides a 4 KB page-aligned base address value located in the kernel segment
(KSEG) address space. (EBase is a CPU register.)

8.6.1 Multi-Vector Mode Address Calculation
The Multi-Vector mode address is calculated by using the EBase and VS (IntCtl<9:5>) values.
(The IntCtl and Status registers are located in the CPU.) The VS bits provide the spacing between
adjacent vector addresses. Allowable vector spacing values are 32, 64, 128, 256 and 512 bytes.
Modifications to EBase and VS values are only allowed when the BEV (Status<22>) bit is ‘1’ in
the CPU. Example 8-3 shows how a multi-vector address is calculated for a given vector.

Example 8-3: Vector Address for Vector Number 16

8.6.2 Single Vector Mode Address Calculation
The Single Vector mode address is calculated by using the Exception Base (EBase<31:12>)
register value. In Single Vector mode, the interrupt controller always presents a vector number
of ‘0’. The exact formula for Single Vector mode is as follows:

Equation 8-1: Single Vector Mode Address Calculation

Note: The Multi-Vector mode address calculation depends on the interrupt vector number.
Each PIC32MX device family may have its own set of vector numbers depending on
its feature set. See the respective device data sheet to find out vector numbers
associated with each interrupt source.

vector address = vector number X (VS << 5) + 0x200 + vector base.

Exception Base is 0xBD000000
Vector Spacing(VS) is 2, which is 64(0x40)
vector address(T4) = 0x10 X 0x40 + 0x200 + 0xBD000000
vector address(T4) = 0xBD000600

Single Vector Address = EBase + 0x200
DS61108E-page 8-16 © 2009 Microchip Technology Inc.

Section 8. Interrupts
Interrupts

8

8.7 INTERRUPT PRIORITIES

8.7.1 Interrupt Group Priority
The user is able to assign a group priority to each of the interrupt vectors. The groups’
priority-level bits are located in the IPCx register. Each IPCx register contains group priority bits
for four interrupt vectors. The user-selectable priority levels range from 1 (the lowest priority) to
7 (the highest). If an interrupt priority is set to zero, the interrupt vector is disabled for both inter-
rupt and wake-up purposes. Interrupt vectors with a higher priority level preempt lower priority
interrupts. The user must move the Requested Interrupt Priority (RIPL) bit of the Cause register
(Cause<15:10>) into the Status register’s Interrupt Priority (IPL) bits (Status<15:10>) before
re-enabling interrupts. (The Cause and Status registers are located in the CPU; refer to Section
2. “MCU” (DS61113) for more details.) This action will disable all lower priority interrupts until the
completion of the Interrupt Service Routine (ISR).

Example 8-4: Setting Group Priority Level

8.7.2 Interrupt Subpriority
The user can assign a subpriority level within each group priority. The subpriority will not cause
preemption of an interrupt in the same priority; rather, if two interrupts with the same priority are
pending, the interrupt with the highest subpriority will be handled first. The subpriority bits are
located in the IPCx register. Each IPCx register contains subpriority bits for four of the interrupt
vectors. These bits define the subpriority within the priority level of the vector. The
user-selectable subpriority levels range from 0 (the lowest subpriority) to 3 (the highest).

Example 8-5: Setting Subpriority Level

8.7.3 Interrupt Natural Priority
When multiple interrupts are assigned to same group priority and subpriority, they are prioritized
by their natural priority. The natural priority is a fixed priority scheme, where the highest natural
priority starts at the lowest interrupt vector, meaning that interrupt vector 0 is the highest and
interrupt vector 63 is the lowest natural priority. See the interrupt vector table in the respective
device data sheet to learn the natural priority order of each IRQ.

Note: The Interrupt Service Routine must clear the associated interrupt flag in the IFSx
register before lowering the interrupt priority level to avoid recursive interrupts.

/*
The following code example will set the priority to level 2.
Multi-Vector initialization must be performed (See Example 8-2)
*/
IPC0CLR = 0x0000001C; // clear the priority level
IPC0SET = 0x00000008; // set priority level to 2

/*
The following code example will set the subpriority to level 2.
Multi-Vector initialization must be performed (See Example 8-2)
*/

IPC0CLR = 0x00000003; // clear the subpriority level
IPC0SET = 0x00000002; // set the subpriority to 2
© 2009 Microchip Technology Inc. DS61108E-page 8-17

PIC32MX Family Reference Manual
8.8 INTERRUPTS AND REGISTER SETS
The PIC32MX family of devices employs two register sets, a primary register set for normal pro-
gram execution and a shadow register set for highest priority interrupt processing. Register set
selection is automatically performed by the interrupt controller. The exact method of register set
selection varies by the interrupt controller modes of operation.

In Single Vector and Multi-Vector modes of operation, the CSS field in the SRSCtl register pro-
vides the current number of the register set in use, while the PSS field provides the number of
the previous register set. (SRSCtl is a CPU register, refer to Section 2. “MCU” (DS61113) for
details.) This information is useful to determine if the Stack and Global Data Pointers should be
copied to the new register set, or not. If the current and previous register set are different, the
interrupt handler prologue may need to copy the Stack and Global Data Pointers from one set to
another. Most C compilers supporting the PIC32MX family of devices automatically generate the
necessary interrupt prologue code to handle this operation.

8.8.1 Register Set Selection in Single Vector Mode
In Single Vector mode, the SS0 (INTCON<16>) bit determines which register set will be used. If
the SS0 bit is ‘1’, the interrupt controller will instruct the CPU to use the second register set for
all interrupts. If the SS0 bit is ‘0’, the interrupt controller will instruct the CPU to use the first reg-
ister set. Unlike Multi-Vector mode, there is no linkage between register set and interrupt priority.
The application decides whether the second shadow set will be used at all.

8.8.2 Register Set Selection in Multi-Vector Mode
When a priority level interrupt matches a shadow set priority, the interrupt controller instructs the
CPU to use the shadow set. For all other interrupt priorities, the interrupt controller instructs the
CPU to use the primary register set. The interrupt priority that uses the shadow set will not need
to perform any context save and restore. This results in increased code throughput and
decreases interrupt latency.
DS61108E-page 8-18 © 2009 Microchip Technology Inc.

Section 8. Interrupts
Interrupts

8

8.9 INTERRUPT PROCESSING
When the priority of a requested interrupt is greater than the current CPU priority, the interrupt
request is taken and the CPU branches to the vector address associated with the requested
interrupt. Depending on the priority of the interrupt, the prologue and epilogue of the interrupt
handler must perform certain tasks before executing any useful code. The following examples
provide recommended prologues and epilogues.

8.9.1 Interrupt Processing in Single Vector Mode
When the interrupt controller is configured in Single Vector mode, all of the interrupt requests are
serviced at the same vector address. The interrupt handler routine must generate a prologue and
an epilogue to properly configure, save and restore all of the core registers, along with General
Purpose Registers. At a worst case, all of the modifiable General Purpose Registers must be
saved and restored by the prologue and epilogue.

8.9.1.1 Single Vector Mode Prologue

When entering the interrupt handler routine, the interrupt controller must first save the current pri-
ority and exception PC counter from Interrupt Priority (IPL) bits (Status<15:10>) and the
ErrorEPC register, respectively, on the stack. (Status and ErrorEPC are CPU registers.) If the
routine is presented a new register set, the previous register set’s stack register must be copied
to the current set’s stack register. Then the requested priority may be stored in the IPL from the
Requested Interrupt Priority (RIPL) bits (Cause<15:10>), Exception Level (EXL) bit and Error
Level (ERL) bit in the Status register (Status<1> and Status<2>) are cleared, and the Master
Interrupt Enable bit (Status<0>) is set. Finally, the General Purpose Registers will be saved on
the stack. (The Cause and Status registers are located in the CPU.)

Example 8-6: Single Vector Interrupt Handler Prologue in Assembly Code
rdpgpr sp, sp
mfc0 k0, Cause
mfc0 k1, EPC
srl k0, k0, 0xa
addiu sp, sp, -76
sw k1, 0(sp)
mfc0 k1, Status
sw k1, 4(sp)
ins k1, k0, 10, 6
ins k1,zero, 1, 4
mtc0 k1, Status
sw s8, 8(sp)
sw a0, 12(sp)
sw a1, 16(sp)
sw a2, 20(sp)
sw a3, 24(sp)
sw v0, 28(sp)
sw v1, 32(sp)
sw t0, 36(sp)
sw t1, 40(sp)
sw t2, 44(sp)
sw t3, 48(sp)
sw t4, 52(sp)
sw t5, 56(sp)
sw t6, 60(sp)
sw t7, 64(sp)
sw t8, 68(sp)
sw t9, 72(sp)
addu s8, sp, zero

// start interrupt handler code here
© 2009 Microchip Technology Inc. DS61108E-page 8-19

PIC32MX Family Reference Manual
8.9.1.2 Single Vector Mode Epilogue

After completing all useful code of the interrupt handler routine, the original state of the Status
and EPC registers, along with the General Purpose Registers saved on the stack, must be
restored.

Example 8-7: Single Vector Interrupt Handler Epilogue in Assembly Code

8.9.2 Interrupt Processing in Multi-Vector Mode
When the interrupt controller is configured in Multi-Vector mode, the interrupt requests are
serviced at the calculated vector addresses. The interrupt handler routine must generate a
prologue and an epilogue to properly configure, save and restore all of the core registers, along
with General Purpose Registers. At a worst case, all of the modifiable General Purpose Registers
must be saved and restored by the prologue and epilogue. If the interrupt priority is set to receive
it’s own General Purpose Register set, the prologue and epilogue will not need to save or restore
any of the modifiable General Purpose Registers, thus providing the lowest latency.

8.9.2.1 Multi-Vector Mode Prologue

When entering the interrupt handler routine, the Interrupt Service Routine must first save the cur-
rent priority and exception PC counter from Interrupt Priority (IPL) bits (Status<15:10>) and the
ErrorEPC register, respectively, on the stack. If the routine is presented a new register set, the
previous register set’s stack register must be copied to the current set’s stack register. Then the
requested priority may be stored in the IPL from Requested Interrupt Priority (RIPL) bits
(Cause<15:10>), Exception Level (EXL) bit and Error Level (ERL) bit in the Status register
(Status<1> and Status<2>) are cleared, and the Master Interrupt Enable bit (Status<0>) is set. If
the interrupt handler is not presented a new General Purpose Register set, these resisters will
be saved on the stack. (Cause and Status are CPU registers; refer to Section 2. “MCU”
(DS61113) for more details.)

// end of interrupt handler code

addu sp, s8, zero
lw t9, 72(sp)
lw t8, 68(sp)
lw t7, 64(sp)
lw t6, 60(sp)
lw t5, 56(sp)
lw t4, 52(sp)
lw t3, 48(sp)
lw t2, 44(sp)
lw t1, 40(sp)
lw t0, 36(sp)
lw v1, 32(sp)
lw v0, 28(sp)
lw a3, 24(sp)
lw a2, 20(sp)
lw a1, 16(sp)
lw a0, 12(sp)
lw s8, 8(sp)
di
lw k0, 0(sp)
mtc0 k0, EPC
lw k0, 4(sp)
mtc0 k0, Status
eret
DS61108E-page 8-20 © 2009 Microchip Technology Inc.

Section 8. Interrupts
Interrupts

8

Example 8-8: Prologue Without a Dedicated General Purpose Register Set in
Assembly Code

Example 8-9: Prologue With a Dedicated General Purpose Register Set in Assembly
Code

rdpgpr sp, sp
mfc0 k0, Cause
mfc0 k1, EPC
srl k0, k0, 0xa
addiu sp, sp, -76
sw k1, 0(sp)
mfc0 k1, Status
sw k1, 4(sp)
ins k1, k0, 10, 6
ins k1,zero, 1, 4
mtc0 k1, Status
sw s8, 8(sp)
sw a0, 12(sp)
sw a1, 16(sp)
sw a2, 20(sp)
sw a3, 24(sp)
sw v0, 28(sp)
sw v1, 32(sp)
sw t0, 36(sp)
sw t1, 40(sp)
sw t2, 44(sp)
sw t3, 48(sp)
sw t4, 52(sp)
sw t5, 56(sp)
sw t6, 60(sp)
sw t7, 64(sp)
sw t8, 68(sp)
sw t9, 72(sp)
addu s8, sp, zero

// start interrupt handler code here

rdpgpr sp, sp
mfc0 k0, Cause
mfc0 k1, EPC
srl k0, k0, 0xa
addiu sp, sp, -76
sw k1, 0(sp)
mfc0 k1, Status
sw k1, 4(sp)
ins k1, k0, 10, 6
ins k1,zero, 1, 4
mtc0 k1, Status
addu s8, sp, zero

// start interrupt handler code here
© 2009 Microchip Technology Inc. DS61108E-page 8-21

PIC32MX Family Reference Manual
8.9.2.2 Multi-Vector Mode Epilogue

After completing all useful code of the interrupt handler routine, the original state of the Status
and ErrorEPC registers, along with the General Purpose Registers saved on the stack, must be
restored. (The Status and ErrorEPC registers are located in the CPU; refer to Section 2. “MCU”
(DS61113) for more details.)

Example 8-10: Epilogue Without a Dedicated General Purpose Register Set in
Assembly Code

Example 8-11: Epilogue With a Dedicated General Purpose Register Set in Assembly
Code

// end of interrupt handler code

addu sp, s8, zero
lw t9, 72(sp)
lw t8, 68(sp)
lw t7, 64(sp)
lw t6, 60(sp)
lw t5, 56(sp)
lw t4, 52(sp)
lw t3, 48(sp)
lw t2, 44(sp)
lw t1, 40(sp)
lw t0, 36(sp)
lw v1, 32(sp)
lw v0, 28(sp)
lw a3, 24(sp)
lw a2, 20(sp)
lw a1, 16(sp)
lw a0, 12(sp)
lw s8, 8(sp)
di
lw k0, 0(sp)
mtc0 k0, EPC
lw k0, 4(sp)
mtc0 k0, Status
eret

// end of interrupt handler code

addu sp, s8, zero
di
lw k0, 0(sp)
mtc0 k0, EPC
lw k0, 4(sp)
mtc0 k0, Status
eret
DS61108E-page 8-22 © 2009 Microchip Technology Inc.

Section 8. Interrupts
Interrupts

8

8.10 EXTERNAL INTERRUPTS
The interrupt controller supports five external interrupt-request signals (INT4-INT0). These inputs
are edge sensitive, they require a low-to-high or a high-to-low transition to create an interrupt
request. The INTCON register has five bits that select the polarity of the edge detection circuitry:
INT4EP (INTCON<4>), INT3EP (INTCON<3>), INT2EP (INTCON<2>), INT1EP (INTCON<1>)
and INT0EP (INTCON<0>).

Example 8-12: Setting External Interrupt Polarity

Note: Changing the external interrupt polarity may trigger an interrupt request. It is recom-
mended that before changing the polarity, the user disables that interrupt, changes
the polarity, clears the interrupt flag and re-enables the interrupt.

/*
The following code example will set INT3 to trigger on a high-to-low
transition edge. The CPU must be set up for either multi or single vector
interrupts to handle external interrupts
*/
IEC0CLR = 0x00008000; // disable INT3
INTCONCLR = 0x00000008; // clear the bit for falling edge trigger
IFS0CLR = 0x00008000; // clear the interrupt flag
IEC0SET = 0x00008000; // enable INT3
© 2009 Microchip Technology Inc. DS61108E-page 8-23

PIC32MX Family Reference Manual
8.11 TEMPORAL PROXIMITY INTERRUPT COALESCING
The PIC32MX CPU responds to interrupt events as if they are all immediately critical because
the interrupt controller asserts the interrupt request to the CPU when the interrupt request occurs.
The CPU immediately recognizes the interrupt if the current CPU priority is lower than the pend-
ing priority. Entering and exiting an ISR consumes clock cycles for saving and restoring context.
Events are asynchronous with respect to the main program and have a limited possibility of
occurring simultaneously or close together in time. This prevents the ability of a shared ISR to
process multiple interrupts at one time.

Temporal Proximity Interrupt uses the interrupt proximity timer, TPTMR, to create a temporal win-
dow in which a group of interrupts of the same, or lower, priority will be held off. This provides an
opportunity to queue these interrupt requests and process them using tail-chaining multiple IRQs
in a single ISR.

Figure 8-3 shows a block diagram of the temporal proximity interrupt coalescing. The interrupt
priority group level that triggers the temporal proximity timer is set up in the TPC bits (INT-
CON<10:8>). TPC selects the interrupt group priority value, and those values below, that will trig-
ger the temporal proximity timer to be reset and loaded with the value in TPTMR. After the timer
is loaded with the value in TPTMR, reads to the TPTMR will indicate the current state of the timer.
When the timer decrements to zero, the queued interrupt requests are serviced if IPL
(Status<15:10>) is less than RIPL (Cause<15:10>).

Figure 8-3: Temporal Proximity Interrupt Coalescing Block Diagram

The user can activate temporal proximity interrupt coalescing by performing the following steps:

1. Set the TPC to the preferred priority level. (Setting TPC to zero will disable the proximity
timer.)

2. Load the preferred 32-bit value to TPTMR

The interrupt proximity timer will trigger when an interrupt request of a priority equal, or lower,
matches the TPC value.

Example 8-13: Temporal Proximity Interrupt Coalescing Example

In
te

rru
pt

R
eg

is
te

rs

In
te

rru
pt

Fi
rs

t

D
et

ec
t

Timer
Proximity

Value
Latency

INTCON

Out
Time Interrupt

Request

Queued

/*
The following code example will set the Temporal Proximity Coalescing to
trigger on interrupt priority level of 3 or below and the temporal timer to
be set to 0x12345678.
*/

INTCONCLR = 0x00000700; // clear TPC
TPTMPCLR = 0xFFFFFFFF; // clear the timer
NTCONSET = 0x00000300; // set TPC->3
TPTMR = 0x12345678; // set the timer to 0x12345678
DS61108E-page 8-24 © 2009 Microchip Technology Inc.

Section 8. Interrupts
Interrupts

8

8.12 EFFECTS OF INTERRUPTS AFTER RESET

8.12.1 Device Reset
All interrupt controller registers are forced to their reset states upon a Device Reset.

8.12.2 Power-on Reset
All interrupt controller registers are forced to their reset states upon a Power-on Reset.

8.12.3 Watchdog Timer Reset
All interrupt controller registers are forced to their reset states upon a Watchdog Timer Reset.

8.13 OPERATION IN POWER-SAVING AND DEBUG MODES

8.13.1 Interrupt Operation in Sleep Mode
During Sleep mode, the interrupt controller will only recognize interrupts from peripherals that
can operate in Sleep mode. Peripherals such as RTCC, Change Notice, External Interrupts, ADC
and SPI Slave can continue to operate in Sleep mode and interrupts from these peripherals can
be used to wake up the device. An interrupt with its Interrupt Enable bit set may switch the device
to either Run or Idle mode, subject to its Interrupt Enable bit status and priority level. An interrupt
event with its Interrupt Enable bit cleared or a priority of zero will not be recognized by the inter-
rupt controller and cannot change device status. If the priority of the interrupt request is higher
than the current processor priority level, the device will switch to Run mode and processor will
execute the corresponding interrupt request. If the proximity timer is enabled and the pending
interrupt priority is less than the temporal proximity priority, the processor does not remain in
sleep. It transitions to idle and then goes to run, once the TPT times out. If the priority of the inter-
rupt request is less than, or equal to, the current processor priority level, the device will switch to
Idle mode and the processor will remain halted.

8.13.2 Interrupt Operation in Idle Mode
During Idle mode, interrupt events, with their respective Interrupt Enable bits set, may switch the
device to Run mode subject to its Interrupt Enable bit status and priority level. An interrupt event
with its Interrupt Enable bit cleared or a priority of zero will not be recognized by the interrupt con-
troller and cannot change device status. If the priority of the interrupt request is higher than the
current CPU priority level, the device will switch to Run mode and the CPU will execute the
corresponding interrupt request. If the proximity timer is enabled and the pending interrupt
priority is less than the temporal proximity priority, the device will remain in Idle and the processor
will not take the interrupt until after the proximity time has expired. If the priority of the interrupt
request is less than, or equal to, the current CPU priority level, the device will remain in Idle
mode. The corresponding Interrupt Flag bits will remain set and the interrupt request will remain
pending.

8.13.3 Interrupt Operation in Debug Mode
While the CPU is executing in Debug Exception mode (i.e., the application is halted), all inter-
rupts, regardless of their priority level, are not taken and they will remain pending. Once the CPU
exits Debug Exception mode, all pending interrupts will be taken in their order of priority.

Note: The FRZ bit is readable and writable only when the CPU is executing in Debug
Exception mode. In all other modes, the FRZ bit reads as ‘0’. If FRZ bit is changed
during Debug mode, the new value does not take effect until the current Debug
Exception mode is exited and re-entered. During the Debug Exception mode, the
FRZ bit reads the state of the peripheral when entering Debug mode.
© 2009 Microchip Technology Inc. DS61108E-page 8-25

PIC32MX Family Reference Manual
8.14 DESIGN TIPS

Question 1: Can I just enable the interrupt in the IEC registers to start receiving
interrupt requests?

Answer: No, you must first enable system interrupts for the core to service any interrupt
request. Then, when you enable the interrupt in the IEC register and assign a
non-zero priority in the IPS register, you will receive interrupt requests.

Question 2: When should I clear the interrupt request flag in my interrupt handler?
Answer: You should clear the interrupt request flag after servicing the interrupt condition.

For example, if a UART RX interrupt has occurred, the handler should read the
RX buffer, and then clear the UART RX IRQ.

Question 3: After the proximity timer has counted down, which interrupt request is
serviced?

Answer: When the proximity timer reaches zero, the interrupt request of the highest
priority will be serviced.
DS61108E-page 8-26 © 2009 Microchip Technology Inc.

Section 8. Interrupts
Interrupts

8

8.15 RELATED APPLICATION NOTES
This section lists application notes that are related to this section of the manual. These
application notes may not be written specifically for the PIC32MX device family, but the concepts
are pertinent and could be used with modification and possible limitations. The current
application notes related to the Interrupts module are:

Title Application Note #
No related application notes at this time. N/A

Note: Visit the Microchip web site (www.microchip.com) for additional application notes
and code examples for the PIC32MX family of devices.
© 2009 Microchip Technology Inc. DS61108E-page 8-27

http://www.microchip.com
http://www.microchip.com
http://www.microchip.com
http://www.microchip.com

PIC32MX Family Reference Manual
8.16 REVISION HISTORY
Revision A (August 2007)
This is the initial released version of this document.

Revision B (October 2007)
Updated document to remove Confidential status.

Revision C (April 2008)
Revised status to Preliminary; Revised U-0 to r-x.

Revision D (June 2008)
Revise Register 8-1, FRZ note; Revise Examples 8-1 and 8-2; Change Reserved bits from
“Maintain as” to “Write”.

Revision E (July 2009)
This revision includes the following updates:

• Minor updates to text and formatting have been implemented throughout the document
• Interrupts Register Summary (Table 8-1):

- Removed all references to the Clear, Set and Invert registers
- Added the Address Offset column
- Added Notes 1, 2 and 3, which describe the Clear, Set and Invert registers

• Added Notes describing the Clear, Set and Invert registers to the following registers:
- INTCON
- INTSTAT
- TPTMR
- IFSx
- IPCx

• Updated the note at the beginning of Section 8.2 “Control Registers”
• Updated the second sentence of the second paragraph in Section 8.3 “Operation” to

clarify the IRQ sources
• Updated the first paragraph of Section 8.8.2 “Register Set Selection in Multi-Vector

Mode”
• Updated the answer to Question 2 in Section 8.14 “Design Tips”
DS61108E-page 8-28 © 2009 Microchip Technology Inc.

	Section 8. Interrupts
	8.1 Introduction
	Figure 8-1: Interrupt Controller Module

	8.2 Control Registers
	Table 8-1: Interrupts Register Summary
	Register 8-1: INTCON: Interrupt Control Register(1,2,3)
	Register 8-2: INTSTAT: Interrupt Status Register(1,2,3)
	Register 8-3: TPTMR: Temporal Proximity Timer Register(1,2,3)
	Register 8-4: IFSx: Interrupt Flag Status Register(1,2,3,4)
	Register 8-5: IECx: Interrupt Enable Control Register(1,2,3,4)
	Register 8-6: IPCx: Interrupt Priority Control Register(1,2,3,4)

	8.3 Operation
	Figure 8-2: Interrupt Process

	8.4 Single Vector Mode
	Example 8-1: Single Vector Mode Initialization

	8.5 Multi-Vector Mode
	Example 8-2: Multi-Vector Mode Initialization

	8.6 Interrupt Vector Address Calculation
	8.6.1 Multi-Vector Mode Address Calculation
	Example 8-3: Vector Address for Vector Number 16

	8.6.2 Single Vector Mode Address Calculation
	Equation 8-1: Single Vector Mode Address Calculation

	8.7 Interrupt Priorities
	8.7.1 Interrupt Group Priority
	Example 8-4: Setting Group Priority Level

	8.7.2 Interrupt Subpriority
	Example 8-5: Setting Subpriority Level

	8.7.3 Interrupt Natural Priority

	8.8 Interrupts and Register Sets
	8.8.1 Register Set Selection in Single Vector Mode
	8.8.2 Register Set Selection in Multi-Vector Mode

	8.9 Interrupt Processing
	8.9.1 Interrupt Processing in Single Vector Mode
	Example 8-6: Single Vector Interrupt Handler Prologue in Assembly Code
	Example 8-7: Single Vector Interrupt Handler Epilogue in Assembly Code

	8.9.2 Interrupt Processing in Multi-Vector Mode
	Example 8-8: Prologue Without a Dedicated General Purpose Register Set in Assembly Code
	Example 8-9: Prologue With a Dedicated General Purpose Register Set in Assembly Code
	Example 8-10: Epilogue Without a Dedicated General Purpose Register Set in Assembly Code
	Example 8-11: Epilogue With a Dedicated General Purpose Register Set in Assembly Code

	8.10 External Interrupts
	Example 8-12: Setting External Interrupt Polarity

	8.11 Temporal Proximity Interrupt Coalescing
	Figure 8-3: Temporal Proximity Interrupt Coalescing Block Diagram
	Example 8-13: Temporal Proximity Interrupt Coalescing Example

	8.12 Effects of Interrupts After Reset
	8.12.1 Device Reset
	8.12.2 Power-on Reset
	8.12.3 Watchdog Timer Reset

	8.13 Operation in Power-Saving and Debug Modes
	8.13.1 Interrupt Operation in Sleep Mode
	8.13.2 Interrupt Operation in Idle Mode
	8.13.3 Interrupt Operation in Debug Mode

	8.14 Design Tips
	8.15 Related Application Notes
	8.16 Revision History

