
Section 19. Inter-Integrated Circuit™ (I2C™)
Inter-Integrated
C

ircuit™
 (I 2C

™
)

19
HIGHLIGHTS
This section of the manual contains the following major topics:

19.1 Overview .. 19-2
19.2 I2C Bus Characteristics.. 19-4
19.3 Control and Status Registers ... 19-7
19.4 Enabling I2C Operation .. 19-13
19.5 Communicating as a Master in a Single-Master Environment 19-15
19.6 Communicating as a Master in a Multi-Master Environment 19-28
19.7 Communicating as a Slave .. 19-31
19.8 Connection Considerations for I2C Bus ... 19-46
19.9 Module Operation During PWRSAV Instruction... 19-48
19.10 Peripheral Module Disable (PMD) Registers ... 19-48
19.11 Effects of a Reset... 19-48
19.12 Register Maps.. 19-49
19.13 Design Tips .. 19-50
19.14 Related Application Notes.. 19-51
19.15 Revision History ... 19-52
© 2009 Microchip Technology Inc. DS70195C-page 19-1

dsPIC33F/PIC24H Family Reference Manual
19.1 OVERVIEW
The Inter-Integrated Circuit (I2C) module is a serial interface useful for communicating with other
peripheral or microcontroller devices. These peripheral devices may be serial EEPROMs,
display drivers, A/D converters, etc.

The I2C module can operate in any of the following I2C systems:

• As a slave device
• As a master device in a single-master system (slave may also be active)
• As a master/slave device in a multi-master system (bus collision detection and arbitration

available)

The I2C module contains independent I2C master logic and I2C slave logic, each generating
interrupts based on their events. In multi-master systems, the software is simply partitioned into
master controller and slave controller.

When the I2C master logic is active, the slave logic also remains active, detecting the state of the
bus and potentially receiving messages from itself in a single-master system or from other
masters in a multi-master system. No messages are lost during multi-master bus arbitration.

In a multi-master system, bus collision conflicts with other masters in the system are detected,
and the module provides a method to terminate and then restart the message.

The I2C module contains a Baud Rate Generator (BRG). The I2C Baud Rate Generator does not
consume other timer resources in the device.

Key features of the I2C module include the following:

• Independent master and slave logic
• Multi-master support which prevents message losses in arbitration
• Detects 7-bit and 10-bit device addresses with configurable address masking in Slave

mode
• Detects general call addresses as defined in the I2C protocol
• Bus Repeater mode, allowing the module to accept all messages as a slave regardless of

the address
• Automatic SCLx clock stretching provides delays for the processor to respond to a slave

data request
• Supports 100 kHz and 400 kHz bus specifications
• Supports the Intelligent Platform Management Interface (IPMI) standard

Figure 19-1 illustrates the I2C module block diagram.
DS70195C-page 19-2 © 2009 Microchip Technology Inc.

Section 19. Inter-Integrated Circuit™ (I2C™)
Inter-Integrated
C

ircuit™
 (I 2C

™
)

19
Figure 19-1: I2C™ Block Diagram

I2CxRCV

Internal
Data Bus

SCLx

SDAx

Shift

Match Detect

I2CxADD

Start and Stop
Bit Detect

Clock

Address Match

Clock
Stretching

I2CxTRN
LSB

Shift Clock

BRG

Reload
Control

TCY/2

Start and Stop
Bit Generation

Acknowledge
Generation

Collision
Detect

I2CxCON

I2CxSTAT

C
on

tro
l L

og
ic

Read

LSB

Write

Read

I2CxBRG

I2CxRSR

Write

Read

Write

Read

Write

Read

Write

Read

Write

Read

I2CxMSK

Down Counter
© 2009 Microchip Technology Inc. DS70195C-page 19-3

dsPIC33F/PIC24H Family Reference Manual
19.2 I2C BUS CHARACTERISTICS
The I2C-bus is a two-wire serial interface. Figure 19-2 shows a schematic of an I2C connection
between a dsPIC33F/PIC24H device and a 24LC256 I2C serial EEPROM, which is a typical
example for any I2C interface.

The interface uses a comprehensive protocol to ensure reliable transmission and reception of
data. When communicating, one device acts as the “master” and it initiates transfer on the bus
and generates the clock signals to permit that transfer, while the other device(s) acts as the
“slave” responding to the transfer. The clock line, SCLx, is output from the master and input to
the slave, although occasionally the slave drives the SCLx line. The data line, SDAx, may be
output and input from both the master and slave.

Because the SDAx and SCLx lines are bidirectional, the output stages of the devices driving the
SDAx and SCLx lines must have an open drain in order to perform the wired AND function of the
bus. External pull-up resistors are used to ensure a high level when no device is pulling the line
down.

In the I2C interface protocol, each device has an address. When a master wishes to initiate a
data transfer, it first transmits the address of the device that it wants to “talk” to. All devices “listen”
to see if this is their address. Within this address, bit 0 specifies whether the master wants to read
from or write to the slave device. The master and slave are always in opposite modes
(transmitter/receiver) of operation during a data transfer. That is, they can be thought of as
operating in either of the following two relations:

• Master-Transmitter and Slave-Receiver
• Slave-Transmitter and Master-Receiver

In both cases, the master originates the SCLx clock signal.

Figure 19-2: Typical I2C™ Interconnection Block Diagram

19.2.1 Bus Protocol
The following I2C-bus protocol has been defined:

• Data transfer may be initiated only when the bus is not busy.
• During data transfer, the data line must remain stable whenever the SCLx clock line is high.

Changes in the data line while the SCLx clock line is high will be interpreted as a Start or
Stop condition.

Accordingly, the bus conditions shown in Figure 19-3 have been defined.

Note: The I2C pins, SDA and SCL, are not 5V tolerant. However other pin functions
multiplexed with the I2C pins may be 5V tolerant (i.e., I/O ports). Refer to the specific
device data sheet for more information.

SCLX

SDAX

dsPIC33F/PIC24H

SDA

SCL

VDD VDD

4.7 kΩ 24LC256
(typical)
DS70195C-page 19-4 © 2009 Microchip Technology Inc.

Section 19. Inter-Integrated Circuit™ (I2C™)
Inter-Integrated
C

ircuit™
 (I 2C

™
)

19
Figure 19-3: I2C™ Bus Protocol States

19.2.1.1 START DATA TRANSFER (S)

After a bus Idle state, a high-to-low transition of the SDAx line while the clock (SCLx) is high
determines a Start condition. All data transfers must be preceded by a Start condition.

19.2.1.2 STOP DATA TRANSFER (P)

A low-to-high transition of the SDAx line while the clock (SCLx) is high determines a Stop
condition. All data transfers must end with a Stop condition.

19.2.1.3 REPEATED START (R)

After a wait state, a high-to-low transition of the SDAx line while the clock (SCLx) is high
determines a Repeated Start condition. Repeated Starts allow a master to change bus direction
or addressed slave device without relinquishing control of the bus.

19.2.1.4 DATA VALID (D)

The state of the SDAx line represents valid data when, after a Start condition, the SDAx line is
stable for the duration of the high period of the clock signal. There is one bit of data per SCLx
clock.

19.2.1.5 ACKNOWLEDGE (A) OR NOT-ACKNOWLEDGE (N)

All data byte transmissions must be Acknowledged (ACK) or Not-Acknowledged (NACK) by the
receiver. The receiver will pull the SDAx line low for an ACK or release the SDAx line for a NACK.
The Acknowledge is a 1-bit period using one SCLx clock.

19.2.1.6 WAIT/DATA INVALID (Q)

The data on the line must be changed during the low period of the clock signal. Devices may also
stretch the clock low time by asserting a low on the SCLx line, causing a wait on the bus.

19.2.1.7 BUS IDLE (I)

Both data and clock lines remain high at those times after a Stop condition and before a Start
condition.

19.2.2 Message Protocol
A typical I2C message is shown in Figure 19-4. In this example, the message will read a specified
byte from a 24LC256 I2C serial EEPROM. The dsPIC33F/PIC24H device will act as the master
and the 24LC256 device will act as the slave.

Figure 19-4 indicates the data as driven by the master device and the data as driven by the slave
device, taking into account that the combined SDAx line is a wired-AND of the master and slave
data. The master device controls and sequences the protocol. The slave device will only drive
the bus at specifically determined times.

Address
Valid

Data
Allowed

to Change

Stop
Condition

Start
Condition

SCLx

SDAx

(I) (S) (D) (A) or (N) (P) (I)

Data or

(Q)

ACK/NACK
Valid

NACK

ACK
© 2009 Microchip Technology Inc. DS70195C-page 19-5

dsPIC33F/PIC24H Family Reference Manual
Figure 19-4: A Typical I2C™ Message: Read of Serial EEPROM (Random Address Mode)

19.2.2.1 START MESSAGE

Each message is initiated with a “Start” condition and terminated with a “Stop” condition. The
number of data bytes transferred between the Start and Stop conditions is determined by the
master device. As defined by the system protocol, the bytes of the message may have special
meaning, such as “device address byte” or “data byte”.

19.2.2.2 ADDRESS SLAVE

In Figure 19-4, the first byte is the device address byte, which must be the first part of any I2C
message. It contains a device address and a R/W status bit. Refer to Appendix A: “I2C™
Overview” (DS70074) in the “dsPIC30F Family Reference Manual” for additional information on
address byte formats (check the Microchip web site for availability: www.microchip.com). Note
that R/W = 0 for this first address byte, indicating that the master will be a transmitter and the
slave will be a receiver.

19.2.2.3 SLAVE ACKNOWLEDGE

The receiving device is obliged to generate an Acknowledge signal, “ACK”, after the reception of
each byte. The master device must generate an extra SCLx clock, which is associated with this
Acknowledge bit.

19.2.2.4 MASTER TRANSMIT

The next two bytes, sent by the master to the slave, are data bytes containing the location of the
requested EEPROM data byte. The slave must Acknowledge each of the data bytes.

19.2.2.5 REPEATED START

At this point, the slave EEPROM has the address information necessary to return the requested
data byte to the master. However, the R/W status bit from the first device address byte specifies
master transmission and slave reception. The bus must be turned in the other direction for the
slave to send data to the master.

To perform this function without ending the message, the master sends a “Repeated Start”. The
Repeated Start is followed with a device address byte containing the same device address as
before and with the R/W = 1 to indicate slave transmission and master reception.

19.2.2.6 SLAVE REPLY

Now the slave transmits the data byte by driving the SDAx line, while the master continues to
originate clocks but releases its SDAx drive.

19.2.2.7 MASTER ACKNOWLEDGE

During reads, a master must terminate data requests to the slave by Not Acknowledging
(generating a “NACK”) on the last byte of the message.

19.2.2.8 STOP MESSAGE

The master sends a Stop to terminate the message and return the bus to an Idle state.

X

Bus

Master
SDAx

St
ar

t Address
Byte

EEPROM Address
High Byte

EEPROM Address
Low Byte

Address
Byte

Data
Byte

S 1 0 1 0
A A A

02 1 0 R 1 0 1 0
A A A

12 1 0 P

Slave
SDAx

Activity

N

AAAA

Output

Output

Id
le

R
/W

AC
K

AC
K

AC
K

R
es

ta
rt

R
/W

AC
K

N
AC

K
St

op
Id

le
DS70195C-page 19-6 © 2009 Microchip Technology Inc.

Section 19. Inter-Integrated Circuit™ (I2C™)
Inter-Integrated
C

ircuit™
 (I 2C

™
)

19
19.3 CONTROL AND STATUS REGISTERS
The I2C module has seven registers for operation that are accessible by the user application. All
registers are accessible in either Byte or Word mode. The registers are as follows:

• I2CxCON: I2Cx Control Register
This register (Register 19-1) allows control of the module’s operation.

• I2CxSTAT: I2Cx Status Register
This register (Register 19-2) contains status flags indicating the module’s state during
operation.

• I2CxMSK: I2Cx Slave Mode Address Mask Register
This register (Register 19-3) designates which bit positions in the I2CxADD register can be
ignored, which allows for multiple address support.

• I2CxRCV: I2Cx Receive Buffer Register
This is the buffer register from which data bytes can be read. The I2CxRCV register is a
read-only register.

• I2CxTRN: I2Cx Transmit Register
This is the transmit register. Bytes are written to this register during a transmit operation. The
I2CxTRN register is a read/write register.

• I2CxADD: I2Cx Address Register
This register holds the slave device address.

• I2CxBRG: I2Cx Baud Rate Generator Reload Register
This register holds the Baud Rate Generator (BRG) reload value for the I2C module Baud
Rate Generator.

I2CxTRN is the register to which transmit data is written. This register is used when the module
operates as a master transmitting data to the slave, or when it operates as a slave sending reply
data to the master. As the message progresses, the I2CxTRN register shifts out the individual
bits. Because of this, the I2CxTRN register cannot be written to unless the bus is Idle. The
I2CxTRN register can be reloaded while the current data is transmitting.

Data being received by either the master or the slave is shifted into a non-accessible shift
register, I2CxRSR. When a complete byte is received, the byte transfers to the I2CxRCV register.
In receive operations, the I2CxRSR and I2CxRCV registers create a double-buffered receiver.
This allows reception of the next byte to begin before reading the current byte of received data.

If the module receives another complete byte before the software reads the previous byte from
the I2CxRCV register, a receiver overflow occurs and sets the I2COV bit (I2CxSTAT<6>). The
byte in the I2CxRSR register is lost. Further reception and clock stretching are disabled until the
module sees a Start/Repeated, Start/Stop condition on the bus. If the I2COV flag has been
cleared, reception can proceed normally. If the I2COV flag is not cleared, the module will receive
the next byte correctly, but will send a NACK. It will then be unable to receive further bytes or
stretch the clock until it detects a Start/Repeated, Start/Stop condition.

The I2CxADD register holds the slave device address. In 10-bit Addressing mode, all bits are
relevant. In 7-bit Addressing mode, only the I2CxADD<6:0> bits are relevant. Note that the
I2CxADD<6:0> bits correspond to the upper seven bits in the address byte; the Read/Write bit is
not included in the value in this register. The A10M bit (I2CxCON<10>) specifies the expected
mode of the slave address. By using the I2CxMSK register with the I2CxADD register in either
Slave Addressing mode, one or more bit positions can be removed from exact address matching,
allowing the module in Slave mode to respond to multiple addresses.
© 2009 Microchip Technology Inc. DS70195C-page 19-7

dsPIC33F/PIC24H Family Reference Manual
Register 19-1: I2CxCON: I2Cx Control Register

R/W-0 U-0 R/W-0 R/W-1, HC R/W-0 R/W-0 R/W-0 R/W-0
I2CEN — I2CSIDL SCLREL IPMIEN(1) A10M DISSLW SMEN

bit 15 bit 8

R/W-0 R/W-0 R/W-0 R/W-0, HC R/W-0, HC R/W-0, HC R/W-0, HC R/W-0, HC
GCEN STREN ACKDT ACKEN RCEN PEN RSEN SEN

bit 7 bit 0

Legend: U = Unimplemented bit, read as ‘0’
R = Readable bit W = Writable bit HS = Set in Hardware HC = Cleared in Hardware
-n = Value at Reset ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15 I2CEN: I2Cx Enable bit
1 = Enables the I2Cx module and configures the SDAx and SCLx pins as serial port pins
0 = Disables the I2Cx module; all I2C pins are controlled by port functions

bit 14 Unimplemented: Read as ‘0’
bit 13 I2CSIDL: Stop in Idle Mode bit

1 = Discontinue module operation when device enters Idle mode
0 = Continue module operation in Idle mode

bit 12 SCLREL: SCLx Release Control bit (when operating as I2C slave)
1 = Release SCLx clock
0 = Hold SCLx clock low (clock stretch)
If STREN = 1:
Bit is R/W (i.e., software may write ‘0’ to initiate stretch and write ‘1’ to release clock). Hardware clear
at beginning of slave transmission and at end of slave reception.
If STREN = 0:
Bit is R/S (i.e., software may only write ‘1’ to release clock). Hardware clear at beginning of slave
transmission.

bit 11 IPMIEN: Intelligent Platform Management Interface (IPMI) Enable bit(1)

1 = IPMI Support mode is enabled; all addresses Acknowledged
0 = IPMI Support mode disabled

bit 10 A10M: 10-Bit Slave Address bit
1 = I2CxADD register is a 10-bit slave address
0 = I2CxADD register is a 7-bit slave address

bit 9 DISSLW: Disable Slew Rate Control bit
1 = Slew rate control disabled
0 = Slew rate control enabled

bit 8 SMEN: SMBus Input Levels bit
1 = Enable I/O pin thresholds compliant with SMBus specification
0 = Disable SMBus input thresholds

bit 7 GCEN: General Call Enable bit (when operating as I2C slave)
1 = Enable interrupt when a general call address is received in the I2CxRSR register (module is

enabled for reception)
0 = General call address disabled

bit 6 STREN: SCLx Clock Stretch Enable bit (I2C Slave mode only; used in conjunction with SCLREL bit)
1 = Enable software or receive clock stretching
0 = Disable software or receive clock stretching

Note 1: The IPMIEN bit should not be set when operating as a master.
DS70195C-page 19-8 © 2009 Microchip Technology Inc.

Section 19. Inter-Integrated Circuit™ (I2C™)
Inter-Integrated
C

ircuit™
 (I 2C

™
)

19
bit 5 ACKDT: Acknowledge Data bit (I2C Master mode; receive operation only)
Value that will be transmitted when the software initiates an Acknowledge sequence.
1 = Send NACK during Acknowledge
0 = Send ACK during Acknowledge

bit 4 ACKEN: Acknowledge Sequence Enable bit (I2C Master mode receive operation)
1 = Initiate Acknowledge sequence on SDAx and SCLx pins and transmit ACKDT data bit (hardware

clear at end of master Acknowledge sequence)
0 = Acknowledge sequence not in progress

bit 3 RCEN: Receive Enable bit (I2C Master mode)
1 = Enables Receive mode for I2C (hardware clear at end of eighth bit of master receive data byte)
0 = Receive sequence not in progress

bit 2 PEN: Stop Condition Enable bit (I2C Master mode)
1 = Initiate Stop condition on SDAx and SCLx pins (hardware clear at end of master Stop sequence)
0 = Stop condition not in progress

bit 1 RSEN: Repeated Start Condition Enable bit (I2C Master mode)
1 = Initiate Repeated Start condition on SDAx and SCLx pins (hardware clear at end of master

Repeated Start sequence)
0 = Repeated Start condition not in progress

bit 0 SEN: Start Condition Enable bit (I2C Master mode)
1 = Initiate Start condition on SDAx and SCLx pins (hardware clear at end of master Start sequence)
0 = Start condition not in progress

Register 19-1: I2CxCON: I2Cx Control Register (Continued)

Note 1: The IPMIEN bit should not be set when operating as a master.
© 2009 Microchip Technology Inc. DS70195C-page 19-9

dsPIC33F/PIC24H Family Reference Manual
Register 19-2: I2CxSTAT: I2Cx Status Register

R-0, HSC R-0, HSC U-0 U-0 U-0 R/C-0, HS R-0, HSC R-0, HSC
ACKSTAT TRSTAT — — — BCL GCSTAT ADD10

bit 15 bit 8

R/C-0, HS R/C-0, HS R-0, HSC R-0, HSC R-0, HSC R-0, HSC R-0, HSC R-0, HSC
IWCOL I2COV D/A P S R/W RBF TBF

bit 7 bit 0

Legend: U = Unimplemented bit, read as ‘0’
R = Readable bit C = Clearable bit HS = Set in Hardware HSC = Hardware Set/Cleared
-n = Value at Reset ‘1’ = Bit is set ‘0’ = Bit is clear x = Bit is unknown

bit 15 ACKSTAT: Acknowledge Status bit
1 = NACK received from slave
0 = ACK received from slave
Hardware set or clear at end of Slave or Master Acknowledge.

bit 14 TRSTAT: Transmit Status bit (I2C Master mode transmit operation)
1 = Master transmit is in progress (8 bits + ACK)
0 = Master transmit is not in progress
Hardware set at beginning of master transmission; hardware clear at end of slave Acknowledge.

bit 13-11 Unimplemented: Read as ‘0’
bit 10 BCL: Master Bus Collision Detect bit

1 = A bus collision has been detected during a master operation
0 = No collision
Hardware set at detection of bus collision.

bit 9 GCSTAT: General Call Status bit
1 = General call address was received
0 = General call address was not received
Hardware set when address matches general call address; hardware clear at Stop detection.

bit 8 ADD10: 10-Bit Address Status bit
1 = 10-bit address was matched
0 = 10-bit address was not matched
Hardware set at match of 2nd byte of matched 10-bit address; hardware clear at Stop detection.

bit 7 IWCOL: Write Collision Detect bit
1 = An attempt to write the I2CxTRN register failed because the I2C module is busy
0 = No collision
Hardware set at occurrence of write to I2CxTRN register while busy (cleared by software).

bit 6 I2COV: Receive Overflow Flag bit
1 = A byte was received while the I2CxRCV register is still holding the previous byte
0 = No overflow
Hardware set at attempt to transfer I2CxRSR register to I2CxRCV register (cleared by software).

bit 5 D/A: Data/Address bit (I2C Slave mode)
1 = Indicates that the last byte received was data
0 = Indicates that the last byte received was a device address
Hardware clear at device address match; hardware set by reception of slave byte or is set after the
transmission is complete and the TBF flag is cleared.

bit 4 P: Stop bit
1 = Indicates that a Stop bit has been detected last
0 = Stop bit was not detected last
Hardware set or clear when Start, Repeated Start or Stop detected.
DS70195C-page 19-10 © 2009 Microchip Technology Inc.

Section 19. Inter-Integrated Circuit™ (I2C™)
Inter-Integrated
C

ircuit™
 (I 2C

™
)

19
bit 3 S: Start bit
1 = Indicates that a Start (or Repeated Start) bit has been detected last
0 = Start bit was not detected last
Hardware set or clear when Start, Repeated Start or Stop detected.

bit 2 R/W: Read/Write Information bit (when operating as I2C slave)
1 = Read: data transfer is output from slave
0 = Write: data transfer is input to slave
Hardware set or clear after reception of I2C device address byte.

bit 1 RBF: Receive Buffer Full Status bit
1 = Receive complete; I2CxRCV register is full
0 = Receive not complete; I2CxRCV register is empty
Hardware set when the I2CxRCV register is written with received byte; hardware clear when software
reads the I2CxRCV register.

bit 0 TBF: Transmit Buffer Full Status bit
1 = Transmit in progress; I2CxTRN register is full
0 = Transmit complete; I2CxTRN register is empty
Hardware set when software writes to I2CxTRN register; hardware clear at completion of data
transmission.

Register 19-2: I2CxSTAT: I2Cx Status Register (Continued)
© 2009 Microchip Technology Inc. DS70195C-page 19-11

dsPIC33F/PIC24H Family Reference Manual
Register 19-3: I2CxMSK: I2Cx Slave Mode Address Mask Register

U-0 U-0 U-0 U-0 U-0 U-0 R/W-0 R/W-0
— — — — — — AMSK9 AMSK8

bit 15 bit 8

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
AMSK7 AMSK6 AMSK5 AMSK4 AMSK3 AMSK2 AMSK1 AMSK0

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at Reset ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-10 Unimplemented: Read as ‘0’
bit 9-0 AMSKx: Mask for Address Bit x Select bit

For 10-Bit Address:
1 = Enable masking for bit Ax of incoming message address; bit match not required in this position
0 = Disable masking for bit Ax; bit match required in this position
For 7-Bit Address (I2CxMSK<6:0> only):
1 = Enable masking for bit Ax + 1 of incoming message address; bit match not required in this position
0 = Disable masking for bit Ax + 1; bit match required in this position
DS70195C-page 19-12 © 2009 Microchip Technology Inc.

Section 19. Inter-Integrated Circuit™ (I2C™)
Inter-Integrated
C

ircuit™
 (I 2C

™
)

19
19.4 ENABLING I2C OPERATION
The I2C module is enabled by setting the I2CEN (I2CxCON<15>) bit.

The I2C module fully implements all master and slave functions. When the module is enabled,
the master and slave functions are active simultaneously and will respond according to the
software or bus events.

When initially enabled, the module will release the SDAx and SCLx pins, putting the bus into the
Idle state. The master functions will remain in the Idle state unless software sets the SEN control
bit and data is loaded into the I2CxTRN register. These two actions initiate a master event.

When the master logic is active, the slave logic also remains active. Therefore, the slave
functions will begin to monitor the bus. If the slave logic detects a Start event and a valid address
on the bus, the slave logic will begin a slave transaction.

19.4.1 Enabling I2C I/O
Two pins are used for bus operation. These are the SCLx pin, which is the clock, and the SDAx
pin, which is the data. When the module is enabled, assuming no other module with higher
priority has control, the module will assume control of the SDAx and SCLx pins. The module
software need not be concerned with the state of the port I/O of the pins, as the module overrides
the port state and direction. At initialization, the pins are tri-stated (released).

19.4.2 I2C Interrupts
The I2C module generates two interrupts. One interrupt, MI2CxIF, is assigned to master events;
the other interrupt, SI2CxIF, is assigned to slave events. These interrupts set a corresponding
interrupt flag bit and interrupt the software process if the corresponding interrupt enable bit is set
and the corresponding interrupt priority is high enough.

The MI2CxIF interrupt is generated on completion of the following master message events:

• Start condition
• Stop condition
• Data transfer byte transmitted/received
• Acknowledge transmit
• Repeated Start
• Detection of a bus collision event

The SI2CxIF interrupt is generated on detection of a message directed to the slave, including the
following events:

• Detection of a valid device address (including general call)
• Request to transmit data (ACK) or to stop data transmission (NACK)
• Reception of data
© 2009 Microchip Technology Inc. DS70195C-page 19-13

dsPIC33F/PIC24H Family Reference Manual
19.4.3 Setting Baud Rate When Operating as a Bus Master
When operating as an I2C master, the module must generate the system SCLx clock. Generally,
I2C system clocks are specified to be either 100 kHz, 400 kHz or 1 MHz. The system clock rate
is specified as the minimum SCLx low time plus the minimum SCLx high time. In most cases,
that is defined by two TBRG intervals.

The reload value for the Baud Rate Generator (BRG) is the I2CxBRG register, as shown in
Figure 19-5. When the Baud Rate Generator is loaded with this value, the generator counts down
to 0 and stops until another reload has taken place. The generator count is decremented twice
per instruction cycle (TCY). The Baud Rate Generator is reloaded automatically on baud rate
restart. For example, if clock synchronization is taking place, the Baud Rate Generator will be
reloaded when the SCLx pin is sampled high.

To calculate the Baud Rate Generator reload value, use the following equation:

Equation 19-1: BRG Reload Value Calculation

Table 19-1: I2C™ Clock Rates

Figure 19-5: Baud Rate Generator Block Diagram

Note: I2CxBRG register values of less than 2 are not supported.

Required
System

FSCL
FCY PGD(1) I2CBRG

Decimal
I2CBRG

Hexadecimal

100 kHz 40 MHz 130 ns 392.8 0x188
100 kHz 20 MHz 130 ns 195.4 0x0C3
100 kHz 10 MHz 130 ns 96.7 0x060
400 kHz 20 MHz 130 ns 45.4 0x02D
400 kHz 10 MHz 130 ns 21.7 0x015
400 kHz 5 MHz 130 ns 9.85 0x009
1 MHz 10 MHz 130 ns 6.7 0x006

Note 1: The typical value of the Pulse Gobbler Delay (PGD) is 130 ns. Refer to the device
specific data sheet for more information.

Note: Equation 19-1 and Table 19-1 are only guidelines. Due to system-dependant
parameters, the actual baud rate may differ slightly. Testing will be needed to
confirm that the actual baud rate meets system requirements. Otherwise, the value
of I2CxBRG may need to be adjusted.

I2CBRG 1
FSCL
------------ PGD–⎝ ⎠
⎛ ⎞ FCY⋅ 2–=

Down Counter CLK2 TCY

I2CxBRG<8:0>

SCLx Reload
Control

Reload
DS70195C-page 19-14 © 2009 Microchip Technology Inc.

Section 19. Inter-Integrated Circuit™ (I2C™)
Inter-Integrated
C

ircuit™
 (I 2C

™
)

19
19.5 COMMUNICATING AS A MASTER IN A SINGLE-MASTER ENVIRONMENT
The I2C module’s typical operation in a system is using the I2C to communicate with an I2C
peripheral, such as an I2C serial memory. In an I2C system, the master controls the sequence of
all data communication on the bus. In this example, the dsPIC33F/PIC24H and its I2C module
have the role of the single-master in the system. As the single-master, it is responsible for
generating the SCLx clock and controlling the message protocol.

In the I2C module, the module controls individual portions of the I2C message protocol; however,
sequencing of the components of the protocol to construct a complete message is a software
task.

For example, a typical operation in a single-master environment is to read a byte from an I2C
serial EEPROM. This example message is depicted in Figure 19-6.

To accomplish this message, the software will sequence through the following steps:

1. Assert a Start condition on SDAx and SCLx.
2. Send the I2C device address byte to the slave with a write indication.
3. Wait for and verify an Acknowledge from the slave.
4. Send the serial memory address high byte to the slave.
5. Wait for and verify an Acknowledge from the slave.
6. Send the serial memory address low byte to the slave.
7. Wait for and verify an Acknowledge from the slave.
8. Assert a Repeated Start condition on SDAx and SCLx.
9. Send the device address byte to the slave with a read indication.
10. Wait for and verify an Acknowledge from the slave.
11. Enable master reception to receive serial memory data.
12. Generate an ACK or NACK condition at the end of a received byte of data.
13. Generate a Stop condition on SDAx and SCLx.

Figure 19-6: A Typical I2C™ Message: Read of Serial EEPROM (Random Address Mode)

The I2C module supports Master mode communication with the inclusion of Start and Stop
generators, data byte transmission, data byte reception, Acknowledge generator and a Baud
Rate Generator. Generally, the software will write to a control register to start a particular step,
then wait for an interrupt or poll status to wait for completion.

Subsequent sections detail each of these operations.

Note: The IPMIEN (I2CxCON<11>) bit should not be set when operating as a master.

Bus

Master
SDAx

St
ar

t Address
Byte

EEPROM Address
High Byte

EEPROM Address
Low Byte

Address
Byte

Data
Byte

S 1 0 1 0
A A A

02 1 0 R 1 0 1 0
A A A

12 1 0 P

Slave
SDAx

Activity

N

AAAA

Output

Output

Id
le

R
/W

AC
K

AC
K

AC
K

R
es

ta
rt

R
/W

AC
K

N
AC

K
St

op
Id

le

Note: The I2C module does not allow queueing of events. For instance, the software is not
allowed to initiate a Start condition and immediately write the I2CxTRN register to
initiate transmission before the Start condition is complete. In this case, the
I2CxTRN register will not be written to and the IWCOL status bit will be set,
indicating that this write to the I2CxTRN register did not occur.
© 2009 Microchip Technology Inc. DS70195C-page 19-15

dsPIC33F/PIC24H Family Reference Manual
19.5.1 Generating Start Bus Event
To initiate a Start event, the software sets the Start Enable bit, SEN (I2CxCON<0>). Prior to
setting the Start bit, the software can check the P status bit (I2CxSTAT<4>) to ensure that the
bus is in an Idle state.

Figure 19-7 shows the timing of the Start condition.

• Slave logic detects the Start condition, sets the S status bit (I2CxSTAT<3>) and clears the
P status bit (I2CxSTAT<4>).

• SEN bit is automatically cleared at completion of the Start condition.
• MI2CxIF interrupt is generated at completion of the Start condition.
• After the Start condition, the SDAx line and SCLx line are left low (Q state).

19.5.1.1 IWCOL STATUS FLAG

If the software writes the I2CxTRN register when a Start sequence is in progress, the IWCOL
status bit is set and the contents of the transmit buffer are unchanged (the write does not occur).

Figure 19-7: Master Start Timing Diagram

19.5.2 Sending Data to a Slave Device
Transmission of a data byte, a 7-bit device address byte or the second byte of a 10-bit address
is accomplished by simply writing the appropriate value to the I2CxTRN register. Loading this
register will start the following process:

• The software loads the I2CxTRN register with the data byte to transmit.
• Writing the I2CxTRN register sets the buffer full flag bit, TBF (I2CxSTAT<0>).
• The data byte is shifted out through the SDAx pin until all 8 bits are transmitted. Each bit of

address/data will be shifted out onto the SDAx pin after the falling edge of SCLx.
• On the ninth SCLx clock, the module shifts in the ACK bit from the slave device and writes

its value into the ACKSTAT status bit (I2CxSTAT<15>).
• The module generates the MI2CxIF interrupt at the end of the ninth SCLx clock cycle.

The module does not generate or validate the data bytes. The contents and usage of the bytes
are dependent on the state of the message protocol maintained by the software.

Note: Because queueing of events is not allowed, writing to the lower five bits of the
I2CxCON register is disabled until the Start condition is complete.

SCLx (Master)

SDAx (Master)

S

SEN

MI2CxIF Interrupt

TBRG

1 2 3 4

1TBRG

2

3

4

I2C™ Bus State (I) (Q)

P

(S)
Writing SEN = 1 initiates a master Start event. Baud Rate
Generator starts.
Baud Rate Generator times out. Master module drives SDAx low.
Baud Rate Generator restarts.
Slave module detects Start and sets S = 1 and P = 0.
Baud Rate Generator times out. Master module drives SCLx low,
generates an interrupt and clears SEN.
DS70195C-page 19-16 © 2009 Microchip Technology Inc.

Section 19. Inter-Integrated Circuit™ (I2C™)
Inter-Integrated
C

ircuit™
 (I 2C

™
)

19
19.5.2.1 SENDING A 7-BIT ADDRESS TO THE SLAVE

Sending a 7-bit device address involves sending one byte to the slave. A 7-bit address byte must
contain the 7 bits of the I2C device address and a R/W status bit that defines whether the
message will be a write to the slave (master transmission and slave reception) or a read from the
slave (slave transmission and master reception).

19.5.2.2 SENDING A 10-BIT ADDRESS TO THE SLAVE

Sending a 10-bit device address involves sending 2 bytes to the slave. The first byte contains
5 bits of the I2C device address reserved for 10-bit Addressing modes and 2 bits of the 10-bit
address. Because the next byte, which contains the remaining 8 bits of the 10-bit address, must
be received by the slave, the R/W status bit in the first byte must be ‘0’, indicating master
transmission and slave reception. If the message data is also directed toward the slave, the
master can continue sending the data. However, if the master expects a reply from the slave, a
Repeated Start sequence with the R/W status bit at ‘1’ will change the R/W state of the message
to a read of the slave.

19.5.2.3 RECEIVING ACKNOWLEDGE FROM THE SLAVE

On the falling edge of the eighth SCLx clock, the TBF status bit is cleared and the master will
deassert the SDAx pin, allowing the slave to respond with an Acknowledge. The master will then
generate a ninth SCLx clock.

This allows the slave device being addressed to respond with an ACK bit during the ninth bit time
if an address match occurs or data was received properly. A slave sends an Acknowledge when
it has recognized its device address (including a general call) or when the slave has properly
received its data.

The status of ACK is written into the Acknowledge Status bit, ACKSTAT (I2CxSTAT<15>), on the
falling edge of the ninth SCLx clock. After the ninth SCLx clock, the module generates the
MI2CxIF interrupt and enters an Idle state until the next data byte is loaded into the I2CxTRN
register.

19.5.2.4 ACKSTAT STATUS FLAG

The ACKSTAT status bit (I2CxSTAT<15>) is cleared when the slave has sent an Acknowledge
(ACK = 0) and is set when the slave does not Acknowledge (ACK = 1).

19.5.2.5 TBF STATUS FLAG

When transmitting, the TBF status bit (I2CxSTAT<0>) is set when the CPU writes to the
I2CXTRN register and is cleared when all 8 bits are shifted out.

19.5.2.6 IWCOL STATUS FLAG

If the software attempts to write to the I2CXTRN register when a transmit is already in progress
(i.e., the module is still shifting out a data byte), the IWCOL status bit is set and the contents of
the buffer are unchanged (the write does not occur). The IWCOL status bit must be cleared in
software.

Note: In 7-bit addressing mode, each node using the I2C protocol should be configured
with a unique address that is stored in the I2CxADD register.

Note: In 10-bit addressing mode, each node using the I2C protocol should be configured
with a unique address that is stored in the I2CxADD register.

Note: Because queueing of events is not allowed, writing to the lower 5 bits of the
I2CxCON register is disabled until the transmit condition is complete.
© 2009 Microchip Technology Inc. DS70195C-page 19-17

dsPIC33F/PIC24H Family Reference Manual
Figure 19-8: Master Transmission Timing Diagram

19.5.3 Receiving Data from a Slave Device
The master can receive data from a slave device after the master has transmitted the slave
address with an R/W status bit value of ‘1’. This is enabled by setting the Receive Enable bit,
RCEN (I2CxCON<3>). The master logic begins to generate clocks, and before each falling edge
of the SCLx, the SDAx line is sampled and data is shifted into the I2CxRSR register.

After the falling edge of the eighth SCLx clock, the following events occur:

• The RCEN bit is automatically cleared.
• The contents of the I2CxRSR register transfer into the I2CxRCV register.
• The RBF status bit is set.
• The module generates the MI2CxIF interrupt.

When the CPU reads the buffer, the RBF status bit is automatically cleared. The software can
process the data and then execute an Acknowledge sequence.

D7 D6 D5 D4 D3 D2 D1 D0

SCLx (Master)

SCLx (Slave)

SDAx (Master)

SDAx (Slave)

TBF

I2CxTRN

MI2CxIF Interrupt

TBRG TBRG

5 6 7 81 2 3 4

Writing the I2CxTRN register will start a master transmission event. TBF status bit is set.1

Baud Rate Generator starts. The MSB of the I2CxTRN register drives SDAx. SCLx remains low. TRSTAT status bit is set.2

Baud Rate Generator times out. SCLx released. Baud Rate Generator restarts.3

Baud Rate Generator times out. SCLx driven low. After SCLx detected low, the next bit of I2CxTRN register drives SDAx.4

While SCLx is low, the slave can also pull SCLx low to initiate a wait (clock stretch).5

Master has already released SCLx and slave can release to end wait. Baud Rate Generator restarts.6

At falling edge of eighth SCLx clock, master releases SDAx. TBF status bit is cleared. Slave drives ACK/NACK.7

At falling edge of ninth SCLx clock, master generates interrupt. SCLx remains low until next event. 8
Slave releases SDAx. TRSTAT status bit is clear.

I2C™ Bus State (Q) (D) (Q) (A) (Q)(D) (Q)

TRSTAT

ACKSTAT

Note: The lower 5 bits of the I2CxCON register must be ‘0’ before attempting to set the
RCEN bit. This ensures the master logic is inactive.
DS70195C-page 19-18 © 2009 Microchip Technology Inc.

Section 19. Inter-Integrated Circuit™ (I2C™)
Inter-Integrated
C

ircuit™
 (I 2C

™
)

19
19.5.3.1 RBF STATUS FLAG

When receiving data, the RBF status bit is set when a device address or data byte is loaded into
the I2CxRCV register from the I2CxRSR register. It is cleared when software reads the I2CxRCV
register.

19.5.3.2 I2COV STATUS FLAG

If another byte is received in the I2CxRSR register while the RBF status bit remains set and the
previous byte remains in the I2CxRCV register, the I2COV status bit is set and the data in the
I2CxRSR register is lost.

Leaving the I2COV status bit set does not inhibit further reception. If the RBF status bit is cleared
by reading the I2CxRCV register and the I2CxRSR register receives another byte, that byte will
be transferred to the I2CxRCV register.

19.5.3.3 IWCOL STATUS FLAG

If the software writes the I2CxTRN register when a receive is already in progress (i.e., the
I2CxRSR register is still shifting in a data byte), the IWCOL status bit is set and the contents of
the buffer are unchanged (the write does not occur).

Figure 19-9: Master Reception Timing Diagram

Note: Since queueing of events is not allowed, writing to the lower 5 bits of the I2CxCON
register is disabled until the data reception condition is complete.

D7 D6 D5 D4 D3 D2 D1 D0

SCLx (Master)

SCLx (Slave)

SDAx (Slave)

SDAx (Master)

RBF

I2C™ Bus State

MI2CxIF Interrupt

TBRG

5 62 3 4

Writing the RCEN bit will start a master reception event. The Baud Rate Generator starts. SCLx remains low.2

Baud Rate Generator times out. Master attempts to release SCLx. 3

When slave releases SCLx, Baud Rate Generator restarts.4

Baud Rate Generator times out. MSB of response shifted to I2CxRSR register. SCLx driven low for next baud interval. 5

At falling edge of eighth SCLx clock, I2CxRSR register is transferred to I2CxRCV register. Module clears RCEN bit. 6

TBRG

RCEN

(D) (Q) (Q)(D)(Q)

I2CxRCV

RBF status bit is set. Master generates interrupt.

(Q)

1

Typically, the slave can pull SCLx low (clock stretch) to request a wait to prepare data response. 1
The slave will drive the MSB of the data response on SDAx when ready.

(Q)
© 2009 Microchip Technology Inc. DS70195C-page 19-19

dsPIC33F/PIC24H Family Reference Manual
19.5.4 Acknowledge Generation
Setting the Acknowledge Enable bit, ACKEN (I2CxCON<4>), enables generation of a master
Acknowledge sequence.

Figure 19-10 shows an ACK sequence and Figure 19-11 shows a NACK sequence. The
Acknowledge Data bit, ACKDT (I2CxCON<5>), specifies ACK or NACK.

After two baud periods, the ACKEN bit is automatically cleared and the module generates the
MI2CxIF interrupt.

19.5.4.1 IWCOL STATUS FLAG

If the software writes the I2CxTRN register when an Acknowledge sequence is in progress, the
IWCOL status bit is set and the contents of the buffer are unchanged (the write does not occur).

Figure 19-10: Master Acknowledge (ACK) Timing Diagram

Figure 19-11: Master Not-Acknowledge (NACK) Timing Diagram

Note: The lower 5 bits of the I2CxCON register must be ‘0’ (master logic inactive) before
attempting to set the ACKEN bit.

Note: Because queueing of events is not allowed, writing to the lower 5 bits of the
I2CxCON register is disabled until the Acknowledge condition is complete.

SCLx (Master)

SDAx (Master)

ACKEN

MI2CxIF Interrupt

TBRG

1 2 3

 Writing ACKEN = 1 initiates a master Acknowledge event.
1

TBRG

Writing ACKDT = 0 specifies sending an ACK.

When SCLx detected low, module drives SDAx low. 2

Baud Rate Generator times out. Module releases SCLx.3

Baud Rate Generator times out. 4

I2C™ Bus State (A) (Q)(Q)

4

Baud Rate Generator restarts.

Baud Rate Generator starts. SCLx remains low.

Module drives SCLx low, then releases SDAx.
Module clears ACKEN. Master generates interrupt.

(Q)

ACKDT = 0

SCLx (Master)

SDAx (Master)

ACKEN

MI2CxIF Interrupt

TBRG

1 2 3

Writing ACKEN = 1 initiates a master Acknowledge event.
1

TBRG

Writing ACKDT = 1 specifies sending a NACK.

When SCLx detected low, module releases SDAx.2

Baud Rate Generator times out. Module releases SCLx.3

Baud Rate Generator times out. 4

I2C™ Bus State (A) (I)(Q)

4

Baud Rate Generator restarts.

Baud Rate Generator starts.

Module drives SCLx low, then releases SDAx.
Module clears ACKEN. Master generates interrupt.

ACKDT = 1
DS70195C-page 19-20 © 2009 Microchip Technology Inc.

Section 19. Inter-Integrated Circuit™ (I2C™)
Inter-Integrated
C

ircuit™
 (I 2C

™
)

19
19.5.5 Generating Stop Bus Event
Setting the Stop Enable bit, PEN (I2CxCON<2>), enables generation of a master Stop sequence.

When the PEN bit is set, the master generates the Stop sequence as shown in Figure 19-12.

• The slave detects the Stop condition, sets the P status bit (I2CxSTAT<4>) and clears the S
status bit (I2CxSTAT<3>).

• The PEN bit is automatically cleared.
• The module generates the MI2CxIF interrupt.

19.5.5.1 IWCOL STATUS FLAG

If the software writes the I2CxTRN register when a Stop sequence is in progress, the IWCOL
status bit is set and the contents of the buffer are unchanged (the write does not occur).

Figure 19-12: Master Stop Timing Diagram

Note: The lower 5 bits of the I2CxCON register must be ‘0’ (master logic inactive) before
attempting to set the PEN bit.

Note: Because queueing of events is not allowed, writing to the lower 5 bits of the
I2CxCON register is disabled until the Stop condition is complete.

SCLx (Master)

SDAx (Master)

S

PEN

MI2CxIF Interrupt

TBRG

1 2 3 5

Writing PEN = 1 initiates a master Stop event. 1

TBRG

Baud Rate Generator starts. Module drives SDAx low.

Baud Rate Generator times out. Module releases SCLx. 2
Baud Rate Generator restarts.

Baud Rate Generator times out. Module releases SDAx.3

Slave logic detects Stop. Module sets P = 1 and S = 0.4

I2C™ Bus State (I)

P

TBRG

(Q)

4

Baud Rate Generator restarts.

The Baud Rate Generator times out. Module clears PEN. 5
Master generates interrupt.

(Q) (P)
© 2009 Microchip Technology Inc. DS70195C-page 19-21

dsPIC33F/PIC24H Family Reference Manual
19.5.6 Generating Repeated Start Bus Event
Setting the Repeated Start Enable bit, RSEN (I2CxCON<1>), enables generation of a master
Repeated Start sequence (see Figure 19-13).

To generate a Repeated Start condition, software sets the RSEN bit (I2CxCON<1>). The module
asserts the SCLx pin low. When the module samples the SCLx pin low, the module releases the
SDAx pin for one Baud Rate Generator count (TBRG). When the Baud Rate Generator times out
and the module samples SDAx high, the module deasserts the SCLx pin. When the module
samples the SCLx pin high, the Baud Rate Generator reloads and begins counting. SDAx and
SCLx must be sampled high for one TBRG. This action is then followed by assertion of the SDAx
pin low for one TBRG while SCLx is high.

The following is the Repeated Start sequence:

• The slave detects the Start condition, sets the S status bit (I2CxSTAT<3>) and clears the P
status bit (I2CxSTAT<4>).

• The RSEN bit is automatically cleared.
• The module generates the MI2CxIF interrupt.

19.5.6.1 IWCOL STATUS FLAG

If the software writes the I2CxTRN register when a Repeated Start sequence is in progress, the
IWCOL status bit is set and the contents of the buffer are unchanged (the write does not occur).

Figure 19-13: Master Repeated Start Timing Diagram

Note: The lower 5 bits of the I2CxCON register must be ‘0’ (master logic inactive) before
attempting to set the RSEN bit.

Note: Because queueing of events is not allowed, writing of the lower 5 bits of the
I2CxCON register is disabled until the Repeated Start condition is complete.

SCLx (Master)

SDAx (Master)

S

RSEN

MI2CxIF Interrupt

TBRG

1 2 3 5

Writing RSEN = 1 initiates a master Repeated Start event. 1

TBRG

Baud Rate Generator starts. Module drives SCLx low and

Baud Rate Generator times out. Module releases SCLx. 2
Baud Rate Generator restarts.

Baud Rate Generator times out. Module drives SDAx low.3

Slave logic detects Start. Module sets S = 1 and P = 0.4

I2C™ Bus State (Q)

P

TBRG

(Q)

4

Baud Rate Generator restarts.

The Baud Rate Generator times out. Module drives SCLx low.5
Module clears RSEN. Master generates interrupt.

(Q) releases SDAx.(S)
DS70195C-page 19-22 © 2009 Microchip Technology Inc.

Section 19. Inter-Integrated Circuit™ (I2C™)
Inter-Integrated
C

ircuit™
 (I 2C

™
)

19
19.5.7 Building Complete Master Messages
As described at the beginning of 19.5 “Communicating as a Master in a Single-Master Environment”,
the software is responsible for constructing messages with the correct message protocol. The
module controls individual portions of the I2C message protocol; however, sequencing of the
components of the protocol to construct a complete message is a software task.

The software can use polling or interrupt methods while using the module. The examples shown
use interrupts.

The software can use the SEN, RSEN, PEN, RCEN and ACKEN bits (Least Significant 5 bits of
the I2CxCON register) and the TRSTAT status bit as a “state” flag when progressing through a
message. For example, Table 19-2 shows some example state numbers associated with bus
states.

Table 19-2: Master Message Protocol States

The software will begin a message by issuing a Start command. The software will record the state
number corresponding to the Start.

As each event completes and generates an interrupt, the interrupt handler may check the state
number. So, for a Start state, the interrupt handler will confirm execution of the Start sequence
and then start a master transmission event to send the I2C device address, changing the state
number to correspond to the master transmission.

On the next interrupt, the interrupt handler will again check the state, determining that a master
transmission just completed. The interrupt handler will confirm successful transmission of the
data, then move on to the next event, depending on the contents of the message. In this manner,
on each interrupt, the interrupt handler will progress through the message protocol until the
complete message is sent.

Figure 19-14 provides a more detailed examination of the same message sequence shown in
Figure 19-6. Figure 19-15 shows some simple examples of messages using 7-bit addressing
format. Figure 19-16 shows an example of a 10-bit addressing format message sending data
to a slave. Figure 19-17 shows an example of a 10-bit addressing format message receiving
data from a slave.

Example
State Number I2CxCON<4:0> TRSTAT

(I2CxSTAT<14>) State

0 00000 0 Bus Idle or Wait
1 00001 N/A Sending Start Event
2 00000 1 Master Transmitting
3 00010 N/A Sending Repeated Start Event
4 00100 N/A Sending Stop Event
5 01000 N/A Master Reception
6 10000 N/A Master Acknowledgement

Note: Example state numbers for reference only. User software can assign state numbers
as desired.
© 2009 Microchip Technology Inc. DS70195C-page 19-23

dsPIC
33F/PIC

24H
 Fam

ily R
eference M

anual

D
S

70195C
-page 19-24

©
 2009 M

icrochip Technology Inc.

1 2 3 4 5 6 7 8

D3 D2 D1 D0D7 D6 D5 D4

9

N

7 8 9

a master transmission. The data is a re-send of

r reception. On interrupt, the software reads

nowledge event. ACKDT = 1 to send NACK.

top event.

 byte, but with R/W status bit set, indicating a read.

the RBF status bit.
Figure 19-14: Master Message (Typical I2C™ Message: Read of Serial EEPROM)

1 Setting the SEN bit starts a Start event.

AKDT

ACKEN

SEN

SCLx

SDAx

SCLx

SDAx

I2CxTRN

TBF

I2CxRCV

RBF

MI2CxIF

ACKSTAT

1 2 3 4 5 6 7 8

A1 A0

9

A

PEN

RCEN

1 2 3 4 5 6 7 8

A1
1

A1
0

A
9

A
8

1 2 3 4 5 6 7 8 9

W1 1

RSEN

1 2 3 4 5 6 7 8 9

1 32

9

AAA

4 5

2 Writing the I2CxTRN register starts a master transmission. The data is the serial

3 Writing the I2CxTRN register starts a master transmission. The data is the first

4

5

Writing the I2CxTRN register starts 6

Setting the RCEN bit starts a maste7

9

Setting the ACKEN bit starts an Ack

Setting the PEN bit starts a master S

EEPROM device address byte, with R/W status bit clear, indicating a write.

byte of the EEPROM data address.

the serial EEPROM device address

the I2CxRCV register, which clears

0 0 A2 A7 A6 A5 A4 A2 A1 A0 A1 A0 R1 10 0 A20 0 0 0

6

Writing the I2CxTRN register starts a master transmission. The data is the second
byte of the EEPROM data address.

8

Setting the RSEN bit starts a Repeated Start event.

(Master)

(Master)

(Slave)

(Slave)

A3

MI2CxIF interrupt flag cleared by user software

©
 2009 M

icrochip Technology Inc.
D

S
70195C

-page 19-25

Section 19. Inter-Integrated C
ircuit™

 (I 2C
™

)

Fig

1 2 3 4 5 6 7 8

D3 D2 D1 D07 D6 D5 D4

9

N

98

ster transmission. The data is the

eption.

ledge event. ACKDT = 1 to send NACK.

event.
Inter-Integrated
Circuit™ (I2C™) 19

ure 19-15: Master Message (7-Bit Address: Transmission and Reception)

1 Setting the SEN bit starts a Start event.

AKDT

ACKEN

SEN

SCLx

SDAx

SCLx

SDAx

I2CxTRN

TBF

I2CxRCV

RBF

MI2CxIF

ACKSTAT

1 2 3 4 5 6 7 8

A2 A1

9

A

PEN

RCEN

1 2 3 4 5 6 7 8

D7 D6 D5 D4 D3 D2 D1 D0

1 2 3 4 5 6 7 8 9

W

RSEN

1 32

9

DA

4 5 6 7

2 Writing the I2CxTRN register starts a master transmission. The data is the

3 Writing the I2CxTRN register starts a master transmission. The data is the

4 Setting the PEN bit starts a master Stop event.

5 Setting the SEN bit starts a Start event.

6 Writing the I2CxTRN register starts a ma

7 Setting the RCEN bit starts a master rec

8 Setting the ACKEN bit starts an Acknow

Setting the PEN bit starts a master Stop

address byte with R/W status bit clear.

message byte.

A7 A6 A5 A4 A3

A

A2 A1 RA7 A6 A5 A4 A3

address byte with R/W status bit set.

9

(Master)

(Master)

(Slave)

(Slave)

MI2CxIF interrupt flag cleared by user software

dsPIC
33F/PIC

24H
 Fam

ily R
eference M

anual

D
S

70195C
-page 19-26

©
 2009 M

icrochip Technology Inc.

1 2 3 4 5 6 7 8 9

6 7

Stop event.

D3 D2 D1 D0D7 D6 D5 D4

A

 a master transmission. The data is the second

 a master transmission. The data is the third
Figure 19-16: Master Message (10-Bit Transmission)

1 Setting the SEN bit starts a Start event.

AKDT

ACKEN

SEN

SCLx

SDAx

SCLx

SDAx

I2CxTRN

TBF

I2CxRCV

RBF

MI2CxIF

ACKSTAT

1 2 3 4 5 6 7 8

A9 A8

9

A

PEN

RCEN

1 2 3 4 5 6 7 8

D3 D2 D1 D0D7 D6 D5 D4A7 A6 A5 A4 A3 A2 A1 A0

1 2 3 4 5 6 7 8 9

W01 1 1 1

RSEN

1 2 3 4 5 6 7 8 9

1 32

9

AAA

4 5

2 Writing the I2CxTRN register starts a master transmission. The data is the first

3 Writing the I2CxTRN register starts a master transmission. The data is the second

4 Writing the I2CxTRN register starts a master transmission. The data is the first

Setting the PEN bit starts a master

byte of the address.

byte of the message data.

D3 D2 D1 D0D7 D6 D5 D4

5 Writing the I2CxTRN register starts
byte of the message data.

6 Writing the I2CxTRN register starts
byte of the message data.

7

(Master)

(Master)

(Slave)

(Slave)

MI2CxIF interrupt flag cleared by user software

byte of the address.

©
 2009 M

icrochip Technology Inc.
D

S
70195C

-page 19-27

Section 19. Inter-Integrated C
ircuit™

 (I 2C
™

)

Fig

1 2 3 4 5 6 7 8

D3 D2 D1 D07 D6 D5 D4

9

N

9 10

eption. On interrupt, the software reads

ledge event. ACKDT = 0 to send ACK.

eption.

ledge event. ACKDT = 1 to send NACK.

event.

BF status bit.
Inter-Integrated
Circuit™ (I2C™) 19

ure 19-17: Master Message (10-Bit Reception)

1 Setting the SEN bit starts a Start event.

AKDT

ACKEN

SEN

SCLx

SDAx

SCLx

SDAx

I2CxTRN

TBF

I2CxRCV

RBF

MI2CxIF

ACKSTAT

1 2 3 4 5 6 7 8

A9 A8

9

A

PEN

RCEN

1 2 3 4 5 6 7 8

D3 D2 D1 D0D7 D6 D5 D4

A7 A6 A5 A4 A3 A2 A1 A0

1 2 3 4 5 6 7 8 9

W01 1 1 1

RSEN

A9 A801 1 1 1 R

1 2 3 4 5 6 7 8 9

1 32

9

A

DAA

4 5 6 7 8

2 Writing the I2CxTRN register starts a master transmission. The data is the first

3 Writing the I2CxTRN register starts a master transmission. The data is the second

4 Setting the RSEN bit starts a master Restart event.
5 Writing the I2CxTRN register starts a master transmission. The data is a re-send

6 Setting the RCEN bit starts a master rec

7 Setting the ACKEN bit starts an Acknow

8 Setting the RCEN bit starts a master rec

9 Setting the ACKEN bit starts an Acknow

Setting the PEN bit starts a master Stop

byte of the address with the R/W status bit cleared.

byte of the address.

of the first byte with the R/W status bit set.

the I2CxRCV register, which clears the R

(Slave)

(Slave)

(Master)

(Master)

MI2CxIF interrupt flag cleared in user software

10

dsPIC33F/PIC24H Family Reference Manual
19.6 COMMUNICATING AS A MASTER IN A MULTI-MASTER ENVIRONMENT
The I2C protocol allows for more than one master to be attached to a system bus. Taking into
account that a master can initiate message transactions and generate clocks for the bus, the
protocol has methods to account for situations where more than one master is attempting to
control the bus. Clock synchronization ensures that multiple nodes can synchronize their SCLx
clocks to result in one common clock on the SCLx line. Bus arbitration ensures that if more than
one node attempts a message transaction, only one node will be successful in completing the
message. The other nodes lose bus arbitration and are left with a bus collision.

19.6.1 Multi-Master Operation
The master module has no special settings to enable multi-master operation. The module
performs clock synchronization and bus arbitration at all times. If the module is used in a single-
master environment, clock synchronization only occurs between the master and slaves, and bus
arbitration does not occur.

19.6.2 Master Clock Synchronization
In a multi-master system, different masters can have different baud rates. Clock synchronization
ensures that when these masters are attempting to arbitrate the bus, their clocks will be
coordinated.

Clock synchronization occurs when the master deasserts the SCLx pin (SCLx intended to float
high). When the SCLx pin is released, the Baud Rate Generator (BRG) is suspended from
counting until the SCLx pin is actually sampled high. When the SCLx pin is sampled high, the
Baud Rate Generator is reloaded with the contents of I2CxBRG<8:0> and begins counting. This
ensures that the SCLx high time will always be at least one BRG rollover count in the event that
the clock is held low by an external device, as shown in Figure 19-18.

Figure 19-18: Baud Rate Generator Timing with Clock Synchronization

Note: The IPMIEN (I2CxCON<11>) bit should not be set when operating as a master.

SCLx (Slave)

The baud counter decrements twice per TCY. On rollover, the master SCLx will transition.1

1

000 003001002003

SCLx (Master)

001002003000Baud Counter

SDAx (Master)

3 4 6

The slave has pulled SCLx low to initiate a wait.2

At what would be the master baud counter rollover, detecting SCLx low holds counter.3

Logic samples SCLx once per TCY. Logic detects SCLx high.4

2

The baud counter rollover occurs on next cycle.5

5

On next rollover, the master SCLx will transition.6

TBRG TBRG

TCY

000
DS70195C-page 19-28 © 2009 Microchip Technology Inc.

Section 19. Inter-Integrated Circuit™ (I2C™)
Inter-Integrated
C

ircuit™
 (I 2C

™
)

19
19.6.3 Bus Arbitration and Bus Collision
Bus arbitration supports multi-master system operation. The wired AND nature of the SDAx line
permits arbitration. Arbitration takes place when the first master outputs a ‘1’ on SDAx by letting
SDAx float high and simultaneously, the second master outputs a ‘0’ on SDAx by pulling SDAx
low. The SDAx signal will go low. In this case, the second master has won bus arbitration. The
first master has lost bus arbitration and thus, has a bus collision.

For the first master, the expected data on SDAx is a ‘1’, yet the data sampled on SDAx is a ‘0’.
This is the definition of a bus collision.

The first master will set the Master Bus Collision bit, BCL (I2CxSTAT<10>), and generate a
master interrupt. The master module will reset the I2C port to its Idle state.

In multi-master operation, the SDAx line must be monitored for arbitration to see if the signal level
is the expected output level. This check is performed by the master module, with the result placed
in the BCL status bit.

The states where arbitration can be lost are:

• A Start condition
• A Repeated Start condition
• The Address, Data or Acknowledge bit
• A Stop condition

19.6.4 Detecting Bus Collisions and Re-sending Messages
When a bus collision occurs, the module sets the BCL status bit and generates a master
interrupt. If a bus collision occurs during a byte transmission, the transmission is halted, the TBF
status bit is cleared and the SDAx and SCLx pins are deasserted. If a bus collision occurs during
a Start, Repeated Start, Stop or Acknowledge condition, the condition is aborted, the respective
control bits in the I2CxCON register are cleared and the SDAx and SCLx lines are deasserted.

The software is expecting an interrupt at the completion of the master event. The software can
check the BCL status bit to determine if the master event completed successfully or a bus
collision occurred. If a bus collision occurs, the software must abort sending the rest of the
pending message and prepare to re-send the entire message sequence, beginning with the Start
condition, after the bus returns to an Idle state. The software can monitor the S and P status bits
to wait for an Idle bus. When the software services the master Interrupt Service Routine and the
I2C-bus is free, the software can resume communication by asserting a Start condition.

19.6.5 Bus Collision During a Start Condition
Before issuing a Start command, the software should verify an Idle state of the bus using the S
and P status bits. Two masters may attempt to initiate a message at a similar point in time.
Typically, the masters will synchronize clocks and continue arbitration into the message until one
loses arbitration. However, the following conditions can cause a bus collision to occur during a
Start:

• If the SDA and SCL pins are at a low logic state at the beginning of the Start condition, or
• If the SCL line is at a low logic state before the SDA line is driven low.

In either case, the master that loses arbitration during the Start bit generates a bus collision
interrupt.

19.6.6 Bus Collision During a Repeated Start Condition
Should two masters not collide throughout an address byte, a bus collision can occur when one
master attempts to assert a Repeated Start while another transmits data. In this case, the master
generating the Repeated Start loses arbitration and generates a bus collision interrupt.
© 2009 Microchip Technology Inc. DS70195C-page 19-29

dsPIC33F/PIC24H Family Reference Manual
19.6.7 Bus Collision During Message Bit Transmission
The most typical case of data collision occurs while the master is attempting to transmit the
device address byte, a data byte or an Acknowledge bit.

If the software is properly checking the bus state, it is unlikely that a bus collision will occur on a
Start condition. However, because another master can, at the same time, check the bus and
initiate its own Start condition, it is likely that SDAx arbitration will occur and synchronize the Start
of two masters. In this condition, both masters begin and continue to transmit their messages
until one master loses arbitration on a message bit. Remember that the SCLx clock
synchronization keeps the two masters synchronized until one loses arbitration. Figure 19-19
shows an example of message bit arbitration.

Figure 19-19: Bus Collision During Message Bit Transmission

19.6.8 Bus Collision During a Stop Condition
If the master software loses track of the state of the I2C-bus, there are conditions too numerous
to mention that can cause a bus collision during a Stop condition. In this case, the master
generating the Stop condition will lose arbitration and generate a bus collision interrupt.

SCLx (Master)

SDAx (Master)

TBF

TBRG

1 2 3

Master transmits bit value of ‘1’ in next SCLx clock.1
TBRG

Module releases SDAx.

Another master on bus transmits bit value of ‘0’ 2
in next SCLx clock. Another master pulls SDAx low.

Baud Rate Generator times out. Module attempts to verify3

I2C™ Bus State

BCL

(D)

SCLx (Bus)

SDAx (Bus)

SDAx high. Bus collision detected.
Module releases SDAx and SCLx. Module sets BCL status bit
and clears the TBF status bit. Master generates interrupt.

(D)(Q)(Q) (Q)

MI2CxIF Interrupt
DS70195C-page 19-30 © 2009 Microchip Technology Inc.

Section 19. Inter-Integrated Circuit™ (I2C™)
Inter-Integrated
C

ircuit™
 (I 2C

™
)

19
19.7 COMMUNICATING AS A SLAVE
In some systems, particularly where multiple processors communicate with each other, the
dsPIC33F/PIC24H device can communicate as a slave (see Figure 19-20). When the module is
enabled, the slave module is active. The slave cannot initiate a message, it can only respond to
a message sequence initiated by a master. The master requests a response from a particular
slave as defined by the device address byte in the I2C protocol. The slave module replies to the
master at the appropriate times as defined by the protocol.

As with the master module, sequencing the components of the protocol for the reply is a software
task. However, the slave module detects when the device address matches the address
specified by the software for that slave.

Figure 19-20: A Typical Slave I2C™ Message: Multiprocessor Command/Status

After a Start condition, the slave module receives and checks the device address. The slave can
specify either a 7-bit address or a 10-bit address. When a device address is matched, the module
will generate an interrupt to notify the software that its device is selected. Based on the R/W
status bit sent by the master, the slave either receives or transmits data. If the slave is to receive
data, the slave module automatically generates the Acknowledge (ACK), loads the I2CxRCV
register with the received value currently in the I2CxRSR register, and notifies the software
through an interrupt. If the slave is to transmit data, the software must load the I2CxTRN register.

19.7.1 Sampling Receive Data
All incoming bits are sampled with the rising edge of the clock (SCLx) line.

19.7.2 Detecting Start and Stop Conditions
The slave module detects Start and Stop conditions on the bus and indicates that status on the
S status bit (I2CxSTAT<3>) and P status bit (I2CxSTAT<4>). The Start (S) and Stop (P) status
bits are cleared when a Reset occurs or when the module is disabled. After detection of a Start
or Repeated Start event, the S status bit is set and the P status bit is cleared. After detection of
a Stop event, the P status bit is set and the S status bit is cleared.

19.7.3 Detecting the Address
Once the module has been enabled, the slave module waits for a Start condition to occur. After
a Start, depending on the A10M bit (I2CxCON<10>), the slave attempts to detect a 7-bit or 10-bit
address. The slave module compares one received byte for a 7-bit address or two received bytes
for a 10-bit address. A 7-bit address also contains an R/W status bit that specifies the direction
of data transfer after the address. If R/W = 0, a write is specified and the slave receives data from
the master. If R/W = 1, a read is specified and the slave sends data to the master. The 10-bit
address contains an R/W status bit; however, by definition, it is always R/W = 0 because the
slave must receive the second byte of the 10-bit address.

Bus

Master
SDAx

St
ar

t

First
Address Address

Byte

S 1 1 1 0
A A

09 8 R P

Slave
SDAx

Activity

N

AAAA

Output

Output

R
/W

AC
K

AC
K

AC
K

R
es

ta
rt

R
/W

AC
K

N
AC

K
St

op

1

Byte

Second
Address

Byte

A A
7 6

A A
5 4

A A
3 2

A A
1 0

Command
Data
Byte

1 1 1 0
A A

19 81

Status
Data
Byte

10-Bit
Address

R

© 2009 Microchip Technology Inc. DS70195C-page 19-31

dsPIC33F/PIC24H Family Reference Manual
19.7.3.1 SLAVE ADDRESS MASKING

The I2CxMSK register masks address bit positions, designating them as “don’t care” bits for both
10-Bit and 7-Bit Addressing modes. When a bit in the I2CxMSK register is set (= 1), the slave
module responds when the bit in the corresponding location of the address is a ‘0’ or ‘1’. For
example, in 7-Bit Slave mode with I2CxMSK = 0100000, the module acknowledges addresses
‘0000000’ and ’0100000’ as valid.

To enable address masking, the Intelligent Platform Management Interface must be disabled by
clearing the IPMIEN bit (I2CxCON<11>).

19.7.3.2 7-BIT ADDRESS AND SLAVE WRITE

Following the Start condition, the module shifts 8 bits into the I2CxRSR register (see
Figure 19-21). The value of register I2CxRSR<7:1> is evaluated against that of the
I2CxADD<6:0> and I2CxMSK<6:0> registers on the falling edge of the eighth clock (SCLx). If the
address is valid (i.e., an exact match between unmasked bit positions), the following events
occur:

1. An ACK is generated.
2. The D/A and R/W status bits are cleared.
3. The module generates the SI2CxIF interrupt on the falling edge of the ninth SCLx clock.
4. The module waits for the master to send data.

Figure 19-21: Slave Write 7-Bit Address Detection Timing Diagram

19.7.3.3 7-BIT ADDRESS AND SLAVE READ

When a slave read is specified by having R/W = 1 in a 7-bit address byte, the process of detecting
the device address is similar to that for a slave write (see Figure 19-22). If the addresses match,
the following events occur:

• An ACK is generated.
• The D/A status bit is cleared and the R/W status bit is set.
• The module generates the SI2CxIF interrupt on the falling edge of the ninth SCLx clock.

Since the slave module is expected to reply with data at this point, it is necessary to suspend the
operation of the I2C-bus to allow the software to prepare a response. This is done automatically
when the module clears the SCLREL bit. With SCLREL low, the slave module will pull down the
SCLx clock line, causing a wait on the I2C-bus. The slave module and the I2C-bus remain in this
state until the software writes the I2CxTRN register with the response data and sets the SCLREL
bit.

SCLx (Master)

SDAx (Master)

SDAx (Slave)

SI2CxIF Interrupt

3 41 2

Detecting Start bit enables1

I2C™ Bus State (D) (D) (A)(D)

A5A6A7 A4 A3 A2 A1

D/A

ADD10

SCLREL

R/W

address detection.

R/W = 0 indicates that slave 2
receives data bytes.

Valid address of first byte clears 3
D/A status bit. Slave generates ACK.

R/W status bit cleared. Slave4
generates interrupt.

5

Bus waiting. Slave ready to 5
receive data.

R/W = 0

(S) (Q)

Note: SCLREL will automatically clear after detection of a slave read address, regardless
of the state of the STREN bit.
DS70195C-page 19-32 © 2009 Microchip Technology Inc.

Section 19. Inter-Integrated Circuit™ (I2C™)
Inter-Integrated
C

ircuit™
 (I 2C

™
)

19
Figure 19-22: Slave Read 7-Bit Address Detection Timing Diagram

19.7.3.4 10-BIT ADDRESSING MODE

In 10-Bit Addressing mode, the slave must receive two device address bytes (see Figure 19-23).
The five Most Significant bits (MSbs) of the first address byte specify a 10-bit address. The R/W
status bit of the address must specify a write, causing the slave device to receive the second
address byte. For a 10-bit address, the first byte would equal ‘11110 A9 A8 0’, where ‘A9’ and
‘A8’ are the two MSbs of the address.

The I2CxMSK register can mask any bit position in a 10-bit address. The two MSbs of the
I2CxMSK register are used to mask the MSbs of the incoming address received in the first byte.
The remaining byte of the register is then used to mask the lower byte of the address received
in the second byte.

Following the Start condition, the module shifts eight bits into the I2CxRSR register. The value of
the I2CxRSR<2:1> bits are evaluated against the value of the I2CxADD<9:8> and
I2CxMSK<9:8> bits, while the value of the I2CxRSR<7:3> bits are compared to ‘11110’.
Address evaluation occurs on the falling edge of the eighth clock (SCLx). For the address to be
valid, I2CxRSR<7:3> must equal ‘11110’, while I2CxRSR<2:1> must exactly match any
unmasked bits in I2CxADD<9:8>. (If both bits are masked, a match is not needed.) If the address
is valid, the following events occur:

1. An ACK is generated.
2. The D/A and R/W status bits are cleared.
3. The module generates the SI2CxIF interrupt on the falling edge of the ninth SCLx clock.

The module does generate an interrupt after the reception of the first byte of a 10-bit address;
however, this interrupt is of little use.

The module will continue to receive the second byte into the I2CxRSR register. This time, the
I2CxRSR<7:0> bits are evaluated against the I2CADD<7:0> and I2CxMSK<7:0> bits. If the lower
byte of the address is valid as previously described, the following events occur:

1. An ACK is generated.
2. The ADD10 status bit is set.
3. The module generates the SI2CxIF interrupt on the falling edge of the ninth SCLx clock.
4. The module will wait for the master to send data or initiate a Repeated Start condition.

SCLx (Master)

SDAx (Master)

SDAx (Slave)

SI2CxIF Interrupt

3 41 2

Detecting Start bit enables1

I2C™ Bus State (D) (D) (A)(D)

A5A6A7 A4 A3 A2 A1

D/A

ADD10

SCLREL

R/W

address detection.

R/W = 1 indicates that slave 2
sends data bytes.

Valid address of first byte clears 3
D/A status bit. Slave generates ACK.

R/W status bit set. Slave generates 4
interrupt. SCLREL cleared.

5

Bus waiting. Slave prepares to 5
send data.

SCLx (Slave)

Slave pulls SCLx low while
SCLREL = 0.

(S) (Q)

R/W = 1

Note: Following a Repeated Start condition in 10-Bit Addressing mode, the slave module
only matches the first 7-bit address, ‘11110 A9 A8 0’.
© 2009 Microchip Technology Inc. DS70195C-page 19-33

dsPIC33F/PIC24H Family Reference Manual
Figure 19-23: 10-Bit Address Detection Timing Diagram

19.7.3.5 GENERAL CALL OPERATION

The addressing procedure for the I2C-bus is such that the first byte after a Start condition usually
determines which slave device the master is addressing. The exception is the general call
address, which can address all devices. When this address is used, all enabled devices respond
with an Acknowledge. The general call address is one of eight addresses reserved for specific
purposes by the I2C protocol. It consists of all ‘0’s with R/W = 0. The general call is always a slave
write operation.

The general call address is recognized when the General Call Enable bit, GCEN (I2CxCON<7>),
is set (see Figure 19-24). Following a Start bit detect, eight bits are shifted into the I2CxRSR
register and the address is compared against the I2CxADD register and the general call address.

If the general call address matches, the following events occur:

1. An ACK is generated.
2. Slave module will set the GCSTAT status bit (I2CxSTAT<9>).
3. The D/A and R/W status bits are cleared.
4. The module generates the SI2CxIF interrupt on the falling edge of the ninth SCLx clock.
5. The I2CxRSR register is transferred to the I2CxRCV register and the RBF status bit is set

(during the eighth bit).
6. The module waits for the master to send data.

When the interrupt is serviced, the cause for the interrupt can be checked by reading the contents
of the GCSTAT status bit to determine if the device address was device specific or a general call
address.

Note that general call addresses are 7-bit addresses. If configuring the slave module for 10-bit
addresses and the A10M and GCEN bits are set, the slave module will continue to detect
the 7-bit general call address.

SCLx (Master)

SDAx (Master)

SDAx (Slave)

SI2CxIF Interrupt

2 4 51 3

Detecting Start bit enables address detection.1

Address match of first byte clears D/A status bit and causes slave logic to generate ACK.2

Reception of first byte clears R/W status bit. Slave logic generates interrupt.3

Address match of first and second byte sets ADD10 status bit and causes slave logic to generate ACK.4

Reception of second byte completes 10-bit address. Slave logic generates interrupt.5

I2C™ Bus State (D) (D) (A)(D)

111 1 0 A9 A8
R/W = 0

D/A

ADD10

SCLREL

A5A6A7 A4 A3 A2 A1 A0

R/W

(D) (D) (A)(D)

6

Bus waiting. Slave ready to receive data.6

(S) (Q)
DS70195C-page 19-34 © 2009 Microchip Technology Inc.

Section 19. Inter-Integrated Circuit™ (I2C™)
Inter-Integrated
C

ircuit™
 (I 2C

™
)

19
Figure 19-24: General Call Address Detection Timing Diagram (GCEN = 1)

19.7.3.6 RECEIVING ALL ADDRESSES (IPMI OPERATION)

Some I2C system protocols require a slave to act upon all messages on the bus. For example,
the Intelligent Platform Management Interface bus uses I2C nodes as message repeaters in a
distributed network. To allow a node to repeat all messages, the slave module must accept all
messages, regardless of the device address.

To enable IPMI mode, set the IPMIEN bit (I2CxCON<11>); see Figure 19-25. Regardless of the
state of the A10M and GCEN bits or the value loaded in the I2CxADD register, all addresses are
accepted. This includes all valid 7-bit addresses, General Call, Start Byte, CBUS, Reserved and
HS modes, as well as 10-bit address preambles.

Figure 19-25: IPMI Address Detection Timing Diagram (IPMIEN = 1)

SCLx (Master)

SDAx (Master)

SDAx (Slave)

SI2CxIF Interrupt

3 41 2

Detecting Start bit enables1

I2C™ Bus State (D) (D) (A)(D)

000 0 0 0 0

D/A

I2CRCV

RBF

R/W

address detection.

All ‘0’s and R/W = 0 indicates2
general call.

Valid address clears D/A status bit3
and sets GCSTAT status bit.

R/W status bit cleared. Slave 4
generates interrupt.

5

Bus waiting. Slave ready to 5
receive data.

GCSTAT

Slave generates ACK. Address
loaded into I2CxRCV register.

R/W = 0

(S) (Q)

SCLx (Master)

SDAx (Master)

SDAx (Slave)

SI2CxIF Interrupt

2 31

Detecting Start bit enables1

I2C™ Bus State (D) (D) (A)(D)

D/A

I2CxRCV

RBF

R/W

address detection.

Regardless of contents, byte2
address is matched.
Address match clears D/A status bit.

R/W status bit set/clear. Slave3
generates interrupt.

4

Bus waiting. 4

Slave generates ACK. Address
loaded into I2CxRCV register.

(S)

R/W

(Q)

Note: The user application must clear the IPMIEN (I2CxCON<11>) bit during an I2C
master operation, and set this bit while acting as an IPMI slave.
© 2009 Microchip Technology Inc. DS70195C-page 19-35

dsPIC33F/PIC24H Family Reference Manual
19.7.3.7 WHEN AN ADDRESS IS INVALID

If a 7-bit address does not match the contents of I2CxADD<6:0>, the slave module will return to
an Idle state and ignore all bus activity until after the Stop condition.

If the first byte of a 10-bit address does not match the contents of I2CxADD<9:8>, the slave
module will return to an Idle state and ignore all bus activity until after the Stop condition.

If the first byte of a 10-bit address matches the contents of I2CxADD<9:8> but the second byte
of the 10-bit address does not match I2CxADD<7:0>, the slave module will return to an Idle state
and ignore all bus activity until after the Stop condition.

19.7.3.8 ADDRESSES RESERVED FROM MASKING

Even when enabled, there are several addresses that are excluded in hardware from masking.
For these addresses, an Acknowledge will not be issued independent of the mask setting. These
addresses are listed in Table 19-3.

Table 19-3: Reserved I2C Bus Addresses(1)

19.7.4 Receiving Data from a Master Device
When the R/W status bit of the device address byte is zero and an address match occurs, the
R/W status bit (I2CxSTAT<2>) is cleared. The slave module enters a state waiting for data to be
sent by the master. After the device address byte, the contents of the data byte are defined by
the system protocol and are only received by the slave module.

The slave module shifts eight bits into the I2CxRSR register. On the falling edge of the eighth
clock (SCLx), the following events occur:

1. The module begins to generate an ACK or NACK.
2. The RBF status bit is set to indicate received data.
3. The I2CxRSR register byte is transferred to the I2CxRCV register for access by the

software.
4. The D/A status bit is set.
5. A slave interrupt is generated. Software can check the status of the I2CxSTAT register to

determine the cause of the event and then clear the SI2CxIF interrupt flag.
6. The module waits for the next data byte.

7-Bit Address Mode:

Slave Address R/W Bit Description

0000 000 0 General Call Address(1)

0000 000 1 Start Byte
0000 001 x CBUS Address
0000 010 x Reserved
0000 011 x Reserved
0000 1xx x HS Mode Master Code
1111 1xx x Reserved
1111 0xx x 10-Bit Slave Upper Byte(2)

Note 1: Address will be Acknowledged only if GCEN = 1.
2: Match on this address can only occur as the upper byte in the 10-Bit Addressing

mode.
DS70195C-page 19-36 © 2009 Microchip Technology Inc.

Section 19. Inter-Integrated Circuit™ (I2C™)
Inter-Integrated
C

ircuit™
 (I 2C

™
)

19
19.7.4.1 ACKNOWLEDGE GENERATION

Normally, the slave module acknowledges all received bytes by sending an ACK on the ninth
SCLx clock. If the receive buffer is overrun, the slave module does not generate this ACK.
Overrun is indicated if either (or both) of the following occur:

1. The buffer full bit, RBF (I2CxSTAT<1>), was set before the transfer was received.
2. The overflow bit, I2COV (I2CxSTAT<6>), was set before the transfer was received.

Table 19-4 shows what happens when a data transfer byte is received, given the status of the
RBF and I2COV status bits. If the RBF status bit is already set when the slave module attempts
to transfer to the I2CxRCV register, the transfer does not occur but the interrupt is generated and
the I2COV status bit is set. If both the RBF and I2COV status bits are set, the slave module acts
similarly. The shaded cells show the condition where software did not properly clear the overflow
condition.

Reading the I2CxRCV register clears the RBF status bit. The I2COV status bit is cleared by
writing to a ‘0’ through software.

Table 19-4: Data Transfer Received Byte Actions

19.7.4.2 WAIT STATES DURING SLAVE RECEPTIONS

When the slave module receives a data byte, the master can potentially begin sending the next
byte immediately. This allows the software controlling the slave module nine SCLx clock periods
to process the previously received byte. If this is not enough time, the slave software may want
to generate a bus wait period.

The STREN bit (I2CxCON<6>) enables a bus wait to occur on slave receptions. When
STREN = 1 at the falling edge of the ninth SCLx clock of a received byte, the slave module clears
the SCLREL bit. Clearing the SCLREL bit causes the slave module to pull the SCLx line low,
initiating a wait. The SCLx clock of the master and slave will synchronize, as shown in
19.6.2 “Master Clock Synchronization”.

When the software is ready to resume reception, the software sets SCLREL. This causes the
slave module to release the SCLx line, and the master resumes clocking.

Status Bits as
Data Byte
Received

Transfer
I2CxRSR to

I2CxRCV

Generate
ACK

Generate SI2CxIF
Interrupt

(interrupt occurs
if enabled)

Set
RBF

Set
I2COV

RBF I2COV

0 0 Yes Yes Yes Yes No change
1 0 No No Yes No change Yes
1 1 No No Yes No change Yes
0 1 Yes No Yes Yes No change

Legend: Shaded cells show state where the software did not properly clear the overflow
condition.
© 2009 Microchip Technology Inc. DS70195C-page 19-37

dsPIC33F/PIC24H Family Reference Manual
19.7.4.3 EXAMPLE MESSAGES OF SLAVE RECEPTION

Receiving a slave message is an automatic process. The software handling the slave protocol
uses the slave interrupt to synchronize to the events.

When the slave detects the valid address, the associated interrupt will notify the software to
expect a message. On receive data, as each data byte transfers to the I2CxRCV register, an
interrupt notifies the software to unload the buffer.

Figure 19-26 shows a simple receive message. Because it is a 7-bit address message, only one
interrupt occurs for the address bytes. Then, interrupts occur for each of four data bytes. At an
interrupt, the software may monitor the RBF, D/A and R/W status bits to determine the condition
of the byte received.

Figure 19-27 shows a similar message using a 10-bit address. In this case, two bytes are
required for the address.

Figure 19-28 shows a case where the software does not respond to the received byte and the
buffer overruns. On reception of the second byte, the module will automatically NACK the
master transmission. Generally, this causes the master to re-send the previous byte. The
I2COV status bit indicates that the buffer has overrun. The I2CxRCV register buffer retains the
contents of the first byte. On reception of the third byte, the buffer is still full, and again, the
module will NACK the master. After this, the software finally reads the buffer. Reading the
buffer will clear the RBF status bit; however, the I2COV status bit remains set. The software
must clear the I2COV status bit. The next received byte is moved to the I2CxRCV register
buffer and the module responds with an ACK.

Figure 19-29 highlights clock stretching while receiving data. In the previous examples,
STREN = 0, which disables clock stretching on receive messages. In this example, the
software sets STREN to enable clock stretching. When STREN = 1, the module will
automatically clock stretch after each received data byte, allowing the software more time to
move the data from the buffer. If RBF = 1 at the falling edge of the ninth clock, the module
automatically clears the SCLREL bit and pulls the SCLx bus line low. As shown with the
second received data byte, if the software can read the buffer and clear the RBF status bit
before the falling edge of the ninth clock, the clock stretching will not occur. The software can
also suspend the bus at any time. By clearing the SCLREL bit, the module pulls the SCLx line
low after it detects the bus SCLx low. The SCLx line remains low, suspending transactions on
the bus until the SCLREL bit is set.
DS70195C-page 19-38 © 2009 Microchip Technology Inc.

©
 2009 M

icrochip Technology Inc.
D

S
70195C

-page 19-39

Section 19. Inter-Integrated C
ircuit™

 (I 2C
™

)

Fig 0)

S

S

3 5

D7 D6 D5 D4 D3 D2 D1

1 2 3 4 5 6 7 8 9

A

4 4

D0
Inter-Integrated
Circuit™ (I2C™) 19

ure 19-26: Slave Message (Write Data to Slave: 7-Bit Address; Address Matches; A10M = 0; GCEN = 0; IPMIEN =

1 Slave recognizes Start event; S and P status bits set/clear accordingly.

CLx (Master)

DAx (Master)

SCLx (Slave)

SDAx (Slave)

I2CxRCV

RBF

SI2CxIF

STREN

1 2 3 4 5 6 7 8

A2 A1

9

A

D7 D6 D5 D4 D3 D2 D1

1 2 3 4 5 6 7 8 9

1 32

A

4 3 3

2 Slave receives address byte. Address matches. Slave Acknowledges

3 Next received byte is message data. Byte moved to I2CxRCV register sets the RBF status bit.

4 Software reads I2CxRCV register. RBF status bit clears.

5 Slave recognizes Stop event; S and P status bits set/clear accordingly.

Slave generates interrupt. Slave Acknowledges reception.

A7 A6 A5 A4 A3

S

P

I2COV

R/W

D/A

D7 D6 D5 D4 D3 D2 D1

1 2 3 4 5 6 7 8 9

A

D7 D6 D5 D4 D3 D2 D1

1 2 3 4 5 6 7 8 9

A

SCLREL

4

 and generates interrupt. Address byte is moved to I2CxRCV register and must be read by user software to prevent buffer overflow.

D0D0D0W

SI2CxIF interrupt flag cleared by user software

dsPIC
33F/PIC

24H
 Fam

ily R
eference M

anual

D
S

70195C
-page 19-40

©
 2009 M

icrochip Technology Inc.

EN = 0)

4 6

. Byte moved to I2CRCV register, sets RBF.

BF bit clears.

 P bits set/clear accordingly.

 interrupt.

D7D6D5D4D3D2D1D0

1 2 3 4 5 6 7 8 9

A

5 5
Figure 19-27: Slave Message (Write Data to Slave: 10-Bit Address; Address Matches; A10M = 1; GCEN = 0; IPMI

1 - Slave recognizes Start event, S and P bits set/clear accordingly.

SCL (Master)

SDA (Master)

SCL (Slave)

SDA (Slave)

I2CRCV

RBF

SI2CIF

STREN

1 2 3 4 5 6 7 8

A9A8

9

A

A7A6A5A4A3A2A1A0

1 2 3 4 5 6 7 8 9

W

1 32

A

4 4

2 - Slave receives address byte. High order address matches.

3 - Slave receives address byte. Low order address matches.

4 - Next received byte is message data

5 - Software reads I2CRCV register. R

6 - Slave recognizes Stop event, S and

Slave Acknowledges and generates interrupt. Address byte is

Slave Acknowledges and generates

S

P

I2COV

R/W

D/A

D7D6D5D4D3D2D1D0

1 2 3 4 5 6 7 8 9

A

D7D6D5D4D3D2D1D0

1 2 3 4 5 6 7 8 9

A

SCLREL

5

1 1 1 1 0

Slave Acknowledges and generates interrupt. Address byte is

moved to I2CRCV register and is read by user software to prevent

moved to I2CRCV register and is read by user software to prevent

SI2CIF cleared by user software

buffer overflow.

buffer overflow.

©
 2009 M

icrochip Technology Inc.
D

S
70195C

-page 19-41

Section 19. Inter-Integrated C
ircuit™

 (I 2C
™

)

Fig

2

ster. RBF bit clears.

ception will still not be able to proceed

D7 D6 D5 D4 D3 D2 D1

1 2 3 4 5 6 7 8 9

5 56

e I2CxRCV read by software. I2CxRCV

achine should not be programmed to send
nerates interrupt. Slave sends NACK for

D0

N

s a stop/repeated start bit. If neither of these
l transmission will be received correctly, but

OV bit again.

 NACK in this manner. Instead, it should abort
ondition or send a repeated start condition
data.
Inter-Integrated
Circuit™ (I2C™) 19

ure 19-28: Slave Message (Write Data to Slave: 7-Bit Address; Buffer Overrun; A10M = 0; GCEN = 0; IPMIEN = 0)

SCLx (Master)

SDAx (Master)

SCLx (Slave)

SDAx (Slave)

I2CxRCV

RBF

SI2CxIF

STREN

1 2 3 4 5 6 7 8

A2 A1

9

A

D7 D6 D5 D4 D3 D2 D1

1 2 3 4 5 6 7 8 9

21

A

3 4

1 - Slave receives address byte. Address matches. Slave generates interrupt. Address byte

2 - Next received byte is message data. Byte moved to I2CxRCV register, sets RBF.

5 - Software reads I2CxRCV regi

6 - Software clears I2COV bit. Re

Slave generates interrupt. Slave Acknowledges reception.

A7 A6 A5 A4 A3

S

P

I2COV

R/W

D/A

D7 D6 D5 D4 D3 D2 D1

1 2 3 4 5 6 7 8 9

N

D7 D6 D5 D4 D3 D2 D1

1 2 3 4 5 6 7 8 9

SCLREL

3 - Next byte received before I2CxRCV read by software. I2CxRCV register unchanged.
I2COV overflow bit set. Slave generates interrupt. Slave sends NACK for reception.

N

4 - Next byte also received befor

 reception. The master state m
register unchanged. Slave ge

D0 D0W D0

5

normally until the module see
conditions is met, an additiona
send a NACK and set the I2C

another byte after receiving a
the transmission with a stop c
and attempt to retransmit the

is moved to I2CxRCV register and must be read by user software to prevent buffer overflow.

SI2CxIF cleared by user software

dsPIC
33F/PIC

24H
 Fam

ily R
eference M

anual

D
S

70195C
-page 19-42

©
 2009 M

icrochip Technology Inc.

; IPMIEN = 0)

8 3

se clock.

ause RBF = 0 at this time.

D7D6D5 D3D2D1D0

1 2 3 4 5 6 7 8 9

A

9 5

D4

use a clock hold. Module must detect SCL low

se a clock hold.
Figure 19-29: Slave Message (Write Data to Slave: 7-Bit Address; Clock Stretching Enabled; A10M = 0; GCEN = 0

1 - Software sets the STREN bit to enable clock stretching.

SCL (Master)

SDA (Master)

SCL (Slave)

SDA (Slave)

I2CTRN

TBF

I2CRCV

RBF

SI2CIF

STREN

1 2 3 4 5 6 7 8

A1A0

9

A

D7D6D5D4D3D2D1D0

1 2 3 4 5 6 7 8 9

W

32

A

5 3

2 - Slave receives address byte. I2CRCV register is read by user software to prevent

3 - Next received byte is message data. Byte moved to I2CRCV register, sets RBF.

6 - Software sets SCLREL bit to relea

7 - Slave does not clear SCLREL bec

A6A5A4A3A2

S

P

I2COV

R/W

D/A

D7D6D5D4D3D2D1D0

1 2 3 4 5 6 7 8 9

A

SCLREL

54 6 71

4 - Because RBF = 1 at ninth clock, automatic clock stretch begins.
Slave clears SCLREL bit. Slave pulls SCL line low to stretch clock.

5 - Software reads I2CRCV register. RBF bit clears.

8 - Software may clear SCLREL to ca

9 - Software may set SCLREL to relea

before asserting SCL low.

buffer overflow.

Section 19. Inter-Integrated Circuit™ (I2C™)
Inter-Integrated
C

ircuit™
 (I 2C

™
)

19
19.7.5 Sending Data to a Master Device
When the R/W status bit of the incoming device address byte is ‘1’ and an address match occurs,
the R/W status bit (I2CxSTAT<2>) is set. At this point, the master device is expecting the slave
to respond by sending a byte of data. The contents of the byte are defined by the system protocol
and are only transmitted by the slave module.

When the interrupt from the address detection occurs, the software can write a byte to the
I2CxTRN register to start the data transmission.

The slave module sets the TBF status bit. The eight data bits are shifted out on the falling edge
of the SCLx input. This ensures that the SDAx signal is valid during the SCLx high time. When
all eight bits have been shifted out, the TBF status bit is cleared.

The slave module detects the Acknowledge from the master-receiver on the rising edge of the
ninth SCLx clock.

If the SDAx line is low, indicating an Acknowledge (ACK), the master is expecting more data and
the message is not complete. The module generates a slave interrupt, and the ACKSTAT status
bit can be inspected to determine whether more data is being requested.

A slave interrupt is generated on the falling edge of the ninth SCLx clock. Software must check
the status of the I2CxSTAT register and clear the SI2CxIF interrupt flag.

If the SDAx line is high, indicating a Not-Acknowledge (NACK), the data transfer is complete. The
slave module resets and generates an interrupt, and it waits for detection of the next Start bit.

19.7.5.1 WAIT STATES DURING SLAVE TRANSMISSIONS

During a slave transmission message, the master expects return data immediately after
detection of the valid address with R/W = 1. Because of this, the slave module automatically
generates a bus wait whenever the slave returns data.

The automatic wait occurs at the falling edge of the ninth SCLx clock of a valid device address
byte or transmitted byte Acknowledged by the master, indicating expectation of more transmit
data.

The slave module clears the SCLREL bit. Clearing the SCLREL bit causes the slave module to
pull the SCLx line low, initiating a wait. The SCLx clock of the master and slave will synchronize
as shown in 19.6.2 “Master Clock Synchronization”.

When the software loads the I2CxTRN register and is ready to resume transmission, the software
sets SCLREL. This causes the slave module to release the SCLx line and the master resumes
clocking.

19.7.5.2 EXAMPLE MESSAGES OF SLAVE TRANSMISSION

Slave transmissions for 7-bit address messages are shown in Figure 19-30. When the address
matches and the R/W status bit of the address indicates a slave transmission, the module
automatically initiates clock stretching by clearing the SCLREL bit and generates an interrupt to
indicate a response byte is required. The software writes the response byte into the I2CxTRN
register. As the transmission completes, the master responds with an Acknowledge. If the master
replies with an ACK, the master expects more data and the module again clears the SCLREL bit
and generates another interrupt. If the master responds with a NACK, no more data is required
and the module will not stretch the clock but will generate an interrupt.

Slave transmissions for 10-bit address messages require the slave to first recognize a 10-bit
address. Because the master must send two bytes for the address, the R/W status bit in the first
byte of the address specifies a write. To change the message to a read, the master sends a
Repeated Start and repeats the first byte of the address with the R/W status bit specifying a read.
At this point, the slave transmission begins as shown in Figure 19-31.

Note: When IPMIEN = 1 (IPMI mode), the I2C module assumes that the R/W bit is ‘0’.
Therefore, the slave transmission function is disabled. If the R/W bit is ’1’, the I2C
module will trigger an interrupt. This interrupt should be ignored (i.e., the I2C
interrupt flags should be cleared) and the I2C slave transmission event should be
aborted.
© 2009 Microchip Technology Inc. DS70195C-page 19-43

dsPIC
33F/PIC

24H
 Fam

ily R
eference M

anual

D
S

70195C
-page 19-44

©
 2009 M

icrochip Technology Inc.

8

r has sent ACK, module clears SCLREL to suspend

P bits set/clear accordingly.

4

D7D6D5D4D3D2D1D0

1 2 3 4 5 6 7 8 9

N

5 7

ndicating buffer is available for next byte.

nt NACK, no more data expected. Module does not
nterrupt.
Figure 19-30: Slave Message (Read Data from Slave: 7-Bit Address)

1 - Slave recognizes Start event, S and P bits set/clear accordingly.

SCL (Master)

SDA (Master)

SCL (Slave)

SDA (Slave)

I2CTRN

TBF

I2CRCV

RBF

SI2CIF

STREN

1 2 3 4 5 6 7 8

A1A0

9

A D7D6D5D4D3D2D1D0

1 2 3 4 5 6 7 8 9

R

1 42

A

5 3 5 3

2 - Slave receives address byte. Address matches. Slave generates interrupt.

3 - Software writes I2CTRN with response data. TBF = 1 indicates that buffer is full.

6 - At the end of ninth clock, if the maste

8 - Slave recognizes Stop event, S and

Address byte is moved to I2CRCV register and is read by user software to prevent

Writing I2CTRN sets D/A, indicating data byte.

A6A5A4A3A2

S

P

I2COV

R/W

D/A

SCLREL

4

D7D6D5D4D3D2D1D0

1 2 3 4 5 6 7 8 9

A

3 6 6

master clock.

4 - Software sets SCLREL to release clock hold. Master resumes clocking and
slave transmits data byte.

5 - After last bit, module clears TBF bit i

clock. Slave generates interrupt.
7 - At the end of ninth clock, if master se

suspend clock and will generate an i

buffer overflow. R/W = 1 to indicate read from slave. SCLREL = 0 to suspend

©
 2009 M

icrochip Technology Inc.
D

S
70195C

-page 19-45

Section 19. Inter-Integrated C
ircuit™

 (I 2C
™

)

Fig

SC

SD

S

S

CK, module clears SCLREL to suspend clock.

ts set/clear accordingly.

D7D6D5D4D3D2D1D0

1 2 3 4 5 6 7 8 9

N

97

old. Master resumes clocking and

ACK, no more data expected. Module does not

10
Inter-Integrated
Circuit™ (I2C™) 19

ure 19-31: Slave Message (Read Data from Slave: 10-Bit Address)

1 - Slave recognizes Start event, S and P bits set/clear accordingly.

L (Master)

A (Master)

CL (Slave)

DA (Slave)

I2CTRN

TBF

I2CRCV

RBF

SI2CIF

STREN

1 2 3 4 5 6 7 8 9

A

1 42 7 8

2 - Slave receives first address byte. Write indicated. Slave Acknowledges and

6 - Software writes I2CTRN with response data.

8 - At the end of ninth clock, if master sent A

- Slave recognizes Stop event, S and P bi

S

P

ADD10

R/W

D/A

SCLREL

5 63 6

7 - Software sets SCLREL to release clock h
slave transmits data byte.

Slave generates interrupt.
9 - At the end of ninth clock, if master sent N

suspend clock or generate interrupt.

A7A6A5A4A3A2A1A0

1 2 3 4 5 6 7 8 9

A

A9A8 W1 1 1 1 0

1 2 3 4 5 6 7 8 9

A

A9A81 1 1 1 0

D7D6D5D4D3D2D1D0

1 2 3 4 5 6 7 8 9

A

3 - Slave receives address byte. Address matches. Slave Acknowledges and

10

4 - Master sends a Repeated Start to redirect the message.

5 - Slave receives resend of first address byte. User software reads I2CRCV register.

R

 generates interrupt. User software reads I2CRCV register.

 generates interrupt. User software reads I2CRCV register.

Read indicated. Slave suspends clock.

dsPIC33F/PIC24H Family Reference Manual
19.8 CONNECTION CONSIDERATIONS FOR I2C BUS
Because the I2C-bus is a wired AND bus connection, pull-up resistors on the bus are required,
shown as RP in Figure 19-32. Series resistors, shown as RS, are optional and used to improve
ESD susceptibility. The values of resistors, RP and RS, depend on the following parameters:

• Supply voltage
• Bus capacitance
• Number of connected devices (input current + leakage current)
• Input level selection (I2C or SMBus)

Because the device must be able to pull the bus low against RP, current drawn by RP must be
greater than the I/O pin minimum sink current, IOL of 6.6 mA at VOLMAX = 0.4V, for the device
output stage. For example, with a supply voltage of VDD = 3V + 10%:

Equation 19-2:

In a 400 kHz system, a minimum rise time specification of 300 ns exists; in a 100 kHz system,
the specification is 1000 ns. Because RP must pull the bus up against the total capacitance, CB,
with a maximum rise time of 300 ns to (VDD – 0.7V), the maximum resistance for the pull-up
(RPMAX) must be less than:

Equation 19-3:

The maximum value for RS is determined by the desired noise margin for the low level. RS cannot
drop enough voltage to make the device VOL plus the voltage across RS more than the maximum
VIL. Mathematically:

Equation 19-4:

The SCLx clock input must have a minimum high and low time for proper operation. The high and
low times of the I2C-bus specification, as well as the requirements of the I2C module, are shown
in the “Electrical Characteristics” section of the specific data sheet.

Note: The I2C pins, SDA and SCL, are not 5V tolerant. However other pin functions
multiplexed with the I2C pins may be 5V tolerant (i.e., I/O ports). Refer to the specific
device data sheet for more information.

RPMIN = (VDDMAX – VOLMAX)/IOL = (3.3V – 0.6V)/8.5 mA = 439Ω

-tR/(CB * (ln(1 – (VDDMAX – VILMAX)))) = -300 ns/(100 pF * ln(1 – (0.99 – 3.3))), or 2.5 kΩ

RSMAX = (VILMAX – VOLMAX)/IOLMAX = (0.3 VDD – 0.4)/6.6 mA = 89Ω
DS70195C-page 19-46 © 2009 Microchip Technology Inc.

Section 19. Inter-Integrated Circuit™ (I2C™)
Inter-Integrated
C

ircuit™
 (I 2C

™
)

19
Figure 19-32: Sample Device Configuration for I2C™ Bus

19.8.1 Integrated Signal Conditioning
The SCLx and SDAx pins have an input glitch filter. The I2C-bus requires this filter in both the
100 kHz and 400 kHz systems.

When operating on a 400 kHz bus, the I2C-bus specification requires a slew rate control of the
device pin output. This slew rate control is integrated into the device. If the DISSLW bit
(I2CxCON<9>) is cleared, the slew rate control is active. For other bus speeds, the I2C-bus
specification does not require slew rate control and the DISSLW bit should be set.

Some system implementations of I2C busses require different input levels for VILMAX and VIHMIN.
In a normal I2C system, VILMAX is 0.3 VDD; VIHMIN is 0.7 VDD. By contrast, in an SMBus (System
Management Bus) system, VILMAX is set at 0.8V, while VIHMIN is set at 2.1V.

The SMEN bit (I2CxCON<8>) controls the input levels. Setting SMEN (= 1) changes the input
levels to SMBus specifications.

RPRP

VDD + 10%

SDAx

SCLx

Device

CB = 10 - 400 pF

RSRS

Note: I2C™ devices with input levels related to VDD must have one common supply line to which
the pull-up resistor is also connected.
© 2009 Microchip Technology Inc. DS70195C-page 19-47

dsPIC33F/PIC24H Family Reference Manual
19.9 MODULE OPERATION DURING PWRSAV INSTRUCTION

19.9.1 Sleep Mode in Slave Mode
The I2C module can wake-up from Sleep mode on detecting a valid slave address match. Since
all bit shifting is done with reference to the external SCL signal generated by an I2C master,
transmissions and receptions can continue even while in Sleep mode.

19.9.2 Sleep Mode in Master Mode
If Sleep occurs in the middle of a master transmission, and the state machine is partially into a
transmission as the clocks stop, the behavior of the module will be undefined. Similarly, if Sleep
occurs in the middle of a master reception, the module behavior will also be undefined. The
transmitter and receiver will stop at Sleep when in Master mode. Register contents are not
affected by going into Sleep mode or coming out of Sleep mode; there is no automatic way to
prevent Sleep entry if a transmission or reception is pending. The user software must
synchronize Sleep entry with I2C operation to avoid undefined module behavior.

19.9.3 When the Device Enters Idle Mode
When the device executes a PWRSAV 1 instruction, the device enters Idle mode. The module
enters a power-saving state in Idle mode, depending on the I2CSIDL bit (I2CxCON<13>). If
I2CSIDL = 1, the module enters the Power-Saving mode similar to actions while entering Sleep
mode. If I2CSIDL = 0, the module does not enter a Power-Saving mode and continues to operate
normally.

19.10 PERIPHERAL MODULE DISABLE (PMD) REGISTERS
The Peripheral Module Disable (PMDx) registers provide a method to disable the I2C modules
by stopping all clock sources supplied to that module. When a peripheral is disabled via the
appropriate PMDx control bit, the peripheral is in a minimum power consumption state. The
control and status registers associated with the peripheral are also disabled, so writes to those
registers will have no effect and read values will be invalid. A peripheral module is only enabled
if the I2CxMD bit in the PMDx register is cleared.

19.11 EFFECTS OF A RESET
A Reset disables the I2C module and terminates any active or pending message activity. See the
I2CxCON and I2CxSTAT register definitions for the Reset conditions of those registers.

Note: As per the slave I2C behavior, a slave interrupt is generated only on an address
match. Therefore, when an I2C slave is in Sleep mode and it receives a message
from the master, the clock required to match the received address is derived from
the master. Only on an address match, will the interrupt be generated and the
device can wake-up from Sleep, provided the interrupt has been enabled and an
ISR has been defined.

Note: In this discussion, ‘Idle’ refers to the CPU power-saving state. The lower case ‘idle’
refers to the time when the I2C module is not transferring data on the bus.
DS70195C-page 19-48 © 2009 Microchip Technology Inc.

©
 2009 M

icrochip Technology Inc.
D

S
70195C

-page 19-49

Section 19. Inter-Integrated C
ircuit™

 (I 2C
™

)

19
able 19-5.

Ta

F Bit 3 Bit 2 Bit 1 Bit 0 All
Resets

I2 gister 0000

I2 gister 00FF

I2 or 0000

I2 CEN PEN RSEN SEN 1000

I2 S R/W RBF TBF 0000

I2 0000

I2 0000

Le
Inter-Integrated
Circuit™ (I2C™) 19

.12 REGISTER MAPS
A summary of the registers associated with the dsPIC33F/PIC24H I2C module is provided in T

ble 19-5: I2Cx Register Map

ile Name Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4

CxRCV — — — — — — — — Receive Re

CxTRN — — — — — — — — Transmit Re

CxBRG — — — — — — — Baud Rate Generat

CxCON I2CEN — I2CSIDL SCLREL IPMIEN A10M DISSLW SMEN GCEN STREN ACKDT ACKEN R

CxSTAT ACKSTAT TRSTAT — — — BCL GCSTAT ADD10 IWCOL I2COV D/A P

CxADD — — — — — — Address Register

CxMSK — — — — — — Address Mask

gend: — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.

dsPIC33F/PIC24H Family Reference Manual
19.13 DESIGN TIPS

Question 1: I’m operating as a bus master and transmitting data. Why do slave and
receive interrupts keep occurring at the same time?

Answer: The master and slave circuits are independent. The slave module will receive
events from the bus sent by the master.

Question 2: I’m operating as a slave and I write data to the I2CxTRN register. Why isn’t
the data being transmitted?

Answer: The slave enters an automatic wait when preparing to transmit. Ensure that you
set the SCLREL bit to release the I2C clock.

Question 3: How do I tell what state the master module is in?
Answer: Looking at the condition of the SEN, RSEN, PEN, RCEN, ACKEN and TRSTAT

bits will indicate the state of the master module. If all bits are ‘0’, the module is
Idle.

Question 4: Operating as a slave, I receive a byte while STREN = 0. What should the
software do if it cannot process the byte before the next one is received?

Answer: Because STREN was ‘0’, the module did not generate an automatic wait on the
received byte. However, the software may, at any time during the message, set
STREN and then clear SCLREL. This will cause a wait on the next opportunity to
synchronize the SCLx clock.

Question 5: My I2C system is a multi-master system. Why are my messages being
corrupted when I attempt to send them?

Answer: In a multi-master system, other masters may cause bus collisions. In the Interrupt
Service Routine for the master, check the BCL status bit to ensure that the
operation completed without a collision. If a collision is detected, the message
must be re-sent from the beginning.

Question 6: My I2C system is a multi-master system. How can I tell when it is OK to
begin a message?

Answer: Check the S status bit. If S = 0, the bus is Idle.

Question 7: I tried to send a Start condition on the bus, then transmit a byte by writing
to the I2CxTRN register. The byte did not get transmitted. Why?

Answer: You must wait for each event on the I2C bus to complete before starting the next
one. In this case, you should poll the SEN bit to determine when the Start event
completed or wait for the master I2C interrupt before data is written to the
I2CxTRN register.
DS70195C-page 19-50 © 2009 Microchip Technology Inc.

Section 19. Inter-Integrated Circuit™ (I2C™)
Inter-Integrated
C

ircuit™
 (I 2C

™
)

19
19.14 RELATED APPLICATION NOTES
This section lists application notes that are related to this section of the manual. These
application notes may not be written specifically for the dsPIC33F/PIC24H device family, but the
concepts are pertinent and could be used with modification and possible limitations. The current
application notes related to the Inter-Integrated Circuit™ (I2C™) module include the following:

Title Application Note #
Use of the SSP Module in the I 2C™ Multi-Master Environment AN578

Using the PIC® Devices’ SSP and MSSP Modules for Slave I2C™ Communication AN734

Using the PICmicro® MSSP Module for Master I2C™ Communications AN735

An I2C™ Network Protocol for Environmental Monitoring AN736

Note: Please visit the Microchip web site (www.microchip.com) for additional application
notes and code examples for the dsPIC33F/PIC24H family of devices.
© 2009 Microchip Technology Inc. DS70195C-page 19-51

http://www.microchip.com
http://www.microchip.com
http://www.microchip.com
http://www.microchip.com

dsPIC33F/PIC24H Family Reference Manual
19.15 REVISION HISTORY
Revision A (February 2007)
This is the initial released version of this document.

Revision B (August 2008)
This revision includes the following corrections and updates:

• Updated bit definitions for the ACKSTAT bit (I2CxSTAT<15>) and the D/A bit
(I2CxSTAT<5>) in Register 19-2.

• Updated the I2CBRG denominator from 1,111,111 to 10,000,000 in Equation 19-1.
• Updated the I2C clock rate values in Table 19-1, removed the table notes and added a

general note just after the table.
• Updated the last two paragraphs in 19.3 “Control and Status Registers” to clarify the

shift of matching address bytes in the I2CxRSR register to the I2CxRCV register.
• Updated 19.4 “Enabling I2C Operation” to clarify that the master function is enabled

when the SEN bit is set, and when data is loaded into the I2CxTRN register.
• Several sections were updated to clarify NACK status in Slave mode. The affected sections

are:
- 19.4.2 “I2C Interrupts”
- 19.7.5 “Sending Data to a Master Device”
- Figure 19-28 through Figure 19-31

• The IPMIEN bit was incorrectly described as the Intelligent Peripheral Management
Interface Enable bit. All occurrences have been updated to Intelligent Platform
Management Interface bit.

• Updated 19.9.2 “Sleep Mode in Master Mode” to clarify what occurs when entering Sleep
mode while transmitting.

• Updated the Slave Message RBF status bit information in Figure 19-26 through
Figure 19-31.

• Additional minor corrections such as language and formatting updates are incorporated
throughout the document.

Revision C (November 2009)
This revision includes the following corrections and updates:

• The document was updated to include the PIC24H families of devices
• Added Note 1 to the IPMIEN bit in the I2CxCON register (Register 19-1)
• Updated the bit status to HSC (Hardware Set/Cleared) for the P and S bits in the I2CxSTAT

register (Register 19-2)
• Updated the BRG Reload Value Calculation (Equation 19-1)
• Added a shaded note on the SDA and SCL pins to 19.2 “I2C Bus Characteristics” and

19.8 “Connection Considerations for I2C Bus”
• Added a shaded note after the first paragraph in 19.5 “Communicating as a Master in a

Single-Master Environment” and 19.6 “Communicating as a Master in a Multi-Master
Environment”

• Removed the Actual FSCL column, added the PGD column, and updated the Decimal and
Hexadecimal values in the I2C Clock Rates table (Table 19-1)

• Added a sentence to the end of the second paragraph and added a shaded note in
19.7.3.6 “Receiving All Addresses (IPMI Operation)”

• Added a shaded note to the first paragraph of 19.7.5 “Sending Data to a Master Device”
• Updated the last sentence of the first paragraph in 19.7.5.2 “Example Messages of Slave

Transmission” to clarify that an interrupt will be generated.
• Added a shaded note to 19.9.1 “Sleep Mode in Slave Mode”
DS70195C-page 19-52 © 2009 Microchip Technology Inc.

	Section 19. Inter-Integrated Circuit™ (I2C™)
	19.1 Overview
	Figure 19-1: I2C™ Block Diagram

	19.2 I2C Bus Characteristics
	Figure 19-2: Typical I2C™ Interconnection Block Diagram
	19.2.1 Bus Protocol
	Figure 19-3: I2C™ Bus Protocol States

	19.2.2 Message Protocol
	Figure 19-4: A Typical I2C™ Message: Read of Serial EEPROM (Random Address Mode)

	19.3 Control and Status Registers
	Register 19-1: I2CxCON: I2Cx Control Register
	Register 19-2: I2CxSTAT: I2Cx Status Register
	Register 19-3: I2CxMSK: I2Cx Slave Mode Address Mask Register

	19.4 Enabling I2C Operation
	19.4.1 Enabling I2C I/O
	19.4.2 I2C Interrupts
	19.4.3 Setting Baud Rate When Operating as a Bus Master
	Equation 19-1: BRG Reload Value Calculation
	Table 19-1: I2C™ Clock Rates
	Figure 19-5: Baud Rate Generator Block Diagram

	19.5 Communicating as a Master in a Single-Master Environment
	Figure 19-6: A Typical I2C™ Message: Read of Serial EEPROM (Random Address Mode)
	19.5.1 Generating Start Bus Event
	Figure 19-7: Master Start Timing Diagram

	19.5.2 Sending Data to a Slave Device
	Figure 19-8: Master Transmission Timing Diagram

	19.5.3 Receiving Data from a Slave Device
	Figure 19-9: Master Reception Timing Diagram

	19.5.4 Acknowledge Generation
	Figure 19-10: Master Acknowledge (ACK) Timing Diagram
	Figure 19-11: Master Not-Acknowledge (NACK) Timing Diagram

	19.5.5 Generating Stop Bus Event
	Figure 19-12: Master Stop Timing Diagram

	19.5.6 Generating Repeated Start Bus Event
	Figure 19-13: Master Repeated Start Timing Diagram

	19.5.7 Building Complete Master Messages
	Table 19-2: Master Message Protocol States
	Figure 19-14: Master Message (Typical I2C™ Message: Read of Serial EEPROM)
	Figure 19-15: Master Message (7-Bit Address: Transmission and Reception)
	Figure 19-16: Master Message (10-Bit Transmission)
	Figure 19-17: Master Message (10-Bit Reception)

	19.6 Communicating as a Master in a Multi-Master Environment
	19.6.1 Multi-Master Operation
	19.6.2 Master Clock Synchronization
	Figure 19-18: Baud Rate Generator Timing with Clock Synchronization

	19.6.3 Bus Arbitration and Bus Collision
	19.6.4 Detecting Bus Collisions and Re-sending Messages
	19.6.5 Bus Collision During a Start Condition
	19.6.6 Bus Collision During a Repeated Start Condition
	19.6.7 Bus Collision During Message Bit Transmission
	Figure 19-19: Bus Collision During Message Bit Transmission

	19.6.8 Bus Collision During a Stop Condition

	19.7 Communicating as a Slave
	Figure 19-20: A Typical Slave I2C™ Message: Multiprocessor Command/Status
	19.7.1 Sampling Receive Data
	19.7.2 Detecting Start and Stop Conditions
	19.7.3 Detecting the Address
	Figure 19-21: Slave Write 7-Bit Address Detection Timing Diagram
	Figure 19-22: Slave Read 7-Bit Address Detection Timing Diagram
	Figure 19-23: 10-Bit Address Detection Timing Diagram
	Figure 19-24: General Call Address Detection Timing Diagram (GCEN = 1)
	Figure 19-25: IPMI Address Detection Timing Diagram (IPMIEN = 1)
	Table 19-3: Reserved I2C Bus Addresses(1)

	19.7.4 Receiving Data from a Master Device
	Table 19-4: Data Transfer Received Byte Actions
	Figure 19-26: Slave Message (Write Data to Slave: 7-Bit Address; Address Matches; A10M = 0; GCEN = 0; IPMIEN = 0)
	Figure 19-27: Slave Message (Write Data to Slave: 10-Bit Address; Address Matches; A10M = 1; GCEN = 0; IPMIEN = 0)
	Figure 19-28: Slave Message (Write Data to Slave: 7-Bit Address; Buffer Overrun; A10M = 0; GCEN = 0; IPMIEN = 0)
	Figure 19-29: Slave Message (Write Data to Slave: 7-Bit Address; Clock Stretching Enabled; A10M = 0; GCEN = 0; IPMIEN = 0)

	19.7.5 Sending Data to a Master Device
	Figure 19-30: Slave Message (Read Data from Slave: 7-Bit Address)
	Figure 19-31: Slave Message (Read Data from Slave: 10-Bit Address)

	19.8 Connection Considerations for I2C Bus
	Equation 19-2:
	Equation 19-3:
	Equation 19-4:
	Figure 19-32: Sample Device Configuration for I2C™ Bus
	19.8.1 Integrated Signal Conditioning

	19.9 Module Operation During PWRSAV Instruction
	19.9.1 Sleep Mode in Slave Mode
	19.9.2 Sleep Mode in Master Mode
	19.9.3 When the Device Enters Idle Mode

	19.10 Peripheral Module Disable (PMD) Registers
	19.11 Effects of a Reset
	19.12 Register Maps
	Table 19-5: I2Cx Register Map

	19.13 Design Tips
	19.14 Related Application Notes
	19.15 Revision History

