HIGHLIGHTS

This section of the manual contains the following major topics:
16.1 Introduction 16-2
16.2 Control Registers 16-6
16.3 Overview of Sample and Conversion Sequence 16-17
16.4 ADC Configuration 16-27
16.5 ADC Interrupt Generation 16-33
16.6 Analog Input Selection for Conversion. 16-35
16.7 Specifying Conversion Results Buffering for Devices with DMA 16-44
16.8 ADC Configuration Example 16-48
16.9 ADC Configuration for 1.1 Msps 16-49
16.10 Sample and Conversion Sequence Examples for Devices without DMA 16-51
16.11 Sample and Conversion Sequence Examples for Devices with DMA 16-63
16.12 A/D Sampling Requirements 16-73
16.13 Reading the ADC Result Buffer 16-74
16.14 Transfer Functions 16-76
16.15 ADC Accuracy/Error. 16-78
16.16 Connection Considerations 16-78
16.17 Operation During Sleep and Idle Modes 16-79
16.18 Effects of a Reset 16-79
16.19 Special Function Registers 16-80
16.20 Design Tips 16-81
16.21 Related Application Notes 16-82
16.22 Revision History 16-83
Worldwide Sales and Service 16-88

Note: This family reference manual section is meant to serve as a complement to device data sheets. Depending on the device variant, this manual section may not apply to all dsPIC33F/PIC24H devices.

Please consult the note at the beginning of the "Analog-to-Digital Converter (ADC)" chapter in the current device data sheet to check whether this document supports the device you are using.

Device data sheets and family reference manual sections are available for download from the Microchip Worldwide Web site at: http://www.microchip.com

16.1 INTRODUCTION

This document describes the features and associated operational modes of the Successive Approximation (SAR) Analog-to-Digital Converter (ADC) available on the dsPIC33F/PIC24H families of devices.
The ADC module can be configured by the user application to function as a 10-bit, 4-channel ADC (for devices with 10-bit only ADC) or a 12-bit, single-channel ADC (for devices with selectable 10-bit or 12-bit ADC).
Figure 16-1 illustrates a block diagram of the ADC module for devices with DMA. Figure 16-2 illustrates a block diagram of the ADC module for devices without DMA.
The dsPIC33F/PIC24H ADC module has the following key features:

- SAR conversion
- Up to 1.1 Msps conversion speed
- Up to 32 analog input pins
- External voltage reference input pins
- Four unipolar differential Sample and Hold (S\&H) amplifiers
- Simultaneous sampling of up to four analog input pins
- Automatic Channel Scan mode
- Selectable conversion trigger source
- Up to 16-word conversion result buffer
- Selectable Buffer Fill modes (not available on all devices)
- DMA support, including Peripheral Indirect Addressing (not available on all devices)
- Operation during CPU Sleep and Idle modes

Depending on the device variant, the ADC module may have up to 32 analog input pins, designated ANO-AN31. These analog inputs are connected by multiplexers to four S\&H amplifiers, designated $\mathrm{CH} 0-\mathrm{CH} 3$. The analog input multiplexers have two sets of control bits, designated as MUXA (CHySA/CHyNA) and MUXB (CHySB/CHyNB). These control bits select a particular analog input for conversion. The MUXA and MUXB control bits can alternatively select the analog input for conversion. Unipolar differential conversions are possible on all channels using certain input pins (see Figure 16-1 and Figure 16-2).
Channel Scan mode can be enabled for the CHO S\&H amplifier. Any subset of the analog inputs (AN0 to AN31 based on availability) can be selected by the user application. The selected inputs are converted in ascending order using CHO .
The ADC module supports simultaneous sampling using multiple S\&H channels to sample the inputs at the same time, and then performs the conversion for each channel sequentially. By default, the multiple channels are sampled and converted sequentially.
For devices with DMA, the ADC module is connected to a single-word result buffer. However, multiple conversion results can be stored in a DMA RAM buffer with no CPU overhead when DMA is used with the ADC module. Each conversion result is converted to one of four 16-bit output formats when it is read from the buffer.

For devices without DMA, the ADC module is connected to a 16 -word result buffer. The ADC result is available in four different numerical formats (see Figure 16-14).

Note 1: A ' y ' is used with MUXA and MUXB control bits to specify the S\&H channel numbers ($y=0$ or 123).
2: Depending on a particular device pinout, the ADC can have up to 32 analog input pins, designated AN0 through AN31. In addition, there are two analog input pins for external voltage reference connections (VREF+, VREF-). These voltage reference inputs can be shared with other analog input pins. The actual number of analog input pins and external voltage reference input configuration depends on the specific device. For further details, refer to the specific device data sheet.

Figure 16-1: ADC Block Diagram for Devices with DMA

Figure 16-2: ADC Block Diagram for Devices without DMA

16.2 CONTROL REGISTERS

The ADC module has ten Control and Status registers. These registers are:

- ADxCON1: ADCx Control Register 1(1)
- ADxCON2: ADCx Control Register 2(1)
- ADxCON3: ADCx Control Register 3(1)
- ADxCON4: ADCx Control Register 4(1,2)
- ADxCHS123: ADCx Input Channel 1, 2, 3 Select Register(1)
- ADxCHS0: ADCx Input Channel 0 Select Register(1)
- AD1CSSH: ADC1 Input Scan Select Register High(1)
- ADxCSSL: ADCx Input Scan Select Register Low(1)
- AD1PCFGH: ADC1 Port Configuration Register High(1,3)
- ADxPCFGL: ADCx Port Configuration Register Low(1)

The ADxCON1, ADxCON2 and ADxCON3 registers control the operation of the ADC module. The ADxCON4 register sets up the number of conversion results stored in a DMA buffer for each analog input in the Scatter/Gather mode for devices with DMA. The ADxCHS123 and ADxCHSO registers select the input pins to be connected to the S\&H amplifiers. The ADCSSH/L registers select inputs to be sequentially scanned. The ADxPCFGH/L registers configure the analog input pins as analog inputs or as digital I/O.

16.2.1 ADC Result Buffer

For devices with DMA, the ADC module contains a single-word result buffer, ADC1BUF0. For devices without DMA, the ADC module contains a 16-word dual-port RAM, to buffer the results. The 16 buffer locations are referred to as ADC1BUF0, ADC1BUF1, ADC1BUF2, ..., ADC1BUFE and ADC1BUFF.

Note: After a device reset, the ADC buffer register(s) will contain unknown data.

Register 16-1: ADxCON1: ADCx Control Register $1^{(1)}$

bit 15 ADON: ADC Operating Mode bit
$1=$ ADC module is operating
0 = ADC is off
bit $14 \quad$ Unimplemented: Read as '0'
bit 13 ADSIDL: Stop in Idle Mode bit
1 = Discontinue module operation when device enters Idle mode
$0=$ Continue module operation in Idle mode
bit 12 ADDMABM: DMA Buffer Build Mode bit ${ }^{(3)}$
$1=$ DMA buffers are written in the order of conversion. The module provides an address to the DMA channel that is the same as the address used for the non-DMA stand-alone buffer
$0=$ DMA buffers are written in Scatter/Gather mode. The module provides a Scatter/Gather address to the DMA channel, based on the index of the analog input and the size of the DMA buffer
bit 11
Unimplemented: Read as ' 0 '
bit 10 AD12B: 10-bit or 12-bit Operation Mode bit ${ }^{(3)}$
1 = 12-bit, 1-channel ADC operation
$0=10$-bit, 4-channel ADC operation
bit 9-8 FORM<1:0>: Data Output Format bits
For 10-bit operation:
11 = Signed fractional (Dout = sddd dddd dd00 0000, where $s=$ sign, $d=$ data)
$10=$ Fractional (Dout = dddd dddd dd00 0000)
01 = Signed integer (Dout = ssss sssd dddd dddd, where s = sign, d = data)
$00=$ Integer (Dout $=0000$ 00dd dddd dddd)
For 12-bit operation:
11 = Signed fractional (Dout = sddd dddd dddd 0000, where s = sign, d = data)
$10=$ Fractional (Dout = dddd dddd dddd 0000)
01 = Signed Integer (Dout = ssss sddd dddd dddd, where s = sign, d = data)
$00=$ Integer (Dout $=0000$ dddd dddd dddd)
bit 7-5 SSRC<2:0>: Sample Clock Source Select bits
111 = Internal counter ends sampling and starts conversion (auto-convert)
$110=$ Reserved
$101=$ Motor Control PWM2 interval ends sampling and starts conversion ${ }^{(2)}$
$100=$ GP timer (Timer5 for ADC1, Timer3 for ADC2) compare ends sampling and starts conversion ${ }^{(3)}$
$011=$ Motor Control PWM1 interval ends sampling and starts conversion ${ }^{(2)}$
010 = GP timer (Timer3 for ADC1, Timer5 for ADC2) compare ends sampling and starts conversion
001 = Active transition on INT0 pin ends sampling and starts conversion
000 = Clearing sample bit ends sampling and starts conversion
bit $4 \quad$ Unimplemented: Read as ' 0 '
Note 1: The ' x ' in ADxCON1 and ADCx refers to ADC1 or ADC2.
2: This clock source is not available on all devices. Refer to the specific device data sheet for availability.
3: This bit is not available on all devices. Refer to the specific device data sheet for availability.

dsPIC33F/PIC24H Family Reference Manual

Register 16-1: ADxCON1: ADCx Control Register $1^{(1)}$ (Continued)
bit 3 SIMSAM: Simultaneous Sample Select bit (only applicable when CHPS<1:0> $=01$ or $1 x$)
When AD12B = 1, SIMSAM is: U-0, Unimplemented, Read as ' 0 '
1 = Samples $\mathrm{CH} 0, \mathrm{CH} 1, \mathrm{CH} 2, \mathrm{CH} 3$ simultaneously (when CHPS<1:0> $=1 \mathrm{x}$); or
Samples $\mathrm{CH0}$ and CH 1 simultaneously (when CHPS<1:0> $=01$)
0 = Samples multiple channels individually in sequence
bit 2 ASAM: ADC Sample Auto-Start bit
1 = Sampling begins immediately after last conversion. SAMP bit is auto-set $0=$ Sampling begins when SAMP bit is set
bit 1 SAMP: ADC Sample Enable bit
1 = ADC S\&H amplifiers are sampling
$0=$ ADC S\&H amplifiers are holding
If ASAM $=0$, software can write ' 1 ' to begin sampling. Automatically set by hardware if ASAM $=1$.
If SSRC $=000$, software can write ' 0 ' to end sampling and start conversion. If SSRC $\neq 000$, automatically cleared by hardware to end sampling and start conversion.
bit 0 DONE: ADC Conversion Status bit
1 = ADC conversion cycle is completed
0 = ADC conversion not started or in progress
Automatically set by hardware when A/D conversion is complete. Software can write ' 0 ' to clear DONE status (software not allowed to write ' 1 '). Clearing this bit does NOT affect any operation in progress. Automatically cleared by hardware at the start of a new conversion.

Note 1: The ' x ' in ADxCON1 and ADCx refers to ADC1 or ADC2.
2: This clock source is not available on all devices. Refer to the specific device data sheet for availability.
3: This bit is not available on all devices. Refer to the specific device data sheet for availability.

Register 16-2: ADxCON2: ADCx Control Register $2^{(1)}$

R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0
VCFG<2:0>			-	-	CSCNA	CHPS<1:0>	
bit 15						bit 8	
R-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
BUFS	-	SMPI<3:0> ${ }^{(2,3)}$				BUFM	ALTS
bit 7						bit 0	

Legend:		
$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1$ ' = Bit is set	0 ' $=$ Bit is cleared

bit 15-13 VCFG<2:0>: Converter Voltage Reference Configuration bits

	VREFH	VREFL
000	AVDD	AVss
001	External VREF+ ${ }^{(4)}$	AVss
010	AVDD	External VREF- ${ }^{(4)}$
011	External VREF+ ${ }^{(4)}$	External VREF- ${ }^{(4)}$
$1 x x$	AVDD	AVss

bit 12-11 Unimplemented: Read as ' 0 '
bit $10 \quad$ CSCNA: Input Scan Select bit
1 = Scan inputs for CHO+ during Sample A bit
0 = Do not scan inputs
bit 9-8
CHPS<1:0>: Channel Select bits
When AD12B = 1, CHPS<1:0> is: U-0, Unimplemented, Read as ' 0 '
$1 x=$ Converts $\mathrm{CH} 0, \mathrm{CH} 1, \mathrm{CH} 2$ and CH 3
01 = Converts CH 0 and CH 1
00 = Converts CHO
bit $7 \quad$ BUFS: Buffer Fill Status bit (only valid when BUFM $=1$)
$1=$ ADC is currently filling the second half of the buffer. The user application should access data in the first half of the buffer
$0=$ ADC is currently filling the first half of the buffer. The user application should access data in the second half of the buffer
bit $6 \quad$ Unimplemented: Read as ' 0 '
Note 1: The ' x ' in ADxCON2 and ADCx refers to ADC1 or ADC2.
2: For devices with DMA, the SMPI<3:0> bits are referred to as the Increment Rate for DMA Address Select bits.
3: For devices without DMA, the $\mathrm{SMPI}<3: 0>$ bits are referred to as the Number of Samples Per Interrupt Select bits.
4: The Vref+ and Vref- pins are not available on all devices. Refer to the specific device data sheet for availability.

Register 16-2: bit 5-2	ADxCON2: ADCx Control Register $\mathbf{2}^{(1)}$ (Continued)
	SMPI<3:0>: Sample and Conversion Operation bits ${ }^{(2,3)}$
	For devices with DMA:
	1111 = Increments the DMA address after completion of every 16th sample/conversion operation
	1110 = Increments the DMA address after completion of every 15th sample/conversion operation
	0001 = Increments the DMA address after completion of every 2nd sample/conversion operation
	0001 = Increments the DMA address after completion of every 2nd sample/conversion operation 0000 = Increments the DMA address after completion of every sample/conversion operation
	For devices without DMA:
	1111 = ADC interrupt is generated at the completion of every 16th sample/conversion operation
	$1110=$ ADC interrupt is generated at the completion of every 15th sample/conversion operation
	-
	0001 = ADC interrupt is generated at the completion of every 2 nd sample/conversion operation
	$0000=$ ADC interrupt is generated at the completion of every sample/conversion operation
bit 1	BUFM: Buffer Fill Mode Select bit
	$1=$ Starts filling the first half of the buffer on the first interrupt and the second half of the buffer on the next interrupt
	$0=$ Always starts filling the buffer from the start address
bit 0	ALTS: Alternate Input Sample Mode Select bit
	1 = Uses channel input selects for Sample A on first sample and Sample B on next sample $0=$ Always uses channel input selects for Sample A

Note 1: The ' x ' in ADxCON2 and ADCx refers to ADC1 or ADC2.
2: For devices with DMA, the SMPI<3:0> bits are referred to as the Increment Rate for DMA Address Select bits.

3: For devices without DMA, the $\mathrm{SMPI}<3: 0>$ bits are referred to as the Number of Samples Per Interrupt Select bits.

4: The Vref+ and Vref- pins are not available on all devices. Refer to the specific device data sheet for availability.

Register 16-3: ADxCON3: ADCx Control Register $3^{(1)}$

R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADRC	-	-	SAMC<4:0> ${ }^{(2,3)}$				
bit 15							bit 8
R/W-0							
ADCS<7:0>							
bit 7							bit 0

Legend:

$\mathrm{R}=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{U}=$ Unimplemented bit, read as ' 0 '
$-\mathrm{n}=$ Value at POR	$' 1$ ' $=$ Bit is set	' 0 ' $=$ Bit is cleared

bit 15 ADRC: ADC Conversion Clock Source bit
1 = ADC Internal RC Clock
0 = Clock Derived from System Clock
bit 14-13 Unimplemented: Read as ' 0 '
bit 12-8 \quad SAMC $<4: 0>$: Auto Sample Time bits ${ }^{(2,3)}$
$11111=31$ TAD
-
-
-
$00001=1$ TAD $00000=0$ TAD
bit 7-0 ADCS<7:0>: ADC Conversion Clock Select bits
11111111 = Reserved
-
-
-
01000000 = Reserved $00111111=\operatorname{TCY} \cdot(\operatorname{ADCS}<7: 0>+1)=64 \cdot \operatorname{TCY}=\operatorname{TAD}$
-
-
-
$00000010=\mathrm{TCY} \cdot(\operatorname{ADCS}<7: 0>+1)=3 \cdot$ TCY = TAD $00000001=$ TCY $\cdot($ ADCS $<7: 0>+1)=2 \cdot$ TCY = TAD $00000000=$ TCY $\cdot($ ADCS $<7: 0>+1)=1 \cdot T C Y=$ TAD

Note 1: The ' x ' in ADxCSSL and ADCx refers to ADC1 or ADC2.
2: This bit is only used when the $\operatorname{SSRC}<2: 0>$ bits $(A D x C O N 1<7: 5>)=111$.
3: If $S S R C<2: 0>=111$, the SAMC bit should be set to at least ' 1 ' when using one S\&H channel or using simultaneous sampling. When using multiple S\&H channels with sequential sampling, the SAMC bit should be set to ' 0 ' for the fastest possible conversion rate.

Register 16-4: ADxCON4: ADCx Control Register $4^{(1,2)}$

| U-0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | - | - | - | - | - | - | - |
| bit 15 | | | | bit 8 | | | |

$\mathrm{U}-0$									U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
-	-	-	-	-		DMABL<2:0>									
bit 7				bit 0											

Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1$ ' $=$ Bit is set	$' 0$ ' $=$ Bit is cleared

bit 15-3 Unimplemented: Read as ' 0 '
bit 2-0 DMABL<2:0>: DMA Buffer Locations per Analog Input bits
111 = Allocates 128 words of buffer to each analog input
110 = Allocates 64 words of buffer to each analog input
101 = Allocates 32 words of buffer to each analog input
100 = Allocates 16 words of buffer to each analog input
011 = Allocates 8 words of buffer to each analog input
$010=$ Allocates 4 words of buffer to each analog input
001 = Allocates 2 words of buffer to each analog input 000 = Allocates 1 word of buffer to each analog input

Note 1: The ' x ' in ADxCON4 and ADCx refers to ADC1 or ADC2.
2: This register is not available in devices without DMA. Refer to the specific device data sheet for availability.

Register 16-5: ADxCHS123: ADCx Input Channel 1, 2, 3 Select Register ${ }^{(1)}$

Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1$ ' $=$ Bit is set	$' 0$ ' $=$ Bit is cleared

bit 15-11 Unimplemented: Read as ' 0 '
bit 10-9 CH123NB<1:0>: Channel 1, 2, 3 Negative Input Select for Sample B bits
When $\mathrm{AD} 12 \mathrm{~B}=1, \mathrm{CH} \times \mathrm{NB}$ is: U-0, Unimplemented, Read as ' 0 '
$11=\mathrm{CH} 1$ negative input is $\mathrm{AN} 9, \mathrm{CH} 2$ negative input is $\mathrm{AN} 10, \mathrm{CH} 3$ negative input is AN11
$10=\mathrm{CH} 1$ negative input is AN6, CH 2 negative input is AN7, CH3 negative input is AN8
$0 x=\mathrm{CH} 1, \mathrm{CH} 2, \mathrm{CH} 3$ negative input is VREFL
bit $8 \quad$ CH123SB: Channel 1, 2, 3 Positive Input Select for Sample B bit
When AD12B = 1, CHxSA is: U-0, Unimplemented, Read as ' 0 '
$1=\mathrm{CH} 1$ positive input is $\mathrm{AN} 3, \mathrm{CH} 2$ positive input is $\mathrm{AN} 4, \mathrm{CH} 3$ positive input is AN5
$0=\mathrm{CH} 1$ positive input is AN0, CH 2 positive input is AN1, CH 3 positive input is AN2
bit 7-3 Unimplemented: Read as ' 0 '
bit 2-1 CH123NA<1:0>: Channel 1, 2, 3 Negative Input Select for Sample A bits
When AD12B = 1, CHxNA is: U-0, Unimplemented, Read as ' 0 '
$11=\mathrm{CH} 1$ negative input is AN9, CH 2 negative input is AN10, CH 3 negative input is AN11
$10=\mathrm{CH} 1$ negative input is AN6, CH 2 negative input is AN7, CH 3 negative input is AN8
$0 x=\mathrm{CH} 1, \mathrm{CH} 2, \mathrm{CH} 3$ negative input is VREFL
bit $0 \quad$ CH123SA: Channel 1, 2, 3 Positive Input Select for Sample A bit
When $\mathrm{AD} 12 \mathrm{~B}=1, \mathrm{CHxSA}$ is: U-0, Unimplemented, Read as ' 0 '
$1=\mathrm{CH} 1$ positive input is $\mathrm{AN} 3, \mathrm{CH} 2$ positive input is $\mathrm{AN} 4, \mathrm{CH} 3$ positive input is AN5
$0=\mathrm{CH} 1$ positive input is $\mathrm{ANO}, \mathrm{CH} 2$ positive input is $\mathrm{AN} 1, \mathrm{CH} 3$ positive input is AN2
Note 1: The ' x ' in ADxCHS123 and ADCx refers to ADC1 or ADC2.

Register 16-6: ADxCHS0: ADCx Input Channel 0 Select Register ${ }^{(1)}$

R/W-0							
CHONB	-	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
bit 15	-		$C H O S B<4: 0>(\mathbf{2)}$				

R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CHONA	-	-	CHOSA<4:0> ${ }^{(2,3)}$				
bit 7							bit 0

Legend:

$\mathrm{R}=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{U}=$ Unimplemented bit, read as ' 0 '
$-\mathrm{n}=$ Value at POR	' 1 ' $=$ Bit is set	' 0 ' $=$ Bit is cleared $\quad x=$ Bit is unknown

bit $15 \quad$ CHONB: Channel 0 Negative Input Select for Sample B bit Same definition as bit 7.
bit 14-13 Unimplemented: Read as ' 0 '
bit 12-8 CH0SB<4:0>: Channel 0 Positive Input Select for Sample B bits ${ }^{(2)}$
Same definition as bit<4:0>.
bit 7 CHONA: Channel 0 Negative Input Select for Sample A bit
1 = Channel 0 negative input is AN1
$0=$ Channel 0 negative input is VREFL
bit 6-5 Unimplemented: Read as ' 0 '
bit 4-0 CHOSA<4:0>: Channel 0 Positive Input Select for Sample A bits ${ }^{(2,3)}$
11111 = Channel 0 positive input is AN31
$11110=$ Channel 0 positive input is AN30
-
-
-
00010 = Channel 0 positive input is AN2
00001 = Channel 0 positive input is AN1 00000 = Channel 0 positive input is ANO

Note 1: The ' x ' in ADxCHSO and ADCx refers to ADC1 or ADC2.
2: The AN16 - AN31 pins are not available for ADC2.
3: These bits have no effect when the CSCNA bit $(A D x C O N 2<10>)=1$.

Register 16-7: AD1CSSH: ADC1 Input Scan Select Register High ${ }^{(1)}$

Legend:

R = Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1$ ' $=$ Bit is set	' 0 ' $=$ Bit is cleared

bit 15-0 CSS<31:16>: ADC Input Scan Selection bits ${ }^{(2,3)}$
$1=$ Select ANx for input scan
$0=$ Skip ANx for input scan
Note 1: This register is not available in devices without DMA. Refer to the specific device data sheet for availability.
2: ADC2 only supports analog inputs ANO-AN15; therefore, no ADC2 Input Scan Select Register High exists.
3: A maximum of 16 inputs (any) can be scanned.

Register 16-8: ADxCSSL: ADCx Input Scan Select Register Low ${ }^{(1)}$

| R/W-0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CSS15 ${ }^{(4)}$ | CSS14 ${ }^{(4)}$ | CSS13 ${ }^{(4)}$ | CSS12 | CSS11 | CSS10 | CSS9 | CSS8 |
| bit 15 | | | | | | | bit 8 |
| R/W-0 |
| CSS7 | CSS6 | CSS5 | CSS4 | CSS3 | CSS2 | CSS1 | CSS0 |
| bit 7 | | | | | | | bit 0 |

Legend:

$\mathrm{R}=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{U}=$ Unimplemented bit, read as ' 0 '
$-\mathrm{n}=$ Value at POR	' 1 ' $=$ Bit is set	' 0 ' $=$ Bit is cleared

bit 15-0 \quad CSS<15:0>: ADC Input Scan Selection bits ${ }^{(2,3,4)}$
1 = Select ANx for input scan
0 = Skip ANx for input scan
Note 1: The ' x ' in ADxCSSL and ADCx refers to ADC1 or ADC2.
2: On devices with less than 16 analog inputs, all ADxCSSL bits can be selected by the user. However, inputs selected for scan without a corresponding input on device convert VREF-.
3: A maximum of 16 inputs (any) can be scanned.
4: This bit is not available in devices without DMA. Refer to the specific device data sheet for availability.

Register 16-9: AD1PCFGH: ADC1 Port Configuration Register High ${ }^{(1,3)}$

| R/W-0 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PCFG31 | PCFG30 | PCFG29 | PCFG28 | PCFG27 | PCFG26 | PCFG25 | PCFG24 |
| bit 15 | | | | | | | |

| R/W-0 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PCFG23 | PCFG22 | PCFG21 | PCFG20 | PCFG19 | PCFG18 | PCFG17 | PCFG16 |
| bit 7 | | | | bit 0 | | | |

Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1$ ' $=$ Bit is set	$' 0$ ' $=$ Bit is cleared

bit 15-0 PCFG<31:16>: ADC Port Configuration Control bits ${ }^{(1,2)}$
1 = Port pin in Digital mode, port read input enabled, ADC input multiplexer connected to AVss
$0=$ Port pin in Analog mode, port read input disabled, ADC samples pin voltage

Note 1: This register is not available in devices without DMA. Refer to the specific device data sheet for availability.
2: On devices with less than 32 analog inputs, all PCFG bits are R/W by user. However, PCFG bits are ignored on ports without a corresponding input on device.

3: ADC2 only supports analog inputs ANO-AN15; therefore, no ADC2 Port Configuration register exists.

Register 16-10: ADxPCFGL: ADCx Port Configuration Register Low ${ }^{(1)}$

| R/W-0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PCFG15 ${ }^{(4)}$ | PCFG14 ${ }^{(4)}$ | PCFG13 ${ }^{(4)}$ | PCFG12 | PCFG11 | PCFG10 | PCFG9 | PCFG8 |
| bit 15 | | | | | | | bit 8 |
| R/W-0 |
| PCFG7 | PCFG6 | PCFG5 | PCFG4 | PCFG3 | PCFG2 | PCFG1 | PCFG0 |
| bit 7 | | | | | | | bit 0 |

Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1 '=$ Bit is set	$' 0 '=$ Bit is cleared $\quad x=$ Bit is unknown

bit 15-0 PCFG<15:0>: ADC Port Configuration Control bits ${ }^{(2,3)}$
1 = Port pin in Digital mode, port read input enabled, ADC input multiplexer connected to AVss
0 = Port pin in Analog mode, port read input disabled, ADC samples pin voltage
Note 1: The ' x ' in ADxPCFGL and ADx refers to ADC1 or ADC2.
2: On devices with less than 16 analog inputs, all PCFG bits are R/W by user. However, PCFG bits are ignored on ports without a corresponding input on device.
3: On devices with two A/D modules, both AD1PCFGL and AD2PCFGL affect the configuration of port pins multiplexed with ANO-AN15.
4: This bit is not available in devices without DMA. Refer to the specific device data sheet for availability.

Section 16. Analog-to-Digital Converter (ADC)

16.3 OVERVIEW OF SAMPLE AND CONVERSION SEQUENCE

Figure 16-3 illustrates that the A/D conversion is a three step process:

1. The input voltage signal is connected to the sample capacitor.
2. The sample capacitor is disconnected from the input.
3. The stored voltage is converted to equivalent digital bits.

The two distinct phases, sample and conversion, are independently controlled.
Figure 16-3: Sample Conversion Sequence

16.3.1 Sample Time

Sample Time is when the selected analog input is connected to the sample capacitor. There is a minimum sample time to ensure that the S\&H amplifier provides a desired accuracy for the A/D conversion (see $\mathbf{1 6 . 1 2}$ "AID Sampling Requirements").

Note: The ADC module requires a finite number of A/D clock cycles to start conversion after receiving a conversion trigger or stopping the sampling process. Refer to the Tpcs parameter in the "Electrical Characteristics" chapter of the specific device data sheet for further details.

The sampling phase can be set up to start automatically upon conversion or by manually setting the Sample bit (SAMP) in the ADC Control Register 1 (ADxCON1<1>). The sampling phase is controlled by the Auto-Sample bit (ASAM) in the ADC Control Register 1 (ADxCON1<2>). Table 16-1 lists the options selected by the specific bit configuration.

Table 16-1: \quad Start of Sampling Selection

ASAM	Start of Sampling Selection
0	Manual sampling
1	Automatic sampling

If automatic sampling is enabled, the sampling time (TSMP) taken by the ADC module is equal to the number of TAD cycles defined by the SAMC<4:0> bits (ADxCON3<12:8>), as shown by Equation 16-1.

Equation 16-1: Sampling Time Calculation
\square
If manual sampling is desired, the user software must provide sufficient time to ensure adequate sampling time.

16.3.2 Conversion Time

The Start of Conversion (SOC) trigger ends the sampling time and begins an A/D conversion. During the conversion period, the sample capacitor is disconnected from the multiplexer, and the stored voltage is converted to equivalent digital bits. The conversion time for 10 -bit and 12 -bit modes are shown in Equation 16-2 and Equation 16-3. The sum of the sample time and the A/D conversion time provide the total conversion time.
For correct A/D conversion, the A/D conversion clock (TAD) must be selected to ensure a minimum TAD time. Refer to the "Electrical Characteristics" chapter of the specific device data sheet for the minimum TAD specifications for 10-bit and 12-bit modes.

Equation 16-2: $\quad 10$-Bit ADC Conversion Time
T TCONV $=12 \cdot T A D$
Where:
TCONV = Conversion Time
TAD = ADC Clock Period

Equation 16-3: 12-Bit ADC Conversion Time
T TCONV $=14 \cdot T_{A D}$
Where:
TConv = Conversion Time
TAD = ADC Clock Period

The SOC can be triggered by a variety of hardware sources or controlled manually in user software. The trigger source to initiate conversion is selected by the SOC Trigger Source Select bits ($\mathrm{SSRC}<2: 0>$) in the ADC Control register (ADxCON1<7:5>). Table 16-2 lists the conversion trigger source selection for different bit settings.

Note: 12 -bit mode is not available on all devices. Refer to the specific device data sheet for availability.

Table 16-2: SOC Trigger Selection

SSRC<2:0>(1)	SOC Trigger Source
000	Manual Trigger
001	External Interrupt Trigger (INTO)
010	Timer Interrupt Trigger
011	Motor Control PWM Special Event Trigger
100	Timer Interrupt Trigger
111	Automatic Trigger

Note 1: The $S S R C<2: 0>$ selection bits should not be changed when the ADC module is enabled.

Table 16-3 lists the sample conversion sequence with different sample and conversion phase selections.

Table 16-3: Sample Conversion Sequence Selection

ASAM	SSRC<2:0>	Description
0	000	Manual Sample and Manual Conversion Sequence
0	111	Manual Sample and Automatic Conversion Sequence
0	001	Manual Sample and Triggered Conversion Sequence
	010	
	011	
	100	
1	000	Automatic Sample and Manual Conversion Sequence
1	111	Automatic Sample and Automatic Conversion Sequence
1	001	Automatic Sample and Triggered Conversion Sequence
	010	
	011	
	100	

16.3.3 Manual Sample and Manual Conversion Sequence

In the Manual Sample and Manual Conversion Sequence, setting the Sample bit (SAMP) in the ADC Control Register 1 (ADxCON1<1>) initiates sampling, and clearing the SAMP bit terminates sampling and starts conversion (see Figure 16-4). The user application must time the setting and clearing of the SAMP bit to ensure adequate sampling time for the input signal. Example 16-1 illustrates a code sequence for Manual Sample and Manual Conversion.

Figure 16-4: Manual Sample and Manual Conversion Sequence

Example 16-1: Code Sequence for Manual Sample and Manual Conversion

dsPIC33F/PIC24H Family Reference Manual

16.3.4 Automatic Sample and Manual Conversion Sequence

In the Automatic Sample and Manual Conversion Sequence, sampling starts automatically after conversion of the previous sample. The user application must allocate sufficient time for sampling before clearing the SAMP bit. Clearing the SAMP bit initiates conversion (see Figure 16-5).

Figure 16-5: Automatic Sample and Manual Conversion Sequence

Note 1: Sampling is started automatically after conversion completion of the previous sample.
2: Conversion is started by clearing the SAMP bit in software.
3: Conversion is complete.
4: Sampling is started automatically after conversion completion of the previous sample.
5: Conversion is started by clearing the SAMP bit in software.

Example 16-2: Code Sequence for Automatic Sample and Manual Conversion

```
while (1) // Repeat continuously
{
    DelayNmSec(100); // Sample for 100 ms
    AD1CON1bits.SAMP = 0; // Start converting
    while (!AD1CON1bits.DONE; // Conversion done?
    AD1CON1bits.DONE = 0); // Clear conversion done status bit
    ADCValue = ADC1BUF0; // If yes, then get the ADC value
}
// Repeat
```


16.3.5 Automatic Sample and Automatic Conversion Sequence

16.3.5.1 CLOCKED CONVERSION TRIGGER

The Auto Conversion method provides a more automated process to sample and convert the analog inputs as shown in Figure 16-6. The sampling period is self-timed and the conversion starts automatically upon termination of a self-timed sampling period. The Auto Sample Time bits ($\mathrm{SAMC}<4: 0>$) in the ADxCON3 register (ADxCON3<12:8>) select 0 to 31 ADC clock cycles (TAD) for sampling period. Refer to the "Electrical Characteristics" chapter of the specific device data sheet for a minimum recommended sampling time (SAMC value).
The SSRC<2:0> bits are set to ' 111 ' to choose the internal counter as the sample clock source, which ends sampling and starts conversion.

Figure 16-6: Automatic Sample and Automatic Conversion Sequence

Note 1: Sampling starts automatically after conversion.
2: Conversion starts automatically upon termination of self timed sampling period.
3: Sampling starts automatically after conversion.
4: Conversion starts automatically upon termination of self timed sampling period.

dsPIC33F/PIC24H Family Reference Manual

16.3.5.2 EXTERNAL CONVERSION TRIGGER

In an Automatic Sample and Triggered Conversion Sequence, the sampling starts automatically after conversion and the conversion is started upon trigger event from the selected peripheral, as shown in Figure 16-7. This allows ADC conversion to be synchronized with the internal or external events. The external conversion trigger is selected by configuring the SSRC<2:0> bits to '001', '010’ or ‘011'. See 16.4.7 "Conversion Trigger Sources" for various external conversion trigger sources.
The ASAM bit should not be modified while the A/D converter is turned on. If automatic sampling is desired, the ASAM bit must be set before turning the module on. The A/D module does take some amount of time to stabilize (see the TPDU parameter in the specific device data sheet); therefore, if automatic sampling is enabled, there is not guarantee that the first ADC result will be correct until the ADC module stabilizes. It may be necessary to discard the first ADC result depending on the A/D clock speed.

Figure 16-7: Automatic Sample and Triggered Conversion Sequence

Note 1: Sampling starts automatically after conversion.
2: Conversion starts upon trigger event.
3: Sampling starts automatically after conversion.
4: Conversion starts upon trigger event.

16.3.6 Multi-Channel Sample Conversion Sequence

Multi-channel A/D converters typically convert each input channel sequentially using an input multiplexer. Simultaneously sampling multiple signals ensures that the snapshot of the analog inputs occurs at precisely the same time for all inputs, as shown in Figure 16-8.
Certain applications require simultaneous sampling, especially when phase information exists between different channels. Sequential sampling takes a snapshot of each analog input just before conversion starts on that input, as shown in Figure 16-8. The sampling of multiple inputs is not correlated. For example, motor control and power monitoring require voltage and current measurements and the phase angle between them.

Figure 16-8: Simultaneous and Sequential Sampling

Figure 16-9 and Figure 16-10 illustrate the ADC module supports simultaneous sampling using two S\&H or four S\&H channels to sample the inputs at the same instant and then perform the conversion for each channel sequentially.
The Simultaneous Sampling mode is selected by setting Simultaneous Sampling bit (SIMSAM) in the ADC Control Register 1 (ADxCON1<3>). By default, the channels are sampled and converted sequentially. Table 16-4 lists the options selected by a specific bit configuration. The CHPS $<1: 0>$ bits determine the channels to be sampled, either sequentially or simultaneously.

Table 16-4: \quad Start of Sampling Selection

SIMSAM	Sampling Mode
0	Sequential sampling
1	Simultaneous sampling

Figure 16-9: 2-Channel Simultaneous Sampling (ASAM = 1)

Note 1: $\mathrm{CH} 0-\mathrm{CH} 1$ Input multiplexer selects analog input for sampling. The selected analog input is connected to the sample capacitor.
2: On SOC Trigger, $\mathrm{CH} 0-\mathrm{CH} 1$ sample capacitor is disconnected from the multiplexer to simultaneously sample the analog inputs. The analog value captured in CHO is converted to equivalent digital bits.

3: The analog voltage captured in CH 1 is converted to equivalent digital bits.
4: $\mathrm{CH} 0-\mathrm{CH} 1$ Input multiplexer selects next analog input for sampling. The selected analog input is connected to the sample capacitor.
5: On SOC Trigger, $\mathrm{CH} 0-\mathrm{CH} 1$ sample capacitor is disconnected from the multiplexer to simultaneously sample the analog inputs. The analog value captured in CHO is converted to equivalent digital bits.

For simultaneous sampling, the total time taken to sample and convert the channels is shown by Equation 16-4.

Equation 16-4: Channel Sample and Conversion Total Time, Simultaneous Sampling Selected

$$
T_{S I M}=T_{S M P}+\left(M \cdot T_{\text {CONV }}\right)
$$

Where:
$T_{S I M}=$ Total time to sample and convert multiple channels with simultaneous sampling.
$T_{S M P}=$ Sampling Time (see Equation 16-1)
$T_{\text {CONV }}=$ Conversion Time (see Equation 16-2)
$M=$ Number of channels selected by the CHPS<1:0> bits.

Figure 16-10: 4-Channel Simultaneous Sampling

Note 1: $\mathrm{CH} 0-\mathrm{CH} 3$ Input multiplexer selects analog input for sampling. The selected analog input is connected to the sample capacitor.
2: On SOC Trigger, CH0-CH3 sample capacitor is disconnected from the multiplexer to simultaneously sample the analog inputs. The analog value captured in CHO is converted to equivalent digital bits.
3: The analog voltage captured in CH 1 is converted to equivalent digital bits.
4: The analog voltage captured in CH 2 is converted to equivalent digital bits.
5: The analog voltage captured in CH 3 is converted to equivalent digital bits.
6: $\mathrm{CH} 0-\mathrm{CH} 3$ Input multiplexer selects next analog input for sampling. The selected analog input is connected to the sample capacitor.
7: On SOC Trigger, $\mathrm{CH} 0-\mathrm{CH} 3$ sample capacitor is disconnected from the multiplexer to simultaneously sample the analog inputs. The analog value captured in CHO is converted to equivalent digital bits.

Figure 16-11 and Figure 16-12 illustrate that by default, the multiple channels are sampled and converted sequentially.
For sequential sampling, the total time taken to sample and convert the channels is shown in Equation 16-5.

Equation 16-5: Channel Sample and Conversion Total Time, Sequential Sampling Selected
When TsMP < TCONV,

$$
\begin{array}{ll}
T_{S E Q}=M \cdot T_{\text {CONV }} & (\text { if } \mathrm{M}>1) \\
T_{S E Q}=T_{S M P}+T_{C O N V} & (\text { if } \mathrm{M}=1)
\end{array}
$$

Where:
$T_{S E Q}=$ Total time to sample and convert multiple channels with sequential sampling.
$T_{\text {CONV }}=$ Conversion Time (see Equation 16-2)
$T_{S M P}=$ Sampling Time (see Equation 16-1)
$M=$ Number of channels selected by the CHPS<1:0> bits.

Figure 16-11: 2-Channel Sequential Sampling (ASAM = 1)

Note 1: CHO-CH1 Input multiplexer selects analog input for sampling. The selected analog input is connected to the sample capacitor.
2: On SOC Trigger, CHO sample capacitor is disconnected from the multiplexer to hold the input voltage constant during conversion. The analog value captured in CHO is converted to equivalent digital bits.
3: The CHO multiplexer output is connected to sample capacitor after conversion. CH 1 sample capacitor is disconnected from the multiplexer to hold the input voltage constant during conversion. The analog value captured in CH 1 is converted to equivalent digital bits.
4: The CH 1 multiplexer output is connected to sample capacitor after conversion. $\mathrm{CH} 0-\mathrm{CH} 1$ Input multiplexer selects next analog input for sampling.
5: On SOC Trigger, CHO sample capacitor is disconnected from the multiplexer to hold the input voltage constant during conversion. The analog value captured in CHO is converted to equivalent digital bits.

Figure 16-12: 4-Channel Sequential Sampling

Note 1: $\mathrm{CHO}-\mathrm{CH} 3$ Input multiplexer selects analog input for sampling. The selected analog input is connected to the sample capacitor
2: On SOC Trigger, CHO sample capacitor is disconnected from the multiplexer to hold the input voltage constant during conversion. The analog value captured in CHO is converted to equivalent digital bits.
3: The CHO multiplexer output is connected to sample capacitor after conversion. CH 1 sample capacitor is disconnected from the multiplexer to hold the input voltage constant during conversion. The analog value captured in CH 1 is converted to equivalent digital bits.
4: The CH 1 multiplexer output is connected to sample capacitor after conversion. CH 2 sample capacitor is disconnected from the multiplexer to hold the input voltage constant during conversion. The analog value captured in CH 2 is converted to equivalent digital bits.

5: The CH 2 multiplexer output is connected to sample capacitor after conversion. CH 3 sample capacitor is disconnected from the multiplexer to hold the input voltage constant during conversion. The analog value captured in CH 3 is converted to equivalent digital bits.
6: The CH3 multiplexer output is connected to sample capacitor after conversion. $\mathrm{CH} 0-\mathrm{CH} 3$ Input multiplexer selects next analog input for sampling.

7: On SOC Trigger, CHO sample capacitor is disconnected from the multiplexer to hold the input voltage constant during conversion. The analog value captured in CHO is converted to equivalent digital bits.

Section 16. Analog-to-Digital Converter (ADC)

16.4 ADC CONFIGURATION

16.4.1 ADC Operational Mode Selection

The 12-bit Operation Mode bit (AD12B) in the ADC Control Register 1 (ADxCON1<10>) allows the ADC module to function as either a 10-bit, 4-channel ADC (default configuration) or a 12-bit, single-channel ADC. Table 16-5 lists the options selected by different bit settings.

Note 1: The ADC module must be disabled before the AD12B bit is modified.
2: 12-bit mode is not available on all devices. Refer to the specific device data sheet for availability.

Table 16-5: ADC Operational Mode

AD12B	Channel Selection
0	10-bit, 4-channel ADC
1	12-bit, single-channel ADC

16.4.2 ADC Channel Selection

In 10-bit mode (AD12B $=0$), the user application can select 1-channel (CHO), 2-channel $(\mathrm{CHO}$, CH 1) or 4 -channel mode ($\mathrm{CH} 0-\mathrm{CH} 3$) using the Channel Select bits ($\mathrm{CHPS}<1: 0>$) in the ADC Control register (ADxCON2<9:8>). In 12-bit mode, the user application can only use CHO . Table 16-6 lists the number of channels selected for the different bit settings.

Table 16-6: 10-bit ADC Channel Selection

CHPS<1:0>	Channel Selection
00	CH 0
01	Dual Channel (CH0, CH1)
$1 x$	Multi-Channel (CH0-CH3)

16.4.3 Voltage Reference Selection

The voltage references for A/D conversions are selected using the Voltage Reference Configuration bits (VCFG<2:0>) in the ADC Control register (ADxCON2<15:13>). The voltage reference high (VREFH) and the voltage reference low (VREFL) to the ADC module can be supplied from the internal AVDD and AVss voltage rails or the external Vref+ and Vref- input pins. The external voltage reference pins can be shared with the ANO and AN1 inputs on low pin count devices. The ADC module can still perform conversions on these pins when they are shared with the VREF+ and VREF- input pins. The voltages applied to the external reference pins must meet certain specifications. For details, refer to the "Electrical Characteristics" chapter of the specific device data sheet. In addition, refer to the specific device data sheet for the availability of the VREF+ and VREF- pins.

Table 16-7: Voltage Reference Selection

VCFG<2:0>	VREFH	VREFL
000	AVDD	AVss
001	VREF+	AVSS
010	AVDD	VREF-
011	VREF+	VREF-
$1 x x$	AVDD	AVss

16.4.4 ADC Clock Selection

The ADC module can be clocked from the instruction cycle clock (TcY) or by using the dedicated internal RC clock (see Figure 16-13). When using the instruction cycle clock, a clock divider drives the instruction cycle clock and allows a lower frequency to be chosen. The clock divider is controlled by the ADC Conversion Clock Select bits (ADCS<7:0>) in the ADC Control register (ADxCON3<7:0>), which allows 64 settings, from 1:1 to 1:64, to be chosen.
For correct A/D conversion, the ADC Clock period (TAD) must be a minimum of 75 ns .
Equation 16-6 shows the ADC Clock period (TAD) as a function of the ADCS control bits and the device instruction cycle clock period, Tcy.

Equation 16-6: ADC Clock Period
\square

```
If \(\operatorname{ADRC}=0\)
ADC Clock Period (TAD) \(=\) TCY \(\bullet(A D C S+1)\)
If \(\operatorname{ADRC}=1\)
ADC Clock Period (TAD) \(=\) TADRC
```

The ADC module has a dedicated internal RC clock source that can be used to perform conversions. The internal RC clock source is used when A/D conversions are performed while the device is in the Sleep mode. The internal RC oscillator is selected by setting the ADC Conversion Clock Source bit (ADRC) in the ADC Control Register 3 (ADxCON3<15>). When the ADRC bit is set, the ADCS<7:0> bits have no effect on the ADC operation.

Note: Refer to the specific device data sheet for ADRC frequency specifications.

Figure 16-13: ADC Clock Generation

16.4.5 Output Data Format Selection

Figure 16-14 illustrates the ADC result is available in four different numerical formats. The Data Output Format bits (FORM<1:0>) in the ADC Control register (ADxCON1<9:8>), selects the output data format. Table 16-8 lists the ADC output format for different bit settings.

Table 16-8: Voltage Reference Selection

FORM<1:0>	Data Information Selection
11	Signed Fractional Format
10	Unsigned Fractional format
01	Signed Integer format
00	Unsigned Integer format

Figure 16-14: ADC Output Format

10-bit ADC 12-bit ADC		
$\begin{aligned} & \text { FORM = 0b11 } \\ & \text { Signed } \\ & \text { Fraction (Q15) } \end{aligned}$		
$\begin{aligned} & \text { FORM = 0b10 } \\ & \text { Unsigned } \\ & \text { Fraction (Q16) } \end{aligned}$		
$\begin{aligned} & \text { FORM = 0b01 } \\ & \text { Signed } \\ & \text { Integer } \end{aligned}$		
$\begin{aligned} & \text { FORM = 0b00 } \\ & \text { Unsigned } \\ & \text { Integer } \end{aligned}$		

16.4.6 Sample and Conversion Operation (SMPI) Bits

The function of the Samples Per Interrupt control bits (SMPI<3:0>) in the ADC Control Register 2 (ADxCON2<5:2>) for devices with DMA is completely different from the function of the SMPI<3:0> bits for devices without DMA.

For devices without DMA, the SMPI<3:0> bits are referred to as the Number of Samples Per Interrupt Select bits. For devices with DMA , the $\mathrm{SMPI}<3: 0>$ bits are referred to as the Increment Rate for DMA Address Select bit.

16.4.6.1 SMPI FOR DEVICES WITHOUT DMA

For devices without DMA, an interrupt can be generated at the end of each sample/convert sequence or after multiple sample/convert sequences, as determined by the value of the SMPI<3:0> bits. The number of sample/convert sequences between interrupts can vary between 1 and 16. The total number of conversion results between interrupts is the product of the number of channels per sample created by the CHPS $<1: 0>$ bits and the value of the $\mathrm{SMPI}<3: 0>$ bits. See 16.5 "ADC Interrupt Generation" for the SMPI values for various sampling modes.

16.4.6.2 SMPI FOR DEVICES WITH DMA

For devices with DMA, if multiple conversion results need to be buffered, DMA should be used with the ADC module to store the conversion results in a DMA buffer. In this case, the SMPI<3:0> bits are used to select how often the DMA RAM buffer pointer is incremented. The number of increments of the DMA RAM buffer pointer should not exceed the DMA RAM buffer length per input as specified by the $D M A B L<2: 0>$ bits. An ADC interrupt is generated after completion of every conversion, regardless of the $\mathrm{SMPI}<3: 0>$ bits settings.
When single or dual or multiple channels are enabled in simultaneous or sequential sampling modes (and CH0 channel scanning is disabled), the SMPI<3:0> bits are set to ' 0 ', indicating the DMA address pointer will increment every sample.
When all single or dual or multiple channels are enabled in simultaneous or sequential sampling modes with Alternate Input Selection mode enabled (and CHO channel scanning is disabled), set SMPI<3:0> = 001 to allow two samples per DMA address point increment.
When channel scanning is used (and Alternate Input Selection mode is disabled), the SMPI<3:0> bits should be set to the number of inputs being scanned minus one (i.e., $\mathrm{SMPI}<3: 0>=\mathrm{N}-1$).

16.4.7 Conversion Trigger Sources

It is often desirable to synchronize the end of sampling and the start of conversion with some other time event. The ADC module can use one of the following sources as a conversion trigger:

- External Interrupt Trigger (INTO only)
- Timer Interrupt Trigger
- Motor Control PWM Special Event Trigger (dsPIC33F Motor Control Devices Only)

16.4.7.1 EXTERNAL INTERRUPT TRIGGER (INTO ONLY)

When $S S R C<2: 0>=001$, the A/D conversion is triggered by an active transition on the INTO pin. The INTO pin can be programmed for either a rising edge input or a falling edge input.

16.4.7.2 TIMER INTERRUPT TRIGGER

This ADC module trigger mode is configured by setting SSRC<2:0> $=010$. TMR3 (for ADC1) and TMR5 (for ADC2) can be used to trigger the start of the A/D conversion when a match occurs between the 16 -bit Timer Count register (TMRx) and the 16-bit Timer Period register (PRx). The 32-bit timer can also be used to trigger the start of the A/D conversion. When SSRC<2:0> $=100$, the timers are swapped (e.g., TMR5 is used with ADC1 and TMR3 is used with ADC2).

16.4.7.3 MOTOR CONTROL PWM SPECIAL EVENT TRIGGER (dsPIC33F MOTOR CONTROL DEVICES ONLY)

The PWM module has an event trigger that allows A/D conversions to be synchronized to the PWM time base. When $S S R C<2: 0>=011$, the A/D sampling and conversion times occur at any user programmable point within the PWM period. The Special Event Trigger allows the user to minimize the delay between the time when the A/D conversion results are acquired and the time when the duty cycle value is updated.
The application should set the ASAM bit in order to ensure that the ADC module has sampled the input sufficiently before the next conversion trigger arrives.

16.4.8 Configuring Analog Port Pins

The Analog/Digital Pin Configuration register (ADxPCFGL) specifies the input condition of device pins used as analog inputs. Along with the Data Direction register (TRISx) in the Parallel I/O Port module, these registers control the operation of the ADC pins.

A pin is configured as an analog input when the corresponding PCFGn bit (ADxPCFGL<n>) is clear. The ADxPCFGL register is cleared at Reset, causing the ADC input pins to be configured for analog input by default at Reset.
When configured for analog input, the associated port I/O digital input buffer is disabled so that it does not consume current.

The port pins that are desired as analog inputs must have their corresponding TRIS bit set, specifying the port input. If the I/O pin associated with an A/D input is configured as an output, the TRIS bit is cleared and the digital output level (VOH or VoL) of the port is converted. After a device Reset, all TRIS bits are set.
A pin is configured as a digital I/O when the corresponding PCFGn bit is set. In this configuration, the input to the analog multiplexer is connected to AVss.

Note 1: When the ADC Port register is read, any pin configured as an analog input reads as a '0'.
2: Analog levels on any pin that is defined as a digital input may cause the input buffer to consume current that is out of the device specification.

16.4.9 Enabling the ADC Module

When the ADON bit (ADxCON1<15>) is ' 1 ', the module is in active mode and is fully powered and functional.
When ADON is ' 0 ', the module is disabled. The digital and analog portions of the circuit are turned off for maximum current savings.
To return to the active mode from the off mode, the user application must wait for the analog stages to stabilize. For the stabilization time, refer to the "Electrical Characteristics" chapter of the specific device data sheet.

Note: The SSRC<2:0>, SIMSAM, ASAM, CHPS<1:0>, SMPI<3:0>, BUFM and ALTS bits, as well as the ADCON3 and ADCSSL registers, should not be written to, while $A D O N=1$. This would lead to indeterminate results.

16.4.10 Turning the ADC Module Off

Clearing the ADON bit disables the ADC module (stops any scanning, sampling and conversion processes). In this state, the ADC module still consumes some current. Setting the ADxMD bit in the PMD register will disable the ADC module and will stop the ADC clock source, which reduces device current consumption. Note that setting the ADxMD bit and then clearing the bit will reset the ADC module registers to their default state. Additionally, any digital pins that share their function with an ADC input pin revert to the analog function. While the ADxMD bit is set, these pins will be set to digital function. In this case, the ADxPCFG bits will not have any effect.

Note: Clearing the ADON bit during a conversion will abort the current A/D conversion. The ADC buffer will not be updated with the partially completed conversion sample.

16.5 ADC INTERRUPT GENERATION

With DMA enabled, the $\mathrm{SMPI}<3: 0>$ bits (ADxCON2<5:2>) determine the number of sample/conversion operations per channel ($\mathrm{CH} 0 / \mathrm{CH} 1 / \mathrm{CH} 2 / \mathrm{CH} 3$) for every DMA address/increment pointer.
The $\mathrm{SMPI}<3: 0>$ bits have no effect when the ADC module is set up such that DMA buffers are written in Conversion Order mode.
If DMA transfers are enabled, the $\mathrm{SMPI}<3: 0>$ bits must be cleared, except when channel scanning or alternate sampling is used. For more details on $\mathrm{SMPI}<3: 0>$ setup requirements, see 16.7 "Specifying Conversion Results Buffering for Devices with DMA".

When the SIMSAM bit (ADxCON1<3>) specifies sequential sampling, regardless of the number of channels specified by the CHPS $<1: 0>$ bits (ADxCON2<9:8>), the ADC module samples once for each conversion and data sample in the buffer. The value specified by the DMAxCNT register for the DMA channel being used corresponds to the number of data samples in the buffer.
For devices with DMA, interrupts are generated after every conversion, which sets the DONE bit since it reflects the interrupt flag (ADxIF) setting.
For devices without DMA, as conversions are completed, the ADC module writes the results of the conversions into the analog-to-digital result buffer. The ADC result buffer is an array of sixteen words, accessed through the SFR space. The user application may attempt to read each analog-to-digital conversion result as it is generated. However, this might consume too much CPU time. Generally, to simplify the code, the module fills the buffer with results and generates an interrupt when the buffer is filled. The ADC module supports 16 result buffers. Therefore, the maximum number of conversions per interrupt must not exceed 16.
The number of conversion per ADC interrupt depends on the following parameters, which can vary from one to 16 conversions per interrupt.

- Number of S\&H channels selected
- Sequential or Simultaneous Sampling
- Samples Convert Sequences Per Interrupt bits (SMPI<3:0>) settings

Table 16-9 lists the number of conversions per ADC interrupt for different configuration modes.
Table 16-9: Samples Per Interrupt in Alternate Sampling Mode

CHPS<1:0>	SIMSAM	SMPI<3:0>	ConversionsI Interrupt	Description
00	x	$\mathrm{N}-1$	N	1-Channel mode
01	0	$\mathrm{~N}-1$	N	2-Channel Sequential Sampling mode
1 x	0	$\mathrm{~N}-1$	N	4-Channel Sequential Sampling mode
01	1	$\mathrm{~N}-1$	$2 \cdot \mathrm{~N}$	2-Channel Simultaneous Sampling mode
1 x	1	$\mathrm{~N}-1$	$4 \cdot \mathrm{~N}$	4-Channel Simultaneous Sampling mode

Note 1: In 2-channel Simultaneous Sampling mode, SMPI <3:0> bit settings must be less than eight.
2: In 4-channel Simultaneous Sampling mode, $\mathrm{SMPI}<3: 0>$ bit settings must be less than four.

The DONE bit (ADxCON1<0>) is set when an ADC interrupt is generated to indicate completion of a required sample/conversion sequence. This bit is automatically cleared by the hardware at the beginning of the next sample/conversion sequence.
On devices without DMA, interrupt generation is based on the SMPI<3:0> and CHPS bits, so the DONE bit is not set after every conversion, but is set when the Interrupt Flag (ADxIF) is set.

16.5.1 Buffer Fill Mode

When the Buffer Fill Mode bit (BUFM) in the ADC Control Register 2 (ADxCON2<1>) is ' 1 ', the 16-word results buffer is split into two 8-word groups: a lower group (ADC1BUF0 through ADC1BUF7) and an upper group (ADC1BUF8 through ADC1BUFF). The 8 -word buffers alternately receive the conversion results after each ADC interrupt event. When the BUFM bit is set, each buffer size is equal to eight. Therefore, the maximum number of conversions per interrupt must not exceed eight.
When the BUFM bit is ' 0 ', the complete 16 -word buffer is used for all conversion sequences. The decision to use the split buffer feature depends on the time available to move the buffer contents, after the interrupt, as determined by the application.
If the application can quickly unload a full buffer within the time taken to sample and convert one channel, the BUFM bit can be ' 0 ', and up to 16 conversions may be done per interrupt. The application has one sample/convert time before the first buffer location is overwritten. If the processor cannot unload the buffer within the sample and conversion time, the BUFM bit should be ' 1 '. For example, if an ADC interrupt is generated every eight conversions, the processor has the entire time between interrupts to move the eight conversions out of the buffer.

16.5.2 Buffer Fill Status

When the conversion result buffer is split using the BUFM control bit, the BUFS Status bit (ADxCON2<7>) indicates, half of the buffer that the ADC module is currently writing. If BUFS $=0$, the ADC module is filling the lower group, and the user application should read conversion values from the upper group. If BUFS = 1, the situation is reversed, and the user application should read conversion values from the lower group.

Section 16. Analog-to-Digital Converter (ADC)

16.6 ANALOG INPUT SELECTION FOR CONVERSION

The ADC module provides a flexible mechanism to select analog inputs for conversion:

- Fixed input selection
- Alternate input selection
- Channel scanning (CHO only)

16.6.1 Fixed Input Selection

The 10-bit ADC configuration can use up to four S\&H channels, designated $\mathrm{CH} 0-\mathrm{CH} 3$, whereas the 12-bit ADC configuration can use only one S\&H channel, CHO. The S\&H channels are connected to the analog input pins through the analog multiplexer.
When ALTS $=0$, the $\mathrm{CH} 0 \mathrm{SA}<4: 0>, \mathrm{CH} 0 \mathrm{NA}, \mathrm{CH} 123 \mathrm{SA}$ and $\mathrm{CH} 123 \mathrm{NA}<1: 0>$ bits select the analog inputs.

Table 16-10: Analog Input Selection

		MUXA	
		Control bits	Analog Inputs
CHO	+ve	CHOSA<4:0>	AN0 to AN31
	-ve	CHONA	Vref-, AN1
CH 1	+ve	CH123SA	ANO, AN3
	-ve	CH123NA<1:0>	AN6, AN9, Vref-
CH 2	+ve	CH123SA	AN1, AN4
	-ve	CH123NA<1:0>	AN7, AN10, Vref-
CH3	+ve	CH123SA	AN2, AN5
	-ve	CH123NA<1:0>	AN8, AN11, Vref-

Note: Not all inputs are present on all devices.
All four channels can be enabled in simultaneous or sequential sampling modes by configuring the CHPS bit and the SIMSAM bit.
For devices with DMA, the SMPI<3:0> bits are set to ' 0 ', indicating the DMA address pointer will increment every sample.
Example 16-3 shows the code sequence to set up ADC inputs for a 4-channel ADC configuration.

Example 16-3: Code Sequence to Set Up ADC Inputs

```
// Initialize MUXA Input Selection
AD1CHS0bits.CH0SA = 3; // Select AN3 for CH0 +ve input
AD1CHS0bits.CH0NA = 0; // Select VREF- for CH0 -ve input
AD1CHS123bits.CH123SA=0; // Select AN0 for CH1 +ve input
    // Select AN1 for CH2+ve input
    // Select AN2 for CH3 +ve input
AD1CHS123bits.CH124NA=0; // Select VREF- for CH1/CH2/CH3 -ve inputs
```


16.6.2 Alternate Input Selection Mode

In an Alternate Input Selection mode, the MUXA and MUXB control bits select the channel for conversion. The ADC completes one sweep using the MUXA selection, and then another sweep using the MUXB selection, and then another sweep using the MUXA selection, and so on. The Alternate Input Selection mode is enabled by setting the Alternate Sample bit (ALTS) in the ADC Control Register 2 (ADxCON2<0>).
The analog input multiplexer is controlled by the AD1CHS123 and AD1CHS0 registers. There are two sets of control bits designated as MUXA (CHySA/CHyNA) and MUXB (CHySB/CHyNB) to select a particular input source for conversion. The MUXB control bits are used in Alternate Input Selection mode.

Table 16-11: Analog Input Selection

		MUXA		MUXB	
		Control bits	Analog Inputs	Control bits	Analog Inputs
CHO	+ve	CHOSA<4:0>	AN0 to AN31	CH0SB<4:0>	AN0 to AN31
	-ve	CHONA	VREF-, AN1	CHONB	VREF-, AN1
CH1	+ve	CH123SA	AN0, AN3	CH123SB	AN0, AN3
	-ve	CH123NA<1:0>	AN6, AN9, VREF-	CH123NB<1:0>	AN6, AN9, Vref-
CH 2	+ve	CH123SA	AN1, AN4	CH123SB	AN1, AN4
	-ve	CH123NA<1:0>	AN7, AN10, Vref-	CH123NB<1:0>	AN7, AN10, VREF-
CH3	+ve	CH123SA	AN2, AN5	CH123SB	AN2, AN5
	-ve	CH123NA<1:0>	AN8, AN11, Vref-	CH123NB<1:0>	AN8, AN11, Vref-

Note: Not all inputs are present on all devices.
For Alternate Input Selection mode in devices without DMA, an ADC interrupt must be generated after an even number of sample/conversion sequences by programming the Samples Convert Sequences Per Interrupt bits (SMPI<3:0>). Table 16-12 lists the valid SMPI values for Alternate Input Selection mode in different ADC configurations.

Table 16-12: Valid SMPI Values for Alternate Input Selection Mode

CHPS<1:0>	SIMSAM	SMPI<3:0> (Decimal)	ConversionsI Interrupt	Description
00	x	$1,3,5,7,9,11,13,15$	$2,4,6,8,10,12,14,16$	1-Channel mode
01	0	$3,7,11,15$	$4,8,12,16$	2-Channel Sequential Sampling mode
1 x	0	7,15	8,16	4-Channel Sequential Sampling mode
01	1	$1,3,5,7$	$4,8,12,16$	2-Channel Simultaneous Sampling mode
1 x	1	1,3	8,16	4-Channel Simultaneous Sampling mode

Example 16-4 shows the code sequence to set up the ADC module for Alternate Input Selection mode for devices without DMA in the 4-Channel Simultaneous Sampling configuration. Figure 16-15 illustrates the ADC module operation sequence.

Note: On ADC Interrupt, the ADC internal logic is initialized to restart the conversion sequence from the beginning.

Example 16-4: Code Sequence to Set Up ADC for Alternate Input Selection Mode for 4-Channel Simultaneous Sampling (Devices without DMA)

```
AD1CON1bits.AD12B = 0; // Select 10-bit mode
AD1CON2bits.CHPS = 3; // Select 4-channel mode
AD1CON1bits.SIMSAM = 1; // Enable Simultaneous Sampling
AD1CON2bits.ALTS = 1; // Enable Alternate Input Selection
AD1CON2bits.SMPI = 1; // Select 8 conversion between interrupt
AD1CON1bits.ASAM = 1; // Enable Automatic Sampling
AD1CON1bits.SSRC = 2; // Timer3 generates SOC trigger
// Initialize MUXA Input Selection
AD1CHS0bits.CH0SA = 6; // Select AN6 for CH0 +ve input
AD1CHS0bits.CH0NA = 0; // Select VREF- for CH0 -ve input
AD1CHS123bits.CH123SA = 0; // Select CH1 +ve = AN0, CH2 +ve = AN1, CH3 +ve = AN2
AD1CHS123bits.CH123NA = 0; // Select Vref- for CH1/CH2/CH3 -ve inputs
// Initialize MUXB Input Selection
AD1CHS0bits.CH0SB = 7; // Select AN7 for CH0 +ve input
AD1CHS0bits.CH0NB = 0; // Select VREF- for CH0 -ve input
AD1CHS123bits.CH123SB = 1; // Select CH1 +ve = AN3, CH2 +ve = AN4, CH3 +ve = AN5
```

Figure 16-15: Alternate Input Selection in 4-Channel Simultaneous Sampling Configuration (Devices without DMA)

Example 16-5 shows the code sequence to set up the ADC module for Alternate Input Selection mode in a 2 -channel sequential sampling configuration for devices without DMA.

Example 16-5: Code Sequence to Set Up ADC for Alternate Input Selection for 2-Channel Sequential

 Sampling (Devices without DMA)```
AD1CON1bits.AD12B=0; // Select 10-bit mode
AD1CON2bits.CHPS=1; // Select 2-channel mode
AD1CON2bits.SMPI = 3; // Select 4 conversion between interrupt
AD1CON1bits.ASAM = 1; // Enable Automatic Sampling
AD1CON2bits.ALTS = 1; // Enable Alternate Input Selection
AD1CON1bits.SIMSAM = 0; // Enable Sequential Sampling
AD1CON1bits.SSRC = 2; // Timer3 generates SOC trigger
// Initialize MUXA Input Selection
AD1CHS0bits.CH0SA = 6; // Select AN6 for CH0 +ve input
AD1CHS0bits.CH0NA = 0; // Select VrEF- for CH0 -ve input
AD1CHS123bits.CH123SA=0;// Select AN0 for CH1 +ve input
AD1CHS123bits.CH123NA=0;// Select Vref- for CH1 -ve inputs
// Initialize MUXB Input Selection
AD1CHS0bits.CH0SB = 7; // Select AN7 for CH0 +ve input
AD1CHS0bits.CH0NB = 0; // Select VrEF- for CH0 -ve input
AD1CHS123bits.CH123SB=1;// Select AN3 for CH1 +ve input
AD1CHS123bits.CH124NB=0;// Select VREF- for CH1-ve inputs
```

Figure 16-16: Alternate Input Selection in 2-Channel Sequential Sampling Configuration (Devices without DMA)

| CHO | Sample/Convert Sequence 1 |  |  | Sample/Convert Sequence 2 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Sample <br> (AN6) | Convert <br> (AN6) | Sample <br> (AN7) | Sample <br> (AN7) | Convert (AN7) | Sample <br> (AN6) | Sample <br> (AN6) | ADC1BUF0 | AN6 |
| CH1 |  |  |  |  |  |  |  | ADC1BUF1 | ANO |
|  | Sample <br> (ANO) |  | Convert <br> (ANO) | Sample <br> (AN3) |  | Convert <br> (AN3) | Sample <br> (ANO) | ADC1BUF2 ADC1BUF3 | AN7 AN3 |
| $\begin{aligned} & \text { SOC } \\ & \text { Trigger } \end{aligned}$ |  |  |  |  |  |  |  |  |  |
| ADC Interrupt |  |  |  |  |  |  |  |  |  |
| Note | $\mathrm{CHO}-\mathrm{CH}$ input is <br> On SOC <br> $\mathrm{CHO}-\mathrm{CH}$ input is On SOC ADC In MUXA | Input multip nnected to <br> rigger, CH <br> Input multip nnected to <br> rigger, CH <br> rupt is ge trol bits (C | xer select sample <br> H1 inputs <br> xer select sample c <br> H 1 inputs <br> ated after <br> SA/CHyNA | nalog input acitor. <br> sequentia <br> nalog inpu acitor. <br> sequentia <br> verting 4 <br> The select | or sampling <br> sampled <br> or sampling <br> sampled <br> mples. CH <br> analog inp | sing MUX <br> d converte <br> using MUX <br> d converte <br> CH1 Input is connec | control bit <br> oquival control bit <br> oquival ultiplexer to the sam | CHyNA). The <br> unts. <br> HyNB). The <br> unts. <br> alog input fo itor. | ected <br> ected <br> mplin |

For devices with DMA, when Alternate Input Selection mode is enabled, set $\mathrm{SMPI}<3: 0>=001$ to allow two samples per DMA address point increment.

Figure 16-17: Alternate Input Selection in 4-Channel Simultaneous Sampling Configuration (Devices with DMA)


Note 1: CH0-CH3 Input multiplexer selects analog input for sampling using MUXA control bits (CHySA/CHyNA). The selected analog input is connected to the sample capacitor.
2: On SOC Trigger, $\mathrm{CH} 0-\mathrm{CH} 4$ sample capacitor is disconnected from the multiplexer to simultaneously sample the analog inputs. The analog value captured in $\mathrm{CH} 0 / \mathrm{CH} 1 / \mathrm{CH} 2 / \mathrm{CH} 3$ is converted sequentially to equivalent digital counts.
3: $\mathrm{CHO}-\mathrm{CH} 3$ Input multiplexer selects analog input for sampling using MUXB control bits ( $\mathrm{CHySB} / \mathrm{CHyNB}$ ). The selected analog input is connected to the sample capacitor.
4: On SOC Trigger, $\mathrm{CH} 0-\mathrm{CH} 3$ sample capacitor is disconnected from the multiplexer to simultaneously sample the analog inputs. The analog value captured in $\mathrm{CHO} / \mathrm{CH} 1 / \mathrm{CH} 2 / \mathrm{CH} 3$ is converted sequentially to equivalent digital counts.
5: ADC Interrupt is generated after converting every sample. $\mathrm{CHO}-\mathrm{CH} 3$ Input multiplexer selects analog input for sampling using MUXA control bits (CHySA/CHyNA). The selected analog input is connected to the sample capacitor.

Figure 16-18: Alternate Input Selection in 2-Channel Sequential Sampling Configuration (Devices with DMA)


Note 1: CH0-CH1 Input multiplexer selects analog input for sampling using MUXA control bits (CHySA/CHyNA). The selected analog input is connected to the sample capacitor.
2: On SOC Trigger, $\mathrm{CHO} / \mathrm{CH} 1$ inputs are sequentially sampled and converted to equivalent digital counts.
3: $\mathrm{CH} 0-\mathrm{CH} 1$ Input multiplexer selects analog input for sampling using MUXB control bits ( $\mathrm{CHySB} / \mathrm{CHyNB}$ ). The selected analog input is connected to the sample capacitor.
4: On SOC Trigger, $\mathrm{CHO} / \mathrm{CH} 1$ inputs are sequentially sampled and converted to equivalent digital counts.
5: ADC Interrupt is generated after every conversion.

### 16.6.3 Channel Scanning

The ADC module supports the Channel Scan mode using CH0 (S\&H channel ' 0 '). The number of inputs scanned is software selectable. Any subset of the analog inputs from AN0 to AN31 (ANO-AN12 for devices without DMA) can be selected for conversion. The selected inputs are converted in ascending order. For example, if the input selection includes AN4, AN1 and AN3, the conversion sequence is AN1, AN3 and AN4. The conversion sequence selection is made by programming the Channel Select register (AD1CSSL). A logic ' 1 ' in the Channel Select register marks the associated analog input channel for inclusion in the conversion sequence. The Channel Scanning mode is enabled by setting the Channel Scan bit (CSCNA) in the ADC Control Register 2 (ADxCON2<10>). In Channel Scan mode, MUXA software control is ignored and the ADC module sequences through the enabled channels.

In devices without DMA, for every sample/convert sequence, one analog input is scanned. The ADC interrupt must be generated after all selected channels are scanned. If " N " inputs are enabled for channel scan, an interrupt must be generated after " N " sample/convert sequence. Table 16-13 lists the SMPI values to scan " N " analog inputs using CHO in different ADC configurations.

Note: A maximum of 16 ADC inputs (any) can be configured to be scanned at a time.

Table 16-13: Conversions Per Interrupt in Channel Scan Mode (Devices without DMA)

| CHPS<1:0> | SIMSAM | SMPI<3:0> <br> (Decimal) | Conversionsl <br> Interrupt | Description |
| :---: | :---: | :---: | :---: | :--- |
| 00 | x | $\mathrm{N}-1$ | N | 1-Channel mode |
| 01 | 0 | $2 \mathrm{~N}-1$ | 2 N | 2-Channel Sequential Sampling <br> mode |
| 1 x | 0 | $4 \mathrm{~N}-1$ | 4 N | 4-Channel Sequential Sampling <br> mode |
| 01 | 1 | $\mathrm{~N}-1$ | 2 N | 2-Channel Simultaneous Sampling <br> mode |
| 1 x | 1 | $\mathrm{~N}-1$ | 4 N | 4-Channel Simultaneous Sampling <br> mode |

Example 16-6 shows the code sequence to scan four analog inputs using CHO in devices without DMA. Figure 16-19 illustrates the ADC operation sequence.

Note: On ADC Interrupt, the ADC internal logic is initialized to restart the conversion sequence from the beginning.

## Example 16-6: Code sequence to Scan four Analog Inputs Using CH0

 (Devices without DMA and 10-bit/12-bit ADC)```
AD1CON1bits.AD12B=1; // Select 12-bit mode, 1-channel mode
AD1CON2bits.SMPI = 3; // Select 4 conversions between interrupt
AD1CHS0bits.ASAM = 1; // Enable Automatic Sampling
AD1CON2bits.CSCNA = 1; // Enable Channel Scanning
// Initialize Channel Scan Selection
AD1CSSLbits.CSS2=1; // Enable AN2 for scan
AD1CSSLbits.CSS3=1; // Enable AN3 for scan
AD1CSSLbits.CSS5=1; // Enable AN5 for scan
AD1CSSLbits.CSS6=1; // Enable AN6 for scan
```

Figure 16-19: Scan Four Analog Inputs Using CHO (Devices without DMA)

Example 16-7 shows the code sequence to scan two analog inputs using CHO in a 2-channel alternate input selection configuration for devices without DMA. Figure 16-20 illustrates the ADC operation sequence.

Example 16-7: Code Sequence for Channel Scan with Alternate Input Selection (Devices without DMA)

```
AD1CON1bits.AD12B = 0; // Select 10-bit mode
AD1CON2bits.CHPS = 1; // Select 2-channel mode
AD1CON1bits.SIMSAM = 0; // Enable Sequential Sampling
AD1CON2bits.ALTS = 1; // Enable Alternate Input Selection
AD1CON2bits.CSCNA = 1; // Enable Channel Scanning
AD1CON2bits.SMPI = 7; // Select 8 conversion between interrupt
AD1CON1bits.ASAM = 1; // Enable Automatic Sampling
// Initialize Channel Scan Selection
AD1CSSLbits.CSS2 = 1; // Enable AN2 for scan
AD1CSSLbits.CSS3 = 1; // Enable AN3 for scan
// Initialize MUXA Input Selection
AD1CHS123bits.CH123SA = 0; // Select AN0 for CH1 +ve input
AD1CHS123bits.CH123NA = 0; // Select Vref- for CH1 -ve inputs
// Initialize MUXB Input Selection
AD1CHS0bits.CH0SB = 8; // Select AN8 for CH0 +ve input
AD1CHS0bits.CH0NB = 0; // Select VREF- for CH0 -ve inputs
AD1CHS123bits.CH123SB = 0; // Select AN4 for CH1 +ve input
AD1CHS123bits.CH124NB = 0; // Select VREF- for CH1 -ve inputs
```

Figure 16-20: Channel Scan with Alternate Input Selection (Devices without DMA)

For devices with DMA, when channel scanning is used and only CHO is active (ALTS = 0), the SMPI<3:0> bits should be set to the number of inputs being scanned minus one (i.e., SMPI<3:0> = N-1).

Figure 16-21: Scan Four Analog Inputs Using CH0 (Devices with DMA)

| CH0Sample
 (AN2) | Convert
 (AN2) | Sample
 (AN3) | Convert
 (AN3) | Sample
 (AN5) | Convert
 (AN5) | Sample
 (AN6) | Convert
 (AN6) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SOC
 Srigger | | | | | | | |

Figure 16-22: Channel Scan with Alternate Input Selection (Devices with DMA)

Note 1: CHO Input multiplexer selects analog input for sampling using internally generated control bits (from Channel Scan logic) instead of MUXA control bits. CH1 Input multiplexer selects analog input for sampling using MUXA control bits (CHySA/CHyNA). The selected analog input is connected to the sample capacitor.
2: On SOC Trigger, $\mathrm{CHO}-\mathrm{CH} 1$ inputs are sequentially sampled and converted to equivalent digital counts.
3: $\mathrm{CHO}-\mathrm{CH} 1$ Input multiplexer selects analog input for sampling using MUXB control bits ($\mathrm{CHySB} / \mathrm{CHyNB}$). The selected analog input is connected to the sample capacitor.
4: On SOC Trigger, $\mathrm{CHO}-\mathrm{CH} 1$ inputs are sequentially sampled and converted to equivalent digital counts.
5: CHO Input multiplexer selects analog input for sampling using internally generated control bits (from Channel Scan logic) instead of MUXA control bits. CH1 Input multiplexer selects analog input for sampling using MUXA control bits (CHySA/CHyNA). The selected analog input is connected to the sample capacitor.
6: On SOC Trigger, $\mathrm{CHO}-\mathrm{CH} 1$ inputs are sequentially sampled and converted to equivalent digital counts.
7: $\mathrm{CHO} 0-\mathrm{CH} 1$ Input multiplexer selects analog input for sampling using MUXB control bits ($\mathrm{CHySB} / \mathrm{CHyNB}$). The selected analog input is connected to the sample capacitor.
8: On SOC Trigger, $\mathrm{CHO}-\mathrm{CH} 1$ inputs are sequentially sampled and converted to equivalent digital counts.
9: ADC Interrupt is generated after every conversion.

16.7 SPECIFYING CONVERSION RESULTS BUFFERING FOR DEVICES WITH DMA

The ADC module contains a single-word, read-only, dual-port register (ADCxBUFO), which stores the A/D conversion result. If more than one conversion result needs to be buffered before triggering an interrupt, DMA data transfers can be used. Both ADC channels (ADC1 and ADC2) can trigger a DMA data transfer. Depending on which ADC channel is selected as the DMA IRQ source, a DMA transfer occurs when the ADC Conversion Complete Interrupt Flag Status bit (AD1IF or AD2IF) in the Interrupt Flag Status Register (IFS0 or IFS1, respectively) in the Interrupt Module gets set as a result of a sample conversion sequence.
The result of every A/D conversion is stored in the ADCxBUFO register. If a DMA channel is not enabled for the ADC module, each result should be read by the user application before it gets overwritten by the next conversion result. However, if DMA is enabled, multiple conversion results can be automatically transferred from ADCXBUFO to a user-defined buffer in the DMA RAM area. Thus, the application can process several conversion results with minimal software overhead.

Note:	For information about how to configure a DMA channel to transfer data from the
ADC buffer and define a corresponding DMA buffer area from where the data can	
be accessed by the application, please refer to Section 22. "Direct Memory	
Access (DMA)" (DS70182). For specific information about the Interrupt registers,	
please refer to Section 6. "Interrupts" (DS70184).	

The DMA Buffer Build Mode bit (ADDMABM) in ADCx Control Register 1 (ADxCON1<12>) determines how the conversion results are filled in the DMA RAM buffer area being used for the ADC. If this bit is set (ADDMABM = 1), DMA buffers are written in the order of conversion. The ADC module provides an address to the DMA channel that is the same as the address used for the non-DMA stand-alone buffer. If the ADDMABM bit is cleared, then DMA buffers are written in Scatter/Gather mode. The ADC module provides a Scatter/Gather address to the DMA channel, based on the index of the analog input and the size of the DMA buffer.
When the SIMSAM bit specifies simultaneous sampling, the number of data samples in the buffer is related to the CHPS $<1: 0>$ bits. Algorithmically, the channels per sample $(\mathrm{CH} / \mathrm{S})$ times the number of samples results in the number of data sample entries in the buffer. To avoid loss of data in the buffer due to overruns, the DMAxCNT register must be set to the desired buffer size.
When the ADC module is simultaneously sampling two or more ADC channels and CHO is in channel scanning mode, there is a limit of 16 conversions, after which time the ADC module restarts conversion from the first ADC input in CH . When operating the ADC module in this mode, the DMAxCNT register must be set to 15 to avoid data loss due to buffer overrun.
Disabling the ADC interrupt is not done with the $\mathrm{SMPI}<3: 0>$ bits. To disable the interrupt, clear the ADxIE analog module interrupt enable bit.

16.7.1 Using DMA in the Scatter/Gather Mode

When the ADDMABM bit is ' 0 ', the Scatter/Gather mode is enabled. In this mode, the DMA channel must be configured for Peripheral Indirect Addressing. The DMA buffer is divided into consecutive memory blocks corresponding to all available analog inputs (out of ANO - AN31). Each conversion result for a particular analog input is automatically transferred by the ADC module to the corresponding block within the user-defined DMA buffer area. Successive samples for the same analog input are stored in sequence within the block assigned to that input.
The number of samples that need to be stored in the DMA buffer for each analog input is specified by the DMABL<2:0> bits (ADxCON4<2:0>).
The buffer locations within each block are accessed by the ADC module using an internal pointer, which is initialized to ' 0 ' when the ADC module is enabled. When this internal pointer reaches the value defined by the $\mathrm{DMABL}<2: 0>$ bits, it gets reset to ' 0 '. This ensures that conversion results of one analog input do not corrupt the conversion results of other analog inputs. The rate at which this internal pointer is incremented when data is written to the DMA buffer is specified by the $\mathrm{SMPI}<3: 0>$ bits.

When no channel scanning or alternate sampling is required, $\mathrm{SMPI}<3: 0>$ should be cleared, implying that the pointer will increment on every sample per channel. Thus, it is theoretically possible to use every location in the DMA buffer for the blocks assigned to the analog inputs being sampled.
In the example illustrated in Figure 16-23, it can be observed that the conversion results for the ANO, AN1 and AN2 inputs are stored in sequence, leaving no unused locations in their corresponding memory blocks. However, for the four analog inputs (AN4, AN5, AN6 and AN7) that are scanned by CH 0 , the first location in the AN5 block, the first two locations in the AN6 block and the first three locations in the AN7 block are unused, resulting in a relatively inefficient arrangement of data in the DMA buffer.

When scanning is used, and no simultaneous sampling is performed (SIMSAM $=0$), $\mathrm{SMPI}<3: 0>$ should be set to one less than the number of inputs being scanned. For example, if CHPS $<1: 0>=00$ (only one S\&H channel is used), and AD1CSSL = 0xFFFF, indicating that ANO-AN15 are being scanned, then set $\mathrm{SMPI}<3: 0>=1111$ so that the internal pointer is incremented only after every sixteenth sample/conversion sequence. This avoids unused locations in the blocks corresponding to the analog inputs being scanned.
Similarly, if ALTS = 1, indicating that alternating analog input selections are used, then SMPI<3:0> is set to ' 0001 ', thereby incrementing the internal pointer after every second sample.

Note: The ADC module does not perform limit checks on the generated buffer addresses. For example, you must ensure that the Least Significant bits (LSbs) of the DMAxSTA or DMAxSTB register used are indeed ' 0 '. Also, the number of potential analog inputs multiplied by the buffer size specified by DMABL<2:0> must not exceed the total length of the DMA buffer.

Figure 16-23: DMA Buffer in Scatter/Gather Mode

16.7.2 Using DMA in the Conversion Order Mode

When the ADDMABM bit (ADCON1<12>) = 1, the Conversion Order mode is enabled. In this mode, the DMA channel can be configured for Register Indirect or Peripheral Indirect Addressing. All conversion results are stored in the user-specified DMA buffer area in the same order in which the conversions are performed by the ADC module. In this mode, the buffer is not divided into blocks allocated to different analog inputs. Rather the conversion results from different inputs are interleaved according to the specific buffer fill modes being used.
In this configuration, the buffer pointer is always incremented by one word. In this case, the SMPI<3:0> bits (ADxCON2<5:2>) must be cleared and the DMABL<2:0> bits (ADxCON4<2:0>) are ignored.

Figure 16-24 illustrates an example identical to the configuration in Figure 16-23, but using the Conversion Order mode. In this example, the DMAxCNT register has been configured to generate the DMA interrupt after 16 conversion results have been obtained.

Figure 16-24: DMA Buffer in Conversion Order Mode

16.8 ADC CONFIGURATION EXAMPLE

The following steps should be used for performing an A/D conversion:

1. Select 10 -bit or 12 -bit mode (ADxCON1<10>).
2. Select the voltage reference source to match the expected range on analog inputs (ADxCON2<15:13>).
3. Select the analog conversion clock to match the desired data rate with processor clock (ADxCON3<7:0>).
4. Select the port pins as analog inputs (ADxPCFGH<15:0> and ADxPCFGL<15:0>).
5. Determine how inputs will be allocated to Sample and Hold channels (ADxCHSO<15:0> and ADxCHS123<15:0>).
6. Determine how many Sample and Hold channels will be used (ADxCON2<9:8>, ADxPCFGH<15:0> and ADxPCFGL<15:0>).
7. Determine how sampling will occur (ADxCON1<3>, ADxCSSH<15:0> and ADxCSSL<15:0>).
8. Select Manual or Auto Sampling.
9. Select the conversion trigger and sampling time.
10. Select how the conversion results are stored in the buffer (ADxCON1<9:8>).
11. Select the interrupt rate or DMA buffer pointer increment rate (ADxCON2<9:5>).
12. Select the number of samples in DMA buffer for each ADC module input (ADxCON4<2:0>).
13. Select the data format.
14. Configure the ADC interrupt (if required):

- Clear the ADxIF bit
- Select interrupt priority (ADxIP<2:0>)
- Set the ADxIE bit

15. Configure the DMA channel (if needed).
16. Turn on the ADC module (ADxCON1<15>).

The options for these configuration steps are described in subsequent sections.

16.9 ADC CONFIGURATION FOR 1.1 Msps

When the device is running at 40 MIPS, the ADC module can be configured to sample at a 1.1 Msps throughput rate with 10-bit resolution.

The ADC module is set to 10-bit operation by setting the AD12B bit to ' 0 ' (ADxCON1<10>). The ASAM bit (ADxCON1<3>) is set to ' 1 ' to begin sampling automatically after the conversion completes. The internal counter, which ends sampling and starts conversion, is set as the sample clock source by setting the $\operatorname{SSRC}<2: 0>$ bits $=111$ (ADxCON1<7:5>). The system clock is selected to be the ADC conversion clock by setting the ADRC bit to ' 0 ' (ADxCON3<15>). The automatic sample time bit is set to less than 12 TAD. The ADC conversion clock is configured to 75 ns by setting the $\mathrm{ADCS}<7: 0>$ bits to ' 00000011 ' (ADxCON3<7:0>), as calculated in Equation 16-7.

Equation 16-7: ADC Conversion Clock When Running at 40 MIPS

$$
T A D=T C Y \text { * }(A D C S<7: 0>+1)=(1 / 40 \mathrm{M}) * 3=75 \mathrm{~ns}(13.3 \mathrm{MHz})
$$

For devices that run up to 16 MIPS, ADC speed of 1.1 Msps is still achievable when the CPU is running at 13.3 MIPS. The ADC conversion clock is configured to 75 ns as calculated in Equation 16-8.

Equation 16-8: ADC Conversion Clock When Running at 13.3 MIPS

$$
T A D=T C Y *(A D C S<7: 0>+1)=(1 / 13.3 \mathrm{M}) * 3=75 \mathrm{~ns}(13.3 \mathrm{MHz})
$$

The ADC conversion time will be 12 TAD since the ADC module is configured for10-bit operation, as calculated in Equation 16-9.

Equation 16-9: ADC Conversion Time

$$
\text { TCONV }=12 \text { * TAD }=900 \mathrm{~ns}(1.1 \mathrm{MHz})
$$

The ADC channels CH 0 and $\mathrm{CH} 1(\mathrm{CHPS}<1: 0>=01)$ are set up to convert analog input ANO or AN3 (only one at any time) in sequential mode (SIMSAM = 0). Figure 16-25 illustrates the sampling sequence.

Figure 16-25: Sampling Sequence for 1.1 Msps

Note: The ' x ' in ANx is either 0 or 3 . T is 900 ns and the frequency is 1.1 Msps.

For devices with DMA, the DMA channel can be configured in Ping-Pong mode to move the converted data from the ADC to DMA RAM. See the ADC and DMA configuration code in Example 16-8.
For devices without DMA, the ADC configuration remains the same. The samples are transferred to ADC1BUF0-ADC1BUFF at a rate of 1.1 Msps . The data can be processed by accessing half of the buffers at a time by setting the BUFS bit.

Example 16-8: ADC Configuration Code for 1.1 Msps

```
void initAdc1(void)
{
    AD1CON1bits.FORM = 3; // Data Output Format: Signed Fraction (Q15 format)
    AD1CON1bits.SSRC = 7; // Internal Counter (SAMC) ends sampling and starts conversion
    AD1CON1bits.ASAM = 1; // ADC Sample Control: Sampling begins immediately after
            // conversion
    AD1CON1bits.AD12B = 0; // 10-bit ADC operation
    AD1CON2bits.SIMSAM = 0; // Sequential sampling of channels
    AD1CON2bits.CHPS = 1; // Converts channels CH0/CH1
    AD1CON3bits.ADRC = 0; // ADC Clock is derived from Systems Clock
    AD1CON3bits.SAMC = 0; // Auto Sample Time = 0 * TAD
    AD1CON3bits.ADCS = 2; // ADC Conversion Clock TAD = TcY * (ADCS + 1) = (1/40M) * 3 =
            // 75 ns (13.3 MHz)
            // ADC Conversion Time for 10-bit Tconv = 12 * TAD = 900 ns (1.1 MHz)
    AD1CON1bits.ADDMABM = 1; // DMA buffers are built in conversion order mode
    AD1CON2bits.SMPI = 0; // SMPI must be 0
    //AD1CHS0/AD1CHS123: A/D Input Select Register
    AD1CHS0bits.CH0SA = 0; // MUXA +ve input selection (AIN0) for CH0
    AD1CHS0bits.CH0NA = 0; // MUXA -ve input selection (VREF-) for CH0
    AD1CHS123bits.CH123SA = 0; // MUXA +ve input selection (AIN0) for CH1
    AD1CHS123bits.CH123NA = 0; // MUXA -ve input selection (VREF-) for CH1
    //AD1PCFGH/AD1PCFGL: Port Configuration Register
    AD1PCFGL = 0xFFFF;
    AD1PCFGH = 0xFFFF;
    AD1PCFGLbits.PCFG0 = 0; // AN0 as Analog Input
    IFS0bits.AD1IF = 0; // Clear the A/D interrupt flag bit
    IEC0bits.AD1IE = 0; // Do Not Enable A/D interrupt
    AD1CON1bits.ADON = 1; // Turn on the A/D converter
void initDma0(void)
{
    DMAOCONbits.AMODE = 0; // Configure DMA for Register indirect with post increment
    DMAOCONbits.MODE = 2; // Configure DMA for Continuous Ping-Pong mode
    DMA0PAD = (int)&ADC1BUF0;
    DMA0CNT = (NUMSAMP-1);
    DMA0REQ = 13;
    DMA0STA = __builtin_dmaoffset(BufferA);
    DMA0STB = __builtin_dmaoffset(BufferB);
    IFS0bits.DMA0IF = 0; //Clear the DMA interrupt flag bit
    IECObits.DMA0IE = 1; //Set the DMA interrupt enable bit
    DMA0CONbits.CHEN = 1;
}
```


16.10 SAMPLE AND CONVERSION SEQUENCE EXAMPLES FOR DEVICES WITHOUT DMA

The following configuration examples show the A/D operation in different sampling and buffering configurations. In each example, setting the ASAM bit starts automatic sampling. A conversion trigger ends sampling and starts conversion.

16.10.1 Sampling and Converting a Single Channel Multiple Times

Figure 16-26 and Table 16-14 illustrate a basic configuration of the ADC. In this case, one ADC input, ANO, is sampled by one S\&H channel, CHO , and converted. The results are stored in the ADC buffer (ADC1BUF0-ADC1BUFF). This process repeats 16 times until the buffer is full and then the ADC module generates an interrupt. The entire process then repeats.
The CHPS bits specify that only S\&H CHO is active. With ALTS clear, only the MUXA inputs are active. The CHOSA bits and CHONA bit are specified (ANO-Vref-) as the input to the S\&H channel. All other input selection bits are not used.

Figure 16-26: Converting One Channel 16 Times/Interrupt

Table 16-14: Converting One Channel 16 Times per ADC Interrupt CONTROL BITS

OPERATION SEQUENCE
Sequence Select

SMPI<3:0> = 1111	
	Interrupt on 16th sample
CHPS<1:0> $=00$	
	Sample Channel CHO
SIMSAM = n/a	
Not applicable for single channel sample	
BUFM $=0$	
	Single 16-word result buffer
ALTS $=0$	
	Always use MUXA input select

MUXA Input Select

CHOSA<3:0> $=0000$	
	Select ANO for $\mathrm{CHO}+$ input
CHONA $=0$	
	Select Vref- for CHO 0 - input
CSCNA $=0$	
	No input scan
CSSL<15:0> = n/a	
	Scan input select unused
CH123SA = n/a	
Channel CH1, CH2, CH3 + input unused	
CH123NA<1:0> = n/a	
Channel CH	, CH2, CH3 - input unused

MUXB Input Select

ADC Buffer @
First ADC Interrupt

ADC1BUF0	ANO Sample 1
ADC1BUF1	ANO Sample 2
ADC1BUF2	ANO Sample 3
ADC1BUF3	ANO Sample 4
ADC1BUF4	AN0 Sample 5
ADC1BUF5	AN0 Sample 6
ADC1BUF6	AN0 Sample 7
ADC1BUF7	ANO Sample 8
ADC1BUF8	AN0 Sample 9
ADC1BUF9	AN0 Sample 10
ADC1BUFA	ANO Sample 11
ADC1BUFB	ANO Sample 12
ADC1BUFC	ANO Sample 13
ADC1BUFD	ANO Sample 14
ADC1BUFE	AN0 Sample 15
ADC1BUFF	AN0 Sample 16

Sample MUXA Inputs: ANO \rightarrow CH0
Convert CH0, Write ADC1BUF
Sample MUXA Inputs: ANO \rightarrow CH0
Convert CH0, Write ADC1BU
Sample MUXA Inputs: ANO \rightarrow CHO
Convert CHO, Write ADC1BUF2
Sample MUXA Inputs: ANO \rightarrow CH0
Convert CHO, Write ADC1BUF3
Sample MUXA Inputs: ANO \rightarrow CHO
Convert CH0, Write ADC1BUF4
Sample MUXA Inputs: ANO \rightarrow CH0
Convert CH0, Write ADC1BUF5
Sample MUXA Inputs: ANO \rightarrow CH0
Convert CH0, Write ADC1BUF6
Sample MUXA Inputs: ANO \rightarrow CHO
Convert CH0, Write ADC1BUF7
Sample MUXA Inputs: ANO \rightarrow CH0
Convert CH0, Write ADC1BUF8
Sample MUXA Inputs: ANO \rightarrow CHO
Convert CH0, Write ADC1BUF9
Sample MUXA Inputs: ANO \rightarrow CH0
Convert CH0, Write ADC1BUFA
Sample MUXA Inputs: ANO \rightarrow CHO
Convert CH0, Write ADC1BUFB
Sample MUXA Inputs: ANO \rightarrow CHO
Convert CHO , Write ADC1BUFC
Sample MUXA Inputs: ANO \rightarrow CH0
Convert CH0, Write ADC1BUFD
Sample MUXA Inputs: ANO \rightarrow CHO
Convert CH0, Write ADC1BUFE
Sample MUXA Inputs: ANO $\rightarrow \mathrm{CHO}$
Convert CH0, Write ADC1BUFF
ADC Interrupt
Repeat

ADC Buffer @
Second ADC Interrupt

ANO Sample 17
ANO Sample 18
ANO Sample 19
ANO Sample 20
ANO Sample 21
ANO Sample 22
ANO Sample 23
ANO Sample 24
ANO Sample 25
ANO Sample 26
ANO Sample 27
ANO Sample 28
ANO Sample 29
ANO Sample 30
ANO Sample 31
ANO Sample 32

16.10.2 A/D Conversions While Scanning Through All Analog Inputs

Figure 16-27 and Table 16-15 illustrate a typical setup where all available analog input channels are sampled by one S\&H channel, CHO, and converted. The Set Scan Input Selection bit (CSCNA) in the ADC Control Register 2 (ADxCON2<10>) specifies scanning of the ADC inputs to the CHO positive input. Other conditions are similar to those described in 16.10.1 "Sampling and Converting a Single Channel Multiple Times".
Initially, the ANO input is sampled by CHO and converted, and then the AN1 input is sampled and converted. This process of scanning the inputs repeats 16 times until the buffer is full. The result is stored in the ADC buffer (ADC1BUFA-ADC1BUFF). Then, the ADC module generates an interrupt. The entire process then repeats.

Figure 16-27: Scanning Through 16 Inputs/Interrupt

Table 16-15: Scanning Through 16 Inputs per ADC Interrupt CONTROL BITS

Sequence Select

SMPI<3:0> $=1111$	
CHPS $<1: 0>=00$	Interrupt on 16th sample
SIMSAM $=$ n/a Not applicable for single channel sample	
BUFM $=0$	Single 16-word result buffer
ALTS $=0$	Always use MUXA input select

MUXA Input Select

CHOSA<3:0> $=$ n/a	
	Over-ride by CSCNA
CHONA $=0$	
	Select VREF- for CHO- input
CSCNA = 1	
	Scan $\mathrm{CHO} 0+$ Inputs
$\begin{array}{cc} \hline \text { CSSL<15:0> = } 1111 \begin{array}{ll} 111111111111 \\ & \text { Scan input select unused } \end{array} \end{array}$	
CH123SA $=\mathrm{n} / \mathrm{a}$	
Channel CH	$1, \mathrm{CH} 2, \mathrm{CH} 3+$ input unused
CH123NA<1:0> = n/a	
Channel CH	1, CH2, CH3 - input unused

MUXB Input Select

CH0SB<3:0> $=$ n/a	
	Channel CH0+ input unused
CHONB = n/a	
	Channel CHO- input unused
CH123SB = n/a	
Channel CH1, CH2, CH3 + input unused	
CH123NB<1:0> = n/a	
Channel	, CH2, CH3 - input unu

ADC Buffer @ First ADC Interrupt

ADC1BUF0	AN0 Sample 1
ADC1BUF1	AN1 Sample 2
ADC1BUF2	AN2 Sample 3
ADC1BUF3	AN3 Sample 4
ADC1BUF4	AN4 Sample 5
ADC1BUF5	AN5 Sample 6
ADC1BUF6	AN6 Sample 7
ADC1BUF7	AN7 Sample 8
ADC1BUF8	AN8 Sample 9
ADC1BUF9	AN9 Sample 10
ADC1BUFA	AN10 Sample 11
ADC1BUFB	AN11 Sample 12
ADC1BUFC	AN12 Sample 13
ADC1BUFD	AN13 Sample 14
ADC1BUFE	AN14 Sample 15
ADC1BUFF	AN15 Sample 16

OPERATION SEQUENCE

ADC Buffer @ Second ADC Interrupt

ANO Sample 17
AN1 Sample 18
AN2 Sample 19
AN3 Sample 20
AN4 Sample 21
AN5 Sample 22
AN6 Sample 23
AN7 Sample 24
AN8 Sample 25
AN9 Sample 26
AN10 Sample 27
AN11 Sample 28
AN12 Sample 29
AN13 Sample 30
AN14 Sample 31
AN15 Sample 32

16.10.3 Sampling Three Inputs Frequently While Scanning Four Other Inputs

Figure 16-28 and Table 16-16 illustrate how the ADC module could be configured to sample three inputs frequently using $\mathrm{S} \& \mathrm{H}$ channels $\mathrm{CH} 1, \mathrm{CH} 2$ and CH 3 ; while four other inputs are sampled less frequently by scanning them using $\mathrm{S} \& H$ channel CHO . In this case, only MUXA inputs are used, and all four channels are sampled simultaneously. Four different inputs (AN4, AN5, AN6, AN7) are scanned in CH0, whereas AN0, AN1 and AN2 are the fixed inputs for CH1, CH 2 and CH 3 , respectively. Thus, in every set of 16 samples, AN0, AN1 and AN2 are sampled four times, while AN4, AN5, AN6 and AN7 are sampled only once each.

Figure 16-28: Converting Three Inputs, Four Times and Four Inputs, One Time/Interrupt

Table 16-16: Converting Three Inputs, Four Times and Four Inputs, One Time per ADC Interrupt CONTROL BITS
 OPERATION SEQUENCE

CH0SB<3:0> $=$ n/a	
	Channel $\mathrm{CHO}+$ input unused
CHONB = n/a	
	Channel CHO - input unused
CH123SB $=$ n/a	
Channel CH1, CH2, CH3 + input unused	
$123 \mathrm{NB}<1: 0>$	
Channel	, CH2, CH3 - input unu

Sample MUXA Inputs: AN4 $\rightarrow \mathrm{CHO}$, ANO $\rightarrow \mathrm{CH} 1$, AN1 $\rightarrow \mathrm{CH} 2$, AN2 $\rightarrow \mathrm{CH} 3$	
	Convert CH0, Write ADC1BUF0
	Convert CH1, Write ADC1BUF1
	Convert CH2, Write ADC1BUF2
	Convert CH3, Write ADC1BUF3
Sample MUXA Inputs: AN5 $\rightarrow \mathrm{CH} 0$, ANO $\rightarrow \mathrm{CH} 1$, AN1 $\rightarrow \mathrm{CH} 2$, AN2 $\rightarrow \mathrm{CH} 3$	
Convert CH0, Write ADC1BUF4	
Convert CH1, Write ADC1BUF5	
Convert CH2, Write ADC1BUF6	
Convert CH3, Write ADC1BUF7	
Sample MUXA Inputs:$\text { AN6 } \rightarrow \mathrm{CHO}, \mathrm{ANO} \rightarrow \mathrm{CH} 1, \mathrm{AN} 1 \rightarrow \mathrm{CH} 2, \mathrm{AN} 2 \rightarrow \mathrm{CH} 3$	
Convert CH0, Write ADC1BUF8	
Convert CH1, Write ADC1BUF9	
Convert CH2, Write ADC1BUF10	
Convert CH3, Write ADC1BUF11	
Sample MUXA Inputs: AN7 $\rightarrow \mathrm{CH} 0$, ANO $\rightarrow \mathrm{CH} 1$, AN1 $\rightarrow \mathrm{CH} 2$, AN2 $\rightarrow \mathrm{CH} 3$	
Convert CH0, Write ADC1BUFC	
Convert CH1, Write ADC1BUFD	
Convert CH2, Write ADC1BUFE	
Convert CH3, Write ADC1BUFF	
ADC Interrupt	
	Repeat

ADC Buffer @

First ADC Interrupt

ADC1BUF0	AN4 Sample 1
ADC1BUF1	AN0 Sample 1
ADC1BUF2	AN1 Sample 1
ADC1BUF3	AN2 Sample 1
ADC1BUF4	AN5 Sample 1
ADC1BUF5	AN0 Sample 2
ADC1BUF6	AN1 Sample 2
ADC1BUF7	AN2 Sample 2
ADC1BUF8	AN6 Sample 1
ADC1BUF9	AN0 Sample 3
ADC1BUFA	AN1 Sample 3
ADC1BUFB	AN2 Sample 3
ADC1BUFC	AN7 Sample 1
ADC1BUFD	AN0 Sample 4
ADC1BUFE	AN1 Sample 4
ADC1BUFF	AN2 Sample 4

ADC Buffer @ Second ADC Interrupt

AN4 Sample 2
ANO Sample 5
AN1 Sample 5
AN2 Sample 5
AN5 Sample 2
AN0 Sample 6
AN1 Sample 6
AN2 Sample 6
AN6 Sample 2
AN0 Sample 7
AN1 Sample 7
AN2 Sample 7
AN7 Sample 2
AN0 Sample 8
AN1 Sample 8
AN2 Sample 8

Note: In this instance of simultaneous sampling, one sample and four conversions are treated as one sample and convert sequence. Therefore, when $\mathrm{SMPI}<3: 0>=0011$, an ADC interrupt is generated after 16 samples are converted and buffered in ADC1BUF0-ADC1BUFF.

16.10.4 Using Alternating MUXA, MUXB Input Selections

Figure 16-29 and Table 16-17 demonstrate alternate sampling of the inputs assigned to MUXA and MUXB. In this example, two channels are enabled to sample simultaneously. Setting the ALTS bit (ADCxCON2<0>) enables alternating input selections. The first sample uses the MUXA inputs specified by the CHOSA, CHONA, CH 123 SA and CH 123 NA bits. The next sample uses the MUXB inputs specified by the CHOSB, CHONB, CH123SB and CH123NB bits. In this example, one of the MUXB input specifications uses two analog inputs as a differential source to the S\&H, sampling (AN3-AN9).

Note that using four S\&H channels without alternating input selections results in the same number of conversions as this example, using two channels with alternating input selections. However, because the $\mathrm{CH} 1, \mathrm{CH} 2$ and CH 3 channels are more limited in the selectivity of the analog inputs, this example method provides more flexibility of input selection than using four channels.

Figure 16-29: Converting Two Sets of Two Inputs Using Alternating Input Selections

dsPIC33F/PIC24H Family Reference Manual

Table 16-17: Converting Two Sets of Two Inputs Using Alternating Input Selections CONTROL BITS

OPERATION SEQUENCE

Sequence Select
 MUXA Input Select

MUXB Input Select

CH0SB<3:0> $=1111$	
	Select AN15 for CH0+ input
CHONB $=0$	
	Select Vref- for CHO- input
CH123SB = 1	
CH1+	, CH2+ = AN4, CH3+ = AN5
CH123NB<1:0> $=11$	
CH1- =	CH2- = AN10, CH3- = AN11

ADC Buffer @ First ADC Interrupt

ADC1BUF0	AN1 Sample 1
ADC1BUF1	AN0 Sample 1
ADC1BUF2	AN15 Sample 2
ADC1BUF3	(AN3-AN9) Sample 2
ADC1BUF4	AN1 Sample 3
ADC1BUF5	AN0 Sample 3
ADC1BUF6	AN15 Sample 4
ADC1BUF7	(AN3-AN9) Sample 4
ADC1BUF8	
ADC1BUF9	
ADC1BUFA	
ADC1BUFB	
ADC1BUFC	
ADC1BUFD	
ADC1BUFE	
ADC1BUFF	

Sample MUXA Inputs: AN1 $\rightarrow \mathrm{CH0}, \mathrm{ANO} \rightarrow \mathrm{CH} 1$
Convert CH0, Write ADC1BUF0
Convert CH1, Write ADC1BUF1
Sample MUXB Inputs: AN15 \rightarrow CH0, (AN3-AN9) \rightarrow CH1
Convert CH0, Write ADC1BUF2
Convert CH1, Write ADC1BUF3
Sample MUXA Inputs: AN1 $\rightarrow \mathrm{CHO}$, ANO $\rightarrow \mathrm{CH} 1$
Convert CH0, Write ADC1BUF4
Convert CH1, Write ADC1BUF5
Sample MUXB Inputs: AN15 \rightarrow CH0, (AN3-AN9) \rightarrow CH1
Convert CH0, Write ADC1BUF6
Convert CH1, Write ADC1BUF7
Interrupt; Change Buffer
Sample MUXA Inputs: AN1 $\rightarrow \mathrm{CH0}$, ANO $\rightarrow \mathrm{CH} 1$
Convert CH0, Write ADC1BUF8
Convert CH1, Write ADC1BUF9
Sample MUXB Inputs: AN15 \rightarrow CH0, (AN3-AN9) \rightarrow CH1
Convert CH0, Write ADC1BUFA
Convert CH1, Write ADC1BUFB
Sample MUXA Inputs: AN1 $\rightarrow \mathrm{CH0}$, ANO $\rightarrow \mathrm{CH} 1$
Convert CH0, Write ADC1BUFC
Convert CH1, Write ADC1BUFD
Sample MUXB Inputs: AN15 \rightarrow CH0, (AN3-AN9) \rightarrow CH1
Convert CH0, Write ADC1BUFE
Convert CH1, Write ADC1BUFF
ADC Interrupt; Change Buffer
Repeat

ADC Buffer @ Second ADC Interrupt

AN1 Sample 5
ANO Sample 5
AN15 Sample 6
(AN3-AN9) Sample 6
AN1 Sample 7
AN0 Sample 7
AN15 Sample 8
(AN3-AN9) Sample 8

16.10.5 Sampling Eight Inputs Using Simultaneous Sampling

This and the next example demonstrate identical setups with the exception that this example uses simultaneous sampling (SIMSAM = 1), and the following example uses sequential sampling (SIMSAM = 0). Both examples use alternating inputs and specify differential inputs to the S\&H.
Figure 16-30 and Table 16-18 demonstrate simultaneous sampling. When converting more than one channel and selecting simultaneous sampling, the ADC module samples all channels, then performs the required conversions in sequence. In this example, with ASAM set, sampling begins after the conversions complete.

Figure 16-30: Sampling Eight Inputs Using Simultaneous Sampling

Table 16-18: \quad Sampling Eight Inputs Using Simultaneous Sampling

CONTROL BITS

Sequence Select

SMPI<3:0> = 0011	
	Interrupt on 4th sample
Sample Channels $\mathrm{CH} 0, \mathrm{CH} 1, \mathrm{CH} 2, \mathrm{CH} 3$	
Sample all channels simultaneously	
BUFM $=0$	Single 16-word result buffer
$\text { ALTS }=1$ Alternat	e MUXA/MUXB input select

CH0SA<3:0> $=1101$	
Select AN13 for $\mathrm{CHO}+$ input	
CHONA $=1$	
	Select AN1 for CH0- input
CSCNA $=0$ 0	
	No input scan
CSSL<15:0> = n/a	
	Scan input select unused
CH123SA $=0$	
CH1+ = ANO	, CH2+ = AN1, CH3+ = AN2
CH123NA<1:0> $=0 \mathrm{X}$	
	CH1-, CH2-, CH3- = VREF-

MUXB Input Select

CH0SB<3:0> $=1110$	
	Select AN14 for $\mathrm{CH} 0+$ input
CHONB $=0$	
	Select Vref- for CHO - input
CH123SB $=1$	
$\mathrm{CH} 1+=\mathrm{AN} 3, \mathrm{CH} 2+=\mathrm{AN} 4, \mathrm{CH} 3+=$ AN5	
CH123NB<1:0> = 10	
	, CH2- = AN7, CH3- = AN8

OPERATION SEQUENCE

Sample MUXA Inputs: $($ AN13-AN1) $\rightarrow \mathrm{CH} 0, \mathrm{AN} 0 \rightarrow \mathrm{CH} 1, \mathrm{AN} 1 \rightarrow \mathrm{CH} 2, \mathrm{AN} 2 \rightarrow \mathrm{CH} 3$	
	Convert CH0, Write ADC1BUF0
	Convert CH1, Write ADC1BUF1
	Convert CH2, Write ADC1BUF2
	Convert CH3, Write ADC1BUF3
Sample MUXB Inputs:$\text { AN14 } \rightarrow \mathrm{CHO},$	
(AN3-AN6) \rightarrow CH1, (AN4-AN7) \rightarrow CH2, (AN5-AN8) \rightarrow CH3	
	Convert CH0, Write ADC1BUF4
	Convert CH1, Write ADC1BUF5
	Convert CH2, Write ADC1BUF6
	Convert CH3, Write ADC1BUF7
Sample MUXA Inputs:$(\text { AN13-AN1) } \rightarrow \mathrm{CHO}, \mathrm{ANO} \rightarrow \mathrm{CH} 1, \mathrm{AN} 1 \rightarrow \mathrm{CH} 2, \text { AN2 } \rightarrow \mathrm{CH} 3$	
	Convert CH0, Write ADC1BUF8
	Convert CH1, Write ADC1BUF9
	Convert CH2, Write ADC1BUFA
	Convert CH3, Write ADC1BUFB
Sample MUXB Inputs:$\mathrm{AN} 14 \rightarrow \mathrm{CHO},$	
(AN3-AN6) \rightarrow CH1, (AN4-AN7) \rightarrow CH2, (AN5-AN8) \rightarrow CH3	
	Convert CH0, Write ADC1BUFC
	Convert CH1, Write ADC1BUFD
	Convert CH2, Write ADC1BUFE
	Convert CH3, Write ADC1BUFF
ADC Interrupt	
Repeat	

ADC Buffer @ Second ADC Interrupt

(AN13-AN1) Sample 3
AN0 Sample 3
AN1 Sample 3
AN2 Sample 3
AN14 Sample 3
(AN3-AN6) Sample 3
(AN4-AN7) Sample 3
(AN5-AN8) Sample 3
(AN13-AN1) Sample 4
ANO Sample 4
AN1 Sample 4
AN2 Sample 4
AN14 Sample 4
(AN3-AN6) Sample 4
(AN4-AN7) Sample 4
(AN5-AN8) Sample 4

16.10.6 Sampling Eight Inputs Using Sequential Sampling

Figure 16-31 and Table 16-19 demonstrate sequential sampling. When converting more than one channel and selecting sequential sampling, the ADC module starts sampling a channel at the earliest opportunity, then performs the required conversions in sequence. In this example, with ASAM set, sampling of a channel begins after the conversion of that channel completes.
When ASAM is clear, sampling does not resume after conversion completion but occurs when the SAMP bit is set.

When utilizing more than one channel, sequential sampling provides more sampling time since a channel can be sampled while conversion occurs on another.

Figure 16-31: Sampling Eight Inputs Using Sequential Sampling

Table 16-19: Sampling Eight Inputs Using Sequential Sampling

CONTROL BITS

Sequence Select

SMPI<3:0> = 1111	
	Interrupt on 16th sample
CHPS<1:0> = 1X	
Sample Channels $\mathrm{CH} 0, \mathrm{CH} 1, \mathrm{CH} 2, \mathrm{CH} 3$	
SIMSAM = 0	
Sample all channels sequentially	
BUFM $=0$	
Single 16-word result buffer	
ALTS $=1$	
Alternate MUXA/MUXB input select	
MUXA Input Select	

CH0SA<3:0> $=0110$	
	Select AN6 for $\mathrm{CHO}+$ input
CHONA $=0$	
	Select Vref- for CHO- input
CSCNA $=0$	
	No input scan
CSSL<15:0> = n/a	
	Scan input select unused
CH123SA $=0$	
CH1+ = ANO	, $\mathrm{CH} 2+=\mathrm{AN} 1, \mathrm{CH} 3+=$ AN2
CH123NA<1:0> $=0 \mathrm{X}$	
	CH1-, CH2-, CH3- = VREF-

MUXB Input Select

CHOSB<3:0> $=0111$	
	Select AN7 for $\mathrm{CHO}+$ input
CHONB $=0$	
	Select Vref- for CH0-input
CH123SB = 1	
$\mathrm{CH} 1+=\mathrm{AN} 3, \mathrm{CH} 2+=\mathrm{AN} 4, \mathrm{CH} 3+=$ AN5	
CH123NB<1:0> = 0X	
	CH1-, CH2-, CH3- = Vref-

OPERATION SEQUENCE

Sample: (AN13-AN1) \rightarrow CH0	
	Convert CH0, Write ADC1BUF0
Sample: ANO \rightarrow CH1	
	Convert CH1, Write ADC1BUF1
Sample: AN1 \rightarrow CH2	
	Convert CH2, Write ADC1BUF2
Sample: AN2 \rightarrow CH3	
	Convert CH3, Write ADC1BUF3
Sample: AN14 \rightarrow CH0	
	Convert CH0, Write ADC1BUF4
Sample: (AN3-AN6) \rightarrow CH1	
	Convert CH1, Write ADC1BUF5
Sample: (AN4-AN7) \rightarrow CH2	
	Convert CH2, Write ADC1BUF6
Sample: (AN5-AN8) \rightarrow CH3	
	Convert CH3, Write ADC1BUF7
Sample: (AN13-AN1) \rightarrow CH0	
	Convert CH0, Write ADC1BUF8
Sample: ANO \rightarrow CH1	
	Convert CH1, Write ADC1BUF9
Sample: AN1 \rightarrow CH2	
	Convert CH2, Write ADC1BUFA
Sample: AN2 \rightarrow CH3	
	Convert CH3, Write ADC1BUFB
Sample: AN14 \rightarrow CH0	
	Convert CH0, Write ADC1BUFC
Sample: (AN3-AN6) \rightarrow CH1	
	Convert CH1, Write ADC1BUFD
Sample: (AN4-AN7) \rightarrow CH2	
	Convert CH2, Write ADC1BUFE
Sample: (AN5-AN8) \rightarrow CH3	
	Convert CH3, Write ADC1BUFF
ADC Interrupt	
	Repeat

ADC Buffer @ Second ADC Interrupt

(AN13-AN1) Sample 3
ANO Sample 3
AN1 Sample 3
AN2 Sample 3
AN14 Sample 3
(AN3-AN6) Sample 3
(AN4-AN7) Sample 3
(AN5-AN8) Sample 3
(AN13-AN1) Sample 4
AN0 Sample 4
AN1 Sample 4
AN2 Sample 28
AN14 Sample 4
(AN3-AN6) Sample 4
(AN4-AN7) Sample 4
(AN5-AN8) Sample 4

16.11 SAMPLE AND CONVERSION SEQUENCE EXAMPLES FOR DEVICES WITH DMA

The following configuration examples show the A/D operation in different sampling and buffering configurations. In each example, setting the ASAM bit starts automatic sampling. A conversion trigger ends sampling and starts conversion.

16.11.1 Sampling and Converting a Single Channel Multiple Times

Figure 16-32 and Table 16-20 illustrate a basic configuration of the ADC. In this case, one ADC input, ANO, is sampled by one S\&H channel, CHO, and converted. The results are stored in the user-configured DMA RAM buffer. This process repeats 16 times until the buffer is full and then the DMA module generates an interrupt. The entire process then repeats.
The CHPS $<1: 0>$ bits specify that only S\&H CH0 is active. With ALTS clear, only the MUXA inputs are active. The CHOSA bits and CHONA bit are specified (ANO-VREF-) as the input to the S\&H channel. All other input selection bits are not used.

Figure 16-32: Converting One Channel 16 Times/DMA Interrupt

Table 16-20: Converting One Channel 16 Times per DMA Interrupt CONTROL BITS

OPERATION SEQUENCE
Sequence Select

MUXA Input Select

CHOSA<3:0> $=0000$	
	Select ANO for $\mathrm{CHO}+$ input
CHONA $=0$	
	Select VREF- for CHO- input
CSCNA $=0$	
	No input scan
CSSL<15:0> = n/a	
	Scan input select unused
CH123SA = n/a	
Channel CH1	1, $\mathrm{CH} 2, \mathrm{CH} 3+$ input unused
CH123NA<1:0> $=$ n/a	
Channel CH	, $\mathrm{CH} 2, \mathrm{CH} 3$ - input unused

MUXB Input Select

CH0SB<3:0> = n/a	
	Channel CH0+ input unused
CHONB $=\mathrm{n} / \mathrm{a}$	
	Channel CHO- input unused
CH123SB = n/a	
Channel $\mathrm{CH} 1, \mathrm{CH} 2, \mathrm{CH} 3+$ input unused	
CH123NB<1:0> = n/a	
Channel	1, CH2, CH3 - input unused

Sample MUXA Inputs: ANO \rightarrow CH0	
	Convert CH0
Sample MUXA Inputs: ANO \rightarrow CHO	
	Convert CH0
Sample MUXA Inputs: ANO \rightarrow CHO	
	Convert CH0
Sample MUXA Inputs: ANO \rightarrow CHO	
	Convert CH0
Sample MUXA Inputs: ANO \rightarrow CH0	
	Convert CHO
Sample MUXA Inputs: ANO \rightarrow CH0	
	Convert CH0
Sample MUXA Inputs: ANO \rightarrow CH0	
	Convert CH0
Sample MUXA Inputs: $\mathrm{ANO} \rightarrow \mathrm{CHO}$	
	Convert CH0
Sample MUXA Inputs: ANO \rightarrow CH0	
	Convert CH0
Sample MUXA Inputs: ANO \rightarrow CH0	
	Convert CH0
Sample MUXA Inputs: ANO \rightarrow CH0	
	Convert CH0
Sample MUXA Inputs: ANO \rightarrow CH0	
	Convert CH0
Sample MUXA Inputs: ANO \rightarrow CH0	
	Convert CHO
Sample MUXA Inputs: ANO \rightarrow CH0	
	Convert CH0
Sample MUXA Inputs: ANO \rightarrow CH0	
	Convert CH0
Sample MUXA Inputs: ANO \rightarrow CH0	
	Convert CH0
DMA Interrupt	
Repeat	

DMA Buffer @ First DMA Interrupt	DMA Buffer @ Second DMA Interrupt
ANO Sample 1	ANO Sample 17
ANO Sample 2	ANO Sample 18
ANO Sample 3	ANO Sample 19
ANO Sample 4	ANO Sample 20
ANO Sample 5	ANO Sample 21
ANO Sample 6	ANO Sample 22
AN0 Sample 7	ANO Sample 23
ANO Sample 8	ANO Sample 24
ANO Sample 9	ANO Sample 25
ANO Sample 10	ANO Sample 26
ANO Sample 11	ANO Sample 27
ANO Sample 12	ANO Sample 28
ANO Sample 13	ANO Sample 29
ANO Sample 14	ANO Sample 30
ANO Sample 15	ANO Sample 31
ANO Sample 16	AN0 Sample 32

Note: The DMA module should be configured correctly to compliment the ADC module.

16.11.2 A/D Conversions While Scanning Through All Analog Inputs

Figure 16-33 and Table 16-21 illustrate a typical setup where all available analog input channels are sampled by one S\&H channel, CHO, and converted. The Set Scan Input Selection bit (CSCNA) in the ADC Control Register 2 (ADxCON2<10>) specifies scanning of the ADC inputs to the CH 0 positive input. Other conditions are similar to those described in 16.10.1 "Sampling and Converting a Single Channel Multiple Times".
Initially, the ANO input is sampled by CHO and converted. The result is stored in the user-configured DMA buffer. Then the AN1 input is sampled and converted. This process of scanning the inputs repeats 16 times until the buffer is full. Then the DMA module generates an interrupt. The entire process then repeats.

Figure 16-33: Scanning Through 16 Inputs/DMA Interrupt

Table 16-21: Scanning Through 16 Inputs per DMA Interrupt

CONTROL BITS
Sequence Select

$\begin{array}{c}\text { SMPI }<3: 0> \\ \text { DMA address increments after every 16th } \\ \text { sample/conversion operation }\end{array}$	
CHPS $<1: 0>=00$	
$\begin{array}{c}\text { SIMSAM }=\mathrm{n} / \mathrm{a} \\ \text { Not applicable for single channel sample }\end{array}$	
$\begin{array}{l}\text { ADDMABM }=0 \\ \text { DMA buffer written in scatter gather fashion }\end{array}$	
$\begin{array}{l}\text { DMABL }=010 \\ \text { Each analog input buffer contains } 4 \text { words }\end{array}$	
ALTS $=0 \quad$ Always use MUXA input select	
MUXA Input Select	

CHOSA<3:0> = n/a	
	Override by CSCNA
CHONA $=0$	
	Select Vref- for CHO- input
CSCNA = 1	
	Scan CHO+ Inputs
$\begin{array}{r} \text { CSSL<15:0> = } 1111111111111111 \\ \text { Scan input select unused } \end{array}$	
CH123SA = n/a	
Channel CH1, CH2, CH3 + input unused	
CH123NA<1:0> = n/a	
Channel CH1, C	1, CH2, CH3 - input unused

MUXB Input Select

CH0SB<3:0> = n/a
Channel $\mathrm{CHO}+$ input unused
CHONB = n/a
Channel CHO- input unused
CH123SB $=$ n/a
Channel CH1, CH2, CH3 + input unused
CH123NB<1:0> = n/a
Channel $\mathrm{CH} 1, \mathrm{CH} 2, \mathrm{CH} 3$ - input unused

OPERATION SEQUENCE

Sample MUXA Inputs: ANO \rightarrow CH0
Convert C
Sample MUXA Inputs: AN1 \rightarrow CH0
Convert C
Sample MUXA Inputs: AN2 \rightarrow CH0
Convert C
Sample MUXA Inputs: AN3 \rightarrow CH0
Convert C
Sample MUXA Inputs: AN4 \rightarrow CH0
Convert C
Sample MUXA Inputs: AN5 $\rightarrow \mathrm{CH} 0$
Convert C
Sample MUXA Inputs: AN6 \rightarrow CH0
Convert C
Sample MUXA Inputs: AN7 \rightarrow CH0
Convert C
Sample MUXA Inputs: AN8 $\rightarrow \mathrm{CH} 0$
Convert C
Sample MUXA Inputs: AN9 \rightarrow CH0
Convert C
Sample MUXA Inputs: AN10 \rightarrow CH0
Convert C
Sample MUXA Inputs: AN11 \rightarrow CH0
Convert C
Sample MUXA Inputs: AN12 \rightarrow CH0
Convert C
Sample MUXA Inputs: AN13 \rightarrow CH0
Convert C
Sample MUXA Inputs: AN14 \rightarrow CH0
Convert C
Sample MUXA Inputs: AN15 \rightarrow CH0
Convert C
DMA Interrupt
Repeat

16.11.3 Using Alternating MUXA, MUXB Input Selections

Figure 16-34 and Table 16-22 demonstrate alternate sampling of the inputs assigned to MUXA and MUXB. In this example, two channels are enabled to sample simultaneously. Setting the ALTS bit (ADCxCON2<0>) enables alternating input selections. The first sample uses the MUXA inputs specified by the CHOSA, CHONA, CH123SA and $\mathrm{CH} 123 N A$ bits. The next sample uses the MUXB inputs specified by the CHOSB, CHONB, CH123SB and CH123NB bits. In this example, one of the MUXB input specifications uses two analog inputs as a differential source to the S\&H, sampling (AN3-AN9).
Note that using four S\&H channels without alternating input selections results in the same number of conversions as this example, using two channels with alternating input selections. However, because the $\mathrm{CH} 1, \mathrm{CH} 2$ and CH 3 channels are more limited in the selectivity of the analog inputs, this example method provides more flexibility of input selection than using four channels.

Figure 16-34: Converting Two Sets of Two Inputs Using Alternating Input Selections

Table 16-22: Converting Two Sets of Two Inputs Using Alternating Input Selections

CONTROL BITS

Sequence Select

SMPI<3:0> DMA address increments after every 2nd sample/conversion operation
CHPS<1:0> $=01$
Sample Channels CH0, CH1
SIMSAM $=1$ Sample all channels simultaneously
ADDMABM $=1$ DMA buffer written in order of conversion
ALTS $=1$ Alternate MUXA/MUXB input select

MUXA Input Select
CHOSA<3:0> $=0001$
Select AN1 for CHO+ input
CHONA $=0$
Select VREF- for CHO- input
CSCNA $=0$

\quad No input scan

MUXB Input Select
CHOSB<3:0> = 1111
Select AN15 for $\mathrm{CH} 0+$ input
CHONB $=0$

CH123SB = 1
CH1+ = AN3, CH2+ = AN4, CH3+ = AN5
CH123NB<1:0> = 11
CH1- = AN9, CH2- = AN10, CH3- = AN11

DMA Buffer @ First DMA Interrupt

AN1 Sample 1
ANO Sample 1
AN15 Sample 1
(AN3-AN9) Sample 1

OPERATION SEQUENCE

Sample MUXA Inputs: AN1 $\rightarrow \mathrm{CH0}$, ANO $\rightarrow \mathrm{CH} 1$	
	Convert CH0
	Convert CH1
Sample MUXB Inputs: AN15 \rightarrow CH0, (AN3-AN9) \rightarrow CH1	
	Convert CH0
	Convert CH1
Sample MUXA Inputs: AN1 $\rightarrow \mathrm{CH0}$, ANO $\rightarrow \mathrm{CH} 1$	
	Convert CH0
	Convert CH1
Sample MUXB Inputs: AN15 \rightarrow CH0, (AN3-AN9) \rightarrow CH1	
	Convert CH0
	Convert CH1
DMA Interrupt	
Sample MUXA Inputs: AN1 $\rightarrow \mathrm{CH0}$, ANO $\rightarrow \mathrm{CH} 1$	
	Convert CH0
	Convert CH1
Sample MUXB Inputs: AN15 \rightarrow CH0, (AN3-AN9) \rightarrow CH1	
	Convert CH0
	Convert CH1
Sample MUXA Inputs: AN1 $\rightarrow \mathrm{CH0}$, ANO $\rightarrow \mathrm{CH} 1$	
	Convert CH0
	Convert CH1
Sample MUXB Inputs: AN15 \rightarrow CH0, (AN3-AN9) \rightarrow CH1	
	Convert CH0
	Convert CH1
DMA Interrupt	
Repeat	

DMA Buffer @ Second DMA Interrupt

AN1 Sample 3
AN0 Sample 3
AN15 Sample 3
(AN3-AN9) Sample 3

16.11.4 Sampling Eight Inputs Using Simultaneous Sampling

This and the next example demonstrate identical setups with the exception that this example uses simultaneous sampling (SIMSAM = 1), and the following example uses sequential sampling (SIMSAM = 0). Both examples use alternating inputs and specify differential inputs to the S\&H.

Figure 16-35 and Table 16-23 demonstrate simultaneous sampling. When converting more than one channel and selecting simultaneous sampling, the ADC module samples all channels, then performs the required conversions in sequence. In this example, with ASAM set, sampling begins after the conversions complete.

Figure 16-35: Sampling Eight Inputs Using Simultaneous Sampling

Table 16-23: Sampling Eight Inputs Using Simultaneous Sampling

CONTROL BITS

Sequence Select

SMPI $<3: 0>$	$=0001$
DMA address increments after every	
2nd sample/conversion operation	

CHPS<1:0> = 1 X

Sample Channels $\mathrm{CH} 0, \mathrm{CH} 1, \mathrm{CH} 2, \mathrm{CH} 3$
SIMSAM = 1
Sample all channels simultaneously
ADDMABM $=0$
DMA buffer written in order of conversion
ALTS = 1
Alternate MUXA/MUXB input select
MUXA Input Select

CHOSA<3:0> = 1101	
Select AN13 for $\mathrm{CHO}+$ input	
CHONA $=1$	
Select AN1 for CH0- input	
CSCNA $=0$	
	No input scan
CSSL<15:0> = n/a	
	Scan input select unused
CH123SA $=0$	
$\mathrm{CH} 1+=\mathrm{ANO}, \mathrm{CH} 2+=\mathrm{AN} 1, \mathrm{CH} 3+=\mathrm{AN} 2$	
CH123NA<1:0> $=0 \mathrm{X}$	
	CH1-, CH2-, CH3- = VREF-

MUXB Input Select

$\left.$| $\mathrm{CH} 0 \mathrm{SB}<3: 0>=$ |
| :--- | | 1110 |
| :--- |
| Select AN14 for $\mathrm{CH} 0+$ input | \right\rvert\,

DMA Buffer @
Second DMA Interrupt
(AN13-AN1) Sample 3
ANO Sample 3
AN1 Sample 3
AN2 Sample 3
AN14 Sample 3
(AN3-AN6) Sample 3
(AN4-AN7) Sample 3
(AN5-AN8) Sample 3
(AN13-AN1) Sample 4
ANO Sample 4
AN1 Sample 4
AN2 Sample 4
AN14 Sample 4
(AN3-AN6) Sample 4
(AN4-AN7) Sample 4
(AN5-AN8) Sample 4

16.11.5 Sampling Eight Inputs Using Sequential Sampling

Figure 16-36 and Table 16-24 demonstrate sequential sampling. When converting more than one channel and selecting sequential sampling, the ADC module starts sampling a channel at the earliest opportunity, then performs the required conversions in sequence. In this example, with ASAM set, sampling of a channel begins after the conversion of that channel completes.
When ASAM is clear, sampling does not resume after conversion completion but occurs when the SAMP bit is set.

When utilizing more than one channel, sequential sampling provides more sampling time since a channel can be sampled while conversion occurs on another.

Figure 16-36: Sampling Eight Inputs Using Sequential Sampling

Table 16-24: Sampling Eight Inputs Using Sequential Sampling

CONTROL BITS

Sequence Select

MUXA Input Select

CH0SA<3:0> $=0110$	
	Select AN6 for $\mathrm{CH} 0+$ input
CHONA $=0$	
	Select Vref- for CH 0 - input
CSCNA $=0$	
	No input scan
CSSL<15:0> = n/a	
	Scan input select unused
CH123SA $=0$	
$\mathrm{CH} 1+=\mathrm{ANO}$,	$\mathrm{CH} 2+=\mathrm{AN} 1, \mathrm{CH} 3+=$ AN2
CH123NA<1:0> $=0 \times$	

MUXB Input Select

CH0SB<3:0> $=0111$	
	Select AN7 for $\mathrm{CHO}+$ input
CHONB $=0$	
	Select Vref- for CHO- input
CH123SB = 1	
CH1+ = AN3, CH2+ = AN4, CH3+ = AN5	
CH123NB<1:0> $=0 \mathrm{X}$	
	CH1-, CH2-, CH3- = VREF-

DMA Buffer @
First DMA Interrupt

(AN13-AN1) Sample 1
AN0 Sample 1
AN1 Sample 1
AN2 Sample 1
AN14 Sample 1
(AN3-AN6) Sample 1
(AN4-AN7) Sample 1
(AN5-AN8) Sample 1
(AN13-AN1) Sample 2
AN0 Sample 2
AN1 Sample 2
AN2 Sample 2
AN14 Sample 2
(AN3-AN6) Sample 2
(AN4-AN7) Sample 2
(AN5-AN8) Sample 2

OPERATION SEQUENCE

Sample: (AN13-AN1) \rightarrow CH0	
	Convert CH0
Sample: ANO \rightarrow CH1	
	Convert CH1
Sample: AN1 \rightarrow CH2	
	Convert CH2
Sample: AN2 \rightarrow CH3	
	Convert CH3
Sample: AN14 \rightarrow CH0	
	Convert CH0
Sample: (AN3-AN6) \rightarrow CH1	
	Convert CH1
Sample: (AN4-AN7) \rightarrow CH2	
	Convert CH2
Sample: (AN5-AN8) \rightarrow CH3	
	Convert CH3
Sample: (AN13-AN1) \rightarrow CH0	
	Convert CH0
Sample: ANO \rightarrow CH1	
	Convert CH1
Sample: AN1 \rightarrow CH2	
	Convert CH2
Sample: AN2 \rightarrow CH3	
	Convert CH3
Sample: AN14 \rightarrow CH0	
	Convert CH0
Sample: (AN3-AN6) \rightarrow CH1	
	Convert CH1
Sample: (AN4-AN7) \rightarrow CH2	
	Convert CH2
Sample: (AN5-AN8) \rightarrow CH3	
	Convert CH3
DMA Interrupt	
Repeat	

DMA Buffer @ Second DMA Interrupt

(AN13-AN1) Sample 3
AN0 Sample 3
AN1 Sample 3
AN2 Sample 3
AN14 Sample 3
(AN3-AN6) Sample 3
(AN4-AN7) Sample 3
(AN5-AN8) Sample 3
(AN13-AN1) Sample 4
ANO Sample 4
AN1 Sample 4
AN2 Sample 28
AN14 Sample 4
(AN3-AN6) Sample 4
(AN4-AN7) Sample 4
(AN5-AN8) Sample 4

16.12 A/D SAMPLING REQUIREMENTS

The analog input model of the 10 -bit and 12 -bit ADC modes are shown in Figure 16-37 and Figure 16-38. The total sampling time for the A/D conversion is a function of the internal amplifier settling time and the holding capacitor charge time.
For the ADC module to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the voltage level on the analog input pin. The analog output source impedance (Rs), the interconnect impedance (RIc) and the internal sampling switch (Rss) impedance combine to directly affect the time required to charge the capacitor Chold. The combined impedance must, therefore, be small enough to fully charge the holding capacitor within the chosen sample time. To minimize the effects of pin leakage currents on the accuracy of the ADC module, the maximum recommended source impedance, Rs, is 200Ω After the analog input channel is selected, this sampling function must be completed prior to starting the conversion. The internal holding capacitor will be in a discharged state prior to each sample operation.
A minimum time period should be allowed between conversions for the sample time. For more details about the minimum sampling time for a device, refer to the "Electrical Characteristics" chapter of the specific device data sheet.

Figure 16-37: Analog Input Model (10-bit Mode)

Note 1: CPIN value depends on device package and is not tested. Effect of CPIN negligible if Rs $\leq 500 \Omega$

Figure 16-38: Analog Input Model (12-bit Mode)

Legend: CPIN	$=$ input capacitance	
VT	$=$ threshold voltage	
I leakage	$=$ leakage current at the pin due to	
		various junctions

Note 1: CPIN value depends on device package and is not tested. Effect of CPIN negligible if Rs $\leq 5 \mathrm{k} \Omega$
2: 12-bit mode is not available on all devices. Refer to the specific device data sheet for availability.

dsPIC33F/PIC24H Family Reference Manual

16.13 READING THE ADC RESULT BUFFER

The RAM is 10 bits or 12 bits wide, but the data is automatically formatted to one of four selectable formats when the buffer is read. The FORM<1:0> bits (ADCON1<9:8>) select the format. The formatting hardware provides a 16 -bit result on the data bus for all of the data formats. Figure 16-39 and Figure 16-40 illustrate the data output formats that can be selected using the FORM<1:0> control bits.

Figure 16-39: A/D Output Data Formats (10-bit Mode)
RAM Contents:

Read to Bus:
Unsigned Integer

0	0	0	0	0	0	d09	d08	d07	d06	d05	d04	d03	d02	d01	d00

Signed Integer

Unsigned Fractional
(1.15)

Signed Fractional (1.15)

$\overline{\mathrm{d} 09}$	d08	d07	d06	d05	d04	d03	d02	d01	d00	0	0	0	0	0	0

Figure 16-40: A/D Output Data Formats (12-bit Mode)
RAM Contents:

Read to Bus:
Unsigned Integer

0	0	0	0	$d 11$	$d 10$	d09	d08	d07	d06	d05	d04	d03	d02	d01	d00

Signed Integer

Unsigned Fractional

Signed Fractional (1.15)

Table 16-25 and Table 16-26 list the numerical equivalents of various result codes for 10-bit and 12-bit modes, respectively.

Table 16-25: Numerical Equivalents of Various Result Codes (10-bit Mode)

Vin/Vref	$\begin{gathered} \text { 10-bit } \\ \text { Output Code } \end{gathered}$	16-bit Integer Format	16-bit Signed Integer Format	16-bit Fractional Format	16-bit Signed Fractional Format
1023/1024	1111111111	$0000001111111111=1023$	$0000000111111111=511$	$1111111111000000=0.999$	$0111111111000000=0.99804$
1022/1024	1111111110	$0000001111111110=1022$	$0000000111111110=510$	$1111111110000000=0.998$	$0111111110000000=0.499609$
513/1024	1000000001	$0000001000000001=513$	0000 0000 $00000001=1$	$1000000001000000=0.501$	$0000000001000000=0.00195$
512/1024	1000000000	$0000001000000000=512$	$0000000000000000=0$	$1000000000000000=0.500$	$0000000000000000=0$
511/1024	0111111111	$0000000111111111=511$	$1111111111111111=-1$	$0111111111000000=.499$	$1111111111000000=-0.00195$
1/1024	0000000001	$0000000000000001=1$	$1111111000000001=-511$	$0000000001000000=0.001$	$1000000001000000=-0.99804$
0/1024	0000000000	$0000000000000000=0$	$1111111000000000=-512$	$0000000000000000=0$	$1000000000000000=-1$

Table 16-26: Numerical Equivalents of Various Result Codes (12-bit Mode)

Vin/Vref	$\begin{gathered} \text { 12-bit } \\ \text { Output Code } \end{gathered}$	16-bit Unsigned Integer Format	16-bit Signed Integer Format	16-bit Unsigned Fractional Format	16-bit Signed Fractional Format
4095/4096	111111111111	$0000111111111111=4095$	$0000011111111111=2047$	$1111111111110000=0.9998$	$0111111111110000=0.9995$
4094/4096	111111111110	$0000111111111110=4094$	$0000011111111110=2046$	$1111111111100000=0.9995$	$0111111111100000=0.9990$
2049/4096	100000000001	$0000100000000001=2049$	$0000000000000001=1$	$1000000000010000=0.5002$	$0000000000010000=0.0005$
2048/4096	100000000000	$0000100000000000=2048$	$0000000000000000=0$	$1000000000000000=0.500$	0000 0000 $00000000=0.000$
2047/4096	011111111111	$0000011111111111=2047$	$1111111111111111=-1$	$0111111111110000=0.4998$	$1111111111110000=-0.0005$
1/4096	0000 0000 0001	0000 0000 $00000001=1$	$\begin{aligned} & 1111100000000001= \\ & -2047 \end{aligned}$	$0000000000010000=0.0002$	$1000000000010000=-0.9995$
0/4096	000000000000	0000 0000 $00000000=0$	$\begin{aligned} & 1111100000000000= \\ & -2048 \end{aligned}$	0000 0000 $00000000=0$	1000 0000 $00000000=-1.000$

dsPIC33F/PIC24H Family Reference Manual

16.14 TRANSFER FUNCTIONS

16.14.1 10-bit Mode

The ideal transfer function of the ADC module is shown in Figure 16-41. The difference of the input voltages, (VINH - VINL), is compared to the reference, (VREFH - VREFL).

- The first code transition (A) occurs when the input voltage is (VREFH - VREFL/2048) or 0.5 LSb.
- The 0000000001 code is centered at (VREFH - VREFL/1024) or 1.0 LSb (B).
- The 1000000000 code is centered at (512*(VREFH - VREFL)/1024) (C).
- An input voltage less than (1*(VREFH - VREFL)/2048) converts as 0000000000 (D).
- An input greater than (2045*(VREFH - VREFL)/2048) converts as 1111111111 (E).

Figure 16-41: ADC Module Transfer Function (10-bit Mode)

16.14.2 12-bit Mode

The ideal transfer function of the ADC is shown in Figure 16-42. The difference of the input voltages (VINH - VINL) is compared to the reference (VREFH - VREFL).

- The first code transition (A) occurs when the input voltage is (Vrefh - Vrefl/8192) or 0.5 LSb.
- The 0000000001 code is centered at (VREFH - Vrefl/4096) or 1.0 LSb (B).
- The 1000000000 code is centered at (2048*(Vreff - Vrefl)/4096) (C).
- An input voltage less than (1*(VREFH - VREFL)/8192) converts as 0000000000 (D).
- An input greater than (8192*(VREFH - VREFL)/8192) converts as 1111111111 (E).

Figure 16-42: A/D Transfer Function (12-bit Mode)

16.15 ADC ACCURACY/ERROR

Refer to the "Electrical Characteristics" chapter of the specific device data sheet for information on the INL, DNL, gain and offset errors. In addition, see 16.21 "Related Application Notes" for a list of documents that discuss ADC accuracy.

16.16 CONNECTION CONSIDERATIONS

Since the analog inputs employ ESD protection, they have diodes to VDD and Vss. As a result, the analog input must be between VDD and Vss. If the input voltage exceeds this range by greater than 0.3 V (either direction), one of the diodes becomes forward biased, and it may damage the device if the input current specification is exceeded.
An external RC filter is sometimes added for anti-aliasing of the input signal. The R component should be selected to ensure that the sampling time requirements are satisfied. Any external components connected (via high-impedance) to an analog input pin (capacitor, zener diode, etc.) should have very little leakage current at the pin.

16.17 OPERATION DURING SLEEP AND IDLE MODES

Sleep and Idle modes are useful for minimizing conversion noise because the digital activity of the CPU, buses and other peripherals is minimized.

16.17.1 CPU Sleep Mode without RC A/D Clock

When the device enters Sleep mode, all clock sources to the ADC module are shut down and stay at logic ' 0 '.

If Sleep occurs in the middle of a conversion, the conversion is aborted unless the ADC is clocked from its internal RC clock generator. The converter does not resume a partially completed conversion on exiting from Sleep mode.
Register contents are not affected by the device entering or leaving Sleep mode.

16.17.2 CPU Sleep Mode with RC AID Clock

The ADC module can operate during Sleep mode if the A/D clock source is set to the internal A/D $R C$ oscillator (ADRC = 1). This eliminates digital switching noise from the conversion. When the conversion is completed, the DONE bit is set and the result is loaded into the ADC Result buffer, ADCxBUFO.
If the ADC interrupt is enabled (ADxIE = 1), the device wakes up from Sleep when the ADC interrupt occurs. Program execution resumes at the ADC Interrupt Service Routine (ISR) if the ADC interrupt is greater than the current CPU priority. Otherwise, execution continues from the instruction after the PWRSAV instruction that placed the device in Sleep mode.
If the ADC interrupt is not enabled, the ADC module is turned off, although the ADON bit remains set.
To minimize the effects of digital noise on the ADC module operation, the user should select a conversion trigger source that ensures the A/D conversion will take place in Sleep mode. The automatic conversion trigger option can be used for sampling and conversion in Sleep ($\mathrm{SSRC}<2: 0>=111$). To use the automatic conversion option, the ADON bit should be set in the instruction before the PWRSAV instruction.

Note: For the ADC module to operate in Sleep, the ADC clock source must be set to RC (ADRC = 1).

16.17.3 ADC Operation During CPU Idle Mode

For the A/D conversion, the ADSIDL bit (ADxCON1<13>) selects if the ADC module stops or continues on Idle. If ADSIDL $=0$, the ADC module continues normal operation when the device enters Idle mode. If the ADC interrupt is enabled (ADxIE = 1), the device wakes up from Idle mode when the ADC interrupt occurs. Program execution resumes at the ADC Interrupt Service Routine if the ADC interrupt is greater than the current CPU priority. Otherwise, execution continues from the instruction after the PWRSAV instruction that placed the device in Idle mode.
If $\operatorname{ADSIDL}=1$, the ADC module stops in Idle. If the device enters Idle mode in the middle of a conversion, the conversion is aborted. The converter does not resume a partially completed conversion on exiting from Idle mode.

16.18 EFFECTS OF A RESET

A device Reset forces all registers to their Reset state. This forces the ADC module to be turned off and any conversion in progress to be aborted. All pins that are multiplexed with analog inputs are configured as analog inputs. The corresponding TRIS bits are set.
The value in the ADCxBUFO register is not initialized during a Power-on Reset (POR) and contain unknown data.

16.19 SPECIAL FUNCTION REGISTERS

A summary of the registers associated with the dsPIC33F/PIC24H Analog-to-Digital Converter (ADC) module is provided in Table 16-27.
Table 16-27: ADC Register Map

File Name	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADC1BUF0	ADC1 Data Buffer 0																uuuu
ADC1BUF1	ADC1 Data Buffer 1																uuuu
ADC1BUF2	ADC1 Data Buffer 2																uuuu
ADC1BUF3	ADC1 Data Buffer 3																uuuu
ADC1BUF4	ADC1 Data Buffer 4																uuuu
ADC1BUF5	ADC1 Data Buffer 5																uuuu
ADC1BUF6	ADC1 Data Buffer 6																uuuu
ADC1BUF7	ADC1 Data Buffer 7																uuuu
ADC1BUF8	ADC1 Data Buffer 8																uuuu
ADC1BUF9	ADC1 Data Buffer 9																uuuu
ADC1BUFA	ADC1 Data Buffer 10																uuuu
ADC1BUFB	ADC1 Data Buffer 11																uuuu
ADC1BUFC	ADC1 Data Buffer 12																uuuu
ADC1BUFD	ADC1 Data Buffer 13																uuuu
ADC1BUFE	ADC1 Data Buffer 14																uuuu
ADC1BUFF	ADC1 Data Buffer 15																uuuu
ADxCON1	ADON	-	ADSIDL	ADDMABM $^{(1)}$	-	AD12B ${ }^{(4)}$	FOR	M<1:0>		SSRC<2:0		-	SIMSAM	ASAM	SAMP	DONE ${ }^{(2)}$	0000
ADxCON2	VCFG<2:0>			-	-	CSCNA	CHP	<1:0>	BUFS	-		SMPI			BUFM	ALTS	0000
ADxCON3	ADRC	-	-	SAMC<4:0>					ADCS<7:0>								0000
ADxCHS123	-	-	-	-	-	CH123N	B<1:0>	CH123SB	-	-	-	-	-	CH123N	A<1:0>	CH123SA	0000
ADxCHS0	CHONB	-	-	CHOSB<4:0>					CHONA	-	-	CHOSA<4:0>					0000
ADxPCFGH	PCFG31	PCFG30	PCFG29	PCFG28	PCFG27	PCFG26	PCFG25	PCFG24	PCFG23	PCFG22	PCFG21	PCFG20	PCFG19	PCFG18	PCFG17	PCFG16	0000
ADxPCFGL	PCFG15	PCFG14	PCFG13	PCFG12	PCFG11	PCFG10	PCFG9	PCFG8	PCFG7	PCFG6	PCFG5	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0	0000
ADxCSSH	CSS31	CSS30	CSS29	CSS28	CSS27	CSS26	CSS25	CSS24	CSS23	CSS22	CSS21	CSS20	CSS19	CSS18	CSS17	CSS16	0000
ADxCSSL	CSS15	CSS14	CSS13	CSS12	CSS11	CSS10	CSS9	CSS8	CSS7	CSS6	CSS5	CSS4	CSS3	CSS2	CSS1	CSSO	0000
ADxCON4 ${ }^{(3)}$	-	-	-	-	-	-	-	-	-	-	-	-	-	DMABL<2:0>			0000

Legend: $\quad u=$ unimplemented, $x=$ unknown value on Reset, \quad = unimplemented, read as ' 0 '. Reset values are shown in hexadecimal.
Note 1: This bit is not available in devices without DMA. Refer to the specific device data sheet for availability.
2: For devices with DMA, the interrupt is generated after every conversion and the DONE bit is set since it reflects the interrupt flag (ADxIF) setting. For devices without DMA, the interrupt generation is based on the SMPI<3:0> bits (ADxCON2<5:2>) and the CHPS $<1: 0>$ bits (ADxCON $2<9: 8>$); therefore, the DONE bit is not set after each conversion, but is set when the interrupt flag (ADxIF) is set.
3: This register is not available in devices without DMA. Refer to the specific device data sheet for availability.
4: This bit is not available in all devices. Refer to the specific device data sheet for availability.

16.20 DESIGN TIPS

Question 1: How can I optimize the system performance of the ADC module?
Answer: Here are three suggestions for optimizing performance:

1. Make sure you are meeting all of the timing specifications. If you are turning the ADC module off and on, there is a minimum delay you must wait before taking a sample. If you are changing input channels, there is a minimum delay you must wait for this as well. Finally, there is TAD, which is the time selected for each bit conversion. TAD is selected in ADxCON3 and should be within a range as specified in the "Electrical Characteristics" chapter of the specific device data sheet. If TAD is too short, the result may not be fully converted before the conversion is terminated. If TAD is too long, the voltage on the sampling capacitor can decay before the conversion is complete. These timing specifications are provided in the "Electrical Characteristics" chapter of the specific device data sheet.
2. Often the source impedance of the analog signal is high (greater than $10 \mathrm{k} \Omega$), so the current drawn from the source to charge the sample capacitor can affect accuracy. If the input signal does not change too quickly, try putting a $0.1 \mu \mathrm{~F}$ capacitor on the analog input. This capacitor charges to the analog voltage being sampled and supplies the instantaneous current needed to charge the 4.4 pF internal holding capacitor.
3. Put the device into Sleep mode before the start of the A/D conversion. The RC clock source selection is required for conversions in Sleep mode. This technique increases accuracy because digital noise from the CPU and other peripherals is minimized.

Question 2: Do you know of a good reference on ADCs?

Answer: A good reference for understanding A/D conversions is the "Analog-Digital Conversion Handbook" third edition, published by Prentice Hall (ISBN 0-13-03-2848-0).

Question 3: My combination of channels/sample and samples/interrupt is greater than the size of the buffer. What will happen to the buffer?
Answer: This configuration is not recommended. The buffer will contain unknown results.

16.21 RELATED APPLICATION NOTES

This section lists application notes that are related to this section of the manual. These application notes may not be written specifically for the dsPIC33F/PIC24H product family, but the concepts are pertinent and could be used with modification and possible limitations. The current application notes related to the Analog-to-Digital Converter (ADC) module are:

Title	Application Note \#
Using the Analog-to-Digital (A/D) Converter	AN546
Four-Channel Digital Voltmeter with Display and Keyboard	AN557
Understanding A/D Converter Performance Specifications	AN693
Using the dsPIC30F for Sensorless BLDC Control	AN901
Using the dsPIC30F for Vector Control of an ACIM	AN908
Sensored BLDC Motor Control Using the dsPIC30F2010	AN957
An Introduction to AC Induction Motor Control Using the dsPIC30F MCU	AN984

Note: Please visit the Microchip web site (www.microchip.com) for additional Application Notes and code examples for the dsPIC33F/PIC24H family of devices.

Section 16. Analog-to-Digital Converter (ADC)

16.22 REVISION HISTORY

Revision A (December 2006)
This is the initial released version of this document.
Revision B (January 2010)
This revision includes the following major updates:
Note: The following documents have been merged to create this revision:

- Section 16. Analog-to-Digital Converter (ADC) of the dsPIC33F Family Reference Manual
- Section 28. Analog-to-Digital Converter (ADC) without DMA of the dsPIC33F Family Reference Manual
- Section 16. Analog-to-Digital Converter (ADC) of the PIC24H Family Reference Manual
- Section 28. Analog-to-Digital Converter (ADC) without DMA of the PIC24H Family Reference Manual
Throughout the document, distinctions have been made regarding devices with DMA, and devices without DMA.
- Added a shaded note at the beginning of the section, which provides information on complementary documentation
- Updated the following sections:
- Third paragraph in 16.1 "Introduction"
- 16.2.1 "ADC Result Buffer"
- 16.5 "ADC Interrupt Generation"
- 16.5 "ADC Interrupt Generation"
- 16.6 "Analog Input Selection for Conversion"
- 16.7 "Specifying Conversion Results Buffering for Devices with DMA"
- 16.10 "Sample and Conversion Sequence Examples for Devices without DMA"
- 16.15 "ADC Accuracy/Error"
- Updated the SOC Trigger Selection table (Table 16-2)
- Added a shaded note after Example 16-1
- Added Figure 16-2, "ADC Block Diagram for Devices without DMA"
- Added Equation 16-1, Equation 16-4, Equation 16-5, Equation 16-6, Equation 16-7 and Equation 16-9
- Updated the following figures:
- Figure 16-1, which is now titled "ADC Block Diagram for Devices with DMA"
- Figure 16-6
- Figure 16-9
- Figure 16-10
- Figure 16-11
- Figure 16-27
- Figure 16-28
- Figure 16-29
- Figure 16-30
- Figure 16-31
- Figure 16-39
- Figure 16-40
- Updated the following Examples:
- Example 16-1
- Example 16-2
- Example 16-3

Revision B (January 2010) (Continued)

- Updated the following Equations:
- Equation 16-2
- Equation 16-3
- Updated the following tables:
- Table 16-14
- Table 16-15
- Table 16-16
- Table 16-17
- Table 16-18
- Table 16-19
- Table 16-25
- Table 16-26
- Updated the notes in the following registers:
- ADxCON1: ADCx Control Register 1 (Register 16-1)
- ADxCON3: ADCx Control Register 3 (Register 16-3)
- ADxCON4: ADCx Control Register 4 (Register 16-4)
- ADxCHSO: ADCx Input Channel 0 Select Register (Register 16-6)
- AD1CSSH: ADC1 Input Scan Select Register High (Register 16-7)
- ADxCSSL: ADCx Input Scan Select Register Low (Register 16-8)
- AD1PCFGH: ADC1 Port Configuration Register High (Register 16-9)
- ADxPCFGL: ADCx Port Configuration Register Low (Register 16-9)
- Updated the SMPI bit value descriptions in the ADxCON2: ADCx Control Register 2 (Register 16-2)
- Added the following new sections:
- 16.3.4 "Automatic Sample and Manual Conversion Sequence"
- 16.4.10 "Turning the ADC Module Off"
- 16.4.7 "Conversion Trigger Sources"
- 16.5 "ADC Interrupt Generation"
- Removed 16.8 "Controlling Sample/Conversion Operation"
- Removed 16.18 "Code Examples"
- Removed the Addr column in the register map table (Table 16-27)
- Minor formatting and text updates have been incorporated throughout the document

Section 16. Analog-to-Digital Converter (ADC)

Revision C (April 2010)

This revision includes the following major updates:

- Updated the second paragraph of $\mathbf{1 6 . 1}$ "Introduction" to clarify functionality based on ADC type (10-bit vs. 12-bit)
- Updated analog pin names (ANx) in Figure 16-1 and Figure 16-2
- Updated the $\operatorname{SSRC}<2: 0>101$ and 011 bit value definitions, updated Note 2, and added Note 3 to the AD12B pin in the ADCx Control Register 1 (Register 16-1)
- Added Note 4 regarding Vref+ and Vref- pin availability in the ADCx Control Register 2
- Added a shaded note regarding the availability of 12-bit mode after the third paragraph in 16.3.2 "Conversion Time"
- Added Note 2 regarding availability of 12-bit mode to the shaded note after the first paragraph in 16.4.1 "ADC Operational Mode Selection"
- Added a sentence regarding availability of the VREF+ and VREF- pins to the end of the first paragraph in 16.4.3 "Voltage Reference Selection"
- Changed the analog input (AN12) to AN31 in Table 16-10 and Table 16-11
- Changed the analog input (ANO to AN12) in Table 16-11 to VreF-, AN1
- Changed AD1CHS123bits. CH124NA to AD1CHS123bits. CH124NA in Example 16-4, Example 16-5, and Example 16-7
- Updated the title of Example 16-6
- Added a new paragraph after the ADC Conversion Clock (Equation 16-7) and updated the title of the equation
- Added Note 2 regarding availability of 12 -bit mode to Figure 16-38
- Added Note 4 to the AD12B bit in the ADC Register Map (Table 16-27)
- Minor updates to text and formatting have been incorporated throughout the document

dsPIC33F/PIC24H Family Reference Manual

NOTES:

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, KeeLoq, KeeLoq logo, MPLAB, PIC, PICmicro, PICSTART, PIC^{32} logo, rfPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Octopus, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.
All other trademarks mentioned herein are property of their respective companies.
© 2010, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 978-1-60932-143-7

> Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ ${ }^{\circledR}$ code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.
> headquarters, design and wafer fabrication facilities in Chandler and and manufacture of

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV ISO/TS 16949:2002

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://support.microchip.com
Web Address:
www.microchip.com

Atlanta

Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455

Boston

Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

Chicago

Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Cleveland

Independence, OH
Tel: 216-447-0464
Fax: 216-447-0643

Dallas

Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924

Detroit

Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260

Kokomo

Kokomo, IN
Tel: 765-864-8360
Fax: 765-864-8387
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608

Santa Clara

Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445

Toronto

Mississauga, Ontario, Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIAIPACIFIC

Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China-Beijing
Tel: 86-10-8528-2100
Fax: 86-10-8528-2104
China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889
China - Chongqing
Tel: 86-23-8980-9588
Fax: 86-23-8980-9500
China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431
China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470
China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205
China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066
China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393
China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760
China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118
China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256
China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130
China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049

ASIAIPACIFIC

India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4123
India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632
India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513
Japan - Yokohama
Tel: 81-45-471-6166
Fax: 81-45-471-6122
Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302
Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or 82-2-558-5934
Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859
Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068
Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069

Singapore

Tel: 65-6334-8870
Fax: 65-6334-8850
Taiwan - Hsin Chu
Tel: 886-3-6578-300
Fax: 886-3-6578-370
Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-536-4803
Taiwan - Taipei
Tel: 886-2-2500-6610
Fax: 886-2-2508-0102
Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820

