
Program
m

able
C

yclic R
edundan

C
heck (C

R
C

)
36
Section 36. Programmable Cyclic Redundancy Check (CRC)
 cy
HIGHLIGHTS
This section of the manual contains the following major topics:

36.1 Introduction .. 36-2
36.2 Module Overview ... 36-3
36.3 CRC Registers ... 36-3
36.4 CRC Engine ... 36-6
36.5 Control Logic.. 36-8
36.6 Advantages of Programmable CRC Module.. 36-14
36.8 Operation in Power Save Modes ... 36-17
36.7 Application of CRC Module.. 36-14
36.9 Register Maps.. 36-18
36.10 Related Application Notes.. 36-19
36.11 Revision History ... 36-20
© 2007 Microchip Technology Inc. DS70298A-page 36-1

dsPIC33F Family Reference Manual
36.1 INTRODUCTION
The programmable Cyclic Redundancy Check (CRC) module in dsPIC33F devices is a software
configurable CRC checksum generator. The checksum is a unique number associated with a
message or a particular block of data containing several bytes. Whether it is a data packet for
communication, or a block of data stored in memory, a piece of information like the checksum
helps to validate it before processing.

The simplest way to calculate a checksum is to add together all the data bytes present in the
message. However, this method of checksum calculation fails when the message is modified by
inverting or swapping groups of bytes. Also, it fails when null bytes are added anywhere in the
message.

The CRC is a more complicated, but robust, error checking algorithm. The main idea behind the
CRC algorithm is to treat a message as a binary bit stream and divide it by a fixed binary number.
The remainder from this division is considered as the checksum. Like in division, the CRC
calculation is also an iterative process. The only difference is that these operations are done on
modulo arithmetic based on mod2. For example, division is replaced with the XOR operation (i.e.,
subtraction without carry). The CRC algorithm uses the term polynomial to perform all of its
calculations. The divisor, dividend and remainder that are represented by numbers, are termed
as polynomials with binary coefficients. For example, as shown in Equation 36-1, the number 19h
(11001) is represented as:

Equation 36-1:

To perform the CRC calculation, a suitable divisor is first selected. This divisor is called the
generator polynomial. Since the CRC is used to detect errors, a suitable generator polynomial of
suitable length needs to be chosen for a given application, as each polynomial has different error
detection capabilities. Some polynomials are widely used for many applications; however, a
discussion of the error detecting capabilities of any particular polynomial is beyond the scope of
this reference section.

The CRC calculation is an iterative process and consumes considerable CPU bandwidth when
implemented in a software. The software configurable CRC hardware module in dsPIC33F
devices facilitates a fast CRC checksum calculation with minimal software overhead.

The primary features of the programmable CRC module are:

• Programmable bit length for the CRC generator polynomial (up to 16-bit length)
• Programmable CRC generator polynomial
• Interrupt output
• 8-deep, 16-bit or 16-deep, 8-bit FIFO for data input

(1 • x4) + (1 • x3) + (0 • x2) + (0 • x1) + (1 • x0)

or, in simpler terms:

x4 + x3 + x0
DS70298A-page 36-2 © 2007 Microchip Technology Inc.

Section 36. Programmable Cyclic Redundancy Check (CRC)
Program

m
able

C
yclic R

edundancy
C

heck (C
R

C
)

36

36.2 MODULE OVERVIEW

The programmable CRC module in dsPIC33F devices is organized into two logical blocks: the
Control Logic and the CRC Engine. The control logic incorporates a register interface, a FIFO,
an interrupt generator and a CRC engine interface. The CRC engine incorporates a CRC
calculator, which is implemented using a serial shifter with an XOR function. A simplified block
diagram of the CRC module is shown in Figure 36-1.

Figure 36-1: Simplified Block Diagram of the Programmable CRC Generator

36.3 CRC REGISTERS
This section describes the registers associated with the CRC module. These registers are
mapped onto the data RAM space as Special Function Registers (SFRs) in dsPIC33F devices:

• CRCCON: CRC Control Register
• CRCXOR: CRC XOR Register
• CRCDAT: CRC Data Register
• CRCWDAT: Write CRC Shift Register
The CRCCON register (Register 36-1) is the primary control and status register for the module.
The CRCXOR register (Register 36-2) is used to define the generator polynomial by selecting
the terms to be used. The CRCDAT and CRCWDAT registers are buffers for data input and result
output, respectively.

Polynomial Length

CRC Result Read

Control Logic

Serial Data OutCRC Registers

 Polynomial Coefficients

Shifter and XOR

CRC Engine

CRC Result Write

Shift Clock

CRC Engine Interface

FIFO
Interrupt Generator
© 2007 Microchip Technology Inc. DS70298A-page 36-3

dsPIC33F Family Reference Manual
Register 36-1: CRCCON: CRC Control Register

U-0 U-0 R/W-0 R-0 R-0 R-0 R-0 R-0
— — CSIDL VWORD<4:0>

bit 15 bit 8

R-0 R-1 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
CRCFUL CRCMPT — CRCGO PLEN<3:0>

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-14 Unimplemented: Read as ‘0’
bit 13 CSIDL: CRC Stop in Idle Mode bit

1 = Discontinue module operation when device enters Idle mode
0 = Continue module operation in Idle mode

bit 12-8 VWORD<4:0>: FIFO Pointer Value bits
Indicates the number of valid words or bytes in the FIFO. Has a maximum value of 8 when PLEN<3:0>
is greater than 7, or a value of 16 when PLEN<3:0> is less than or equal to 7.

bit 7 CRCFUL: FIFO Full bit
1 = FIFO is full
0 = FIFO is not full

bit 6 CRCMPT: FIFO Empty Bit
1 = FIFO is empty
0 = FIFO is not empty

bit 5 Unimplemented: Read as ‘0’
bit 4 CRCGO: Start CRC bit

1 = Start CRC serial shifter
0 = CRC serial shifter turned off

bit 3-0 PLEN<3:0>: Polynomial Length bits
Generator Polynomial Length = Value of PLEN<3:0> plus 1
DS70298A-page 36-4 © 2007 Microchip Technology Inc.

Section 36. Programmable Cyclic Redundancy Check (CRC)
Program

m
able

C
yclic R

edundancy
C

heck (C
R

C
)

36

Register 36-2: CRCXOR: CRC XOR Register

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
X<15:8>

bit 15 bit 8

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 U-0
X<7:1> —

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-1 X<15:1>: XOR of Polynomial Term n Enable bits
1 = Include (XOR) the nth term (xn) in the polynomial
0 = Do not include xn in the polynomial

bit 0 Unimplemented: Read as ‘0’
© 2007 Microchip Technology Inc. DS70298A-page 36-5

dsPIC33F Family Reference Manual
36.4 CRC ENGINE

36.4.1 Generic CRC Engine
The CRC engine is a serial shifting CRC calculator with feedforward and feedback points, and is
configurable through multiplexor settings. The topology of a generic CRC calculator is shown in
Figure 36-2.

The CRC algorithm uses a simplified form of arithmetic process, using the XOR boolean
operation instead of binary division. The coefficients of the generator polynomial are
programmed with the CRCXOR<15:1> bits. Writing a ‘1’ into a location enables an XOR of that
element in the polynomial. The length of the polynomial is programmed using the Polynomial
Length (PLEN<3:0>) bits in the CRC Control register (CRCCON<3:0>). The PLEN<3:0> value
signals the length of the polynomial, and switches a multiplexor to indicate the tap from which the
feedback originated.

The result of the CRC calculation is obtained by reading the holding registers through the CRC
read bus. A direct write path to the CRC Shift registers is also provided through the CRC write
bus. This path is accessed by the CPU through the Write CRC Shift Register (CRCWDAT)
register.

Figure 36-2: Generic CRC Calculator Details

In
Out

Bit 0

0

1

clk

X1

In
Out

Bit 1

0

1

clk

X2

In
Out

Bit 2

0

1

clk

X3

In
Out

Bit 15

0

1

clk

X15

XOR

DOUT

0 1 2 15
PLEN<3:0>

Hold Hold Hold Hold

CRC Read Bus

CRC Write Bus

CRC Shift Register
DS70298A-page 36-6 © 2007 Microchip Technology Inc.

Section 36. Programmable Cyclic Redundancy Check (CRC)
Program

m
able

C
yclic R

edundancy
C

heck (C
R

C
)

36

36.4.2 Software Configuration of the CRC Engine
The CRC engine needs to be properly configured in software for a given generator polynomial.
The generator polynomial is a hexadecimal number with ‘n’ bits. The Most Significant bit (MSb)
is represented as xn and the Least Significant bit (LSb) is represented as x1. The MSb is always
assumed to be ‘1’. The x0 coefficient is omitted and understood to be ‘1’. Therefore, only the
coefficients of xn-1 to x1 need to be programmed in the CRCXOR register.

Consider a specific CRC polynomial as an example:

Equation 36-2:

The length of the polynomial is represented by the order of the highest power of the polynomial.
Therefore, the above polynomial is of a 16-bit length. Some of its coefficients are zeros and some
are ones.

To program this polynomial into a CRC generator, the PLEN bits (CRCCON<3:0>) and
CRCXOR<15:1> bits should be programmed as shown in Table 36-1.

Table 36-1: Example CRC Setup

The polynomial length in this case is 16 (PLEN<3:0> + 1). Note that for the value of X<15:1>, as
programmed in Table 36-1, the 12 and 5 bits are set to ‘1’ as required by the generator
polynomial. Bit 0 is always XORed. For a 16-bit polynomial, the 16th bit is always assumed to be
XORed; therefore, there is no CRCXOR bit for either bit 0 or bit 16.

The topology of the CRC generator configured for the example polynomial is shown in
Figure 36-3.

Figure 36-3: CRC Generator Reconfigured for x16 + x12 + x5 + 1

x16 + x12 + x5 + 1

Register Names Bit Names Bit Values

CRCCON PLEN<3:0> 0Fh
CRCXOR X<15:1> 1020h

Note: The x0 bit in the CRCXOR register is omitted and is always assumed to be ‘1’. Therefore, a polynomial with
a LSb of ‘0’ or ‘1’ (e.g., 1020h or 1021h) has the same effect on the CRC calculation.

D Q

Bit 0

clk

D Q

Bit 4

clk

D Q

Bit 5

clk

D Q

Bit 12

clk

XOR

SDO

CRC Read Bus

CRC Write Bus

D Q

Bit 15

clk
© 2007 Microchip Technology Inc. DS70298A-page 36-7

dsPIC33F Family Reference Manual
36.5 CONTROL LOGIC

36.5.1 FIFO
The FIFO is physically implemented as an 8-deep, 16-bit wide storage element. The logic
associated with the FIFO contains a 5-bit counter, named VWORD (VWORD<4:0> or
CRCCON<12:8>). The value in the VWORD<4:0> bits indicates the number of new data
elements in the FIFO.

The FIFO behaves as an 8-deep, 16-bit wide array when PLEN<3:0> is greater than 7, and a
16-deep, 8-bit wide array otherwise. The data for which the CRC is to be calculated must first be
written into the FIFO by the CPU using the CRC Data (CRCDAT) register. Data must always be
written into the CRCDAT register. Reading of the CRCDAT register is not allowed and always
returns zero.

The smallest data element that can be written into the FIFO is one byte. When PLEN<3:0> is less
than or equal to 7, every byte write into the FIFO increments VWORD by one, or by two, for every
word write operation.

If PLEN<3:0> is greater than 7, a word write into the FIFO increments the value of VWORD by
one. A single byte write to the CRCDAT register does not increment the value of VWORD;
instead, VWORD increments by one only after an even number of bytes (integer multiple of
words) are written into the CRCDAT register.

The FIFO Full (CRCFUL) bit is set (indicating the FIFO is full) when the value of VWORD reaches
8 (for the 8-deep, 16-bit FIFO configuration) or 16 (for the 16-deep, 8-bit FIFO configuration). The
user application needs to ensure that the FIFO is not full while writing a new value to the
CRCDAT register.

While processing a block of data, the application must ensure that the last word of the data block
has been shifted out of the CRC register to produce the correct CRC checksum result. This can
be achieved by writing 0x0000 to the CRCDAT register after the last word of the data block has
been written to the CRCDAT register. Additionally, the application must ensure that the FIFO is
not full (CRCFUL = 0) while writing this word to the CRCDAT register.

36.5.2 CRC Engine Interface

36.5.2.1 FIFO TO CRC CALCULATOR

To start serial shifting from the FIFO to the CRC calculator, the Start CRC (CRCGO) bit must be
set (CRCCON<4> = 1). The serial shifter starts shifting data, starting from the MSb first, into the
CRC engine only when CRCGO = 1 and the value of VWORD is greater than zero. If the
CRCFUL bit was set earlier, it is cleared when VWORD decrements by one. VWORD
decrements by one when a FIFO location gets shifted completely to the CRC calculator. The
serial shifter continues shifting until VWORD reaches zero, at which point, the FIFO Empty
(CRCMPT) bit becomes set to indicate that the FIFO is empty.

The frequency of the CRC shift clock is twice that of the dsPIC33F instruction clock cycle, which
makes this hardware shifting process faster than a software shifter. The user application can
write into the FIFO while the shift operation is in progress. For a continuous data feed into the
CRC engine, the recommended mode of operation is to initially “prime” the FIFO with a sufficient
number of words or bytes. Once this is completely done, the user application can start the CRC
by setting the CRCGO bit to ‘1’. From this point forward, either VWORD or the CRCFUL bit
should be monitored. If the CRCFUL bit is not set, or the VWORD reads less than 8 or 16,
another word can be written onto the FIFO. At least one instruction cycle must pass after a write
to the CRCDAT register before a read of the VWORD bits is done.

To empty words already written into a FIFO, the CRCGO bit must be set to ‘1’ and the CRC shifter
must be allowed to run until the CRCMPT bit is set.

Note: When PLEN<3:0> is greater than 7, an integer multiple of words should be loaded
into the FIFO before the application software sets the CRCGO bit. If the CRCGO bit
is set after loading an odd number of bytes into the FIFO, the last odd byte is never
shifted out, and the CRCMPT bit always remains at ‘0’, indicating that the FIFO is
not empty.
DS70298A-page 36-8 © 2007 Microchip Technology Inc.

Section 36. Programmable Cyclic Redundancy Check (CRC)
Program

m
able

C
yclic R

edundancy
C

heck (C
R

C
)

36

36.5.2.2 NUMBER OF DATA BITS SHIFTED FROM FIFO

The number of data bits to be shifted depends upon the length of the polynomial selected. For
example, if PLEN<3:0> = 5, the length of the generator polynomial and the size of one data is
6 bits (PLEN<3:0> + 1). In this case, a full byte of a FIFO location is not shifted out, even though
the CPU can write only one byte. Only 6 bits of a byte are shifted out, starting from the 6th bit
(i.e., the MSb in this case). The two MSbs of each byte are don’t care bits. Therefore, for a given
value of PLEN<3:0>, it will take ((PLEN<3:0> + 1) • VWORD) number of shift clock cycles to
complete the CRC calculations. Similarly, for a 12-bit polynomial selection, the shifting starts from
the 12th bit of the word, which is the MSb for this selection. The Most Significant 4 bits of each
word are ignored.

36.5.2.3 CRC RESULT

When the CPU reads the CRCWDAT register, the CRC result is read directly out of the shift
register through the CRC read bus. To get the correct CRC reading, it is necessary to wait for the
CRCMPT bit to go high before reading the CRCWDAT register.

A direct write path to the CRC Shift registers is also provided through the CRC write bus. This
path is accessed by the CPU through the CRCWDAT register. The CRCWDAT register can be
loaded with a desired value prior to the start of the shift process.

36.5.3 Interrupt Operation
Serial shifting of the FIFO data to the CRC engine begins when the CRCGO bit is set and the
VWORD<4:0> bits are greater than zero. During this process, if the CRCMPT bit makes a
transition from ‘0’ (not empty) to ‘1’ (empty), or when the VWORD<4:0> bits make a transition
from any value greater than zero to zero, the CRCIF interrupt flag becomes set. If the CRC
interrupt is enabled by setting the CRCIE bit, and the CRCIF bit becomes set, an interrupt is
generated.

Table 36-2 in 36.9 “Register Maps” details the interrupt register associated with the CRC module.
For more details on interrupts and interrupt priority settings, refer to Section 8. “Interrupts”.

Note: For ‘n’ bit polynomial selection, the CRC calculation is done with integer multiple of
‘n’ bit of data. For example, for a 16 bit polynomial, the CRC calculation is done with
integer multiple of words.

Note: When the CPU writes to the shift registers directly through the CRCWDAT register,
the CRCGO bit must be ‘0’.

Note: If new data is written into the CRCDAT register when the CRCFUL bit is set, the
VWORD Pointer rolls over through ‘0’. However, the CRC Interrupt Flag, CRCIF is
not set in this condition. Here, the CRCFUL bit gets reset, all previous data written
into the FIFO is lost and the new data is written into the first location of the FIFO.
Remaining locations of the FIFO are empty and new data can be written into the
empty locations.
© 2007 Microchip Technology Inc. DS70298A-page 36-9

dsPIC33F Family Reference Manual
36.5.4 CRC Module Operation Example
Consider the following CRC module configuration example, where the CRC generator
polynomial length is selected as 16 (PLEN<3:0> = 0xF) and the CRC generator polynomial is as
shown in Equation 36-3. The CRCXOR register has a value of 0x0800E to obtain this polynomial.
Since the value of PLEN is configured so that 16 bits are shifted through the CRC Shift register,
the FIFO becomes a 16-bit and 8-deep FIFO.

Equation 36-3: Generator Polynomial

The following process and corresponding figures describe the operation of the CRC module:

1. The CRC module is configured for a 16-bit CRC generator polynomial. The CRCMPT bit
value is ‘1’ indicating that the CRC FIFO is empty.

Figure 36-4: CRC Module (with PLEN = 0xF)

x16 + x15 + x3 + x2 + x1 + 1

Data

00 22 . . . 10 24 36 45

— — CSIDL VWORD<4:0> CRCFUL CRCMPT — CRCGO PLEN<3:0>
— — 0 00000 0 1 — 0 1111

CRCCON

CRC Write Bus

CRC Read Bus

CRC
ShifterFIFO

CRCDAT

CRCXOR

CRCWDAT

CRCXOR

1000000000001110

X<15:1>
DS70298A-page 36-10 © 2007 Microchip Technology Inc.

Section 36. Programmable Cyclic Redundancy Check (CRC)
Program

m
able

C
yclic R

edundancy
C

heck (C
R

C
)

36

2. The application starts writing data to the CRCDAT register. The VWORD bits increment

and indicate the number of words written to the CRCDAT register. The CRCMPT bit is
cleared indicating the CRC FIFO is not empty.

Figure 36-5: Write Data to CRCDAT Register

3. When eight words have been written to the FIFO, the VWORD bit is read as 0x8 and the
CRCFUL bit is set. The CRC module is now ready to process a data block of eight words.

Figure 36-6: FIFO is Full

CRC Write Bus

CRC Read Bus

CRC
ShifterFIFO

CRCDAT

CRCXOR

CRCWDAT

CRCXOR

1000000000001110

Data

00 22 . . . 10 24 36 45

— — CSIDL VWORD<4:0> CRCFUL CRCMPT — CRCGO PLEN<3:0>
— — 0 00001 0 0 — 0 1111

X<15:1>

CRCCON

— — CSIDL VWORD<4:0> CRCFUL CRCMPT — CRCGO PLEN<3:0>
— — 0 01000 1 0 — 0 1111

CRCCON

CRC Write Bus

CRC Read Bus

CRC
ShifterFIFO

CRCDAT

CRCXOR

CRCWDAT

CRCXOR

1000000000001110

X<15:1>
© 2007 Microchip Technology Inc. DS70298A-page 36-11

dsPIC33F Family Reference Manual
4. The application sets the CRCGO bit, which instructs the CRC module to start shifting
words though the CRC shift register.

Figure 36-7: Application Sets the CRCGO Bit

5. The CRC shift register starts shifting the word from the FIFO. The VWORD bits decrement
and indicate the number of words that have been processed. When the CRC module
starts transferring data from the FIFO to the CRC shift register, the CRCFUL bit is cleared.

Figure 36-8: CRC Module Processes Data from the FIFO

— — CSIDL VWORD<4:0> CRCFUL CRCMPT — CRCGO PLEN<3:0>
— — 0 01000 1 0 — 1 1111

CRCCON

CRC Write Bus

CRC Read Bus

CRC
ShifterFIFO

CRCDAT

CRCXOR

CRCWDAT

CRCXOR

1000000000001110

X<15:1>

— — CSIDL VWORD<4:0> CRCFUL CRCMPT — CRCGO PLEN<3:0>
— — 0 00111 0 0 — 0 1111

CRCCON

CRC Write Bus

CRC Read Bus

CRC
ShifterFIFO

CRCDAT

CRCXOR

CRCWDAT

CRCXOR

1000000000001110

X<15:1>
DS70298A-page 36-12 © 2007 Microchip Technology Inc.

Section 36. Programmable Cyclic Redundancy Check (CRC)
Program

m
able

C
yclic R

edundancy
C

heck (C
R

C
)

36

6. The CRC module completes processing eight words of data and causes an Interrupt.

Next, the CRC Checksum result is stored in the CRCWDAT register. Finally, the CRCMPT
bit indicates that the CRC FIFO is empty.

Figure 36-9: Processing Complete

— — CSIDL VWORD<4:0> CRCFUL CRCMPT — CRCGO PLEN<3:0>
— — 0 00000 0 1 — 0 1111

CRCCON

Interrupt to CPU

CRC Write Bus

CRC Read Bus

CRC
ShifterFIFO

CRCDAT

CRCXOR

CRCWDAT

CRCXOR

1000000000001110

X<15:1>
© 2007 Microchip Technology Inc. DS70298A-page 36-13

dsPIC33F Family Reference Manual
36.6 ADVANTAGES OF PROGRAMMABLE CRC MODULE
The CRC algorithm is straightforward to implement in software. However, it requires considerable
CPU bandwidth to implement the basic requirements, such as shift, bit test and XOR. Moreover,
CRC calculation is an iterative process and additional software overhead for data transfer
instructions puts enormous burden on the MIPS requirement of a device.

The CRC engine in dsPIC33F devices calculates the CRC checksum without CPU intervention.
Moreover, it is much faster than the software implementation; the CRC engine consumes only
half of an instruction cycle per bit for its calculation as the frequency of the CRC shift clock is
twice that of the dsPIC33F instruction clock cycle. For example, the CRC hardware engine takes
only 64 instruction cycles to calculate a CRC checksum on a message that is 128 bits (16x8)
long. The same calculation, if implemented in software, will consume more than a thousand
instruction cycles even for a well optimized piece of code.

36.7 APPLICATION OF CRC MODULE
Calculating a CRC is a robust error checking algorithm in digital communication for messages
containing several bytes or words. After calculation, the checksum is appended to the message
and transmitted to the receiving station. The receiver calculates the checksum with the received
message to verify the data integrity.

36.7.1 Variations
The CRC module of dsPIC33F devices shifts out the MSb first. This is a popular implementation
as employed in XMODEM protocol. In one of the variations (CCITT protocol) for CRC calculation,
the LSb is shifted out first. This requires bit reversal of the message polynomial in the software
before feeding the message to the dsPIC33F CRC hardware module, and this also adds
considerable software overhead. Discussions on all the variations are beyond the scope of this
document, but several variations of CRC can be implemented using the programmable CRC
module in dsPIC33F devices with minimal software overhead.

The choice of the polynomial length, and the polynomial itself, are application dependent.
Polynomial lengths of 5, 7, 8, 10, 12 and 16 are normally used in various standard
implementations. The CRC module in dsPIC33F devices can be configured for different
polynomial lengths and for different equations. If a polynomial of ‘n’ bits is selected for calculation,
normally ‘n’ zeros are appended to the message stream, though there are variations in this
process as well. The following sections explain the recommended step-by-step procedure for
CRC calculation, where ‘n’ zeros are appended to the message stream for an ‘n’ bit polynomial.
Users can decide whether zeros, or any other values, need to be appended to the message
stream. Depending on the application, the designer may decide whether any value needs to be
appended at all.

36.7.2 8-Bit Polynomial
The recommended procedure to calculate a CRC with an 8-bit polynomial is as follows:

1. Program PLEN<3:0> bits (CRCCON<3:0>) = 07h.
2. Program a value to CRCXOR (e.g., CRCXOR = 31h).
3. Program a value in CRCWDAT:

• 0000h (for the start of a new calculation), or
• the previously calculated partial result (for part of the whole message stream).

4. If the CRCFUL bit is not set, and if all the data bytes of the message stream are not written
into the FIFO, then write a data byte to the CRCDAT register.

5. If the CRCFUL bit is not set, and if all the data bytes of the message stream have already
been written into the FIFO, then write a byte of 00h in the CRCDAT register and set a
software flag bit in the application using the CRC (i.e., FINAL_CALCULATION).

6. If the CRCFUL bit or the software FINAL_CALCULATION flag is set, then start CRC by
setting the CRCGO bit.

7. When CRCMPT is set, clear the CRCGO bit and read the result byte from the CRCWDAT
register.

8. For a partial result (CRC calculation is done but the FINAL_CALCULATION flag is not set),
pass the partial result to the next calculation process.
DS70298A-page 36-14 © 2007 Microchip Technology Inc.

Section 36. Programmable Cyclic Redundancy Check (CRC)
Program

m
able

C
yclic R

edundancy
C

heck (C
R

C
)

36

36.7.3 5-Bit or 7-Bit Polynomials
For 5-bit or 7-bit polynomials, the CRC module will calculate the checksum taking into account
the 5 or 7 Least Significant bits of a byte, respectively. In the case of 5 bits of data, a byte should
contain the 5 bits of data in its 5 Least Significant bits; the Most Significant 3 bits of the byte may
be programmed as zeros. In case of a 7-bit calculation, a byte should contain the 7 bits of data
in its 7 Least Significant bits; the Most Significant bit of a byte may be programmed as zero. Refer
to Section 36.5.2.1 “FIFO to CRC Calculator” for more details.

After forming the bytes from a message stream, the same steps as explained in 36.7.2 “8-Bit
Polynomial” can be applied. For the polynomial length (PLEN<3:0>), use values of 04h or 06h
for 5-bit and 7-bit polynomials, respectively. A suitable 5-bit or 7-bit generator polynomial may be
programmed in the CRCXOR register.

36.7.4 16-Bit Polynomials
The recommended procedure to calculate a CRC with a 16-bit polynomial is as follows:

1. Program PLEN<3:0> bits (CRCCON<3:0>) = 0Fh.
2. Program a value to CRCXOR (e.g., CRCXOR = 8005h).
3. Program a value in CRCWDAT:

• 0000h (for the start of a new calculation), or
• the previously calculated partial result (for part of the whole message stream).

4. If the CRCFUL bit is not set, and if all the data words of the message stream are not written
into the FIFO, then write a data word to the CRCDAT register.

5. If the CRCFUL bit is not set, and if all the data words of the message stream are already
written into the FIFO, then write a word of 0000h in CRCDAT and set a software flag in the
application using the CRC (i.e., FINAL_CALCULATION).

6. If the CRCFUL bit or the software FINAL_CALCULATION flag is set, then start CRC by
setting the CRCGO bit.

7. When CRCMPT is set, then clear the CRCGO bit and read the result byte from the
CRCWDAT register.

8. For a partial result (CRC calculation is done but the FINAL_CALCULATION flag is not set),
pass the partial result to the next calculation process.

A word write is a simple process for a 16-bit polynomial. However, in some applications, byte
write operations may be used with 16-bit polynomials (e.g., in UART transmission/reception). In
these applications, an odd number of bytes may need to be padded up with an extra dummy byte.
A dummy byte should not be added if the message stream contains an even number of bytes. In
this case, the procedure explained above for 16-bit polynomials may need to be modified as
follows:

1. Program PLEN<3:0> bits (CRCCON<3:0>) = 0Fh.
2. Program a value to CRCXOR (e.g., CRCXOR = 8005h).
3. Program a value in CRCWDAT:

• 0000h (for the start of a new calculation), or
• The previously calculated partial result (for part of the whole message stream).

4. If the CRCFUL bit is not set, and if all the data bytes of the message stream are not written
into the FIFO, then write a data byte to the CRCDAT register and increment a counter to
keep track of the number of bytes written to the FIFO.

5. If the CRCFUL bit is not set, and if all the data bytes of the message stream are already
written into the FIFO which are odd, then write a byte of 00h (dummy byte) to CRCDAT
and set a software flag in the software application (i.e., MESSAGE_OVER).

6. If the CRCFUL bit is not set, and if all the data bytes of the message stream are already
written into the FIFO which are even, then set a software flag (MESSAGE_OVER).

7. If the CRCFUL bit is not set, and if the MESSAGE_OVER flag is set, write a word of 0000h
to CRCDAT and set a software flag (i.e., FINAL_CALCULATION).

Note: If the length of the polynomial is 16 bits, the CRC module expects an integer multiple
of 16 bits in the FIFO.
© 2007 Microchip Technology Inc. DS70298A-page 36-15

dsPIC33F Family Reference Manual
8. If the CRCFUL bit or the FINAL_CALCULATION flag is set, start CRC by setting the
CRCGO bit.

9. When CRCMPT is set, clear the CRCGO bit and read the result byte from the CRCWDAT
register.

10. For a partial result (CRC calculation is done but the FINAL_CALCULATION flag is not set),
pass the partial result to the next calculation process.

36.7.4.1 CODE EXAMPLE

Example 36-1 shows an example of application code for configuring the CRC module to use a
16-bit polynomial and process a block of data that is eight words in size. The application code
can either poll the CRCIF flag or create and use the CRC Interrupt ISR to check when the CRC
module has completed processing.

Note that the code example processes a block of data whose size is larger than the FIFO. The
data is written to the FIFO when the FIFO is not full. This process takes place even when the
CRC shift register is processing the data words from the FIFO. When the last word of the data
block is written to the FIFO, a value of 0x0000 is written to shift out the last word of data from the
CRC shift register.

Example 36-1: Code Example

36.7.5 10-Bit or 12-Bit Polynomial
For 10-bit or 12-bit polynomials, the CRC module calculates the checksums by taking into
account the 10 or 12 Least Significant bits of a word, respectively. For 10 bits of data, the Most
Significant 6 bits of a word may be programmed as zero. For 12-bit calculation, the Most
Significant 4 bits of a word may be programmed as zero. Refer to 36.5.2.1 “FIFO to CRC
Calculator” for more details.

After forming the words with 10 or 12 bits of actual data and the rest as “don’t care” bits, the same
steps as explained in 36.7.4 “16-Bit Polynomials” can be applied. For the PLEN<3:0> bits, use
a value of 09h or 0Bh for 10-bit or 12-bit polynomials, respectively. A suitable generator
polynomial of the same length may be programmed in the CRCXOR register.

int src[20]; /* The data block to be processed */
int i;

CRCCON = 0x0F; /* Configure the polynomial length (PLEN) */
CRCXOR = 0x8004; /* In CRCXOR, configure for the polynomial x^16 + x^15 + x^2 + 1 */
CRCWDAT = 0x00; /* Clear CRCWDAT*/

for(i = 0;i < 20;i ++)
{

CRCDAT=Src[i]; /* Populate the FIFO */
if(CRCCONbits.CRCFUL)
{

CRCCONbits.CRCGO = 1; /* CRC calculation start */
}
while(CRCCONbits.CRCFUL); /* Wait for available FIFO register */

}

CRCDAT = 0x0000;/* Do this to shift the last word out of the CRC shift register */

while (!IFS4bits.CRCIF); /* Check for interrupt flag bit */
IFS4bits.CRCIF = 0;

while(!CRCCONbits.CRCMPT);/* Wait for CRC shifter to clear FIFO */
CRCResult = CRCWDAT; /* Output result */
CRCWDAT = 0;
DS70298A-page 36-16 © 2007 Microchip Technology Inc.

Section 36. Programmable Cyclic Redundancy Check (CRC)
Program

m
able

C
yclic R

edundancy
C

heck (C
R

C
)

36

36.8 OPERATION IN POWER SAVE MODES

36.8.1 Sleep Mode
If Sleep mode is entered while the module is operating, the module is suspended in its current
state until clock execution resumes.

36.8.2 Idle Mode
To continue full module operation in Idle mode, the CSIDL bit must be cleared prior to entry into
the mode.

If CSIDL = 1, the module behaves the same way as it does in Sleep mode; pending interrupt
events will be passed on, even though the module clocks are not available.
© 2007 Microchip Technology Inc. DS70298A-page 36-17

dsPIC
33F Fam

ily R
eference M

anual

D
S

70298A
-page 36-18

©
 2007 M

icrochip Technology Inc.

RC) module is provided in Table 36-2.

Bit 3 Bit 2 Bit 1 Bit 0 All
Resets

PLEN<3:0> 0040

— 0000

0000

0000
36.9 REGISTER MAPS
A summary of the Special Function Registers associated with the dsPIC33F Programmable Cyclic Redundancy Check (C

Table 36-2: Special Function Registers Associated with the Programmable CRC Module(1)

File Name Addr. Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4

CRCCON 0640 — — CSIDL VWORD<4:0> CRCFUL CRCMPT — CRCGO

CRCXOR 0642 X<15:1>

CRCDAT 0644 CRC Data Input Register

CRCWDAT 0646 CRC Result Register

Legend: — = unimplemented, read as ‘0’. Shaded bits are not used in the operation of the programmable CRC module.
Note 1: Please refer to the device data sheet for specific memory map details.

Section 36. Programmable Cyclic Redundancy Check (CRC)
Program

m
able

C
yclic R

edundancy
C

heck (C
R

C
)

36

36.10 RELATED APPLICATION NOTES

This section lists application notes that are related to this section of the manual. These
application notes may not be written specifically for the dsPIC33F product family, but the
concepts are pertinent and could be used with modification and possible limitations. The current
application notes related to the Programmable Cyclic Redundancy Check (CRC) module are:

Title Application Note #
No related application notes at this time.

Note: Please visit the Microchip website (www.microchip.com) for additional application
notes and code examples for the dsPIC33F family of devices.
© 2007 Microchip Technology Inc. DS70298A-page 36-19

http://www.microchip.com
http://www.microchip.com
http://www.microchip.com
http://www.microchip.com

dsPIC33F Family Reference Manual
36.11 REVISION HISTORY
Revision A (October 2007)
This is the initial release of this document.
DS70298A-page 36-20 © 2007 Microchip Technology Inc.

	Section 36. Programmable Cyclic Redundancy Check (CRC)
	36.1 Introduction
	Equation 36-1:

	36.2 Module Overview
	Figure 36-1: Simplified Block Diagram of the Programmable CRC Generator

	36.3 CRC Registers
	Register 36-1: CRCCON: CRC Control Register
	Register 36-2: CRCXOR: CRC XOR Register

	36.4 CRC Engine
	36.4.1 Generic CRC Engine
	Figure 36-2: Generic CRC Calculator Details

	36.4.2 Software Configuration of the CRC Engine
	Equation 36-2:
	Table 36-1: Example CRC Setup
	Figure 36-3: CRC Generator Reconfigured for x16 + x12 + x5 + 1

	36.5 Control Logic
	36.5.1 FIFO
	36.5.2 CRC Engine Interface
	36.5.3 Interrupt Operation
	36.5.4 CRC Module Operation Example
	Equation 36-3: Generator Polynomial
	Figure 36-4: CRC Module (with PLEN = 0xF)
	Figure 36-5: Write Data to CRCDAT Register
	Figure 36-6: FIFO is Full
	Figure 36-7: Application Sets the CRCGO Bit
	Figure 36-8: CRC Module Processes Data from the FIFO
	Figure 36-9: Processing Complete

	36.6 Advantages of Programmable CRC Module
	36.7 Application of CRC Module
	36.7.1 Variations
	36.7.2 8-Bit Polynomial
	36.7.3 5-Bit or 7-Bit Polynomials
	36.7.4 16-Bit Polynomials
	Example 36-1: Code Example

	36.7.5 10-Bit or 12-Bit Polynomial

	36.8 Operation in Power Save Modes
	36.8.1 Sleep Mode
	36.8.2 Idle Mode

	36.9 Register Maps
	36.10 Related Application Notes
	36.11 Revision History

