
Section 3. Data Memory
D
ata M

em
ory

3

HIGHLIGHTS
This section of the manual contains the following topics:

3.1 Introduction .. 3-2
3.2 Data Space Address Generator Units (AGUs)... 3-5
3.3 Modulo Addressing .. 3-8
3.4 Bit-Reversed Addressing ... 3-14
3.5 DMA RAM .. 3-19
3.6 Control Register Descriptions .. 3-20
3.7 Related Application Notes.. 3-24
3.8 Revision History ... 3-25
© 2007 Microchip Technology Inc. DS70202B-page 3-1

dsPIC33F Family Reference Manual
3.1 INTRODUCTION
The dsPIC33F data width is 16 bits. All internal registers and data space memory are organized
as 16 bits wide. The dsPIC33F features two data spaces. The data spaces can be accessed
separately (for some Digital Signal Processing (DSP) instructions), or together as one 64-Kbyte
linear address range (for microcontroller (MCU) instructions). The data spaces are accessed
using two Address Generation Units (AGUs) and separate data paths.

Figure 3-1 is an example of a data space memory map.

Data memory addresses between 0x0000 and 0x07FF are reserved for the device special
function registers (SFRs). The SFRs include control and status bits for the CPU and peripherals
on the device.

The RAM begins at address 0x0800 and is split into two blocks, X and Y data space. For data
writes, the X and Y data spaces are always accessed as a single, linear data space. For data
reads, the X and Y memory spaces can be accessed independently or as a single, linear space.
Data reads for MCU class instructions always access the X and Y data spaces as a single
combined data space. Dual source operand DSP instructions, such as the MAC instruction,
access the X and Y data spaces separately to support simultaneous reads for the two source
operands.

MCU instructions can use any W register as an address pointer for a data read or write operation.

During data reads, the DSP class of instructions isolates the Y address space from the total data
space. W10 and W11 are address pointers for reads from the Y data space. The
remaining data space is referred to as X space, but could more accurately be described as “X
minus Y” space. W8 and W9 are address pointers for data reads from the X data space in DSP
class instructions.

Figure 3-2 shows how the data memory map functions for both MCU class and DSP class
instructions. Note that it is the W register number and type of instruction that determines how
address space is accessed for data reads. In particular, MCU instructions treat the X and Y
memory as a single combined data space. The MCU instructions can use any W register as an
address pointer for reads and writes. The DSP instructions that can simultaneously prefetch two
data operands, split the data memory into two spaces. Specific W registers must be used for read
address pointers in this case.

Some DSP instructions have the ability to store the accumulator that is not targeted by the
instruction to data memory. This function is called “accumulator write back”. W13 must be used
as an address pointer to the combined data memory space for accumulator write back
operations.

For DSP class instructions, W8 and W9 should point to implemented X memory space for all
memory reads. If W8 or W9 points to Y memory space, zeros are returned. If W8 or W9 points
to an unimplemented memory address, an address error trap is generated.

For DSP class instructions, W10 and W11 should point to implemented Y memory space for all
memory reads. If W10 or W11 points to implemented X memory space, all zeros are returned. If
W10 or W11 points to an unimplemented memory address, an address error trap is generated.
For additional information on address error traps, refer to Section 6. “Reset Interrupts”.

In addition, some dsPIC33F devices contain DMA and dual-ported SRAM memory (DPSRAM).
Both the CPU and DMA controller can write and read to/from addresses within the DPSRAM
without interference, such as CPU stalls, resulting in maximized, real-time performance. For
more information, refer to Section 22. “DMA” .

Note: The data memory map and the partition between the X and Y data spaces is device
specific. For further details, refer to the specific dsPIC33F device data sheet.

Note: The presence and size of DMA RAM is device specific. For further details, refer to
the specific dsPIC33F device data sheet.
DS70202B-page 3-2 © 2007 Microchip Technology Inc.

Section 3. Data Memory
D

ata M
em

ory

3

Figure 3-1: Example Data Memory Map

Note 1: The size of the X and Y data spaces is device specific. For further details, refer to the appropriate
device data sheet. The data space boundaries indicated here are for example purposes only.

2: DMA RAM is not available on all devices. For further details, refer to the appropriate device data
sheet.

3: Near data memory can be accessed directly via file register instructions that encode a 13-bit
address into the opcode.

4: All data memory can be accessed indirectly via W registers or directly using the MOV instruction.

5: Upper half of data memory map can be mapped into a segment of program memory space for
Program Space Visibility (PSV).

0x0000

0x07FE

0x17FE

LSb
Address16-bits

LSbMSb

MSb
Address

0x0001

0x07FF

0x17FF

0xFFFF

X Data RAM

0x8001 0x8000

Provides Program
Space Visibility

Unimplemented

0x27FF 0x27FE
0x28000x2801

0x0801 0x0800

0x1801 0x1800

Near Data
Memory

0x1FFF
0x2001 0x2000

0x1FFE
Y Data RAM

X Data RAM

SFR Space

DMA RAM
© 2007 Microchip Technology Inc. DS70202B-page 3-3

dsPIC33F Family Reference Manual
Figure 3-2: Data Spaces for MCU and DSP Instructions

3.1.1 Near Data Memory
An 8-Kbyte address space, referred to as near data memory, is reserved in the data memory
space between 0x0000 and 0x1FFF. Near data memory is directly addressable through a 13-bit
absolute address field within all file register instructions.

The memory regions included in the near data region depend on the amount of data memory
implemented for each dsPIC33F device variant. At a minimum, the near data region includes all
of the SFRs and some of the X data memory. For devices that have smaller amounts of data
memory, the near data region can include all of X memory space and possibly some or all of Y
memory space. For more details, refer to Figure 3-1.

Note: The entire 64K data space can be addressed directly using the MOV instruction. For
further details, refer to the “dsPIC30F/33F Programmer’s Reference Manual”
(DS70157).

(Y Space)

X
 S

pa
ce

Unused

X
 S

pa
ce

X
 S

pa
ce

Unused

Unused

MCU Class Instructions (Read/Write) Dual Source Operand DSP Instructions (Read)

Indirect EA from W10, W11 Indirect EA from W8, W9

Note: Data writes for DSP instructions consider the entire data memory as one
combined space. DSP instructions that perform an accumulator write back
use W13 as an address pointer for writes to the combined data spaces.

DSP Instructions (Write)

Y Space
DS70202B-page 3-4 © 2007 Microchip Technology Inc.

Section 3. Data Memory
D

ata M
em

ory

3

3.2 DATA SPACE ADDRESS GENERATOR UNITS (AGUS)
The dsPIC33F contains an X AGU and a Y AGU for generating data memory addresses. Both X
and Y AGUs can generate any effective address (EA) within a 64-Kbyte range. However, EAs
outside the physical memory provided (i.e., return all zeros for data reads and data writes to
those locations), have no effect. Furthermore, an address error trap is generated. For more
information on address error traps, refer to Section 6. “Reset Interrupts”.

3.2.1 X Address Generator Unit
The X AGU is used by all instructions and supports all Addressing modes. The X AGU consists
of a read AGU (X RAGU) and a write AGU (X WAGU), which operate independently on separate
read and write buses during different phases of the instruction cycle. The X read data bus is the
return data path for all instructions that view data space as combined X and Y address space. It
is also the X address space data path for the dual operand read instructions (DSP instruction
class). The X write data bus is the only write path to the combined X and Y data space for all
instructions.

The X RAGU starts its effective address calculation during the prior instruction cycle, using
information derived from the just prefetched instruction. The X RAGU EA is presented to the
address bus at the beginning of the instruction cycle.

The X WAGU starts its effective address calculation at the beginning of the instruction cycle. The
EA is presented to the address bus during the write phase of the instruction.

Both the X RAGU and the X WAGU support modulo addressing.

Bit-reversed addressing is supported by the X WAGU only.

3.2.2 Y Address Generator Unit
The Y data memory space has one AGU that supports data reads from the Y data memory space.
The Y memory bus is never used for data writes. The function of the Y AGU and Y memory bus
is to support concurrent data reads for DSP class instructions.

The Y AGU timing is identical to that of the X RAGU, in that its effective address calculation starts
prior to the instruction cycle, using information derived from the prefetched instruction. The EA
is presented to the address bus at the beginning of the instruction cycle.

The Y AGU supports Modulo Addressing and Post-modification Addressing modes for the DSP
class of instructions that use it.

Note: The Y AGU does not support data writes. All data writes occur via the X WAGU to
the combined X and Y data spaces. The Y AGU is only used during data reads for
dual source operand DSP instructions.
© 2007 Microchip Technology Inc. DS70202B-page 3-5

dsPIC33F Family Reference Manual
Figure 3-3: Data Space Access Timing

3.2.3 Address Generator Units and DSP Class Instructions
The Y AGU and Y memory data path are used in concert with the X RAGU by the DSP class of
instructions to provide two concurrent data read paths. For example, the MAC instruction can
simultaneously prefetch two operands to use in the next multiplication (refer to Figure 3-3).

The DSP class of instructions dedicates two W register pointers, W8 and W9, to always operate
through the X RAGU and address X data space independently from Y data space, plus two W
register pointers, W10 and W11, to always operate through the Y AGU and address Y data space
independently from X data space. Any data write performed by a DSP class instruction takes
place in the combined X and Y data space, and the write occurs across the X-bus. Consequently,
the write can be to any address irrespective of where the EA is directed.

The Y AGU only supports Post-modification Addressing modes associated with the DSP class of
instructions. For more information on Addressing modes, refer to the “dsPIC30F/33F
Programmer’s Reference Manual” (DS70157). The Y AGU also supports modulo addressing for
automated circular buffers. All other MCU class instructions can access the Y data address
space through the X AGU when it is regarded as part of the composite linear space.

IR

X RAGU

X WAGU

[W7]X Data Read

ADD MOV

Y Address

MAC SUB

[W7] [W8]+=2 [--W9]

AL
U

 O
P

AL
U

 O
P

[W10] [W9++] [W13] [W6++]
Stall Check

[W10]+=2
Stall Check

X Address

Y AGU

[W7] W10 W9 W8 W13 W9-2 W6

[W8] [W9-2]

[W10]X Data Write [W9] [W13]

W10

[W10]Y Data (Read)

ADD.W W0, [W7], [W10]

MOV.W W10, [W9++]

MAC W4*W5, A, W4, [W8]+=2, W5, [W10]+=2, [W13]+=2

SUB.W W4, [--W9], [W6++]

D
ur

in
g

Stall Check

TCY

Q
3

DS70202B-page 3-6 © 2007 Microchip Technology Inc.

Section 3. Data Memory
D

ata M
em

ory

3

3.2.4 Data Alignment
The Instruction Set Architecture (ISA) supports both word and byte operations for all MCU
instructions that access data through the X memory AGU. The LSb of a 16-bit data address is
ignored for word operations. Word data is aligned in the little-endian format with the Least Sig-
nificant Byte (LSB) at the even address (LSB = 0) and the Most Significant Byte (MSB) at the odd
address (LSB = 1).

For byte operations, the LSB of the data address selects the byte that is accessed. The
addressed byte is placed on the lower 8 bits of the internal data bus.

All effective address calculations are automatically adjusted depending on whether a byte or a
word access is performed. For example, an address is incremented by 2 for a word operation
that post-increments the address pointer.

Figure 3-4: Data Alignment

Note: All word accesses must be aligned to an even address (LSB = 0). Misaligned word
data fetches are not supported, so care must be taken when mixing byte and word
operations or translating code from existing 8-bit PIC microcontrollers. If a
misaligned word read or write is attempted, an address error trap occurs. A
misaligned read operation completes, but a misaligned write will not take place. The
trap is then taken, allowing the system to examine the machine state prior to
execution of the address Fault.

15 8 7 0
0001

0003

0005

0000

0002

0004

Byte 1

Byte 3

Byte 5

LSByteMSByte

Word 0

Word 1

0006

0008

Long Word<15:0> 000A

Long Word<31:16> 000C

Byte 0

Byte 2

Byte 4
© 2007 Microchip Technology Inc. DS70202B-page 3-7

dsPIC33F Family Reference Manual
3.3 MODULO ADDRESSING
Modulo, or circular addressing provides an automated means to support circular data buffers
using hardware. The objective is to remove the need for software to perform data address
boundary checks when executing tightly looped code as is typical in many DSP algorithms.

Any W register, except W15, can be selected as the pointer to the modulo buffer. The modulo
hardware performs boundary checks on the address held in the selected W register, and
automatically adjusts the pointer value at the buffer boundaries, when required.

dsPIC33F modulo addressing can operate in either data or program space (since the data
pointer mechanism is essentially the same for both). One circular buffer can be supported in each
of the X (which also provides the pointers into Program space) and Y data spaces.

The modulo data buffer length can be any size up to 32K words. The modulo buffer logic supports
buffers using word or byte-sized data. However, the modulo logic only performs address
boundary checks at word address boundaries, so the length of a byte modulo buffer must be
even. In addition, byte-sized modulo buffers cannot be implemented using the Y AGU, because
byte access is not supported via the Y memory data bus.

3.3.1 Modulo Start and End Address Selection
Four address registers are available for specifying the modulo buffer start and end addresses:

• XMODSRT: X AGU Modulo Addressing Start Register
• XMODEND: X AGU Modulo Addressing End Register
• YMODSRT: Y AGU Modulo Addressing Start Register
• YMODEND: Y AGU Modulo Addressing End Register
The start address for a modulo buffer must be located at an even byte address boundary. The
LSB of the XMODSRT and YMODSRT registers is fixed at ‘0’ to ensure the correct modulo start
address. The end address for a modulo buffer must be located at an odd byte address boundary.
The LSB of the XMODEND and YMODEND registers is fixed to ‘1’ to ensure the correct modulo
end address.

The start and end address selected for each modulo buffer have certain restrictions, depending
on whether an incrementing or decrementing buffer is implemented. For an incrementing buffer,
a W register pointer is incremented through the buffer address range. When the end address of
the incrementing buffer is reached, the W register pointer is reset to point to the start of the buffer.
For a decrementing buffer, a W register pointer is decremented through the buffer address range.
When the start address of a decrementing buffer is reached, the W register pointer is reset to
point to the end of the buffer.

3.3.1.1 MODULO START ADDRESS

The data buffer start address is arbitrary, but must be at a ‘zero’ power of two boundary for
incrementing modulo buffers. The modulo start address can be any value for decrementing
modulo buffers and is calculated using the chosen buffer end address and buffer length.

For example, if the buffer length for an incrementing buffer is chosen to be 50 words (100 bytes),
then the buffer start byte address must contain 7 Least Significant zeros. Valid start addresses
may, therefore be, 0xNN00 and 0xNN80, where ‘N’ is any hexadecimal value.

Note: The user must decide whether an incrementing or decrementing modulo buffer is
required for the application. Certain address restrictions depend on whether an
incrementing or decrementing modulo buffer is to be implemented.
DS70202B-page 3-8 © 2007 Microchip Technology Inc.

Section 3. Data Memory
D

ata M
em

ory

3

3.3.1.2 MODULO END ADDRESS

The data buffer end address is arbitrary, but must be at a ‘ones’ boundary for decrementing
buffers. The modulo end address can be any value for an incrementing buffer and is calculated
using the chosen buffer start address and buffer length.

For example, if the buffer size (modulus value) is chosen to be 50 words (100 bytes), the buffer
end byte address for decrementing modulo buffer must contain 7 Least Significant ones. Valid
end addresses can, therefore be, 0xNNFF and 0xNN7F, where ‘N’ is any hexadecimal value.

3.3.1.3 MODULO ADDRESS CALCULATION

The end address for an incrementing modulo buffer must be calculated from the chosen start
address and the chosen buffer length in bytes. Equation 3-1 shows how the code can be used
to calculate the end address.

Equation 3-1: Modulo End Address for Incrementing Buffer

Equation 3-2 shows how the start address for a decrementing modulo buffer is calculated from
the chosen end address and the buffer length.

Equation 3-2: Modulo Start Address for Decrementing Buffer

3.3.1.4 DATA DEPENDENCIES ASSOCIATED WITH MODULO ADDRESSING
SFRS

A write operation to the Modulo and Bit-Reversed Addressing Control (MODCON) register,
should not be immediately followed by an indirect read operation using any W register.
Example 3-1 shows the code segment will thus lead to unexpected results.

Example 3-1: Incorrect MODCON Initialization

To work around this problem of initialization, use any Addressing mode other than indirect reads
in the instruction that immediately follows the initialization of MODCON. Example 3-2 shows a
simple work around to the problem is achieved by adding a NOP instruction after initializing
MODCON.

Example 3-2: Correct MODCON Initialization

Note: If the required modulo buffer length is an even power of 2, modulo start and end
addresses can be selected that satisfy the requirements for incrementing and
decrementing buffers.

End Address = Start Address + Buffer Length – 1

Start Address = End Address – Buffer Length + 1

Note 1: Using a POP instruction to pop the contents of the top-of-stack (TOS) location into
MODCON, also constitutes a write to MODCON. The instruction immediately
following a write to MODCON cannot be any instruction performing an indirect read
operation.

2: Some instructions perform an indirect read operation, implicitly. These are: POP,
RETURN, RETFIE, RETLW and ULNK.

MOV #0x8FF4, w0 ;Initialize MODCON
MOV w0, MODCON
MOV [w1], w2 ;Incorrect EA generated here

MOV #0x8FF4, w0 ;Initialize MODCON
MOV w0, MODCON
NOP ;See Note below
MOV [w1], w2 ;Correct EA generated here

Note: Alternatively, execute other instructions that do not perform indirect read operations,
using the W register designated for modulo buffer access.
© 2007 Microchip Technology Inc. DS70202B-page 3-9

dsPIC33F Family Reference Manual
An additional condition exists for indirect read operations performed immediately after writing to
the modulo address SFRs:

• XMODSRT
• XMODEND
• YMODSRT
• YMODEND

If modulo addressing is already enabled in MODCON, then a write to the X (or Y) modulo address
SFRs should not be immediately followed by an indirect read, using the W register designated
for modulo buffer access from X-data space (or Y-data space). The code segment in Example 3-3
shows how initializing the modulo SFRs associated with the X-data space, could lead to
unexpected results. A similar example can be made for initialization in Y-data space.

Example 3-3: Incorrect Modulo Addressing Setup

To work around this issue, insert a NOP, or perform any operation other than an indirect read that
uses the W register designated for modulo buffer access, after initializing the modulo address
SFRs. Example 3-4 demonstrates this. Another alternative is to enable modulo addressing in
MODCON after initializing the modulo start and end address SFRs.

Example 3-4: Correct Modulo Addressing Setup

3.3.2 W Address Register Selection
The X address space pointer W register to which modulo addressing is to be applied, is stored
in the XWM bits of the Modulo and Bit-Reversed Addressing Control (MODCON<3:0>) register.
The XMODSRT, XMODEND, and XWM register selection are shared between the X RAGU and
X WAGU. Modulo addressing is enabled for X data space when the XWM bit is set to any value
other than 15, and the XMODEN bit is set (MODCON<15>). W15 cannot be used as the pointer
for modulo addressing because it is the dedicated software stack pointer.

The Y address space pointer W register to which modulo addressing is applied, is stored in the
YWM bits in the Modulo and Bit-Reversed Addressing Control (MODCON<7:4>) register. Modulo
addressing is enabled for Y data space when the YWM bit is set to any value other than 15 and
the YMODEN bit is set (MODCON<14>).

MOV #0x8FF4,w0 ;Modulo addressing enabled
MOV w0, MODCON ;in X-data space using w4

;for buffer access
MOV #0x1200,w4 ;XMODSRT is initialized
MOV w4, XMODSRT
MOV #0x12FF,w0 ;XMODEND is initialized
MOV w0, XMODEND
MOV [w4++], w5 ;Incorrect EA generated

MOV #0x8FF4,w0 ;Modulo addressing enabled
MOV w0, MODCON ;in X-data space using w4

;for buffer access
MOV #0x1200,w4 ;XMODSRT is initialized
MOV w4, XMODSRT
MOV #0x12FF,w0 ;XMODEND is initialized
MOV w0, XMODEND
NOP ;See Note below
MOV [w4++], w5 ;Correct EA generated here

Note: Alternatively, execute other instructions that do not perform indirect read operations,
using the W register designated for modulo buffer access.

Note: A write to the MODCON register should not be followed by an instruction that
performs an indirect read operation using a W register. Unexpected results may
occur. Some instructions perform an implicit indirect read. These are: POP,
RETURN, RETFIE, RETLW and ULNK.
DS70202B-page 3-10 © 2007 Microchip Technology Inc.

Section 3. Data Memory
D

ata M
em

ory

3

3.3.3 Modulo Addressing Applicability
Modulo addressing can be applied to the effective address (EA) calculation associated with the
selected W register. It is important to realize that the address boundary tests look for addresses
equal to, or greater than, the upper address boundary for incrementing buffers and equal to, or
less than, the lower address boundary for decrementing buffers. Address changes can,
therefore, jump over boundaries and still be adjusted correctly. The automatic adjustment of the
W register pointer by the modulo hardware is unidirectional. That is, the W register pointer may
not be adjusted correctly by the modulo hardware when the W register pointer for an
incrementing buffer is decremented and vice versa. The exception to this rule is when the buffer
length is an even power of 2, and the start and end addresses can be selected to meet the
boundary requirements for both incrementing and decrementing modulo buffers.

A new EA can exceed the modulo buffer boundary by up to the length of the buffer and still be
successfully corrected. This is important to remember when the Register Indexed ([Wb + Wn])
and Literal Offset ([Wn + lit10]) Addressing modes are used. In addition, the Register
Indexed and Literal Offset Addressing modes do not change the value held in the W register.
Only the indirect with Pre- and Post-modification Addressing modes ([Wn++], [Wn--],
[++Wn], [--Wn]) modify the W register address value.

3.3.4 Modulo Addressing Initialization for Incrementing Modulo
Buffer

The following steps describe the setup procedure for an incrementing circular buffer. The steps
are similar whether the X AGU or Y AGU is used.

1. Determine the buffer length in 16-bit data words. Multiply this value by 2 to get the length
of the buffer in bytes.

2. Select a buffer starting address that is located at a binary ‘zeros’ boundary based on the
desired length of the buffer. Remember that the buffer length in words must be multiplied
by 2 to obtain the byte address range. For example, a buffer with a length of 100 words
(200 bytes) could use 0xXX00 as the starting address.

3. Calculate the buffer end address using the buffer length chosen in Step 1 and the buffer
start address chosen in Step 2. The buffer end address is calculated using Equation 3-1.

4. Load the XMODSRT or YMODSRT register with the buffer start address chosen in Step 2.
5. Load the XMODEND or YMODEND register with the buffer end address calculated in

Step 3.
6. Write to the XWM (MODCON<3:0>) or YWM (MODCON<7:4>) bits to select the W

register that will be used to access the circular buffer.
7. Set the XMODEN (MODCON<15>) or YMODEN (MODCON<14>) bit to enable the

circular buffer.
8. Load the selected W register with address that points to the buffer.

The W register address is adjusted automatically at the end of the buffer when an indirect access
with pre/post increment is performed (refer to Figure 3-5).
© 2007 Microchip Technology Inc. DS70202B-page 3-11

dsPIC33F Family Reference Manual
Figure 3-5: Incrementing Buffer Modulo Addressing Operation Example

3.3.5 Modulo Addressing Initialization for Decrementing Modulo
Buffer

The following steps describe the setup procedure for a decrementing circular buffer. The steps
are similar whether the X AGU or Y AGU is used.

1. Determine the buffer length in 16-bit data words. Multiply this value by 2 to get the length
of the buffer in bytes.

2. Select a buffer end address that is located at a binary ‘ones’ boundary, based on the
desired length of the buffer. Remember that the buffer length in words must be multiplied
by 2 to obtain the byte address range. For example, a buffer with a length of 128 words
(256 bytes) could use 0xXXFF as the end address.

3. Calculate the buffer start address using the buffer length selected in Step 1 and the end
address selected in Step 2. The buffer start address is calculated using Equation 3-2.

4. Load the XMODSRT or YMODSRT register with the buffer start address selected in
Step 3.

5. Load the XMODEND or YMODEND register with the buffer end address selected in
Step 2.

6. Write to the XWM (MODCON<3:0>) or YWM (MODCON<7:4>) bits to select the W
register that will access the circular buffer.

7. Set the XMODEN (MODCON<15>) or YMODEN (MODCON<14>) bit to enable the
circular buffer.

8. Load the selected W register with the address that points to the buffer.

The W register address is adjusted automatically at the end of the buffer when an indirect access
with pre/post-decrement is performed (refer to Figure 3-6).

0x1100

0x1163

Start Address = 0x1100
End Address = 0x1163
Length = 50 Words

Byte
Address MOV #0x1100,W0

MOV W0,XMODSRT ;set modulo start address
MOV #0x1163,W0
MOV W0,XMODEND ;set modulo end address
MOV #0x8001,W0
MOV W0,MODCON ;enable W1, X AGU for modulo
MOV #0x0000,W0 ;W0 holds buffer fill value
MOV #0x1100,W1 ;point W1 to buffer
DO #49,FILL ;fill the 50 buffer locations
FILL:
MOV W0,[W1++] ;fill the next location

;W1 = 0x1100 when DO loop completes

DS70202B-page 3-12 © 2007 Microchip Technology Inc.

Section 3. Data Memory
D

ata M
em

ory

3

Figure 3-6: Decrementing Buffer Modulo Addressing Operation Example

0x11E0

0x11FF

Start Address = 0x11E0
End Address = 0x11FF
Length = 16 Words

Byte
Address

MOV #0x11E0,W0
MOV W0,XMODSRT ;set modulo start address
MOV #0x11FF,W0
MOV W0,XMODEND ;set modulo end address
MOV #0x8001,W0
MOV W0,MODCON ;enable W1, X AGU for modulo
MOV #0x000F,W0 ;W0 holds buffer fill value
MOV #0x11FE,W1 ;point W1 to buffer
DO #15,FILL ;fill the 16 buffer locations
MOV W0,[W1--] ;fill the next location

FILL:
DEC W0,W0 ;decrement the fill value

; W1 = 0x11FE when DO loop completes
© 2007 Microchip Technology Inc. DS70202B-page 3-13

dsPIC33F Family Reference Manual
3.4 BIT-REVERSED ADDRESSING

3.4.1 Introduction to Bit-Reversed Addressing
Bit-reversed addressing simplifies data re-ordering for radix-2 FFT algorithms. It is supported
through the X WAGU only. Figure 3-7 shows how Bit-reversed addressing is accomplished by
effectively creating a mirror image of an address pointer by swapping the bit locations around the
center point of the binary value. Table 3-1 is an example bit-reversed sequence for a 4-bit
address field.

Figure 3-7: Bit-Reversed Address Example

Table 3-1: Bit-Reversed Address Sequence (16-Entry)

b3 b2 b1 b0

b0 b1 b2 b3

Bit locations swapped left-to-right
around center of binary value

Bit-Reversed Result

Normal
Address

Bit-Reversed
 Address

A3 A2 A1 A0 decimal A3 A2 A1 A0 decimal
0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 8
0 0 1 0 2 0 1 0 0 4
0 0 1 1 3 1 1 0 0 12
0 1 0 0 4 0 0 1 0 2
0 1 0 1 5 1 0 1 0 10
0 1 1 0 6 0 1 1 0 6
0 1 1 1 7 1 1 1 0 14
1 0 0 0 8 0 0 0 1 1
1 0 0 1 9 1 0 0 1 9
1 0 1 0 10 0 1 0 1 5
1 0 1 1 11 1 1 0 1 13
1 1 0 0 12 0 0 1 1 3
1 1 0 1 13 1 0 1 1 11
1 1 1 0 14 0 1 1 1 7
1 1 1 1 15 1 1 1 1 15
DS70202B-page 3-14 © 2007 Microchip Technology Inc.

Section 3. Data Memory
D

ata M
em

ory

3

3.4.2 Bit-Reversed Addressing Operation
Bit-reversed addressing is supported only by the X WAGU and is controlled by the MODCON
and X Write AGU Bit-Reversal Addressing Control (XBREV) special function registers.
Bit-reversed addressing is invoked as follows:

1. Bit-reversed addressing is assigned to one of the W registers using the BWM control bits
(MODCON<11:8>).

2. Bit-reversed addressing is enabled by setting the BREN control bit (XBREV<15>).
3. The X AGU bit-reverse modifier is set via the XB control bits (XBREV<14:0>).

When enabled, the bit-reversed addressing hardware generates bit-reversed addresses, only
when the register indirect with Pre- or Post-increment Addressing modes are used ([Wn++],
[++Wn]). Furthermore, bit-reverse addresses are only generated for Word mode instructions. It
will not function for all other Addressing modes or Byte mode instructions (normal addresses are
generated).

3.4.2.1 MODULO ADDRESSING AND BIT-REVERSED ADDRESSING

Modulo addressing and bit-reversed addressing can be enabled simultaneously using the same
W register, but bit-reversed addressing operation always take precedence for data writes when
enabled. As an example, the following setup conditions would assign the same W register to
modulo and bit-reversed addressing:

• X modulo addressing is enabled (XMODEN = 1)
• Bit-reverse addressing is enabled (BREN = 1)
• W1 assigned to modulo addressing (XWM<3:0> = 0001)
• W1 assigned to bit-reversed addressing (BWM<3:0> = 0001)

For data reads that use W1 as the pointer, modulo address boundary checking occurs. For data
writes using W1 as the destination pointer, the bit-reverse hardware corrects W1 for data
reordering.

3.4.2.2 DATA DEPENDENCIES ASSOCIATED WITH XBREV

If bit-reversed addressing has already been enabled by setting the BREN (XBREV<15>) bit, a
write to the XBREV register should not be followed by an indirect read operation using the W
register, designated as the bit-reversed address pointer.

Note: A write to the MODCON register should not be followed by an instruction that
performs an indirect read operation using a W register. Unexpected results may
occur. Some instructions perform an implicit indirect read. These are: POP,
RETURN, RETFIE, RETLW and ULNK.
© 2007 Microchip Technology Inc. DS70202B-page 3-15

dsPIC33F Family Reference Manual
3.4.3 Bit-Reverse Modifier Value
The value loaded into the XBREV register is a constant that indirectly defines the size of the
bit-reversed data buffer. Table 3-2 summarizes the XB modifier values used with common
bit-reversed buffers.

Table 3-2: Bit-Reversed Address Modifier Values

The bit-reverse hardware modifies the W register address by performing a “reverse-carry”
addition of the W contents and the XB modifier constant. A reverse-carry addition is performed
by adding the bits from left-to-right instead of right-to-left. If a carry-out occurs in a bit location,
the carry out bit is added to the next bit location to the right. Example 3-5 demonstrates the
reverse-carry addition and subsequent W register values using 0x0008 as the XB modifier value.
Note that the XB modifier is shifted one bit location to the left to generate word address values.

Buffer Size (Words) XB Bit-Reversed Address Modifier Value

32768 0x4000
16384 0x2000
8192 0x1000
4096 0x0800
2048 0x0400
1024 0x0200
512 0x0100
256 0x0080
128 0x0040
64 0x0020
32 0x0010
16 0x0008
8 0x0004
4 0x0002
2 0x0001

Note: Only the bit-reversed modifier values shown produce valid bit-reversed
address sequences.
DS70202B-page 3-16 © 2007 Microchip Technology Inc.

Section 3. Data Memory
D

ata M
em

ory

3

Example 3-5: XB Address Calculation

When XB<14:0> = 0x0008, the bit-reversed buffer size is 16 words. Bits 1-4 of the W register are
subject to bit-reversed address correction, but bits 5-15 (outside the pivot point) are not modified
by the bit-reverse hardware. Bit 0 is not modified because the bit-reverse hardware operates only
on word addresses.

The XB modifier controls the pivot point for the bit-reverse address modification. Bits outside of
the pivot point are not subject to bit-reversed address corrections.

Figure 3-8: Bit-Reversed Address Modification for 16-Word Buffer

0000 0000 0000 0000 Wn points to word 0

 +1 0000 Wn = Wn + XB

0000 0000 0001 0000 Wn points to word 8

 +1 0000 Wn = Wn + XB

0000 0000 0000 1000 Wn points to word 4

 +1 0000 Wn = Wn + XB

0000 0000 0001 1000 Wn points to word 12

 +1 0000 Wn = Wn + XB

0000 0000 0000 0100 Wn points to word 2

 +1 0000 Wn = Wn + XB

0000 0000 0001 0100 Wn points to word 10

Bit-Reversed Result

XB<14:0> = 0x0008
Bits 1-4 of address

Pivot Point

are modified

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
© 2007 Microchip Technology Inc. DS70202B-page 3-17

dsPIC33F Family Reference Manual
3.4.4 Bit-Reversed Addressing Code Example
The code shown in Example 3-6 reads a series of 16 data words and writes the data to a new
location in bit-reversed order. W0 is the read address pointer and W1 is the write address pointer
subject to bit-reverse modification.

Example 3-6: Bit-Reversed Addressing Code Example
; Set XB for 16-word buffer, enable bit reverse addressing

MOV #0x8008,W0
MOV W0,XBREV

; Setup MODCON to use W1 for bit reverse addressing
MOV #0x01FF,W0
MOV W0,MODCON

; W0 points to input data buffer
MOV #Input_Buf,W0

; W1 points to bit reversed data
MOV #Bit_Rev_Buf,W1

; Re-order the data from Input_Buf into Bit_Rev_Buf
REPEAT #15
MOV [W0++],[W1++]
DS70202B-page 3-18 © 2007 Microchip Technology Inc.

Section 3. Data Memory
D

ata M
em

ory

3

3.5 DMA RAM
Some dsPIC33F devices contain DMA and dual-ported SRAM memory (DPSRAM). Both the
CPU and DMA controller can write and read to/from addresses within the DPSRAM without
interference, such as CPU stalls, resulting in maximized, real-time performance.

Figure 3-9 shows a block diagram that demonstrates how the DMA integrates into the dsPIC33F
internal architecture. The CPU communicates with conventional SRAM across the X-bus. In
addition, the CPU communicates with the peripherals across a separate Peripheral X-bus, which
also resides within X data space.

The DMA channels communicate with Port 2 of the DPSRAM and the DMA port of each of the
DMA-ready peripherals across a dedicated DMA bus. For more information, refer to Section 22.
“DMA”.

Figure 3-9: DMA Controller Block Diagram

Note: The presence and size of DMA RAM is device specific. For further details, refer to
the specific dsPIC33F device data sheet.

CPU

SRAM DPSRAM Peripheral 1

DMA

Peripheral
Non-DMA

PORT 2PORT 1

Peripheral 2

DMA
Ready

Peripheral 3

DMA
Ready

Ready

DMA X-Bus

CPU DMA

CPU DMA CPU DMA

Peripheral Indirect Address

Note: CPU and DMA address buses are not shown for clarity.

D
M

A
C

on
tro

l

DMA Controller

DMA
Channels

CPU Peripheral X-Bus

IRQ to DMA
and Interrupt
Controller
Modules

SRAM X Bus

IRQ to DMA
and Interrupt

Controller
Modules

IRQ to DMA
and Interrupt

Controller
Modules

0 1 2 3 4 5 6 7
© 2007 Microchip Technology Inc. DS70202B-page 3-19

dsPIC33F Family Reference Manual
3.6 CONTROL REGISTER DESCRIPTIONS
The registers described in this section control modulo and bit-reversed addressing.

Register 3-1: MODCON: Modulo and Bit-Reversed Addressing Control Register

R/W-0 R/W-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0
XMODEN YMODEN — — BWM<3:0>

bit 15 bit 8

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
YWM<3:0> XWM<3:0>

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15 XMODEN: X RAGU and X WAGU Modulus Addressing Enable bit
1 = X AGU modulus addressing enabled
0 = X AGU modulus addressing disabled

bit 14 YMODEN: Y AGU Modulus Addressing Enable bit
1 = Y AGU modulus addressing enabled
0 = Y AGU modulus addressing disabled

bit 13-12 Unimplemented: Read as ‘0’
bit 11-8 BWM<3:0>: X WAGU Register Select for Bit-Reversed Addressing bits

1111 = Bit-reversed addressing disabled
1110 = W14 selected for bit-reversed addressing
1101 = W13 selected for bit-reversed addressing
•
•
•
0000 = W0 selected for bit-reversed addressing

bit 7-4 YWM<3:0>: Y AGU W Register Select for Modulo Addressing bits
1111 = Modulo addressing disabled
1010 = W10 selected for modulo addressing
1011 = W11 selected for modulo addressing

All other settings of the YWM<3:0> control bits are reserved and should not be used.
bit 3-0 XWM<3:0>: X RAGU and X WAGU W Register Select for Modulo Addressing bits

1111 = Modulo addressing disabled
1110 = W14 selected for modulo addressing
•
•
•
0000 = W0 selected for modulo addressing

Note: A write to the MODCON register should not be followed by an instruction that performs an
indirect read operation using a W register. Unexpected results may occur. Some
instructions perform an implicit indirect read. These are: POP, RETURN, RETFIE, RETLW
and ULNK.
DS70202B-page 3-20 © 2007 Microchip Technology Inc.

Section 3. Data Memory
D

ata M
em

ory

3

Register 3-2: XMODSRT: X AGU Modulo Addressing Start Register

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
XS<15:8>

bit 15 bit 8

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R-0
XS<7:1> 0

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-1 XS<15:1>: X RAGU and X WAGU Modulo Addressing Start Address bits
bit 0 Unimplemented: Read as ‘0’

Register 3-3: XMODEND: X AGU Modulo Addressing End Register

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
XE<15:8>

bit 15 bit 8

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R-1
XE<7:1> 1

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-1 XE<15:1>: X RAGU and X WAGU Modulo Addressing End Address bits
bit 0 Unimplemented: Read as ‘0’
© 2007 Microchip Technology Inc. DS70202B-page 3-21

dsPIC33F Family Reference Manual
Register 3-4: YMODSRT: Y AGU Modulo Addressing Start Register

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
YS<15:8>

bit 15 bit 8

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R-0
YS<7:1> 0

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-1 YS<15:1>: Y AGU Modulo Addressing Start Address bits
bit 0 Unimplemented: Read as ‘0’

Register 3-5: YMODEND: Y AGU Modulo Addressing End Register

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
YE<15:8>

bit 15 bit 8

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R-1
YE<7:1> 1

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 0 YE<15:1>: Y AGU Modulo Addressing End Address bits
bit 0 Unimplemented: Read as ‘0’
DS70202B-page 3-22 © 2007 Microchip Technology Inc.

Section 3. Data Memory
D

ata M
em

ory

3

Register 3-6: XBREV: X Write AGU Bit-Reversal Addressing Control Register

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
BREN XB<14:8>

bit 15 bit 8

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
XB<7:0>

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15 BREN: Bit-Reversed Addressing (X AGU) Enable bit
1 = Bit-reversed addressing enabled
0 = Bit-reversed addressing disabled

bit 14-0 XB<14:0>: X AGU Bit-Reversed Modifier bits
0x4000 = 32768 word buffer
0x2000 = 16384 word buffer
0x1000 = 8192 word buffer
0x0800 = 4096 word buffer
0x0400 = 2048 word buffer
0x0200 = 1024 word buffer
0x0100 = 512 word buffer
0x0080 = 256 word buffer
0x0040 = 128 word buffer
0x0020 = 64 word buffer
0x0010 = 32 word buffer
0x0008 = 16 word buffer
0x0004 = 8 word buffer
0x0002 = 4 word buffer
0x0001 = 2 word buffer
© 2007 Microchip Technology Inc. DS70202B-page 3-23

dsPIC33F Family Reference Manual
3.7 RELATED APPLICATION NOTES
This section lists application notes related to this section of the manual. These application notes
may not be written specifically for the dsPIC33F device family, but the concepts are pertinent and
could be used with modification and possible limitations. The current application notes related to
the Data Memory module are:

Title Application Note #
No related application notes at this time.

Note: For additional Application Notes and code examples for the dsPIC33F device
family, visit the Microchip web site (www.microchip.com).
DS70202B-page 3-24 © 2007 Microchip Technology Inc.

http://www.microchip.com
http://www.microchip.com

Section 3. Data Memory
D

ata M
em

ory

3

3.8 REVISION HISTORY
Revision A (March 2007)
This is the initial released revision of this document.

Revision B (April 2007)
Minor updates throughout the document.
© 2007 Microchip Technology Inc. DS70202B-page 3-25

dsPIC33F Family Reference Manual
NOTES:
DS70202B-page 3-26 © 2007 Microchip Technology Inc.

	Section 3. Data Memory
	3.1 Introduction
	3.1.1 Near Data Memory

	3.2 Data Space Address Generator Units (AGUs)
	3.2.1 X Address Generator Unit
	3.2.2 Y Address Generator Unit
	3.2.3 Address Generator Units and DSP Class Instructions
	3.2.4 Data Alignment

	3.3 Modulo Addressing
	3.3.1 Modulo Start and End Address Selection
	3.3.2 W Address Register Selection
	3.3.3 Modulo Addressing Applicability
	3.3.4 Modulo Addressing Initialization for Incrementing Modulo Buffer
	3.3.5 Modulo Addressing Initialization for Decrementing Modulo Buffer

	3.4 Bit-Reversed Addressing
	3.4.1 Introduction to Bit-Reversed Addressing
	3.4.2 Bit-Reversed Addressing Operation
	3.4.3 Bit-Reverse Modifier Value
	3.4.4 Bit-Reversed Addressing Code Example

	3.5 DMA RAM
	3.6 Control Register Descriptions
	3.7 Related Application Notes
	3.8 Revision History

