
Section 4. Program Memory
Program
 M

em
ory

4

HIGHLIGHTS
This section of the manual contains the following topics:

4.1 Program Memory Address Map ... 4-2
4.2 Control Registers ...4-4
4.3 Program Counter ... 4-5
4.4 Program Memory Access Using Table Instructions ... 4-6
4.5 Program Space Visibility from Data Space... 4-12
4.6 Program Memory Writes .. 4-19
4.7 Program Memory Low-Power Mode .. 4-19
4.8 Register Map..4-20
4.9 Related Application Notes.. 4-21
4.10 Revision History ...4-22
© 2010 Microchip Technology Inc. DS70613B-page 4-1

dsPIC33E/PIC24E Family Reference Manual
4.1 PROGRAM MEMORY ADDRESS MAP
dsPIC33E/PIC24E devices have a 4M x 24-bit program memory address space. An example of
the program memory map is presented in Figure 4-1. The program memory space can be
accessed through the following methods:

• the 23-bit program counter (PC)
• table read (TBLRD) and table write (TBLWT) instructions
• mapping any 32-Kbyte segment of program memory into the data memory address space

Figure 4-1: Example of dsPIC33E/PIC24E Program Memory Map

Note 1: The address boundaries for user Flash program memory will depend on the
dsPIC33E/PIC24E device variant selected. For further details, refer to the appropriate
device data sheet.

2: Reset location is controlled by the Reset Target Vector Select bit (RSTPRI). Refer
Section 30 “Device Configuration” (DS70618) for more information.

C
on

fig
ur

at
io

n
M

em
or

y
Sp

ac
e

U
se

r M
em

or
y

Sp
ac

e

0x000000
0x000002

0x800000

0xF80000
0xF80010
0xF80012

0xFEFFFE
0xFF0000
0xFF0002

0xF7FFFE

0x000004

0x7FFFFE

0x000200
0x0001FE

Reset Address

Device Configuration

User Program
Flash Memory

(175104 instructions)

Registers

DEVID (2)

Unimplemented
(Read ‘0’s)

GOTO Instruction

Reserved

Reserved

Interrupt Vector Table

dsPIC33EP512MU810/814 and

0x055800
0x0557FE

0x02B000
0x02AFFE

Reserved

0xFFFFFE

0x7FC004

0x7FBFFE

Flash Memory
Auxiliary Program

PIC24EP512GU810/814

GOTO Instruction(2)

Reset Address(2)

Write Latch

Reserved

0xFA0000
0xFA00FE
0xFA0100

0x7FC000
0x7FC002
DS70613B-page 4-2 © 2010 Microchip Technology Inc.

Section 4. Program Memory
Program

 M
em

ory

4

Arrows on the left side of the program memory map in Figure 4-1 illustrate the division of the pro-
gram memory address space in dsPIC33E/PIC24E devices into the User Memory Space and the
Configuration Memory Space.

The User Memory Space is comprised of the following areas:

• Reset Vector Address
• Interrupt Vector Table
• User Program Flash Memory
• Auxiliary Program Flash Memory (if applicable; refer to the data sheet for a specific device)

Instructions in auxiliary program Flash memory can be executed by the CPU, without stalling it,
while the user program memory is being erased and/or programmed. Similarly, instructions in the
user program memory can be executed by the CPU while the auxiliary program memory is being
erased and/or programmed, without stalls.

The Configuration Memory Space contains the nonvolatile Configuration bits, for setting device
options, and the device ID locations.
© 2010 Microchip Technology Inc. DS70613B-page 4-3

dsPIC33E/PIC24E Family Reference Manual
4.2 CONTROL REGISTERS

Register 4-1: TBLPAG: Table Page Register

U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0
— — — — — — — —

bit 15 bit 8

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
TBLPAG<7:0>

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-8 Unimplemented: Read as ‘0’
bit 7-0 TBLPAG<7:0>: Table Address Page bits

The 8-bit Table Address Page bits are concatenated with the W register to form a 23-bit effective
program memory address plus a Byte Select bit.

Register 4-2: DSRPAG: Data Space Read Page Register(1,2)

U-0 U-0 U-0 U-0 U-0 U-0 R/W-0 R/W-0
— — — — — — DSRPAG<9:8>

bit 15 bit 8

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-1
DSRPAG<7:0>

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-10 Unimplemented: Read as ‘0’
bit 9-0 DSRPAG<9:0>: Data Space Read Page Pointer bits

Note 1: When DSRPAG = 0x000, attempts to read from the paged DS window will cause an address error trap.

2: DSRPAG is reset to 0x001.
DS70613B-page 4-4 © 2010 Microchip Technology Inc.

Section 4. Program Memory
Program

 M
em

ory

4

4.3 PROGRAM COUNTER
The PC increments by two with the Least Significant bit (LSb) set to ‘0’ to provide compatibility
with data space addressing. Sequential instruction words are addressed in the 4M program
memory space by PC<22:1>. Each instruction word is 24 bits wide.

The LSb of the program memory address (PC<0>) is reserved as a Byte Select bit for program
memory accesses from data space, that use Program Space Visibility (PSV) or table instructions.
For instruction fetches via the PC, the Byte Select bit is not required, so PC<0> is always set to
‘0’. For more information on the PSV mode of operation, see 4.5 “Program Space Visibility
from Data Space”.

Figure 4-2 illustrates an instruction fetch example. Note that incrementing PC<22:1> by ‘1’ is
equivalent to adding 2 to PC<22:0>.

Figure 4-2: Instruction Fetch Example

22 0

Program Counter 0

0x000000

0x7FFFFE

24 bits

In
st

ru
ct

io
n

Instruction
23

+1(1)
2423 User

Space

La
tc

h

Note 1: An increment of ‘1’ to PC<22:1> is equivalent to PC<22:0>+2.
© 2010 Microchip Technology Inc. DS70613B-page 4-5

dsPIC33E/PIC24E Family Reference Manual
4.4 PROGRAM MEMORY ACCESS USING TABLE INSTRUCTIONS
The TBLRDx and TBLWTx instructions offer a direct method of reading or writing the least
significant word (lsw) and the Most Significant Byte (MSB) of any address within program space
without going through data space, which is preferable for some applications.

4.4.1 Table Instruction Summary
A set of table instructions is provided to move byte- or word-sized data between program space
and data space. The table read instructions are used to read from the program memory space
into data memory space. The table write instructions allow data memory to be written to the
program memory space using write latches.

The four available table instructions are:

• TBLRDL: Table Read Low
• TBLWTL: Table Write Low
• TBLRDH: Table Read High
• TBLWTH: Table Write High

For table instructions, program memory can be regarded as two 16-bit, word-wide address
spaces residing side by side, each with the same address range (as illustrated in Figure 4-3).
This allows program space to be accessed as byte or aligned word addressable, 16-bit-wide,
64-Kbyte pages (i.e., same as data space).

TBLRDL and TBLWTL access the least significant data word of the program memory, and TBLRDH
and TBLWTH access the upper word. Because program memory is only 24 bits wide, the upper
byte from this latter space does not exist, although it is addressable. It is, therefore, termed the
“phantom” byte.

Figure 4-3: High and Low Address Regions for Table Operations

Note: Detailed code examples using table write instructions can be found in Section
5. “Flash Programming” (DS70609).

Note: The TBLPAG register can be written using the MOVPAG #lit8, TBLPAG instruc-
tion or the MOVPAGW Wn, TBLPAG instruction. Refer to the “16-bit MCU and DSC
Programmer’s Reference Manual” (DS70157) for details.

0816PC Address

0x000100
0x000102
0x000104
0x000106

23
00000000

00000000

00000000

00000000

Program Memory
‘Phantom’ Byte
(Read as ‘0’)

‘HIGH’ Table Address Range ‘LOW’ Table Address Range
DS70613B-page 4-6 © 2010 Microchip Technology Inc.

Section 4. Program Memory
Program

 M
em

ory

4

4.4.2 Table Address Generation
Figure 4-4 illustrates how for all table instructions, a W register address value is concatenated
with the 8-bit Table Page register (TBLPAG), to form a 24-bit effective program space address,
including a Byte Select bit (bit 0). Because there are 16 bits of program space address provided
from the W register, the data table page size in program memory is 32K words.

Figure 4-4: Address Generation for Table Operations

4.4.3 Program Memory Low Word Access
The TBLRDL and TBLWTL instructions are used to access the lower 16 bits of program memory
data. The LSb of the W register, which is used as a pointer, is ignored for word-wide table
accesses. For byte-wide accesses, the LSb of the W register address determines which byte is
read. Figure 4-5 demonstrates the program memory data regions accessed by the TBLRDL and
TBLWTL instructions.

Figure 4-5: Program Data Table Access (Lower 16 bits)

Note: In the event of an overflow or underflow, the Effective Address (EA) will wrap to the
beginning of the current page.

TBLPAG

8 bits from TBLPAG

EA

EA<0> Selects Byte

24-bit EA

TBLPAG<7> Selects
User/Configuration
Space

01507

16 bits from Wn

0816PC Address

0x000100
0x000102
0x000104
0x000106

23
00000000

00000000

00000000

00000000

Program Memory
‘Phantom’ Byte
(Read as ‘0’)

TBLRDL.W

TBLRDL.B (Wn<0> = 1)

TBLRDL.B (Wn<0> = 0)
© 2010 Microchip Technology Inc. DS70613B-page 4-7

dsPIC33E/PIC24E Family Reference Manual
4.4.4 Program Memory High Word Access
The TBLRDH and TBLWTH instructions are used to access the upper 8 bits of the program
memory data. Figure 4-6 illustrates how these instructions also support Word or Byte Access
modes for orthogonality, but the high byte of the program memory data will always return ‘0’.

Figure 4-6: Program Data Table Access (Upper 8 bits)

0816PC Address

0x000100
0x000102
0x000104
0x000106

23
00000000

00000000

00000000

00000000

Program Memory
‘Phantom’ Byte
(Read as ‘0’)

TBLRDH.W

TBLRDH.B (Wn<0> = 1)

TBLRDH.B (Wn<0> = 0)
DS70613B-page 4-8 © 2010 Microchip Technology Inc.

Section 4. Program Memory
Program

 M
em

ory

4

Figure 4-7: Table Memory Map

TABLE PAGE
0x00

TABLE PAGE
0x01

0x000000

0x020000

0x010000

TBLRDH or
TBLWTH

(MS-Byte
Access Enabled)

TABLE PAGE
0x02

TABLE PAGE
0xFD

TABLE PAGE
0xFE

TABLE PAGE
0xFF

0xFD0000

0xFF0000

0xFE0000

TABLE PAGE
0x00

TABLE PAGE
0x01

TABLE PAGE
0x02

TABLE PAGE
0xFD

TABLE PAGE
0xFE

TABLE PAGE
0xFF

TBLRDL or
TBLWTL

(LS-Word
Access Enabled)

24-bit
Program Space Address

[TBLPAG<7:0>:Wn<15:0>]

Instruction Executed =
TBLRDL, TBLRDH, TBLWTL or TBLWTH

(Table Access Enabled)

0xFFFFFE
© 2010 Microchip Technology Inc. DS70613B-page 4-9

dsPIC33E/PIC24E Family Reference Manual
4.4.5 Data Storage in Program Memory
It is assumed that for most applications, the high byte (PC<23:16>) is not used for data, making
the program memory appear to be 16 bits wide for data storage. It is recommended that the upper
byte of program data be programmed either as a NOP instruction, or as an illegal opcode value,
to protect the device from accidental execution of stored data. The TBLRDH and TBLWTH
instructions are provided primarily for array program/verification purposes, and for applications
that require compressed data storage.

4.4.6 Accessing Program Memory Using Table Instructions
In Example 4-1, table instructions are used to access the program memory using an assembly
language subroutine. In Example 4-2, program memory is accessed using the
_builtin_tblpage and _builtin_tbloffset built-in functions provided by the MPLAB®

C30 compiler.

Example 4-1: Using Table Instructions to Access Program Memory

Example 4-2 uses the space(prog) attribute to allocate the buffer in program memory. Also,
the upper byte of each element in the constant array is filled with a value of 0xAB, using the
fillupper() attribute. The MPLAB® C30 Compiler has built-in functions, such as
builtin_tblpage and builtin_tbloffset, that can be used to access the buffer.

Note: For more information on the unlocking sequence, refer to Section 5. “Flash
Programming” (DS70609).

#include <p33Exxxx.h>

_FOSCSEL(FNOSC_FRC);
_FOSC(FCKSM_CSECMD & OSCIOFNC_OFF & POSCMD_NONE);
_FWDT(FWDTEN_OFF);

#define PM_ROW_ERASE 0x4003
#define PM_ROW_WRITE 0x4002
#define CONFIG_WORD_WRITE 0x4000

extern long MemRead (unsigned int TablePage, unsigned int TableOffset);

unsigned long Data1, Data2, Data3;

int main(void)
{

/* Read Configuration Register addresses 0xF80000 and 0xF80002 */
Data1 = MemRead (0xF8, 0x0006);
Data2 = MemRead (0xF8, 0x0008);
Data3 = MemRead (0xF8, 0x000A);

while(1);
}

.section .text

.global _MemRead

;************************
; Function _MemRead:
;
; W0 = TBLPAG value
; W1 = Table Offset
; Return: Data in W1:W0
;************************
_MemRead:

MOV W0, TBLPAG
NOP
TBLRDL [W1], W0
TBLRDH [W1], W1
RETURN
DS70613B-page 4-10 © 2010 Microchip Technology Inc.

Section 4. Program Memory
Program

 M
em

ory

4

Example 4-2: Using MPLAB® C Compiler to Access Program Memory
#include <p33Exxxx.h>

_FOSCSEL(FNOSC_FRC);
_FOSC(FCKSM_CSECMD & OSCIOFNC_OFF & POSCMD_NONE);
_FWDT(FWDTEN_OFF);

int prog_data[10] __attribute__((space(prog),fillupper(0xAB))) = {0x0000,
0x1111, 0x2222, 0x3333, 0x4444, 0x5555, 0x6666, 0x7777, 0x8888, 0x9999};

unsigned int lowWord[10], highWord[10];
unsigned int tableOffset, loopCount;

int main(void)
{

TBLPAG = __builtin_tblpage (prog_data);
tableOffset = __builtin_tbloffset (prog_data);

/* Read all 10 constants into the lowWord and highWord arrays */
for (loopCount = 0; loopCount < 10; loopCount ++)
{

lowWord[loopCount] = __builtin_tblrdl (tableOffset);
highWord[loopCount] = __builtin_tblrdh (tableOffset);
tableOffset +=2;

}

while(1);
}

© 2010 Microchip Technology Inc. DS70613B-page 4-11

dsPIC33E/PIC24E Family Reference Manual
4.5 PROGRAM SPACE VISIBILITY FROM DATA SPACE
The upper 32 Kbytes of the dsPIC33E/PIC24E data memory address space can optionally be
mapped into any 16K word program space page. The PSV mode of operation provides
transparent access of stored constant data from X data space without the need to use special
instructions (i.e., TBLRD, TBLWT instructions).

4.5.1 PSV Configuration
The dsPIC33E/PIC24E core extends the available data space through a paging scheme to make
it appear linear for pre- and post-modified effective addresses.

The upper half of the base data space address (0x8000 to 0xFFFF) is used with the 10-bit Data
Space Read Page register (DSRPAG) to form a PSV address, and can address 8 Mbytes of PSV
address space.

The paged memory scheme provides access to multiple 32-Kbyte windows in the PSV memory.
The PSV in the paged data memory space is illustrated in Figure 4-8.

Program space (PS) can be read with a DSRPAG register of 0x200 or greater.

Reads from PS are supported using the DSRPAG register. Writes to PS are not supported;
therefore, the Data Space Write Page register (DSWPAG) is dedicated exclusively to data space
(DS), including extended data space (EDS).

For more information on the paged memory scheme refer to Section 3. “Data Memory”
(DS70595).

Note: The DSRPAG register can be written using the MOVPAG #lit10, DSRPAG instruc-
tion or the MOVPAG Wn, DSRPAG instruction. Refer to the “16-bit MCU and DSC
Programmer’s Reference Manual” (DS70157) for details.
DS70613B-page 4-12 © 2010 Microchip Technology Inc.

Section 4. Program Memory
Program

 M
em

ory

4

Figure 4-8: PSV Memory Map

SFR and
Non-Mappable

Data Space

Mappable
Data Space

0x0000

0xFFFF

0x8000

16-bit
Data Space

Address

[EA<15:0>]

(PAGE 0)

PSV PAGE
0x300

PSV PAGE
0x301

0x000000

0x010000

0x008000

DSRPAG<8> = 1

(MS-Byte
Access Enabled)

PSV PAGE
0x302

PSV PAGE
0x3FD

PSV PAGE
0x3FE

PSV PAGE
0x3FF

0x7E8000

0x7F8000

0x7F0000

PSV PAGE
0x200

PSV PAGE
0x201

PSV PAGE
0x202

PSV PAGE
0x2FD

PSV PAGE
0x2FE

PSV PAGE
0x2FF

DSRPAG<8> = 0

(LS-Word
Access Enabled)

24-bit
Program Space Address

[0:DSRPAG<7:0>:EA<14:0>]

DSRPAG<9> = 1

(PSV Access Enabled)

0x7FFFFE
© 2010 Microchip Technology Inc. DS70613B-page 4-13

dsPIC33E/PIC24E Family Reference Manual
Allocating different page registers for read and write access allows the architecture to support
data movement from different PSV to EDS pages, by configuring DSRPAG and DSWPAG to
address PSV and EDS space, respectively. The data can be moved from PSV to EDS space by
a single instruction.

Figure 4-9 illustrates the generation of the PSV address. The 15 Least Significant bits (LSbs) of
the PSV address are provided by the W register that contains the effective address. The Most
Significant bit (MSb) of the W register is not used to form the address. Instead, the MSb specifies
whether to perform a PSV access from program memory space or a normal access from the data
memory space. If the effective address of the W register is 0x8000 or greater, the data access
will occur from program memory space, depending on the page selected by the DSRPAG
register. All data access occurs from the data memory when the effective address of the
W register is less than 0x8000.

Figure 4-9: PSV Address Generation

The remaining address bits are provided by the 8 LSb of the Read Data Space Page register
(DSRPAG<7:0>). The DSRPAG<7:0> bits are concatenated with the 15 LSb of the W register
holding the effective address, and the MSb is forced to ‘0’, thereby forming a 24-bit program
memory address.

The LSb of the W register value is used as a Byte Select bit, which allows instructions using PSV
to operate in Byte or Word mode.

The PSV address is split into lsw and MSB. When DSRPAG<9:8> = 0b10, the lsw 16 bits of the
24-bit PS word can be accessed using PSV. When DSRPAG<9:8> = 0b11, the MSB of the 24-bit
PS word can be accessed using PSV. This is illustrated in Figure 4-10 and Figure 4-11. The
range of valid DSRPAG values for a lsw read starts at DSRPAG = 0x200 and the range of valid
DSRPAG values for a MSB read starts at DSRPAG = 0x300.

1

8 bits

EA

15 bits

Byte

23-bit PS Effective Address

Select
EA<15>

G
en

er
at

e
E

D
S

DSRPAG<7:0>(2)
X(1)1

User Program Space Read

ad
dr

es
s

D
S

R
PA

G
<9

>
D

S
R

PA
G

<8
>

S
el

ec
t D

S
R

PA
G

= 1?
DSRPAG<9>

Y

N

Note 1: DSRPAG<9:8> = 11 is used for accessing the Most Significant Byte (MSB), DSRPAG<9:8> = 10 is used for
accessing the least significant word (lsw).

2: PSV access is only performed if 0x200 ≤ DSRPAG<9:0> ≤ 0x3FF.

fo
r P

S
V

Ad
dr

es
s

Note: PSV can only be used to access values in the program memory space. Table
instructions must be used to access values in the user configuration space.
DS70613B-page 4-14 © 2010 Microchip Technology Inc.

Section 4. Program Memory
Program

 M
em

ory

4

Figure 4-10: Program Space Visibility Operation lsw Access

23 15 0

DSRPAG

15

15

EA<15> = 0

EA[15] = 1

16X Data
Space

EA

Data Space

8

15

23

0x0000

0x8000

0xFFFF

0x2A2

0x510000

0x517FFF

Data Read

DSRPAG<9:8> = 2'b10

DSRPAG<9> = 1
Select PSV Access

D
S

R
PA

G
<7

:0
>

0x00

01

D
S

R
PA

G
<8

>
=
0

H
ig

h/
Lo

w
 S

el
ec

t

Program Space
© 2010 Microchip Technology Inc. DS70613B-page 4-15

dsPIC33E/PIC24E Family Reference Manual
Figure 4-11: Program Space Visibility Operation MSB Access

4.5.2 PSV Mapping with X and Y Data Space
The Y data space is located outside the upper half of data space for most dsPIC33E/PIC24E
variants, such that the PSV area will map into X data space. The X and Y mapping affects the
way PSV is used in algorithms.

For example, the PSV mapping can be used to store coefficient data for Finite Impulse Response
(FIR) filter algorithms. The FIR filter multiplies each value of a data buffer that contains historical
filter input data with elements of a data buffer that contains constant filter coefficients. The FIR
algorithm is executed using the MAC instruction within a REPEAT loop. Each iteration of the MAC
instruction prefetches one historical input value and one coefficient value to be multiplied in the
next iteration. One of the prefetched values must be located in X data memory space and the
other must be located in Y data memory space.

To satisfy the PSV mapping requirements for the FIR filter algorithm, the user application must
locate the historical input data in the Y memory space, and the filter coefficients in X memory
space.

23 15 0

DSRPAG

15

15

EA<15> = 0

EA<15> = 1

16X Data
Space

EA

Data Space

Program Space

8

15

23

0x0000

0x8000

0xFFFF

0x3A2

0x510000

0x517FFF

Data Read

DSRPAG<9:8> = 2'b11

DSRPAG<9> = 1
Select PSV Access

D
S

R
PA

G
<7

:0
>

0x00

01

D
S

R
PA

G
<8

>
=
1

H
ig

h/
Lo

w
 S

el
ec

t

DS70613B-page 4-16 © 2010 Microchip Technology Inc.

Section 4. Program Memory
Program

 M
em

ory

4

4.5.3 PSV Timing
All instructions that use PSV require five instruction cycles to complete execution.

4.5.3.1 USING PSV IN A REPEAT LOOP

Instructions that use PSV with Indirect Addressing mode using a post-modification offset of +2 or
-2 within a REPEAT loop eliminate some of the cycle count overhead required for the instruction
access from program memory. These instructions have an effective execution throughput of one
instruction cycle per iteration. However the following iterations of the REPEAT loop will execute
in five instruction cycles:

• First iteration
• Instruction execution prior to exiting the loop due to an interrupt
• Instruction execution upon re-entering the loop after an interrupt is serviced

The last iteration of the REPEAT loop will execute in six instruction cycles.

If the PSV Addressing mode uses an offset range other than +2 or -2 within a REPEAT loop, five
instruction cycles are needed to execute each iteration of the loop.

4.5.3.2 PSV AND INSTRUCTION STALLS

For more information about instruction stalls using PSV, refer to Section 2. “CPU” (DS70359).

4.5.4 PSV Code Examples
Example 4-3 illustrates how to create a buffer, and access the buffer in the compiler-managed
PSV section. The auto_psv space is the compiler-managed PSV section. Sections greater than
32K are allowed and automatically managed. By default, the compiler places all ‘const’ qualified
variables into the auto_psv space.

When auto_psv is used, the compiler will save/restore the DSRPAG register dynamically, as
needed. The tool chain will arrange for the DSRPAG to be correctly initialized in the compiler
run-time startup code.

Example 4-3: Compiler Managed PSV Access

Note: Unlike PSV accesses, a TBLRDx instruction requires five instruction cycles for each
iteration.

Note: The auto_psv option must be used if the user application is using both PSV and
EDS accesses on a device with more than 28 KB of RAM.

#include <p33Exxxx.h>

_FOSCSEL(FNOSC_FRC);
_FOSC(FCKSM_CSECMD & OSCIOFNC_OFF & POSCMD_NONE);
_FWDT(FWDTEN_OFF);

const int m[5] __attribute__((space(auto_psv))) = {1, 2, 3, 4, 5};
int x[5] = {10, 20, 30, 40, 50};
int sum;

int vectordot (int *, int *);

int main(void)
{

// Compiler-managed PSV
sum = vectordot ((int *) m, x);

while(1);
}

int vectordot (int *m, int *x)
{

int i, sum = 0;

for (i = 0; i < 5; i ++)
sum += (*m++) * (*x++);

return (sum);
}

© 2010 Microchip Technology Inc. DS70613B-page 4-17

dsPIC33E/PIC24E Family Reference Manual
Example 4-4 illustrates buffer placement and access in the user-managed PSV section. The psv
space is the user-managed PSV section.

Example 4-4: User Managed PSV Access
#include <p33Exxxx.h>

_FOSCSEL(FNOSC_FRC);
_FOSC(FCKSM_CSECMD & OSCIOFNC_OFF & POSCMD_NONE);
_FWDT(FWDTEN_OFF);

const int m[5] = {1, 2, 3, 4, 5};
const int m1[5] __attribute__ ((address(0x10000))) = {2, 4, 6, 8, 10};
const int m2[5] __attribute__ ((address(0x20000))) = {3, 6, 9, 12, 15};
int x[5] = {10, 20, 30, 40, 50};
int sum, sum1, sum2;

int vectordot (int *, int *);

int main(void)
{

int temp;

// Save original PSV page value
temp = DSRPAG;

DSRPAG = __builtin_psvpage (m1);
sum1 = vectordot ((int *) m1, x);

DSRPAG = __builtin_psvpage (m2);
sum2 = vectordot ((int *) m2, x);

// Restore original PSV page value
DSRPAG = temp;

sum = vectordot ((int *) m, x);

while(1);
}

int vectordot (int *m, int *x)
{

int i, sum = 0;

for (i = 0; i < 5; i ++)
sum += (*m++) * (*x++);

return (sum);
}

DS70613B-page 4-18 © 2010 Microchip Technology Inc.

Section 4. Program Memory
Program

 M
em

ory

4

Example 4-5 illustrates the placement of constant data in program memory, and accesses this
data through the PSV data window using an assembly program.

Example 4-5: PSV Code Example in Assembly

4.6 PROGRAM MEMORY WRITES
The dsPIC33E/PIC24E families of devices contain internal program Flash memory for executing
user code. There are two methods by which the user application can program this memory:

• Run-Time Self-Programming (RTSP)
• In-Circuit Serial Programming™ (ICSP™)

RTSP is accomplished using TBLWT instructions. ICSP is accomplished using the SPI interface
and integral bootloader software. For further details on RTSP, refer to Section 5. “Flash
Programming” (DS70609). For further details on ICSP, refer to the “dsPIC33E/PIC24E Flash
Programming Specification” (DS70619), which can be obtained from the Microchip web site
(www.microchip.com).

4.7 PROGRAM MEMORY LOW-POWER MODE
The voltage regulator for the program Flash memory can be placed in Stand-by mode when the
device is in Sleep mode, resulting in a significant reduction in device power-down current (IPD).

When the VREGSF bit (RCON<11>) is equal to ‘0’, the Flash memory voltage regulator goes into
Stand-by mode during Sleep. When the VREGSF bit is equal to ‘1’, the Flash memory voltage
regulator is active during Sleep mode.

.section .const, psv
fib_data:

.word 0, 1, 2, 3, 5, 8, 13

; Start of code section
.text

.global __main
__main:

; Set DSRPAG to the page that contains the “fib_data” array
MOVPAG #psvpage(fib_data), DSRPAG

; Set up W0 as a pointer to “fib_data” through the PSV data window
MOV #psvoffset(fib_data), W0

; Load the data values into registers W1 - W7
MOV [W0++], W1
MOV [W0++], W2
MOV [W0++], W3
MOV [W0++], W4
MOV [W0++], W5
MOV [W0++], W6
MOV [W0++], W7

done:
BRA done

RETURN
© 2010 Microchip Technology Inc. DS70613B-page 4-19

http://www.microchip.com
http://www.microchip.com

dsPIC
33E/PIC

24E Fam
ily R

eference M
anual

D
S

70613B
-page 4-20

©
 2010 M

icrochip Technology Inc.

Bit 3 Bit 2 Bit 1 Bit 0 All
Resets

:0> 0000

0001
4.8 REGISTER MAP
A summary of the registers associated with Program Memory is provided in Table 4-1.

Table 4-1: Program Memory Registers

SFR Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4

TBLPAG — — — — — — — — TBLPAG<7
DSRPAG — — — — — — DSRPAG<9:0>
Legend: — = unimplemented, read as ‘0’. Shaded bits are not used in the operation of Program Memory.

Section 4. Program Memory
Program

 M
em

ory

4

4.9 RELATED APPLICATION NOTES
This section lists application notes that are related to this section of the manual. These
application notes may not be written specifically for the dsPIC33E/PIC24E Product Families, but
the concepts are pertinent and could be used with modification and possible limitations. The
current application notes related to the Program Memory module are:

Title Application Note #
No related application notes at this time. N/A

Note: For additional Application Notes and code examples for the dsPIC33E/PIC24E
families of devices, visit the Microchip web site (www.microchip.com).
© 2010 Microchip Technology Inc. DS70613B-page 4-21

http://www.microchip.com
http://www.microchip.com
http://www.microchip.com

dsPIC33E/PIC24E Family Reference Manual
4.10 REVISION HISTORY

Revision A (September 2009)
This is the initial released version of this document.

Revision B (July 2010)
This revision includes the following updates:

• All code examples have been updated (see Example 4-1 through Example 4-5)
• Updated the Program Memory Map (see Figure 4-1)
• Updated the first paragraph and the shaded note in 4.4.1 “Table Instruction Summary”
• Added a shaded note after Figure 4-3 with information on writing to the TBLPAG register
• Updated 4.4.2 “Table Address Generation”
• Updated the second sentence in 4.4.3 “Program Memory Low Word Access”
• Added the new figure Table Memory Map (see Figure 4-7) in 4.4.4 “Program Memory

High Word Access”
• Added a shaded note and updated the last paragraph in 4.5.1 “PSV Configuration”
• Updated the Paged Data Memory Space (see Figure 4-8)
• Updated the PSV Address Generation (see Figure 4-9)
• Changed the number of required instruction cycles from two to five throughout 4.5.3 “PSV

Timing”
• Added a shaded note after Example 4-3 with information on using the auto_psv option
• Added a reference to the “dsPIC33E/PIC24E Flash Programming Specification” (DS70619)

to 4.6 “Program Memory Writes”
DS70613B-page 4-22 © 2010 Microchip Technology Inc.

Note the following details of the code protection feature on Microchip devices:
• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights.
© 2010 Microchip Technology Inc.
Trademarks

The Microchip name and logo, the Microchip logo, dsPIC,
KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART,
PIC32 logo, rfPIC and UNI/O are registered trademarks of
Microchip Technology Incorporated in the U.S.A. and other
countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,
MXDEV, MXLAB, SEEVAL and The Embedded Control
Solutions Company are registered trademarks of Microchip
Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard,
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,
ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial
Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified
logo, MPLIB, MPLINK, mTouch, Octopus, Omniscient Code
Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit,
PICtail, REAL ICE, rfLAB, Select Mode, Total Endurance,
TSHARC, UniWinDriver, WiperLock and ZENA are
trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2010, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.

 Printed on recycled paper.

ISBN: 978-1-60932-386-8
DS70613B-page 23

Microchip received ISO/TS-16949:2002 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

DS70613B-page 24 © 2010 Microchip Technology Inc.

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://support.microchip.com
Web Address:
www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Cleveland
Independence, OH
Tel: 216-447-0464
Fax: 216-447-0643
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260
Kokomo
Kokomo, IN
Tel: 765-864-8360
Fax: 765-864-8387
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Santa Clara
Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445
Toronto
Mississauga, Ontario,
Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC
Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China - Beijing
Tel: 86-10-8528-2100
Fax: 86-10-8528-2104
China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889
China - Chongqing
Tel: 86-23-8980-9588
Fax: 86-23-8980-9500
China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431
China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470
China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205
China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066
China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393
China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760
China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118
China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256
China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130
China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049

ASIA/PACIFIC
India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4123
India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632
India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513
Japan - Yokohama
Tel: 81-45-471- 6166
Fax: 81-45-471-6122
Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302
Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934
Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859
Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068
Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069
Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850
Taiwan - Hsin Chu
Tel: 886-3-6578-300
Fax: 886-3-6578-370
Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-536-4803
Taiwan - Taipei
Tel: 886-2-2500-6610
Fax: 886-2-2508-0102
Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820

WORLDWIDE SALES AND SERVICE

01/05/10

	Section 4. Program Memory
	4.1 Program Memory Address Map
	Figure 4-1: Example of dsPIC33E/PIC24E Program Memory Map

	4.2 Control Registers
	Register 4-1: TBLPAG: Table Page Register
	Register 4-2: DSRPAG: Data Space Read Page Register(1,2)

	4.3 Program Counter
	Figure 4-2: Instruction Fetch Example

	4.4 Program Memory Access Using Table Instructions
	4.4.1 Table Instruction Summary
	Figure 4-3: High and Low Address Regions for Table Operations

	4.4.2 Table Address Generation
	Figure 4-4: Address Generation for Table Operations

	4.4.3 Program Memory Low Word Access
	Figure 4-5: Program Data Table Access (Lower 16 bits)

	4.4.4 Program Memory High Word Access
	Figure 4-6: Program Data Table Access (Upper 8 bits)
	Figure 4-7: Table Memory Map

	4.4.5 Data Storage in Program Memory
	4.4.6 Accessing Program Memory Using Table Instructions
	Example 4-1: Using Table Instructions to Access Program Memory
	Example 4-2: Using MPLAB® C Compiler to Access Program Memory

	4.5 Program Space Visibility from Data Space
	4.5.1 PSV Configuration
	Figure 4-8: PSV Memory Map
	Figure 4-9: PSV Address Generation
	Figure 4-10: Program Space Visibility Operation lsw Access
	Figure 4-11: Program Space Visibility Operation MSB Access

	4.5.2 PSV Mapping with X and Y Data Space
	4.5.3 PSV Timing
	4.5.4 PSV Code Examples
	Example 4-3: Compiler Managed PSV Access
	Example 4-4: User Managed PSV Access
	Example 4-5: PSV Code Example in Assembly

	4.6 Program Memory Writes
	4.7 Program Memory Low-Power Mode
	4.8 Register Map
	Table 4-1: Program Memory Registers

	4.9 Related Application Notes
	4.10 Revision History

	Worldwide Sales and Service

