
Section 27. 32-Bit Programmable Cyclic Redundancy Check (CRC)
32-B
it

Program
m

able
C

yclic R
edundancy

27

HIGHLIGHTS

This section of the manual contains the following major topics:

27.1 Introduction .. 27-2
27.2 Module Overview ... 27-3
27.3 CRC Registers ... 27-3
27.4 CRC Engine ... 27-9
27.5 Control Logic..27-10
27.6 Advantages of Programmable CRC Module.. 27-13
27.7 Application of CRC Module.. 27-13
27.8 Operation in Power-Saving Modes .. 27-16
27.9 Register Maps.. 27-17
27.10 Related Application Notes.. 27-18
27.11 Revision History ... 27-19
© 2010 Microchip Technology Inc. DS70346B-page 27-1

dsPIC33E/PIC24E Family Reference Manual
27.1 INTRODUCTION
The 32-bit Programmable Cyclic Redundancy Check (CRC) module in dsPIC33E/PIC24E
devices is a software configurable CRC checksum generator. The checksum is a unique number
associated with a message or a particular block of data containing several bytes. Whether it is a
data packet for communication or a block of data stored in memory, the checksum helps to
validate it before processing. The simplest way to calculate a checksum is to add together all the
data bytes present in the message. However, this method of checksum calculation fails badly
when the message is modified by inverting or swapping groups of bytes. Also, it fails when null
bytes are added anywhere in the message.

The CRC is a more complicated and robust error checking algorithm. The main idea behind the
CRC algorithm is to treat a message as a binary bit stream and divide it by a fixed binary number.
The remainder from this division is treated as the checksum. Like in division, the CRC calculation
is also an iterative process. The only difference is that these operations are done as modulo
arithmetic based on mod2. For example, division is replaced with the XOR operation (i.e.,
subtraction without carry). The CRC algorithm uses polynomials to perform all of its calculations.
The divisor, dividend and remainder are represented by polynomials with binary coefficients. For
example, the number, 19h (11001), is represented by Equation 27-1.

Equation 27-1:

In order to perform the CRC calculation, a suitable divisor is first selected. This divisor is called
the generator polynomial. Since CRC is used to detect errors, a generator polynomial of a
suitable length needs to be chosen for a given application, as each polynomial has different error
detection capabilities. Some polynomials are widely used by many applications; however,
discussions about the error detecting capabilities of any particular polynomial are beyond the
scope of this reference section.

The CRC calculation is an iterative process and consumes considerable CPU bandwidth when
implemented in software. The software configurable CRC hardware module in
dsPIC33E/PIC24E devices facilitates a fast CRC checksum calculation with minimal software
overhead.

The programmable CRC generator provides a hardware implemented method of quickly
generating checksums for various communication and security applications. It provides the
following features:

• CRC16-CCITT compliant with the x16 + x12 + x5 + 1 polynomial
• Error detection for all single, double, odd and most multi-bit errors
• High-speed hardware CRC calculation
• User-programmable CRC polynomial equation, up to 32 bits
• Programmable shift direction (little-endian or big-endian), up to 32 bits
• Independent data and polynomial lengths
• Configurable Interrupt output
• Data FIFO

1 x4⋅() 1 x3⋅() 0 x2⋅() 0 x1⋅() 1 x0⋅()+ + + +

or, in simpler terms: x4 x3 x0
+ +
DS70346B-page 27-2 © 2010 Microchip Technology Inc.

Section 27. 32-Bit Programmable Cyclic Redundancy Check
32-B

it
Program

m
able

C
yclic R

edundancy

27
27.2 MODULE OVERVIEW
The programmable CRC generator module in dsPIC33E/PIC24E devices can be broadly
classified into two parts: the control logic and the CRC engine. The control logic incorporates a
register interface, FIFO, interrupt generator and CRC engine interface. The CRC engine
incorporates a CRC calculator, which is implemented using a serial shifter with a XOR function.
A simplified block diagram is shown in Figure 27-1.

Figure 27-1: Simplified Block Diagram of the Programmable CRC Generator

27.3 CRC REGISTERS
Different registers associated with the CRC module are described in detail in this section. There
are eight registers in this module. These are mapped to the data memory space as Special
Function Registers (SFRs) in dsPIC33E/PIC24E devices:

• CRCCON1: CRC Control1 Register
• CRCCON2: CRC Control2 Register
• CRCXORL: CRC XOR Low Register
• CRCXORH: CRC XOR High Register
• CRCDATL: CRC Data Low Register
• CRCDATH: CRC Data High Register
• CRCWDATL: CRC Shift Low Register
• CRCWDATH: CRC Shift High Register
The CRCCON1 register (Register 27-1) and CRCCON2 register (Register 27-2) control the
operation of the module and configure various settings. CRCXOR registers (Register 27-3 and
Register 27-4) select the polynomial terms to be used in the CRC equation. CRCDAT and
CRCWDAT registers are register pairs that serve as buffers for the double-word input data and
CRC processed output, respectively.

Variable FIFO
(4x32, 8x16 or 16x8)

Shift Buffer

CRC Shift Engine

CRCWDATH CRCWDATL

LENDIAN1

CRCISEL

1

0

FIFO Empty Event

Shift Complete

Set CRCIF
2 * FCY Shift Clock

CRCDATH CRCDATL

0

Event
© 2010 Microchip Technology Inc. Preliminary DS70346B-page 27-3

dsPIC33E/PIC24E Family Reference Manual
Register 27-1: CRCCON1: CRC Control1 Register

R/W-0 U-0 R/W-0 R-0 R-0 R-0 R-0 R-0
CRCEN — CSIDL VWORD<4:0>

bit 15 bit 8

R-0 R-1 R/W-0 R/W-0 R/W-0 U-0 U-0 U-0
CRCFUL CRCMPT CRCISEL CRCGO LENDIAN — — —

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15 CRCEN: CRC Enable bit
1 = CRC module is enabled
0 = CRC module is disabled. All state machines, pointers and CRCWDAT/CRCDAT are reset.

Other SFRs are not reset.
bit 14 Unimplemented: Read as ‘0’
bit 13 CSIDL: CRC Stop in Idle Mode bit

1 = Discontinue module operation when device enters the Idle mode
0 = Continue module operation in the Idle mode

bit 12-8 VWORD<4:0>: Counter Value bits
Indicates the number of valid words in the FIFO. It has a maximum value of 16 when DWIDTH<4:0> ≤ 7
(data words, 8 bits wide or less). It has a maximum value of 8 when DWIDTH<4:0> ≤ 15 (data words
from 9 to 16 bits wide). It has a maximum value of 4 when DWIDTH<4:0> ≤ 31(data words from 17 to
32 bits wide).

bit 7 CRCFUL: FIFO Full bit
1 = FIFO is full
0 = FIFO is not full

bit 6 CRCMPT: FIFO Empty bit
1 = FIFO is empty
0 = FIFO is not empty

bit 5 CRCISEL: CRC Interrupt Selection bit
1 = Interrupt on FIFO empty; final word of data still shifting through CRC
0 = Interrupt on shift complete and results ready

bit 4 CRCGO: Start CRC bit
1 = Start CRC serial shifter; clearing the bit aborts shifting
0 = Turn off CRC serial shifter after FIFO is empty

bit 3 LENDIAN: Data Word Little-Endian Configuration bit
1 = Data word is shifted into the CRC, starting with the LSb (little-endian); reflected input data
0 = Data word is shifted into the CRC, starting with the MSb (big-endian); non-reflected input data

bit 2-0 Unimplemented: Read as ‘0’
DS70346B-page 27-4 © 2010 Microchip Technology Inc.

Section 27. 32-Bit Programmable Cyclic Redundancy Check
32-B

it
Program

m
able

C
yclic R

edundancy

27

Register 27-2: CRCCON2: CRC Control2 Register

U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
— — — DWIDTH<4:0>

bit 15 bit 8

U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
— — — PLEN<4:0>

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-13 Unimplemented: Read as ‘0’
bit 12-8 DWIDTH<4:0>: Data Word Width Configuration bits

Configures the width of the data word (data word width – 1).
bit 7-5 Unimplemented: Read as ‘0’
bit 4-0 PLEN<4:0>: Polynomial Length Configuration bits

Configures the length of the polynomial (polynomial length – 1).
© 2010 Microchip Technology Inc. Preliminary DS70346B-page 27-5

dsPIC33E/PIC24E Family Reference Manual

Register 27-3: CRCXORL: CRC XOR Low Register

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
X<15:8>

bit 15 bit 8

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 U-0
X<7:1> —

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-1 X<15:1>: XOR of Polynomial Term xn Enable bits
bit 0 Unimplemented: Read as ‘0’

Register 27-4: CRCXORH: CRC XOR High Register

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
X<31:24>

bit 15 bit 8

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
X<23:16>

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-0 X<31:16>: XOR of Polynomial Term xn Enable bits
DS70346B-page 27-6 © 2010 Microchip Technology Inc.

Section 27. 32-Bit Programmable Cyclic Redundancy Check
32-B

it
Program

m
able

C
yclic R

edundancy

27
Register 27-5: CRCDATL: CRC Data Low Register

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
DATA<15:8>

bit 15 bit 8

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
DATA<7:0>

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-0 DATA<15:0>: CRC Input Data bits
Writing to this register fills the FIFO; reading from this register returns ‘0’.

Register 27-6: CRCDATH: CRC Data High Register

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
DATA<31:24>

bit 15 bit 8

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
DATA<23:16>

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-0 DATA<31:16>: CRC Input Data bits
Writing to this register fills the FIFO; reading from this register returns ‘0’.
© 2010 Microchip Technology Inc. Preliminary DS70346B-page 27-7

dsPIC33E/PIC24E Family Reference Manual
Register 27-7: CRCWDATL: CRC Shift Low Register

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
SDATA<15:8>

bit 15 bit 8

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
SDATA<7:0>

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-0 SDATA<15:0>: CRC Shift Register bits
Writing to this register writes to the CRC Shift register through the CRC write bus. Reading from this
register reads the CRC read bus.

Register 27-8: CRCWDATH: CRC Shift High Register

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
SDATA<31:24>

bit 15 bit 8

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
SDATA<23:16>

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-0 SDATA<31:16>: CRC Input Data bits
Writing to this register writes to the CRC Shift register through the CRC write bus. Reading from this
register reads the CRC read bus.
DS70346B-page 27-8 © 2010 Microchip Technology Inc.

Section 27. 32-Bit Programmable Cyclic Redundancy Check
32-B

it
Program

m
able

C
yclic R

edundancy

27
27.4 CRC ENGINE
The CRC engine is a serial shifting CRC calculator with feedforward and feedback points, which
is configurable (though multiplexer settings). A simple version of the CRC shift engine is shown
in Figure 27-2.

The CRC algorithm uses a simplified form of an arithmetic process, using the XOR operation
instead of binary division. The coefficients of the generator polynomial are programmed with
the CRCXORL<15:0> and CRCXORH<31:16> bits. Writing a ‘1’ into a location enables
XORing of that element in the polynomial. The length of the polynomial is programmed using
the PLEN<4:0> bits in the CRCCON2 register (CRCCON2<4:0>). The PLEN<4:0> value
signals the length of the polynomial and switches a multiplexer to indicate the tap from which
the feedback originated.

The result of the CRC calculation is obtained by reading the CRCWDATL and CRCWDATH
registers.

Figure 27-2: CRC Shift Engine Detail

CRCWDATH CRCWDATL

Bit 0 Bit 1 Bit n(2)

X(0)(1) X(1)(1)

Read/Write Bus

Shift Buffer
Data Bit 2

X(2)(1) X(n)(1)

Note 1: Each XOR stage of the shift engine is programmable. See text for details.

2: Polynomial length n is determined by (<PLEN4:0> + 1).
© 2010 Microchip Technology Inc. Preliminary DS70346B-page 27-9

dsPIC33E/PIC24E Family Reference Manual
27.5 CONTROL LOGIC

27.5.1 Polynomial Interface
The CRC module can be programmed for CRC polynomials of up to the 32nd order, using up to
32 bits. Polynomial length, which reflects the highest exponent in the equation, is selected by the
PLEN<4:0> bits (CRCCON2<4:0>). The CRCXORL and CRCXORH registers control which
exponent terms are included in the equation. Setting a particular bit includes that exponent term
in the equation functionally; an XOR operation on the corresponding bit in the CRC engine.
Clearing the bit disables the XOR operation for that bit. For example, consider two CRC polyno-
mials, one a 16-bit (Equation 27-2) and the other a 32-bit (Equation 27-3):

Equation 27-2: 16-Bit Polynomial

Equation 27-3: 32-Bit Polynomial

To include either of the polynomials into the CRC generator, set the register bits as shown in
Table 27-1.

Table 27-1: CRC Setup Examples for 16-Bit and 32-Bit Polynomials

Note that the appropriate positions are set to ‘1’ to indicate that they are used in the equation
(e.g., X26 and X23). The 0 bit required by the equation is always XORed; thus, X0 is a “don’t
care”. For a polynomial of length 32, it is assumed that the 32nd bit will be used. Therefore, the
X<31:1> bits do not have the 32nd bit.

27.5.2 Data Interface
The module accommodates user-defined input data width for calculating CRC. Input data width
can be configured to any value between 1 and 32 bits using the DWIDTH<4:0> bits
(CRCCON2<12:8>).

The input data is fed to the CRCDATL and CRCDATH registers. Depending upon the configuration
of the DWIDTH bits, the width of CRCDATL and CRCDATH registers is configured.

For data width less than or equal to 16 bits, only the CRCDATL register has to be used and any
writes to the CRCDATH register will be ignored.

For data width greater than 16 bits, both the CRCDATL and CRCDATH registers should be used.
The user must write the lower 16 bits (word) into the CRCDATL register first and then the upper
bits into the CRCDATH register.

27.5.3 Data Shift Direction
The LENDIAN bit (CRCCON1<3>) is used to control the shift direction. By default, the CRC will
shift data through the engine, MSb first (LENDIAN = 0). Setting LENDIAN (= 1) causes the CRC
to shift data, LSb first. This setting allows better integration with various communication schemes

CRC Control Bits
Bit Values

16-Bit Polynomial 32-Bit Polynomial

PLEN<4:0> 01111 11111

X<31:16> 0000 0000 0000 0001 0000 0100 1100 0001

X<15:0> 0001 0000 0010 000x 0001 1101 1011 011x

Note: For data width less than or equal to 8 bits, the user should feed the input data
through byte operations into the CRCDATL register.

x16 + x12 + x5 + 1

x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x + 1
DS70346B-page 27-10 © 2010 Microchip Technology Inc.

Section 27. 32-Bit Programmable Cyclic Redundancy Check
32-B

it
Program

m
able

C
yclic R

edundancy

27
and removes the overhead of reversing the bit order in software. Note that this only changes the
direction the data is shifted into the engine. The result of the CRC calculation will still be a normal
CRC result, not a reverse CRC result.

27.5.4 FIFO
The module incorporates a FIFO that works with a variable data width. The FIFO is physically
implemented as an 8-deep, 16-bit wide storage element. This FIFO width is defined by the
DWIDTH<4:0> bits (CRCCON2<12:8>). Input data width can be configured to any value
between 1 and 32 bits using the DWIDTH bits. The logic associated with the FIFO contains a
5-bit counter, called VWORD (VWORD<4:0> or CRCCON1<12:8>). The value in the
VWORD<4:0> bits indicates the number of new data elements in the FIFO.

The FIFO is:

• 16 words deep when DWIDTH<4:0> ≤ 7(data words, 8 bits wide or less)
• 8 words deep when DWIDTH<4:0> ≤ 15(data words from 9 to 16 bits wide)
• 4 words deep when DWIDTH<4:0> ≤ 31 (data words from 17 to 32 bits wide)
The data for which the CRC is to be calculated must first be written into the FIFO by the CPU
using the CRCDATL register. Reading the CRCDATL register always returns ‘0’.

27.5.4.1 FILLING THE FIFO WITH 8-BIT DATA:

With an 8-bit or less data word width setting, the FIFO increments on a write to either the lower or
the upper byte of the CRCDATL register. The smallest data element that can be written into the
FIFO is 1 byte. This allows for single, 8-bit data bytes to be written to the lower byte of the
CRCDATL<7:0> register, followed by another single 8-bit data byte write into the CRCDATL<15:8>
register.

For example, if DWIDTH is five, then the size of the data is DWIDTH + 1 or six. The data is written
as a whole byte; the two unused upper bits are ignored by the module. Once data is written into
the MSb of the CRCDAT registers (that is, MSb as defined by the data width), the value of the
VWORD<4:0> bits (CRCCON<12:8>) increments by one.

27.5.4.2 FILLING THE FIFO WITH GREATER THAN 8-BIT AND LESS
THAN/EQUAL TO 16-BIT DATA:

With a greater than 8-bit and less than or equal to a 16-bit data word width setting, the FIFO
increments on a write to the CRCDATL register. Any write to the CRCDATH register will be
ignored. The value of the VWORD<4:0> bits increment for every write to the CRCDATL register.

27.5.4.3 FILLING THE FIFO WITH GREATER THAN 16 AND LESS THAN 32-BIT
DATA:

When the data width is greater than 16 bits, any write to the CRCDATH register increments the
VWORD by one. Writes to the lower word into the CRCDATL register must be made before
writing the upper word into the CRCDATH register. For example, if DWIDTH is 24, VWORD will
increment when bit 7 of CRCDATH is written. Therefore, CRCDATL must be written before
CRCDATH.

To accommodate left or right shift methods, byte swapping can take place when filling the FIFO
with different data widths.

27.5.5 CRC Engine Interface

27.5.5.1 FIFO TO CRC CALCULATOR

To start serial shifting from the FIFO to the CRC calculator, the CRCGO bit (CRCCON1<4>) must
be set (= 1). The serial shifter then starts shifting data, starting from the MSb first, into the CRC
engine only when CRCGO = 1 and the value of VWORD is greater than zero. If the CRCFUL bit
was set earlier, then it is cleared when the VWORD bits decrement by one. Each word is copied
out of the FIFO into a buffer register; the data is then shifted out of the buffer. The VWORD bits

Note: Ensure that the new data is not written into the CRCDATL and CRCDATH registers
when the CRCFUL bit is set; if the new data is written, it will be ignored.
© 2010 Microchip Technology Inc. Preliminary DS70346B-page 27-11

dsPIC33E/PIC24E Family Reference Manual
decrement by one when a FIFO location gets shifted completely to the CRC calculator. The serial
shifter continues shifting until the VWORD bits reach zero, at which point, the CRCMPT bit is set
to indicate that the FIFO is empty.

Users can write into the FIFO while the shift operation is in progress. For a continuous data feed
into the CRC engine, the recommended mode of operation is to initially “prime” the FIFO with a
sufficient number of words or bytes. Once this is completely done, the user can start the CRC by
setting the CRCGO bit to ‘1’. From this point onwards, either VWORD or the CRCFUL bit should
be monitored. If the CRCFUL bit is not set, or the VWORD reads less than 8 or 16, another word
can be written onto the FIFO. At least one instruction cycle must pass after a write to the
CRCDATL register before a read of the VWORD bits is done.

When the VWORD bits reach the maximum value for the configured value of the DWIDTH bits
(4, 8, 16, or 32), the CRCFUL bit is set. When the VWORD bits reach zero, the CRCMPT bit is
set. The FIFO is emptied and VWORD<4:0> are set to ‘00000’ whenever CRCEN is set to ‘0’.

The frequency of the CRC shift clock is twice that of the dsPIC33E/PIC24E instruction clock
cycle, thus making this hardware shifting process faster than a software shifter. This means that
for a given data width, it takes half that number of instructions for each word to complete the
calculation. For example, it takes 16 cycles to calculate the CRC for a single word of 32-bit data.

27.5.5.2 NUMBER OF DATA BITS SHIFTED FROM FIFO

For a given value of DWIDTH<4:0>, it will take (DWIDTH<4:0> + 1) * VWORD<4:0> number of
shift clock cycles to complete the CRC calculations.The number of data bits to be shifted
depends upon the length of the DWIDTH selected. For example, if DWIDTH<4:0> = 5, then the
length of the DWIDTH is 6 bits (DWIDTH<4:0> + 1) and 3 cycles are required to shift the data.
In this case, a full byte of a FIFO location is not shifted out, even though the CPU can write only
a byte. Only 6 bits of a byte are shifted out, starting from the 6th bit (i.e., the MSb in this case).
The two MSbs of each byte are don’t care bits. Similarly, for a 12-bit polynomial selection, the
shifting starts from the 12th bit of the word, which is the MSb for this selection. The Most
Significant 4 bits of each word are ignored.

27.5.5.3 CRC RESULT

When the CPU reads the CRCWDATL and CRCWDATH registers, the CRC result is read directly
out of the shift register through the CRC read bus. To get the correct CRC reading, it is necessary
to wait for the CRC calculation to complete before reading the CRCWDATL and CRCWDATH
registers. The CRC calculation is not complete when CRCMPT is set. This only indicates that the
FIFO is empty. When CRCMPT is set, there is still one word of data to be shifted that remains in
the shift buffer and (DWIDTH + 1)/2 cycles are left until the calculation finishes. When the
calculation is complete, the module will clear the GO bit and set the CRC Interrupt Flag (if CRCISEL
= 0).

A direct write path to the CRC Shift registers is also provided through the CRC write bus. This
path is accessed by the CPU through the CRCWDATL and CRCWDATH registers. The
CRCWDATL and CRCWDATH registers can be loaded with a desired value prior to the start of
the shift process.

27.5.6 Interrupt Operation
The CRC module generates an interrupt that is configurable by the user for either of two
conditions. If CRCISEL is ‘1’, an interrupt is generated when the VWORD<4:0> bits make a
transition from a value of ‘1’ to ‘0’. If CRCISEL is ‘0’, an interrupt will be generated after the CRC
operation completes and the module sets the CRCGO bit to ‘0’. Manually setting CRCGO to ‘0’
will not generate an interrupt.

The CRCWDATL and CRCWDATH registers can be read in the CRC interrupt routine. The result
should be read only if all data words have been processed. The CRCGO bit can be cleared in
preparation for the next CRC operation request.

Note 1: When the CPU writes the shift registers directly though the CRCWDATL register,
the CRCGO bit must be ‘0’.

2: The CRCIF flag may get set in the middle of a data process sequence if the data is
not provided to the CRC module in time and the CRC FIFO becomes empty.
DS70346B-page 27-12 © 2010 Microchip Technology Inc.

Section 27. 32-Bit Programmable Cyclic Redundancy Check
32-B

it
Program

m
able

C
yclic R

edundancy

27
Table 27-2 lists the interrupt register associated with the CRC module. For more details on
interrupts and interrupt priority settings, refer to Section 6. “Interrupts” (DS70600).

27.6 ADVANTAGES OF PROGRAMMABLE CRC MODULE
The CRC algorithm is straightforward to implement in software. However, it requires considerable
CPU bandwidth to implement the basic requirements, such as shift, bit test and XOR. Moreover,
CRC calculation is an iterative process and additional software overhead for data transfer
instructions puts enormous burden on the MIPS requirement of a microcontroller.

The CRC engine in dsPIC33E/PIC24E devices calculates the CRC checksum without CPU
intervention; moreover, it is much faster than the software implementation. The CRC engine
consumes only half of an instruction cycle per bit for its calculation as the frequency of the CRC
shift clock is twice that of the dsPIC33E/PIC24E instruction clock cycle. For example, the CRC
hardware engine takes only 64 instruction cycles to calculate a CRC checksum on a message
that is 128 bits (16x8) long. If the same calculation is implemented in software, it will consume
more than a thousand instruction cycles, even for an optimized piece of code.

27.7 APPLICATION OF CRC MODULE
Calculating a CRC is a robust error checking algorithm in digital communication for messages
containing several bytes or words. After calculation, the checksum is appended to the message
and transmitted to the receiving station. The receiver calculates the checksum with the received
message to verify the data integrity.

27.7.1 Variations
The 32-bit programmable CRC module of dsPIC33E/PIC24E devices can be programmed to
shift out either the MSb or LSb first. MSb first is a popular implementation as employed in the
XMODEM protocol. In one of the variations (CCITT protocol) for CRC calculation, the LSb is
shifted out first. Discussions on all the variations are beyond the scope of this document, but
many variations of CRC can be implemented using the 32-bit programmable CRC module in
dsPIC33E/PIC24E devices.

The choice of the polynomial length, and the polynomial itself, are application dependent.
Polynomial lengths of 5, 7, 8, 10, 12, 16 and 32 are normally used in various standard
implementations. The CRC module in dsPIC33E/PIC24E devices can be configured for different
polynomial lengths and for different equations. If a polynomial of n bits is selected for calculation,
normally ‘n’ zeros are appended to the message stream, though there are variations in this
process as well. The following sections explain the recommended step-by-step procedure for
CRC calculation, where n zeros are appended to the message stream for an n bit polynomial.
Users can decide whether zeros, or any other values, need to be appended to the message
stream. Depending on the application, the user may decide whether any value needs to be
appended at all.

27.7.2 Typical Operation
To use the module for a typical CRC calculation:

1. Set the CRCEN bit to enable the module.
2. Configure the module for desired operation:

a) Program the desired polynomial using the CRCXORL and CRCXORH registers, and
the PLEN<4:0> bits.

b) Configure the data width and shift direction using the DWIDTH and LENDIAN bits.
c) Select the desired interrupt mode using the CRCISEL bit.

3. Preload the FIFO by writing to the CRCDATL and CRCDATH registers until the CRCFUL
bit is set or no data is left.

4. Clear old results by writing 00h to CRCWDATL and CRCWDATH. CRCWDATL can also
© 2010 Microchip Technology Inc. Preliminary DS70346B-page 27-13

dsPIC33E/PIC24E Family Reference Manual
be left unchanged to resume a previously halted calculation.
5. Clear the CRCIF bit (IFS4<3>) and set the CRCIE bit (IEC4<3>) to enable CRC interrupts.
6. Set the CRCGO bit to start calculation.
7. Write remaining data into the FIFO as space becomes available.
8. When the calculation completes, CRCGO is automatically cleared. When CRCISEL = 0,

an interrupt will be generated at that time.
9. In the CRC interrupt routine, read CRCWDATL and CRCWDATH for the result of the

calculation.
Example 27-1, Example 27-2 and Example 27-3 provide polynomial and data width examples.

Example 27-1: 16-Bit Polynomial with 8-Bit Data Width

Example 27-2: 32-Bit Polynomial with 16-Bit Data Width

main()
{
unsigned char *ptr;

ptr=(unsigned char *)&CRCDATL; //For data width less than or equal to 8 bits,
//the user has to feed the input data through
//byte operations into the CRCDATL register.

CRCCON1bits.CRCEN=1; // enable CRC
CRCCON2bits.PLEN=0x0F; // configure the polynomial width
CRCXORL=0x1021; // configure polynomial data
CRCXORH=0x0000;//
CRCCON2bits.DWIDTH=0x08; //configure the data width
CRCCON1bits.LENDIAN=0; // set the data shift direction
CRCCON1bits.CRCISEL=0; //select the interrupt source
*ptr=0x01; // write data into the FIFO
*ptr=0x02;
*ptr=0x03;
*ptr=0x04;
*ptr=0x05;
*ptr=0x06;
*ptr=0x07;
*ptr=0x08;
Nop ();
CRCCON1bits.CRCGO=1; // start the CRC calculation
while(IFS4bits.CRCIF!=1); // check for end of calculation
Nop ();

}

main()
{

CRCCON1bits.CRCEN=1; // enable CRC
CRCCON2bits.PLEN=0x1F; // configure the polynomial width
CRCXORL= 0x1DB7; // configure polynomial data
CRCXORH=0x04C1;
CRCCON2bits.DWIDTH=0x0F; //configure the data width
CRCCON1bits.LENDIAN=0; // set the data shift direction
CRCCON1bits.CRCISEL=0; //select the interrupt source
CRCDATL=0x0201;
CRCDATL=0x0403;
CRCDATL=0x0605;
CRCDATL=0x0807;
Nop();
CRCCON1bits.CRCGO=1; // start the CRC calculation
while(IFS4bits.CRCIF!=1); // check for end of calculation
Nop ();

}

DS70346B-page 27-14 © 2010 Microchip Technology Inc.

Section 27. 32-Bit Programmable Cyclic Redundancy Check
32-B

it
Program

m
able

C
yclic R

edundancy

27
Example 27-3: 32-Bit Polynomial with 32-Bit Data Width
main()
{

CRCCON1bits.CRCEN=1; // enable CRC
CRCCON2bits.PLEN=0x1F; // configure the polynomial width
CRCXORL= 0x1DB7; // configure polynomial data
CRCXORH=0x04C1;
CRCCON2bits.DWIDTH=0x1F; //configure the data width
CRCCON1bits.LENDIAN=0; // set the data shift direction
CRCCON1bits.CRCISEL=0; //select the interrupt source
CRCDATL=0x0201;
CRCDATH=0x0403;
CRCDATL=0x0605;
CRCDATH=0x0807;
Nop();
CRCCON1bits.CRCGO=1; // start the CRC calculation
while(IFS4bits.CRCIF!=1); // check for end of calculation
Nop ();

}

© 2010 Microchip Technology Inc. Preliminary DS70346B-page 27-15

dsPIC33E/PIC24E Family Reference Manual
27.8 OPERATION IN POWER-SAVING MODES

27.8.1 Sleep Mode
If Sleep mode is entered while the CRC module is operating, the module is suspended in its
current state until clock execution resumes.

27.8.2 Idle Mode
To continue full module operation in Idle mode, the CSIDL bit must be cleared prior to entry into
the mode.

If CSIDL = 1, the CRC module behaves the same way as it does in Sleep mode; pending
interrupt events will be passed on, even though the module clocks are not available.
DS70346B-page 27-16 © 2010 Microchip Technology Inc.

©
 2010 M

icrochip Technology Inc.
D

S
70346B

-page 27-17

Section 27. 32-B
it Program

m
able C

yclic R
edundancy C

heck
Prog

Cyclic

27

27
A s

Ta

F Bit 3 Bit 2 Bit 1 Bit 0 All
Resets

CR LENDIAN — — — 0040

CR PLEN<4:0> 0000

CR — 0000

CR 0000

CR 0000

CR 0000

CR 0000

CR 0000

IFS CRCIF — — — 0000

IEC CRCIE — — — 0000

IPC — — — — 4440

Le
No
32-Bit
rammable
Redundancy

.9 REGISTER MAPS
ummary of the SFRs associated with the dsPIC33E/PIC24E programmable CRC module is provided in Table 27-2.

ble 27-2: Special Function Registers Associated with the Programmable CRC Module(1)

ile Name Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4

CCON1 CRCEN — CSIDL VWORD<4:0> CRCFUL CRCMPT CRCISEL CRCGO

CCON2 — — — DWIDTH<4:0> — — —

CXORL X<15:1>

CXORH X<31:16>

CDATL DATA<15:0>

CDATH DATA<31:16>

CWDATL SDATA<15:0>

CWDATH SDATA<31:16>

4 — — — — — — — — — — — —

4 — — — — — — — — — — — —

16 — CRCIP<2:0> — — — — — — — —

gend: — = unimplemented, read as ‘0’. Shaded bits are not used in the operation of the programmable CRC module.
te 1: Refer to the device data sheet for specific memory map details.

dsPIC33E/PIC24E Family Reference Manual
27.10 RELATED APPLICATION NOTES
This section lists application notes that are related to this section of the manual. These
application notes may not be written specifically for the dsPIC33E/PIC24E product family, but the
concepts are pertinent and could be used with modification and possible limitations. The current
application notes related to the 32-Bit Programmable Cyclic Redundancy Check (CRC) module
are:

Title Application Note #
No related application notes at this time.

Note: Please visit the Microchip website (www.microchip.com) for additional application
notes and code examples for the dsPIC33E/PIC24E family of devices.
DS70346B-page 27-18 © 2010 Microchip Technology Inc.

http://www.microchip.com
http://www.microchip.com
http://www.microchip.com
http://www.microchip.com

Section 27. 32-Bit Programmable Cyclic Redundancy Check
32-B

it
Program

m
able

C
yclic R

edundancy

27
27.11 REVISION HISTORY
Revision A (May 2008)
This is the initial release of this document.

Revision B (March 2010)
This revision incorporates the following updates:

• The designation, 32-bit, has been added to the title and the document has been completely
rewritten since the first published version

• Renamed the Family Reference Manual name from dsPIC33E to dsPIC33E/PIC24E
• All references to dsPIC33E in the document are updated to dsPIC33E/PIC24E
© 2010 Microchip Technology Inc. Preliminary DS70346B-page 27-19

dsPIC33E/PIC24E Family Reference Manual
NOTES:
DS70346B-page 27-20 © 2010 Microchip Technology Inc.

	Section 27. 32-Bit Programmable Cyclic Redundancy Check (CRC)
	27.1 Introduction
	Equation 27-1:

	27.2 Module Overview
	Figure 27-1: Simplified Block Diagram of the Programmable CRC Generator

	27.3 CRC Registers
	Register 27-1: CRCCON1: CRC Control1 Register
	Register 27-2: CRCCON2: CRC Control2 Register
	Register 27-3: CRCXORL: CRC XOR Low Register
	Register 27-4: CRCXORH: CRC XOR High Register
	Register 27-5: CRCDATL: CRC Data Low Register
	Register 27-6: CRCDATH: CRC Data High Register
	Register 27-7: CRCWDATL: CRC Shift Low Register
	Register 27-8: CRCWDATH: CRC Shift High Register

	27.4 CRC Engine
	Figure 27-2: CRC Shift Engine Detail

	27.5 Control Logic
	27.5.1 Polynomial Interface
	Equation 27-2: 16-Bit Polynomial
	Equation 27-3: 32-Bit Polynomial
	Table 27-1: CRC Setup Examples for 16-Bit and 32-Bit Polynomials

	27.5.2 Data Interface
	27.5.3 Data Shift Direction
	27.5.4 FIFO
	27.5.5 CRC Engine Interface
	27.5.6 Interrupt Operation

	27.6 Advantages of Programmable CRC Module
	27.7 Application of CRC Module
	27.7.1 Variations
	27.7.2 Typical Operation
	Example 27-1: 16-Bit Polynomial with 8-Bit Data Width
	Example 27-2: 32-Bit Polynomial with 16-Bit Data Width
	Example 27-3: 32-Bit Polynomial with 32-Bit Data Width

	27.8 Operation in Power-Saving Modes
	27.8.1 Sleep Mode
	27.8.2 Idle Mode

	27.9 Register Maps
	Table 27-2: Special Function Registers Associated with the Programmable CRC Module(1)

	27.10 Related Application Notes
	27.11 Revision History

